WO2023174241A1 - 一种单晶硅片的生产方法及单晶硅片 - Google Patents

一种单晶硅片的生产方法及单晶硅片 Download PDF

Info

Publication number
WO2023174241A1
WO2023174241A1 PCT/CN2023/081242 CN2023081242W WO2023174241A1 WO 2023174241 A1 WO2023174241 A1 WO 2023174241A1 CN 2023081242 W CN2023081242 W CN 2023081242W WO 2023174241 A1 WO2023174241 A1 WO 2023174241A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal silicon
silicon wafers
silicon wafer
monocrystalline silicon
Prior art date
Application number
PCT/CN2023/081242
Other languages
English (en)
French (fr)
Inventor
徐志群
孙彬
付明全
杨振忠
马伟萍
Original Assignee
高景太阳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高景太阳能股份有限公司 filed Critical 高景太阳能股份有限公司
Publication of WO2023174241A1 publication Critical patent/WO2023174241A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/02Accessories specially adapted for use with machines or devices of the preceding groups for removing or laying dust, e.g. by spraying liquids; for cooling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/04Accessories specially adapted for use with machines or devices of the preceding groups for supporting or holding work or conveying or discharging work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes

Definitions

  • the present invention relates to the field of manufacturing semiconductor silicon wafers, and in particular to a production method of single crystal silicon wafers and single crystal silicon wafers.
  • Silicon wafer is an important base material in the semiconductor field. Currently, more than 90% of chips and sensors are manufactured based on silicon wafers. Semiconductor silicon wafers are at the upstream of the integrated circuit industry chain and play an important supporting role as the industry's foundation.
  • silicon wafer production the same silicon ingot is used to produce silicon wafers.
  • the thinner the silicon wafers produced the more silicon wafers can be produced, and the lower the production cost.
  • the thickness of single crystal silicon wafers produced by current silicon wafer production methods is mainly are 170 microns, 165 microns, and 160 microns.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, the purpose of the present invention is to provide a method for producing single crystal silicon wafers and single crystal silicon wafers, which can produce single crystal silicon wafers with a thickness of less than 120 microns, thereby reducing the production cost of silicon wafers.
  • a first aspect of the embodiments of the present application provides a method for producing single crystal silicon wafers.
  • the method includes:
  • the cutting device includes a diamond cutting line, and the diamond cutting line includes a particle size range. For 4-10 ⁇ m diamond, the tension of the diamond cutting wire is 4.7-5.7 N;
  • a spray device is used to spray the single crystal silicon, and a guide wheel blowing device is used to clean the cutting device;
  • the single crystal silicon wafers are inserted into the flower basket one by one, and each of the single crystal silicon wafers is cleaned to obtain a plurality of target single crystal silicon wafers.
  • the cutting line speed of the diamond cutting wire of the cutting device is controlled to be 4 to 10 meters per minute, and the table speed of the single crystal silicon is 10 to 50 millimeters per minute. .
  • inserting the single crystal silicon wafers into the flower basket one by one includes the following steps:
  • the single crystal silicon wafers are transported to the flower basket one by one, and the flower basket moves upward step by step;
  • drying angle is an obtuse angle
  • the single crystal silicon wafer located on the lowest level of the flower basket is The crystalline silicon wafer is blown with a lifting airflow, and the direction of the lifting airflow forms a lifting angle with the horizontal plane where the single crystal silicon wafer is inserted into the partition of the flower basket, and the lifting angle is an acute angle;
  • the dry air flow and the lifting air flow respectively form an air pressure of 0.2 to 0.3 MPa on the single crystal silicon wafer.
  • inserting the single crystal silicon wafers into the flower basket one by one includes the following steps:
  • the plurality of monocrystalline silicon wafers are transported one by one to the partition of the flower basket using a wafer arrangement machine.
  • the flower basket moves upward step by step according to the wafer arrangement speed of the wafer arrangement machine, so that each of the monocrystalline silicon wafers is inserted into the partition board.
  • the sheet discharging speed of the sheet discharging machine is 80-85 sheets per minute.
  • cleaning each of the single crystal silicon wafers includes:
  • the plurality of single crystal silicon wafers are placed in the cleaning device in batches for cleaning.
  • the cleaning temperature is set to 40 to 45 degrees Celsius
  • the cleaning time is set to 190 to 220 seconds.
  • the method further includes:
  • the crystal support includes a plastic plate and a metal plate, the plastic plate is a solid structure, and the plastic plate has a hardness of 85 to 95 MPa. Fixing the single crystal silicon on the crystal support includes following steps:
  • the plastic plate is fixed to the metal plate, and then the single crystal silicon is fixed to the plastic plate.
  • the plastic plate is fixed to the metal plate using an adhesive material
  • the single crystal silicon is fixed to the plastic plate using an adhesive material.
  • the adhesive material includes an adhesive and a curing agent.
  • the ratio of binder to curing agent is 1.2 to 1.5:1.
  • the method further includes:
  • the plurality of target single crystal silicon wafers are extracted and tested, and the target single crystal silicon wafers that meet the detection conditions are placed in a preset container at a set placement speed; the extraction speed during extraction and detection is 6800 to 7200 pieces/hour.
  • the set placing speed is: 6000-7000 pieces/hour.
  • a single crystal silicon wafer is also provided.
  • the single crystal silicon wafer is produced by any one of the single crystal silicon wafer production methods of the first aspect of the embodiment of the present application.
  • the production method of single crystal silicon wafers is to obtain single crystal silicon, fix the single crystal silicon on a substrate, then control the pressure of the single crystal silicon, and use a cutting device to cut the single crystal silicon, wherein,
  • the cutting device includes: a diamond cutting wire.
  • the diamond cutting wire includes diamond with a particle size range of 4 to 10 ⁇ m.
  • the tension of the diamond cutting wire is 4.7 to 5.7 N.
  • a spray device is used to spray the single crystal silicon during the cutting process.
  • use the guide wheel blowing device to clean the cutting device.
  • control the monocrystalline silicon After pressing down and cutting, control the monocrystalline silicon to move upward. Take out the cut multiple monocrystalline silicon wafers from the crystal holder and insert them one by one into the flower basket.
  • the production method of single crystal silicon wafers provided in the embodiments of the present application cuts the single crystal silicon wafer through the above-mentioned cutting device, especially by controlling the particle size of the diamond on the diamond cutting line, so that thin and uniform single crystal silicon can be cut.
  • spraying the single crystal silicon during the cutting process can prevent the cut single crystal silicon wafers from adhering, and using the guide wheel blowing device to clean the cutting device can prevent the introduction of impurities during the cutting process, and prevent cutting If jumpers or disconnections occur in the device, when moving the crystal holder up, it is still necessary to keep the diamond cutting line running at a certain line speed, and control the upward movement speed of the monocrystalline silicon to avoid excessive line speed or table speed during the upward movement. Too fast will cause the single crystal silicon wafer to detach from the crystal support.
  • Figure 1 is a flow chart of a single crystal silicon wafer production method provided by an embodiment of the present invention.
  • Figure 2 is a flow chart of another single crystal silicon wafer production method provided by an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of the single crystal silicon wafers being inserted into the flower basket process one by one according to the embodiment of the present invention.
  • a specific device when a specific device is described as being located between a first device and a second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When a specific device is described as being connected to another device, the specific device may be directly connected to the other device without an intervening device, or may not be directly connected to the other device but with an intervening device.
  • Silicon wafer is an important base material in the semiconductor field. Currently, more than 90% of chips and sensors are manufactured based on silicon wafers. Semiconductor silicon wafers are at the upstream of the integrated circuit industry chain and play a plays an important supporting role in the industry foundation.
  • silicon wafer production the same silicon ingot is used to produce silicon wafers.
  • the thinner the silicon wafers produced the more silicon wafers can be produced, and the lower the production cost.
  • the thickness of single crystal silicon wafers produced by current silicon wafer production methods is mainly There are production technology bottlenecks for single crystal silicon wafers with thicknesses below 170 microns, 165 microns, 160 microns, and 120 microns.
  • the main technical problem is that when producing single crystal silicon wafers with a thickness of less than 120 microns, because the thickness of the silicon wafer is very thin, cutting in the conventional way can easily cause damage to the single crystal silicon wafer, making it difficult to ensure cutting quality, and the thinner the silicon wafer, the The harder it is to ensure uniformity during cutting, and the thinner the silicon wafer, the smaller the contact area between it and the crystal support after cutting, and the easier it is to collide with the silicon wafer when withdrawing, causing the silicon wafer to fall off and be damaged. The smaller the strength of thin single crystal silicon wafers, the more likely they are to deform when placed in a flower basket, making collisions, damage and other problems prone to occur when placing single crystal silicon wafers one by one.
  • an embodiment of the present application provides a method for producing single crystal silicon wafers, which method includes the following steps:
  • Step 101 Obtain single crystal silicon and fix the single crystal silicon on the crystal support
  • Step 102 Control the side of the crystal support on which the single crystal silicon is fixed to press down, and use a cutting device to cut the single crystal silicon;
  • Step 103 Use a spray device to spray the single crystal silicon during the cutting process, and use a guide wheel blowing device to clean the cutting device;
  • Step 104 After the pressing and cutting stroke is completed, control the crystal support to move upward, and then move the single crystal support upward.
  • the crystalline silicon is separated from the crystal support to obtain multiple single crystal silicon wafers;
  • Step 105 Insert the single crystal silicon wafers into the flower basket one by one, and perform a cleaning process on each of the single crystal silicon wafers to obtain multiple target single crystal silicon wafers.
  • the crystal support serves as a carrier to fix the single crystal silicon at the bottom of the crystal support, and then drives the crystal support to control the downward pressure or lifting of the single crystal silicon.
  • the single crystal silicon is pressed downward.
  • the cutting device also includes Diamond cutting wire, the diamond cutting wire includes diamond with a particle size range of 4 to 10 ⁇ m, and the tension of the diamond cutting wire is 4.7 to 5.7 N; during the cutting process, the diamond cutting wire is controlled to reciprocate at a certain cutting line speed.
  • a spray device is used to spray the monocrystalline silicon during the cutting process to prevent adhesion of the cut monocrystalline silicon wafers
  • a guide wheel blowing device is used to Clean the cutting device, blow away the powder on the cutting device, prevent impurities from being introduced during the cutting process, and prevent jumpers and disconnections in the cutting device.
  • the cutting step has been completed.
  • the crystal support needs to be moved upward to separate the single crystal silicon.
  • Diamond cutting line but because the gap between two adjacent single crystal silicon wafers is very narrow, and the strength of the single crystal silicon wafer is not high, it is easy to be deformed or bruised, so when the single crystal silicon moves upward, the diamond cutting line
  • the line still moves back and forth at a certain line speed, and the line speed during the lifting process is slower than the line speed during the pushing down process.
  • the table speed during lifting is faster than the table speed during pushing down.
  • the diamond cutting wire comes into contact with the single crystal silicon wafer, it only slides and rubs on the surface of the single crystal silicon wafer without being bruised. This avoids uneven stress and damage during the lifting process of the single crystal silicon wafer, and also causes damage in the longitudinal direction.
  • the displacement speed is faster, shortening the contact time between the diamond cutting line and the single crystal silicon wafer, and reducing the chance of possible collision.
  • the diamond cutting quickly increases from low speed to high speed, and remains stable at high speed until the entire pressing and cutting stroke is completed.
  • the final stable line speed can be between 1900 and 2200 meters per minute, preferably 2100 meters per minute.
  • the table speed first increases and then decreases, which means that the monocrystalline silicon is controlled to cut quickly first, and the maximum table speed is reached when it travels to about 1/6 of the total stroke.
  • the maximum table speed ranges from 2400 to 2600 microns per minute.
  • the table speed drops to 0; during the lifting process, as the lifting stroke progresses, the diamond cutting wire cutting line speed rapidly increases from low speed to high speed. , and remains stable at high speed until the entire lifting and lifting stroke is completed.
  • the final stable line speed can be between 4 and 10 meters per minute, preferably 5 meters per minute.
  • the table speed during lifting will be faster than that when pushing down. Fast, and after the speed is increased to the highest speed, it is maintained until the entire journey of lifting the material is completed.
  • the maximum table speed range is 10 to 50 mm per minute.
  • the monocrystalline silicon wafer 1 When the next piece of monocrystalline silicon wafer 1 is inserted, the monocrystalline silicon wafer 1 will only Under the support of the partitions 6 at both ends, the middle area is suspended in the air.
  • the thin single crystal silicon wafer 1 itself is soft and will produce a certain downward concave deformation under the action of gravity or residual moisture on it;
  • the dry air flow 2 is blown to the single crystal silicon wafer 1.
  • the wind direction of the dry air flow 2 forms a drying angle with the transportation direction of the single crystal silicon wafer 1.
  • the dry air flow 2 flows from the single crystal silicon wafer 1 1 is blown down obliquely from the front and above in the transportation direction to dry the water on the single crystal silicon wafer 1.
  • the drying angle is an obtuse angle, preferably an angle of 150°; in addition, the drying airflow 2 can be from Blow to the single crystal silicon wafer 1 from multiple places, for example from the oblique front upper and oblique front lower sides of the single crystal silicon wafer 1, and dry the moisture on the upper and lower surfaces of the single crystal silicon wafer 1 in the direction opposite to the transportation direction;
  • the lifting airflow 3 is blown to the single crystal silicon wafer 1 located on the lowest layer of the flower basket 5.
  • the wind direction of the lifting airflow 3 is consistent with the single crystal silicon wafer 1.
  • the horizontal plane inserted into the partition 6 of the flower basket 5 forms a lifting angle.
  • the lifting angle is an acute angle, preferably an angle of 30°.
  • the direction of the lifting airflow 3 is opposite to the direction of the depression of the single crystal silicon wafer 1;
  • the upward airflow 3 blows towards the single crystal silicon wafer 1 at an oblique upward angle, causing the single crystal silicon wafer 1 to overcome its own deformation and maintain a relatively horizontal state, eliminating the middle depression of the single crystal silicon wafer 1 due to its own gravity. area, until the next monocrystalline silicon wafer 1 is inserted, the upper and lower monocrystalline silicon wafers 1 will not collide, ensuring that the monocrystalline silicon wafer 1 is smoothly inserted into the flower basket 5;
  • drying airflow 2 and the lifting airflow 3 respectively form an air pressure of 0.2 to 0.3MPa on the single crystal silicon wafer 1.
  • the air pressure within this range will not blow through the single crystal silicon wafer 1 with a thickness of less than 120 microns. It can also dry the single crystal silicon wafer 1 and avoid its deformation due to its own gravity.
  • Stacks of monocrystalline silicon wafers 1 are placed in the wafer arrangement machine, and the wafer arrangement machine is used to transport multiple monocrystalline silicon wafers 1 one by one to the lowest layer partition 6 of the flower basket 5.
  • the flower basket 5 is arranged according to the wafer arrangement speed of the wafer arrangement machine. Move up step by step so that each single crystal silicon wafer 1 is inserted into a layer of partitions 6.
  • the wafer arrangement speed of the wafer arrangement machine is 80-85 wafers per minute; preferably, there is a wafer arrangement between the wafer arrangement machine and the flower basket 5.
  • a conveying device 4 There is a conveying device 4, and a drying and blowing device for blowing out the dry air flow 2 is provided above and/or below the conveying device 4, where the temperature of the dry air flow 2 can be 50 to 80 degrees Celsius; and between the conveying device 4 and the flower basket 5
  • the room is also equipped with a lifting and blowing device, which blows out the lifting airflow 3 from bottom to top or diagonally. At this wafer row speed, it can be ensured that the moisture on the upper and lower sides of the single crystal silicon wafer 1 is blown or dried within a transportation distance of 1 to 1.5m.
  • the single crystal silicon wafer 1 can be During the time gap when the flower basket 5 moves upward step by step, it is affected by the upward airflow 3 to avoid downward concave deformation, ensuring the smooth insertion of the next single crystal silicon wafer 1, avoiding wafer collision, and achieving high operating efficiency.
  • cleaning each single crystal silicon wafer may include: adding 7 to 8 liters of hydrogen peroxide and 80 to 120 grams of sodium hydroxide to the cleaning device, and then cleaning the multiple single crystal silicon wafers. Place them in the cleaning device in batches for cleaning. When cleaning, set the cleaning temperature to 40 to 45 degrees Celsius and the cleaning time to 190 to 220 seconds.
  • the monocrystalline silicon wafer is thin, when the added cleaning agent generates a lot of foam, it is easy for the monocrystalline silicon wafer to float on the surface of the cleaning device, causing the cleaning to be unclean. Therefore, this application is for single crystal silicon wafers.
  • the cleaning process compared with the existing technology, the amount of cleaning agent added is reduced, and the cleaning temperature is lowered to reduce foam generated by the reaction of the agent. At the same time, in order to ensure the cleanliness of cleaning, the cleaning time is increased.
  • the silicon wafer can be taken out by slowly pulling.
  • the pulling temperature can be 90 to 100 degrees Celsius
  • the pulling speed can be 15,000 to 28,000 pieces/hour
  • the angle between the silicon wafer and the horizontal plane can be 30 to 38 degrees during the pulling process. Pulling in the above manner can speed up the evaporation of moisture or chemical residues on the surface of the single crystal silicon wafer.
  • the single crystal silicon can be a single crystal silicon rod.
  • the size of the single crystal silicon rod is generally 210 ⁇ 210 ⁇ 830mm.
  • the crystal support includes a plastic plate and a metal plate.
  • the plastic plate can be a solid structure.
  • the plastic plate It can be a plastic plate with a hardness of 85 to 95 MPa, or a plastic plate with an electrophoresis current value of 10 to 12 A.
  • the control The transmission device that moves up and down is directly connected to the metal plate, and the plastic plate has a lower hardness than the metal plate. Therefore, when pressing and cutting single crystal silicon, the pressing and cutting stroke is controlled to be larger than the thickness of single crystal silicon. For example, the thickness of single crystal silicon is 210mm, then the pressing and cutting stroke is 220mm, because the diamond cutting line will maintain a certain deformation arc during cutting. Increasing the pressing and cutting stroke can make up for the concavity in the middle of the diamond cutting line and ensure that the entire monocrystalline silicon is cut. Cutting out multiple single-crystal silicon wafers makes it easier to control the progress of the journey.
  • the direct connection between the metal plate, the plastic plate and the single crystal silicon can be fixed with an adhesive material.
  • the adhesive material includes an adhesive and a curing agent.
  • the ratio of the adhesive to the curing agent is 1.2 to 1.5: 1.
  • the binder is epoxy resin, which can be bisphenol A-type epoxy resin or bisphenol F-type epoxy resin. This structure of epoxy resin can ensure that the single unit can be improved even if the contact area is only 120 microns wide.
  • an adhesive material with a ratio of adhesive and curing agent of 1.4:1 is used to fix the single crystal silicon to the plastic plate, which can improve the firmness of the bond.
  • the new structure of the plastic board can better ensure its own strength, and improve the surface roughness of the plastic board to Ra7.5 ⁇ 10, improving the bonding ability between the plastic board and the bonding material.
  • the plurality of target single crystal silicon wafers are extracted and detected, and the target single crystal silicon wafers that meet the detection conditions are placed in a preset container at a set placement speed;
  • the extraction speed during extraction and testing is 6800 ⁇ 7200 pieces/hour, and the set placement speed is: 6000 ⁇ 7000 pieces/hour.
  • embodiments of the present application provide a single crystal silicon wafer, which is produced by using the single crystal silicon wafer production method in any of the above embodiments. Furthermore, the thickness of the single crystal silicon wafer is 110 microns. .
  • the above embodiments provide a method for producing single crystal silicon wafers and a single crystal silicon wafer.
  • the cutting device includes: a diamond cutting wire.
  • the diamond cutting wire includes diamond with a particle size range of 4 to 10 ⁇ m.
  • the tension of the diamond cutting wire is 4.7 to 5.7 N.
  • the spray device is used to spray the single crystal silicon, and the guide wheel blowing device is used to clean the cutting device.
  • the single crystal silicon is controlled to move upward, and the multiple cut single crystal silicon wafers are Take it out from the crystal holder, insert it piece by piece into the flower basket, and finally complete the cleaning process to obtain multiple targets.
  • the production method of single crystal silicon wafers uses the above-mentioned cutting device to cut the single crystal silicon wafers. In particular, by controlling the particle size of the diamond on the diamond cutting line, thin and uniform single crystal silicon wafers can be cut.
  • spraying the single crystal silicon during the cutting process can prevent the cut single crystal silicon wafers from adhering, and using the guide wheel blowing device to clean the cutting device can prevent the introduction of impurities during the cutting process, and prevent the cutting device from being introduced.
  • the diamond cutting line In the event of wire jumps or disconnections, when moving the crystal holder upwards, the diamond cutting line must still be kept running at a certain line speed, and the upward moving table speed of the monocrystalline silicon must be controlled to avoid excessive line speed or excessive table speed during the upward movement. It will quickly cause the single crystal silicon wafer to detach from the crystal support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种单晶硅片(1)的生产方法及单晶硅片(1),涉及半导体硅片的生产制造领域,能够生产出120微米厚度以下的单晶硅片(1),从而能够降低硅片的生产成本。具体方案包括:获取单晶硅,并将单晶硅固定于晶托;控制晶托固定有单晶硅的一侧下压,利用切割装置对单晶硅进行切割,切割装置包括:金刚石切割线,金刚石切割线包括颗粒粒径范围在4~10μm的金刚石,金刚石切割线的张力为4.7~5.7牛;在切割过程中利用喷淋装置对单晶硅进行喷淋处理,且利用导轮吹气装置对切割装置进行清洁处理;下压切割行程结束后,控制晶托上移,再将单晶硅从晶托处脱离,得到多个单晶硅片(1);将单晶硅片(1)逐片插入花篮(5)中,对每个单晶硅片(1)进行清洗处理,得到多个目标单晶硅片(1)。

Description

一种单晶硅片的生产方法及单晶硅片 技术领域
本发明涉及半导体硅片的生产制造领域,尤其涉及一种单晶硅片的生产方法及单晶硅片。
背景技术
硅片是半导体领域重要的基体材料,目前90%以上的芯片和传感器都是基于硅片制造而成。半导体硅片处于集成电路产业链上游,发挥着重要的行业基础支撑作用。
在硅片生产中使用同一硅晶棒生产硅片,生产的硅片越薄,生产得到的硅片越多,生产成本越低,目前的硅片生产方法生产出的单晶硅片的厚度主要为170微米,165微米、160微米,而对于120微米厚度以下的单晶硅片存在生产制造技术瓶颈。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的目的在于提供一种单晶硅片的生产方法及单晶硅片,能够生产出120微米厚度以下的单晶硅片,从而能够降低硅片的生产成本。
为达到上述目的,本发明采用如下技术方案:
本申请实施例第一方面,提供一种单晶硅片的生产方法,该方法包括:
获取单晶硅,并将所述单晶硅固定于晶托;
控制所述晶托固定有所述单晶硅的一侧下压,利用切割装置对所述单晶硅进行切割,所述切割装置包括:金刚石切割线,所述金刚石切割线包括颗粒粒径范围在4~10μm的金刚石,所述金刚石切割线的张力为4.7~5.7牛;
在切割过程中利用喷淋装置对所述单晶硅进行喷淋处理,且利用导轮吹气装置对所述切割装置进行清洁处理;
下压切割行程结束后,控制所述晶托上移,再将所述单晶硅从所述晶托处脱离,得到多个单晶硅片;
将所述单晶硅片逐片插入花篮中,对每个所述单晶硅片进行清洗处理,得到多个目标单晶硅片。
在一个实施例中,在上移所述晶托时,控制所述切割装置的金刚石切割线切割线速为4~10米每分钟,所述单晶硅的台速为10~50毫米每分钟。
在一个实施例中,将所述单晶硅片逐片插入花篮中时,包括以下步骤:
逐片将所述单晶硅片输送往花篮,花篮逐级向上移动;
其中,在所述单晶硅片输送过程中,向所述单晶硅片吹送干燥气流,所述干燥气流的风向与所述单晶硅片的运输方向成一干燥夹角,所述干燥夹角为钝角;
在所述单晶硅片插入花篮后,向位于所述花篮最低一层的所述单 晶硅片吹送顶升气流,所述顶升气流的风向与所述单晶硅片在所述花篮的隔板中的插入水平面成一顶升夹角,所述顶升夹角为锐角;
所述干燥气流和顶升气流分别在所述单晶硅片上形成0.2~0.3MPa的气压。
在一个实施例中,将所述单晶硅片逐片插入花篮中时,包括以下步骤:
利用排片机将所述多个单晶硅片逐片向所述花篮的隔板中输送,所述花篮按照所述排片机的排片速度逐级上移,使每一片所述单晶硅片插入至一层隔板中,所述排片机的排片速度为80~85片每分钟。
在一个实施例中,所述对每个所述单晶硅片进行清洗处理,包括:
向清洗装置中加入7~8升的双氧水,以及80~120克的氢氧化钠;
将所述多个单晶硅片分批次放置于所述清洗装置中进行清洗,清洗时,设定清洗温度为:40~45摄氏度,设定清洗时间为:190~220秒。
在一个实施例中,所述方法还包括:
在检测到所述清洗装置中的单晶硅片的数量大于预设阈值时,在所述清洗装置添加2~3升的双氧水。
在一个实施例中,所述晶托包括塑料板和金属板,所述塑料板为实心结构,所述塑料板的硬度为85~95兆帕,将所述单晶硅固定于晶托上包括以下步骤:
先将塑料板固定于金属板,再将所述单晶硅固定于所述塑料板。
在一个实施例中,在将塑料板固定于金属板的底面,再将所述单晶硅固定于所述塑料板的底面时,包括以下步骤:
利用粘接材料将所述塑料板固定于所述金属板,再利用粘接材料将所述单晶硅固定于所述塑料板,所述粘接材料包括粘结剂和固化剂,所述粘结剂和固化剂的比例为1.2~1.5:1。
在一个实施例中,所述方法还包括:
对所述多个目标单晶硅片进行抽取检测,并将满足检测条件的目标单晶硅片按设定放置速度放置于预设容器;抽取检测时的抽取速度为6800~7200片/小时,所述设定放置速度为:6000~7000片/小时。
本申请实施例第二方面,还提供一种单晶硅片,该单晶硅片采用本申请实施例第一方面的单晶硅片生产方法中的任一实施例生产得到。
本申请实施例提供的单晶硅片的生产方法,通过获取单晶硅,并将单晶硅固定于基板上,然后控制单晶硅下压,利用切割装置对单晶硅进行切割,其中,切割装置包括:金刚石切割线,金刚石切割线包括颗粒粒径范围在4~10μm的金刚石,金刚石切割线的张力为4.7~5.7牛,同时,在切割过程中利用喷淋装置对单晶硅进行喷淋处理,且利用导轮吹气装置对切割装置进行清洁处理,下压切割完毕后控制单晶硅上移,将切割好的多个单晶硅片从晶托上取出,逐片插入在花篮中,最后完成清洗处理,得到多个目标单晶硅片。本申请实施例提供的单晶硅片的生产方法,通过上述切割装置对单晶硅片进行切割,尤其控制金刚石切割线上金刚石的粒径,可以切出厚度较薄且均匀的单晶硅 片,同时在切割过程中对单晶硅进行喷淋处理可以防止切割的单晶硅片发生粘连,以及利用导轮吹气装置对切割装置进行清洁处理可以防止切割过程中引入杂质,以及防止切割装置发生跳线和断线,在上移晶托时,仍要保持金刚石切割线按一定线速运行,且控制单晶硅的上移台速,避免在上移过程中线速过大或者台速过快导致单晶硅片从晶托上脱离。
下面结合附图和具体实施方式对本发明作进一步详细说明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种单晶硅片生产方法的流程图。
图2为本发明实施例提供的另一种单晶硅片生产方法的流程图。
图3为本发明实施例中单晶硅片逐片插入花篮工序中的结构示意图。
附图标记
1-单晶硅片;2-干燥气流;3-顶升气流;
4-输送装置;5-花篮;6-隔板。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
硅片是半导体领域重要的基体材料,目前90%以上的芯片和传感器都是基于硅片制造而成。半导体硅片处于集成电路产业链上游,发挥 着重要的行业基础支撑作用。
在硅片生产中使用同一硅晶棒生产硅片,生产的硅片越薄,生产得到的硅片越多,生产成本越低,目前的硅片生产方法生产出的单晶硅片的厚度主要为170微米,165微米、160微米,120微米厚度以下的单晶硅片存在生产技术瓶颈。
而主要的技术问题在于,在生产120微米厚度以下的单晶硅片时,由于硅片厚度很薄,按常规方式切割容易导致单晶硅片损坏,难以确保切割质量,且硅片越薄,切割时越难保证其均匀性,而且越薄的硅片,其在切割后与晶托之间连接的接触面积越小,在退线时越容易碰撞硅片,从而导致硅片脱落损坏,而且薄单晶硅片的强度越小,其在花篮中放置越容易出现变形,从而在逐片放置单晶硅片过程中容易出现碰撞、损坏等问题。
为了解决上述问题,第一方面,如图1所示,本申请实施例提供一种单晶硅片的生产方法,该方法包括以下步骤:
步骤101、获取单晶硅,并将所述单晶硅固定于晶托;
步骤102、控制所述晶托固定有所述单晶硅的一侧下压,利用切割装置对所述单晶硅进行切割;
步骤103、在切割过程中利用喷淋装置对所述单晶硅进行喷淋处理,且利用导轮吹气装置对所述切割装置进行清洁处理;
步骤104、下压切割行程结束后,控制所述晶托上移,再将所述单 晶硅从所述晶托处脱离,得到多个单晶硅片;
步骤105、将所述单晶硅片逐片插入花篮中,对每个所述单晶硅片进行清洗处理,得到多个目标单晶硅片。
其中,晶托作为一个载体,将单晶硅固定在晶托的底部,然后通过带动晶托来控制单晶硅下压或者上提,首先使单晶硅朝下压,在切割装置中还包括金刚石切割线,所述金刚石切割线包括颗粒粒径范围在4~10μm的金刚石,所述金刚石切割线的张力为4.7~5.7牛;在切割过程中,控制金刚石切割线按一定切割线速来回往复移动,利用4~10μm颗粒粒径范围内的金刚石作用在单晶硅上,可均匀地切割出一条缝隙,而且随着下压切割行程的加深,在金刚石两侧所成型的单晶硅片的高度越高,单晶硅片在逐渐成型的过程中受力越来越不均匀,因此通过控制金刚石的颗粒粒径和金刚石切割线的切割张力,金刚石切割线保持有一定的形变弧度,且金刚石在高速横向来回往复移动时不会碰到两侧的单晶硅片,避免在行程的后段对单晶硅片造成很大的受力,有利于薄单晶硅片的形成。
由于切割更薄的单晶硅片出现粘连现象,因此在切割过程中利用喷淋装置对单晶硅进行喷淋处理,可以防止切割的单晶硅片发生粘连,且利用导轮吹气装置对切割装置进行清洁处理,吹走切割装置上的粉末,防止切割过程中引入杂质,以及防止切割装置发生跳线和断线。
而当下压切割行程结束后,即在晶托上固定有若干个单晶硅片时,此时已经完成切割步骤,接下来需要将晶托上移,进而将单晶硅脱离 金刚石切割线,但是由于相邻两个单晶硅片之间的间隙很窄,而且单晶硅片的强度不大,很容易发生变形或者碰伤,因此在单晶硅向上移动时,金刚石切割线仍以一定的线速进行往复移动,且在上提过程中的线速比下压过程中的线速更慢,上提时的台速比下压时的台速更快,即使上提时金刚石切割线与单晶硅片发生接触,也只是在单晶硅片表面上滑动摩擦,不会碰伤,避免单晶硅片上提过程中受力不均,发生损伤,且在纵向上的位移速度更快,缩短金刚石切割线与单晶硅片的接触时间,减少可能发生碰撞的机会。
最后将多个单晶硅片逐片插入花篮的隔板中,清洗完后即可得到目标单晶硅片。
作为一种实施例,为了更好保证单晶硅在切割装置中下压和上提时的可靠性,同时考虑到切割效率,因此在下压过程中,随着下压切割行程的深入,金刚石切割线切割线速从低速快速提高至高速,并在高速下一直稳定至走完下压切割行程的全程,最终稳定的线速可以在1900~2200米每分钟之间,优选为2100米每分钟,下压时台速先变大再变小,意思是控制单晶硅先快速切割,当行进至总行程的1/6左右时达到最大台速,最大台速的范围是2400~2600微米每分钟,达到最大台速后再降低台速,等切割完成时,台速降为0;而在上提过程中,随着上提出料行程的深入,金刚石切割线切割线速从低速快速提高至高速,并在高速下一直稳定至走完上提出料行程的全程,最终稳定的线速可以在4~10米每分钟之间,优选为5米每分钟,上提时台速会比下压时快,且提速至最高速后,一直维持至走完上提出料行程的全程, 最大台速的范围是10~50毫米每分钟。
参照图2和图3,作为一种实施例,在将单晶硅片1逐片插入花篮5中时,包括以下步骤:
逐片将单晶硅片1输送往花篮5,花篮5逐级向上移动;由于多个单晶硅片1是摞在一起的,堆成一叠,而在向花篮5方向输送时,需要逐片逐片将单晶硅片1提取并输送出来,而花篮5中有很多层隔板6,隔板6只在左右两侧设置,花篮5的中间部位是中空的,每往花篮5的隔板6上插入一片单晶硅片1,花篮5就会向上移动一层,以将下一层空的隔板6露出来,待下一片单晶硅片1插入,而单晶硅片1只在两端隔板6的支撑受力下,其中部区域悬空,薄的单晶硅片1本身材质较软,在重力或者其上残留水分的作用下会产生一定的向下凹陷形变;
其中,在单晶硅片1输送过程中,向单晶硅片1吹送干燥气流2,干燥气流2的风向与单晶硅片1的运输方向成一干燥夹角,干燥气流2从单晶硅片1运输方向的斜前上方吹下,用于将单晶硅片1上的水吹干,更进一步地,干燥夹角为钝角,优选地为150°夹角;另外地,干燥气流2可以从多处吹向单晶硅片1,例如从单晶硅片1的斜前上方和斜前下方吹来,沿着运输方向相反的方向将单晶硅片1上下两面的水分吹干;
在单晶硅片1插入到花篮5最低一层隔板6后,向位于花篮5最低一层的单晶硅片1吹送顶升气流3,顶升气流3的风向与单晶硅片1 在花篮5的隔板6中的插入水平面成一顶升夹角,顶升夹角为锐角,优选地为30°夹角,顶升气流3的风向与单晶硅片1的凹陷方向相反;顶升气流3朝着斜向上的角度吹向单晶硅片1,使得单晶硅片1克服其自身的形变,保持较为水平的状态,消除了单晶硅片1由于自身重力而产生的中间凹陷区域,直至下一片单晶硅片1插入时,上下两片单晶硅片1不会发生碰撞,保证单晶硅片1顺利插入花篮5;
可见,在单晶硅片1输送往花篮5的过程中,存在两个过程,一个是直线输送过程,这个过程中利用干燥气流2吹干单晶硅片1上的积水;再一个过程是单晶硅片1插入花篮5过程,单晶硅片1在从输送装置4进入花篮5的过程中或者进入之后,会受到顶升气流3的作用,防止单晶硅片1下凹变形。
更进一步地,干燥气流2和顶升气流3分别在单晶硅片1上形成0.2~0.3MPa的气压,这个范围内的气压,既不会吹破120微米以下厚度的单晶硅片1,又能使单晶硅片1干燥,还能避免其因自身重力而产生的形变。
作为一种实施例,将单晶硅片1逐片插入花篮5中时,包括以下步骤:
将一摞摞的单晶硅片1放置在排片机中,利用排片机将多个单晶硅片1逐片向花篮5的最低一层隔板6中输送,花篮5按照排片机的排片速度逐级上移,使每一片单晶硅片1插入至一层隔板6中,排片机的排片速度为80-85片每分钟;优选地,在排片机与花篮5之间设 置有输送装置4,在输送装置4的上方和/或下方设有用于吹出干燥气流2的干燥吹风装置,其中干燥气流2的温度可以为50~80摄氏度;且在输送装置4与花篮5之间还设有顶升吹风装置,顶升吹风装置从下往上或者斜上吹出顶升气流3。在这一排片速度下,能够保证在1~1.5m的输送距离中,单晶硅片1上下两面的水分被吹干或者烘干,然后在插入花篮5中时,单晶硅片1可以在花篮5逐级上移的时间间隙中受到顶升气流3的作用而避免向下发生凹陷形变,保证下一单晶硅片1的顺利插入,避免撞片现象,运行效率高。
作为一种实施例,对每个单晶硅片进行清洗处理,可以包括:向清洗装置中加入7~8升的双氧水,以及80~120克的氢氧化钠,然后将多个单晶硅片分批次放置于清洗装置中进行清洗,清洗时,设定清洗温度为:40~45摄氏度,设定清洗时间为:190~220秒。
由于单晶硅片较薄,而清洗的添加的药剂产生的较多泡沫时,容易让单晶硅片悬浮在清洗装置的表面,而导致清洗不干净,因此,本申请在对单晶硅片清洗的过程中,相对于现有技术减少了清洗药剂的加入量,同时降低了清洗的温度,以减少药剂反应而产生的泡沫,同时为了保证清洗的干净度,增加了清洗时间。
需要说明的是,由于单晶硅片是分批次加入到清洗装置中,因此当加入的到清洗装置中的单晶硅片的数量大于预设阈值时,在清洗装置添加2~3升的双氧水,以保证清洗药剂的充足。
可选的,在清洗后可以通过慢提拉的方式将硅片取出,其中,提 拉的温度可以为90~100摄氏度,提拉的速度可以为15000~28000片/小时,提拉的过程中硅片与水平面的夹角可以为30~38度。以上述方式进行提拉,可以加快单晶硅片表面水分或药剂残留物质的挥发。
作为一种实施例,单晶硅可以为单晶硅棒,单晶硅棒的尺寸一般为210×210×830mm,晶托包括塑料板和金属板,其中,塑料板可以为实心结构,塑料板可以是硬度可以为85~95兆帕的塑料板,还可以是电泳电流值为10~12安的塑料板。
在安装时,先将塑料板固定于金属板,再将所述单晶硅固定于所述塑料板,即从上至下依次是金属板、塑料板和单晶硅,需要注意的是,控制上下移动的传动装置直接连接金属板,而塑料板相对金属板硬度更低,因此在单晶硅下压切割时,控制下压切割行程比单晶硅的厚度大,例如单晶硅的厚度为210mm,则下压切割行程为220mm,因为金刚石切割线在切割时会保持一定的形变弧度,加大下压切割行程,能弥补金刚石切割线中部的下凹,保证从整根的单晶硅中切割出多个单片单晶硅片,更容易控制行程进度。
优选地,金属板、塑料板和单晶硅直接的连接可用粘接材料实现固定,所述粘接材料包括粘结剂和固化剂,所述粘结剂和固化剂的比例为1.2~1.5:1,其中粘结剂为环氧树脂,可以为双酚A型环氧树脂和双酚F型环氧树脂,这种结构的环氧树脂能保证在只有120微米宽度的接触面积情况下提高单晶硅片与塑料板之间的连接强度。
在实际应用中,通过将单晶硅固定在实心结构的塑料板上,可以 防止单晶硅在切割过程中的作用力使得塑料板上和单晶硅的连接面发生脱落,导致无法进行单晶硅片的切割。优选地,使用粘结剂和固化剂的比例为1.4:1的粘接材料将单晶硅固定与塑料板上,可以提高粘接的牢固度。实新结构的塑料板更能保证其自身强度,且提高塑料板表面粗糙度至Ra7.5~10,提高塑料板与粘接材料的粘合能力。
作为一种实施例,在完成清洗处理后,对所述多个目标单晶硅片进行抽取检测,并将满足检测条件的目标单晶硅片按设定放置速度放置于预设容器;
抽取检测时的抽取速度为6800~7200片/小时,设定放置速度为:6000~7000片/小时。
第二方面,本申请实施例提供一种单晶硅片,采用如上述任一种实施例中的单晶硅片的生产方法生产得到,更进一步地,本单晶硅片的厚度为110微米。
相对于现有技术,上述实施例提供一种单晶硅片的生产方法及单晶硅片,通过获取单晶硅,并将单晶硅固定于基板上,然后控制单晶硅下压,利用切割装置对单晶硅进行切割,其中,切割装置包括:金刚石切割线,金刚石切割线包括颗粒粒径范围在4~10μm的金刚石,金刚石切割线的张力为4.7~5.7牛,同时,在切割过程中利用喷淋装置对单晶硅进行喷淋处理,且利用导轮吹气装置对切割装置进行清洁处理,下压切割完毕后控制单晶硅上移,将切割好的多个单晶硅片从晶托上取出,逐片插入在花篮中,最后完成清洗处理,得到多个目标 单晶硅片。本申请实施例提供的单晶硅片的生产方法,通过上述切割装置对单晶硅片进行切割,尤其控制金刚石切割线上金刚石的粒径,可以切出厚度较薄且均匀的单晶硅片,同时在切割过程中对单晶硅进行喷淋处理可以防止切割的单晶硅片发生粘连,以及利用导轮吹气装置对切割装置进行清洁处理可以防止切割过程中引入杂质,以及防止切割装置发生跳线和断线,在上移晶托时,仍要保持金刚石切割线按一定线速运行,且控制单晶硅的上移台速,避免在上移过程中线速过大或者台速过快导致单晶硅片从晶托上脱离。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”、“优选实施例”等,指的是结合该实例描述的具体特征、结构或者特点包含在本申请概括描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本发明内。尽管这里参照本发明的多个解释性实例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式降落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开、附图和权利要求的范围内,可以对主题结合布 局的组成部件和/或布局进行的变形和改进外,对于本领域技术人员来说,其他的用途也将是明显的。

Claims (10)

  1. 一种单晶硅片的生产方法,其特征在于,所述方法包括:
    获取单晶硅,并将所述单晶硅固定于晶托;
    控制所述晶托固定有所述单晶硅的一侧下压,利用切割装置对所述单晶硅进行切割,所述切割装置包括:金刚石切割线,所述金刚石切割线包括颗粒粒径范围在4~10μm的金刚石,所述金刚石切割线的张力为4.7~5.7牛;
    在切割过程中利用喷淋装置对所述单晶硅进行喷淋处理,且利用导轮吹气装置对所述切割装置进行清洁处理;
    下压切割行程结束后,控制所述晶托上移,再将所述单晶硅从所述晶托处脱离,得到多个单晶硅片;
    将所述单晶硅片逐片插入花篮中,对每个所述单晶硅片进行清洗处理,得到多个目标单晶硅片。
  2. 根据权利要求1所述的生产方法,其特征在于,在上移所述晶托时,控制所述切割装置的金刚石切割线切割线速为4~10米每分钟,所述单晶硅的台速为10~50毫米每分钟。
  3. 根据权利要求1所述的生产方法,其特征在于,将所述单晶硅片逐片插入花篮中时,包括以下步骤:
    逐片将所述单晶硅片输送往花篮,花篮逐级向上移动;
    其中,在所述单晶硅片输送过程中,向所述单晶硅片吹送干燥气 流,所述干燥气流的风向与所述单晶硅片的运输方向成一干燥夹角,所述干燥夹角为钝角;
    在所述单晶硅片插入花篮后,向位于所述花篮最低一层的所述单晶硅片吹送顶升气流,所述顶升气流的风向与所述单晶硅片在所述花篮的隔板中的插入水平面成一顶升夹角,所述顶升夹角为锐角;
    所述干燥气流和顶升气流分别在所述单晶硅片上形成0.2~0.3MPa的气压。
  4. 根据权利要求3所述的生产方法,其特征在于,将所述单晶硅片逐片插入花篮中时,包括以下步骤:
    利用排片机将所述多个单晶硅片逐片向所述花篮的隔板中输送,所述花篮按照所述排片机的排片速度逐级上移,使每一片所述单晶硅片插入至一层隔板中,所述排片机的排片速度为80~85片每分钟。
  5. 根据权利要求1所述的生产方法,其特征在于,所述对每个所述单晶硅片进行清洗处理,包括:
    向清洗装置中加入7~8升的双氧水,以及80~120克的氢氧化钠;
    将所述多个单晶硅片分批次放置于所述清洗装置中进行清洗,清洗时,设定清洗温度为:40~45摄氏度,设定清洗时间为:190~220秒。
  6. 根据权利要求5所述的生产方法,其特征在于,所述方法还包括:
    在检测到所述清洗装置中的单晶硅片的数量大于预设阈值时,在所述清洗装置添加2~3升的双氧水。
  7. 根据权利要求1所述的生产方法,其特征在于,所述晶托包括塑料板和金属板,所述塑料板为实心结构,所述塑料板的硬度为85~95兆帕,将所述单晶硅固定于晶托上包括以下步骤:
    先将塑料板固定于金属板,再将所述单晶硅固定于所述塑料板。
  8. 根据权利要求7所述的生产方法,其特征在于,在将塑料板固定于金属板的底面,再将所述单晶硅固定于所述塑料板的底面时,包括以下步骤:
    利用粘接材料将所述塑料板固定于所述金属板,再利用粘接材料将所述单晶硅固定于所述塑料板,所述粘接材料包括粘结剂和固化剂,所述粘结剂和固化剂的比例为1.2~1.5:1。
  9. 根据权利要求1所述的生产方法,其特征在于,所述方法还包括:
    对所述多个目标单晶硅片进行抽取检测,并将满足检测条件的目标单晶硅片按设定放置速度放置于预设容器;抽取检测时的抽取速度为6800~7200片/小时,所述设定放置速度为:6000~7000片/小时。
  10. 一种单晶硅片,其特征在于,所述单晶硅片采用权利要求1-9中任一项所述单晶硅片的生产方法生产得到。
PCT/CN2023/081242 2022-03-14 2023-03-14 一种单晶硅片的生产方法及单晶硅片 WO2023174241A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210245418.3 2022-03-14
CN202210245418.3A CN114311355B (zh) 2022-03-14 2022-03-14 一种单晶硅片的生产方法及单晶硅片

Publications (1)

Publication Number Publication Date
WO2023174241A1 true WO2023174241A1 (zh) 2023-09-21

Family

ID=81034051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081242 WO2023174241A1 (zh) 2022-03-14 2023-03-14 一种单晶硅片的生产方法及单晶硅片

Country Status (2)

Country Link
CN (1) CN114311355B (zh)
WO (1) WO2023174241A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114311355B (zh) * 2022-03-14 2022-05-27 广东高景太阳能科技有限公司 一种单晶硅片的生产方法及单晶硅片
CN114670352B (zh) * 2022-05-26 2022-08-12 广东高景太阳能科技有限公司 一种实时自动控制的硅片生产方法、系统、介质及设备
CN115236108B (zh) * 2022-07-22 2024-04-26 锦州阳光能源有限公司 基于电子显微镜的晶体硅电池的焊接工艺质量检测方法
CN117885958A (zh) * 2024-03-15 2024-04-16 江苏福旭科技有限公司 一种单晶硅码放系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050217656A1 (en) * 2004-03-30 2005-10-06 Bender David L Method and apparatus for cutting ultra thin silicon wafers
CN103681239A (zh) * 2013-10-29 2014-03-26 宁夏银星能源股份有限公司 一种清洗单晶硅片表面的方法
CN105082381A (zh) * 2015-08-07 2015-11-25 烟台力凯电子科技有限公司 一种多线切割机的导轮装置
CN106217665A (zh) * 2016-08-12 2016-12-14 上海申和热磁电子有限公司 一种超细钢线切割超薄硅片的方法
CN106584687A (zh) * 2015-10-16 2017-04-26 西安中晶半导体材料有限公司 一种单晶硅片切割装置及方法
CN206532764U (zh) * 2017-03-20 2017-09-29 常州亿晶光电科技有限公司 无损式自清洁硅片插片装置
CN108858840A (zh) * 2018-06-27 2018-11-23 阜宁协鑫光伏科技有限公司 切割硅片的方法
CN111216255A (zh) * 2020-03-03 2020-06-02 大连威凯特科技有限公司 一种光伏产业晶托脱胶的设备及方法
CN112776195A (zh) * 2019-11-01 2021-05-11 苏州阿特斯阳光电力科技有限公司 硅片加工方法、刻槽主辊和切片设备
CN114311355A (zh) * 2022-03-14 2022-04-12 广东高景太阳能科技有限公司 一种单晶硅片的生产方法及单晶硅片

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541941B2 (ja) * 2010-02-15 2014-07-09 金井 宏彰 固定砥粒式ソーワイヤ
CN103087850B (zh) * 2011-11-08 2017-10-03 协鑫集成科技股份有限公司 一种单晶硅片预清洗液及其清洗方法
CN103658096B (zh) * 2012-08-31 2015-10-21 浙江昱辉阳光能源有限公司 一种金刚线切割硅片的清洗方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050217656A1 (en) * 2004-03-30 2005-10-06 Bender David L Method and apparatus for cutting ultra thin silicon wafers
CN103681239A (zh) * 2013-10-29 2014-03-26 宁夏银星能源股份有限公司 一种清洗单晶硅片表面的方法
CN105082381A (zh) * 2015-08-07 2015-11-25 烟台力凯电子科技有限公司 一种多线切割机的导轮装置
CN106584687A (zh) * 2015-10-16 2017-04-26 西安中晶半导体材料有限公司 一种单晶硅片切割装置及方法
CN106217665A (zh) * 2016-08-12 2016-12-14 上海申和热磁电子有限公司 一种超细钢线切割超薄硅片的方法
CN206532764U (zh) * 2017-03-20 2017-09-29 常州亿晶光电科技有限公司 无损式自清洁硅片插片装置
CN108858840A (zh) * 2018-06-27 2018-11-23 阜宁协鑫光伏科技有限公司 切割硅片的方法
CN112776195A (zh) * 2019-11-01 2021-05-11 苏州阿特斯阳光电力科技有限公司 硅片加工方法、刻槽主辊和切片设备
CN111216255A (zh) * 2020-03-03 2020-06-02 大连威凯特科技有限公司 一种光伏产业晶托脱胶的设备及方法
CN114311355A (zh) * 2022-03-14 2022-04-12 广东高景太阳能科技有限公司 一种单晶硅片的生产方法及单晶硅片

Also Published As

Publication number Publication date
CN114311355B (zh) 2022-05-27
CN114311355A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023174241A1 (zh) 一种单晶硅片的生产方法及单晶硅片
KR101921777B1 (ko) 비-연마 유리 웨이퍼, 박형화 시스템 및 반도체 웨이퍼를 박형화하기 위한 비-연마 유리 웨이퍼를 이용한 방법
CN101356047B (zh) 用于分开和输送基片的装置和方法
JP2005328054A (ja) 半導体チップの分離装置及び分離方法
CN102683256B (zh) 制造半导体装置的设备和方法
KR101156475B1 (ko) 얇은 다이 탈착 및 취출용 제어 및 모니터링 시스템
JP5813432B2 (ja) ダイボンダ及びボンディング方法
JP2000353710A (ja) ペレットピックアップ装置および半導体装置の製造方法
KR20090101219A (ko) 실리콘 웨이퍼들의 분리 방법 및 장치
JP2006256748A (ja) ガラス基板用フイルムの貼付方法
CN100401467C (zh) 加工装置
JP2010045057A (ja) 液中ウェハ単離方法及び液中ウェハ単離装置
WO2005029574A1 (ja) コレット、ダイボンダおよびチップのピックアップ方法
CN101512746B (zh) 片状器件拾取方法及片状器件拾取装置
CN101533760A (zh) 半导体硅片的清洗设备及清洗方法
CN109320060A (zh) 划线装置
JP5965316B2 (ja) ウエハ分離装置、ウエハ分離搬送装置、ウエハ分離方法、ウエハ分離搬送方法及び太陽電池用ウエハ分離搬送方法
KR20120086873A (ko) 웨이퍼 분리 장치
JP4668350B1 (ja) 半導体ウェーハの分離装置
JP2007194571A (ja) 半導体チップの分離方法及び装置
JP5611747B2 (ja) 基板搬送アーム及び基板搬送装置
JP4637034B2 (ja) 洗浄済みシリコンウエハの製造方法
JP5214739B2 (ja) チップ剥離方法、半導体装置の製造方法、及びチップ剥離装置
KR101229971B1 (ko) 잉곳 절단 방법
CN221050469U (zh) 一种含倒扣的吸塑盒结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769743

Country of ref document: EP

Kind code of ref document: A1