WO2023174203A1 - 一种延长使用寿命的反渗透滤芯及其制备方法和应用 - Google Patents

一种延长使用寿命的反渗透滤芯及其制备方法和应用 Download PDF

Info

Publication number
WO2023174203A1
WO2023174203A1 PCT/CN2023/081049 CN2023081049W WO2023174203A1 WO 2023174203 A1 WO2023174203 A1 WO 2023174203A1 CN 2023081049 W CN2023081049 W CN 2023081049W WO 2023174203 A1 WO2023174203 A1 WO 2023174203A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
reverse osmosis
filter element
osmosis filter
scaling
Prior art date
Application number
PCT/CN2023/081049
Other languages
English (en)
French (fr)
Inventor
李恪平
王冀
皮小春
王利仁
李峰
Original Assignee
佛山市顺德区阿波罗环保器材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区阿波罗环保器材有限公司 filed Critical 佛山市顺德区阿波罗环保器材有限公司
Publication of WO2023174203A1 publication Critical patent/WO2023174203A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • This application belongs to the field of water purification equipment, and in particular relates to a reverse osmosis filter element with extended service life and its preparation method and application.
  • the cations such as Ca 2+ , Mg 2+ , Ba 2+ , etc.
  • anions such as CO 3 2- , HCO 3 - , PO 4 3- , SO 4 2- , etc.
  • the carbonates, bicarbonates, sulfates, phosphates, etc. generated by the combination of OH - etc. will form trace insoluble salt deposits on the surface of the reverse osmosis membrane, causing the membrane flux of the reverse osmosis membrane to decrease and the desalination efficiency to decrease.
  • the antiscaling performance mainly relies on the dissolution and release of the antiscalant components.
  • the concentration of the antiscalant is unstable due to the erosion of the water flow. situation, and the antiscalant is dispersed in the front water inlet channel, the antiscalant cannot exert a directional antiscaling effect, so it is difficult to slow down the deposition of trace amounts of insoluble salts on the surface of the reverse osmosis membrane, and cannot effectively extend the life of the reverse osmosis membrane. .
  • this application provides a reverse osmosis filter element with extended service life and its preparation method and application to solve the technical problem of the lack of a reverse osmosis filter element that can significantly extend the service life.
  • the first aspect of this application provides a reverse osmosis filter element with extended service life, including: a central tube, a pure water bag and a grid;
  • the pure water bag and the grid are rolled on the surface of the central tube in sequence;
  • the grid is loaded with an anti-scaling functional layer
  • the pure water bag includes a reverse osmosis membrane and a flow guide cloth;
  • the reverse osmosis membrane entrains the flow guide cloth
  • the anti-scaling functional layer includes: connecting agent and anti-scaling agent.
  • the anti-scaling functional layer further includes: a hydrophilic agent.
  • hydrophilic agent in this application is selected from substances with hydrophilic groups. Compared with the water contact angle of conventional grids ⁇ 100°, this application uses hydrophilic agents in the scale-loaded anti-scaling functional layer grids. After treatment, the water contact angle of the grid can be reduced to below 90°.
  • the anti-scaling functional layer further includes: water-soluble polymer.
  • the water-soluble polymer in this application is selected from any one or more of polyvinyl alcohol, polyvinylpyrrolidone, and cellulose acetate.
  • the connecting agent in the anti-scaling functional layer is selected from adhesives.
  • the binder in the anti-scaling functional layer is selected from acrylic emulsion, polyvinyl alcohol emulsion, styrene-acrylic emulsion, water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, One or more binders in polymaleic anhydride, starch and hydroxyl derivatives, cellulose and hydroxyl derivatives, sodium alginate, polyethylene oxide.
  • the scale inhibitor in the antiscale functional layer is selected from inorganic polyphosphates, organic phosphates and esters, polycarboxylic acids, sulfonic acid copolymers, polyaspartic acid, and polyepoxy amber.
  • Acid S-carboxyethyl thiosuccinic acid, maleic anhydride, ammonium carbonate, polyepoxysuccinic acid, imidazoline, propylene polyethoxy carboxylate, acrylic acid, sodium propylene sulfonate, acrylamide, cyclic Any one or more scale inhibitors among sodium oxysuccinate, acrylic acid, sodium hypophosphite, and 2-acrylamide-2-methylpropanesulfonic acid.
  • the anti-scaling functional layer further includes: a stabilizer.
  • the mass ratio of the connecting agent, the scale inhibitor and the stabilizer is 1-70:30-60:1-20.
  • the stabilizer in this application is a thickener, which can improve the viscosity of the material system. degree, so that the material system can maintain a uniform and stable suspended state, opacifying state or form a gel.
  • the second aspect of this application provides a method for preparing a reverse osmosis filter element that extends the service life, including the following steps:
  • Step 1 Load the anti-scaling suspension on the grid through a dip-dyeing process, a coating process, a printing process or a spraying process to obtain a grid loaded with the anti-scaling liquid;
  • Step 2 Dry the grid carrying the anti-scaling liquid to obtain a grid carrying the anti-scaling functional layer
  • Step 3 Roll the pure water bag and the grid onto the surface of the central tube in sequence to obtain a reverse osmosis filter element
  • the pure water bag includes a reverse osmosis membrane and a flow guide cloth;
  • the reverse osmosis membrane entrains the flow guide cloth.
  • loading the scale-inhibiting suspension on the grid to obtain a grid loaded with the scale-inhibiting liquid includes:
  • Step 101 Load the anti-scaling suspension on the grid
  • Step 102 Perform a purging process on the grid to obtain a grid loaded with anti-scaling liquid.
  • loading the scale-inhibiting suspension on the grid to obtain a grid loaded with the scale-inhibiting liquid includes:
  • Step 103 Place the grid in the mold
  • Step 104 Load the scale-inhibiting suspension on the grid
  • Step 105 Take out the grid to obtain a grid loaded with anti-scaling liquid
  • the needles on the mold correspond to the mesh holes of the grid.
  • the scale-inhibiting suspension can be loaded on the grid by taking out the grid, which reduces The flow dead zone in contact between the grid and the reverse osmosis membrane reduces the concentration polarization on the membrane surface, improves the local mass transfer effect of the membrane, improves the local pure water separation effect of the membrane, and improves the pure water flow of the reverse osmosis membrane element. quantity and reduce the degree of fouling.
  • loading the scale-inhibiting suspension on the grid to obtain a grid loaded with the scale-inhibiting liquid includes:
  • Step 106 Stir the connecting agent, scale inhibitor and surfactant to obtain a scale inhibitor suspension
  • Step 107 Load the anti-scale suspension liquid on the grid and let it stand to obtain a grid loaded with the anti-scale liquid.
  • surfactants can reduce the surface tension of the liquid film, allowing the anti-scaling suspension to rupture on its own. Therefore, compared with the purge treatment suspension and the needle-piercing suspension, not only the grid and reverse osmosis are reduced,
  • the flow dead zone in membrane contact reduces the concentration polarization on the membrane surface, improves the local mass transfer effect of the membrane, improves the local pure water separation effect of the membrane, increases the pure water flux of the reverse osmosis membrane element and reduces fouling. degree, and more importantly, also simplifies the process steps.
  • loading the scale-inhibiting suspension on the grid includes:
  • Step 108 Use the first partition mold to cover the first non-load area of the grid
  • Step 109 Load the first scale-inhibiting suspension on the first load area of the grid through a dip-dyeing process, a coating process, a printing process or a spraying process.
  • step 109 it also includes:
  • Step 110 Use the second partition mold to cover the second non-load area of the grid
  • Step 111 Load the second anti-scaling suspension on the second load area of the grid through a dip-dyeing process, a coating process, a printing process or a spraying process;
  • the types of antiscalants in the first scale inhibitor suspension and the second scale inhibitor suspension are the same or different;
  • the concentration of the antiscalant in the first scale inhibitor suspension and the second scale inhibitor suspension is the same or different;
  • the second non-loaded area is located in the first non-loaded area.
  • the second load area can also be loaded.
  • the type and concentration of the scale inhibitor in the loaded second anti-scale suspension can be the same as that in the first load area.
  • the suspensions are the same or different, so that the load of the same type and concentration of antiscalants or different types and concentrations of antiscalants on the longitude and latitude lines of the grid in the two load areas can be realized to adapt to the waterway design of the whole water purification equipment and the water quality to be purified. .
  • step 111 it also includes: step 112, repeating steps 108-111 one or more times.
  • multiple loading area grids can be loaded with the same type and concentration of antiscalants or different types and concentrations of antiscalants.
  • the third aspect of this application provides the application of the above reverse osmosis filter element in water purification equipment.
  • water purification equipment including reverse osmosis filter elements refers to water purification equipment for domestic and industrial purposes such as household water purification equipment, community water purification equipment, office building water purification equipment, and factory water purification equipment. equipment.
  • this application provides a reverse osmosis filter element with extended service life and a preparation method thereof.
  • Method and application in which the reverse osmosis filter element that extends the service life includes: a guide cloth that rolls the membrane on the surface of the central tube in sequence, a reverse osmosis membrane, and a grid loaded with a scale-inhibiting functional layer; the reverse osmosis filter element that extends the service life provided by this application
  • the filter element grid is loaded with an anti-scaling functional layer.
  • the anti-scaling agent contained in the anti-scaling functional layer adheres to the grid through a connecting agent.
  • the anti-scaling agent on the grid chelates/disperses/disperses cations in the raw water.
  • the lattice distortion prevents the crystallization of calcium and magnesium plasma in the reverse osmosis membrane, exerting a directional anti-scaling effect on the reverse osmosis membrane.
  • the anti-scaling agent is adhered to the grid, allowing the concentration of the anti-scaling agent to be released stably and avoiding the build-up of the anti-scaling agent.
  • the concentration of the antiscalant is unstable due to the impact of the water flow, and the scale inhibitor effect is limited.
  • Figure 1 is a schematic structural diagram of a reverse osmosis filter element with extended service life provided in Examples 1-8 of the present application;
  • Figure 2 is a cross-sectional view of the grid load on the mold provided in Embodiment 3 of the present application;
  • Figure 3 is a schematic diagram of a mold with a partitioning tool provided in Embodiments 7-8 of the present application;
  • This application provides a reverse osmosis filter element with extended service life and its preparation method and application, which is used to solve the technical problem of lack of a reverse osmosis filter element that can significantly extend the service life.
  • the reverse osmosis membrane provided in the embodiments of this application is not only It refers to high-pressure filtration reverse osmosis membrane in this field, and can also refer to low-pressure filtration nanofiltration membrane.
  • Example 1 of the present application provides a preparation process for the first set of reverse osmosis filter elements with extended service life, including the following steps:
  • Step 1 Configure anti-scaling suspension: calculated in parts by mass, from acrylic emulsion, polyvinyl alcohol emulsion, styrene-acrylic emulsion, water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, Choose any three of polymaleic anhydride, starch and hydroxyl derivatives, cellulose and hydroxyl derivatives, sodium alginate, and polyethylene oxide and mix them evenly in a mass percentage of 10:80:10 to form a composite binder.
  • multiple composite binders form the first group of binders, and then the scale inhibitor is mixed evenly with an appropriate amount of water to obtain a scale inhibitor solution; finally, the first group of binders are mixed with the stabilizer and the scale inhibitor solution respectively. Stir and mix evenly to obtain a first group of scale inhibitor suspensions; wherein the mass ratio of the scale inhibitor, composite binder and stabilizer is 1 to 70: 30 to 60: 1 to 20.
  • Step 2 Load the anti-scaling suspension on the grid: first load the anti-scaling liquid prepared in step 1 onto the grid through the dip dyeing process/coating process/printing process/spraying process, and then purge the suspension on the grid. Processing, loading the anti-scaling suspension on the grid, and finally drying to obtain a grid loaded with an anti-scale functional layer.
  • Step 3 Prepare the reverse osmosis filter element: According to the conventional membrane rolling process, roll the pure water bag, the grid carrying the anti-scaling functional layer prepared in step 2 and the reverse osmosis membrane on the central tube with through holes to obtain the reverse osmosis filter element. .
  • the pure water bag in this application includes a reverse osmosis membrane and a flow guide cloth. After the reverse osmosis membrane is folded, both sides are bonded to form a membrane bag structure.
  • the flow guide cloth is located in the middle of the membrane bag structure. The flow guide cloth is used to guide the reverse osmosis membrane.
  • the pure water filtered by the membrane flows to the through hole on the central tube or flows out from the side of the reverse osmosis membrane, and the central tube flows through the raw water and concentrated water.
  • Example 2 of the present application provides a preparation process for a second set of reverse osmosis filter elements with extended service life, including the following steps:
  • Step 1 Configure anti-scaling suspension: calculated in parts by mass, from acrylic emulsion, polyvinyl alcohol emulsion, styrene-acrylic emulsion, water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, Choose any three of polymaleic anhydride, starch and hydroxyl derivatives, cellulose and hydroxyl derivatives, sodium alginate, and polyethylene oxide, and mix them evenly in a mass percentage of 10:50:40 to form a composite binder.
  • multiple composite binders form the second group of binders, and then mix the antiscalant with an appropriate amount of water to obtain an antiscalant solution; finally, mix the second group of binders with the stabilizer and antiscalant solution respectively Stir and mix evenly to obtain a second set of scale inhibitor suspensions; wherein the mass ratio of the scale inhibitor, composite binder and stabilizer is 1 to 70: 30 to 60: 1 to 20.
  • Step 2 Load the anti-scaling suspension on the grid: first load the anti-scaling liquid prepared in step 1 onto the grid through the dip dyeing process/coating process/printing process/spraying process, and then purge the suspension on the grid. Processing, loading the anti-scaling suspension on the grid, and finally drying to obtain a grid loaded with an anti-scale functional layer.
  • Step 3 Prepare the reverse osmosis filter element: According to the conventional membrane rolling process, roll the pure water bag, the grid carrying the anti-scaling functional layer prepared in step 2 and the reverse osmosis membrane on the central tube with through holes to obtain the reverse osmosis filter element. .
  • Example 3 of the present application provides a preparation process for a third set of reverse osmosis filter elements with extended service life, including the following steps:
  • Step 1 Configure anti-scaling suspension: calculated in parts by mass, from acrylic emulsion, polyvinyl alcohol emulsion, styrene-acrylic emulsion, water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, Choose any three of polymaleic anhydride, starch and hydroxyl derivatives, cellulose and hydroxyl derivatives, sodium alginate, and polyethylene oxide and mix them in a mass percentage of 10:80:10 or 10:50:40.
  • Step 2 Load the anti-scaling suspension on the grid: first place the grid in a mold with a needle, which corresponds to the mesh of the grid, and then go through the dip dyeing process/coating process/printing process/spraying The process is to load the anti-scaling liquid prepared in step 1 onto the grid, finally take out the grid, load the anti-scaling suspension on the grid, and finally dry it to obtain a grid loaded with an anti-scaling functional layer.
  • Step 3 Prepare the reverse osmosis filter element: According to the conventional membrane rolling process, roll the pure water bag, the grid carrying the anti-scaling functional layer prepared in step 2 and the reverse osmosis membrane on the central tube with through holes to obtain the reverse osmosis filter element. .
  • Example 4 of the present application provides a fourth group of preparation processes for reverse osmosis filter elements with extended service life, including the following steps:
  • Step 1 Configure anti-scaling suspension: calculated in parts by mass, from acrylic emulsion, polyvinyl alcohol emulsion, styrene-acrylic emulsion, water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, Choose any three of polymaleic anhydride, starch and hydroxyl derivatives, cellulose and hydroxyl derivatives, sodium alginate, and polyethylene oxide, and mix them evenly in a mass percentage of 10:50:40 to form a composite binder.
  • multiple composite binders form the fourth group of binders, and then mix the antiscalant with an appropriate amount of water to obtain an antiscalant solution; finally, mix the fourth group of binders with the stabilizer and antiscalant solution respectively Stir and mix evenly with the surfactant to obtain the fourth group of scale inhibitor suspensions; wherein the mass ratio of the scale inhibitor, composite binder, stabilizer and surfactant is 1 to 70: 30 to 60: 1 to 20 :0.1 ⁇ 1.
  • Step 2 Load the anti-scaling suspension on the grid: first load the anti-scaling liquid prepared in step 1 onto the grid through the dip dyeing process/coating process/printing process/spraying process, and finally dry it to obtain the anti-scaling functional layer. Grid.
  • Step 3 Prepare the reverse osmosis filter element: According to the conventional membrane rolling process, roll the pure water bag, the grid carrying the anti-scaling functional layer prepared in step 2 and the reverse osmosis membrane on the central tube with through holes to obtain the reverse osmosis filter element. .
  • the surfactant can also be selected from cocoyl glucoside, sodium cocamidopropionate, or other substances that reduce the surface tension of the suspension and enable the suspension to break up on its own. The process steps are simplified compared to needle piercing suspension.
  • Example 5 of the present application provides a preparation process for a fifth group of reverse osmosis filter elements with extended service life, including the following steps:
  • Step 1 Configure anti-scaling suspension: calculated in parts by mass, from acrylic emulsion, polyvinyl alcohol emulsion,
  • Styrene-acrylic emulsion water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, polymaleic anhydride, starch and hydroxyl derivatives, cellulose and hydroxyl derivatives, sodium alginate, poly Choose any three kinds of ethylene oxide and stir and mix them evenly to form a composite binder in a mass percentage of 10:80:10.
  • Step 2 Load the anti-scaling suspension on the grid: first load the anti-scaling liquid prepared in step 1 onto the grid through the dip dyeing process/coating process/printing process/spraying process, and then purge the suspension on the grid. Processing, loading the anti-scaling suspension on the grid, and finally drying to obtain a grid loaded with an anti-scale functional layer.
  • Step 3 Prepare the reverse osmosis filter element: Prepare the reverse osmosis filter element: According to the conventional membrane rolling process, roll the pure water bag, the grid loaded with the anti-scaling functional layer prepared in step 2 and the reverse osmosis membrane on the central tube with through holes. , get the reverse osmosis filter element.
  • the water-soluble polymer can also be selected from polyvinylpyrrolidone, cellulose acetate or other polymer materials that can be dissolved or swelled in water.
  • the anti-scaling agent is added to the anti-scaling suspension to accelerate the release of the anti-scaling agent.
  • Water-soluble polymers when raw water with high salt concentration flows through, the dissolution of water-soluble polymers promotes the dissolution of scale inhibitors, reduces scaling on the surface of the reverse osmosis membrane caused by concentration polarization, and further extends the life of the reverse osmosis filter element. service life.
  • Example 6 of the present application provides a preparation process for a sixth group of reverse osmosis filter elements with extended service life, including the following steps:
  • Step 1 Configure anti-scaling suspension: calculated in parts by mass, from acrylic emulsion, polyvinyl alcohol emulsion, styrene-acrylic emulsion, water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, Polymaleic anhydride, starch and hydroxyl derivatives, cellulose Choose any three of hydroxyl derivatives, sodium alginate, and polyethylene oxide and stir and mix them in a mass percentage of 10:80:10 to form a composite binder. Multiple composite binders form the sixth group of binders.
  • the mass ratio of scale inhibitor, composite binder, stabilizer and hydrophilic agent is 1-70:30-60:1-10:0.1-1.
  • Step 2 Load the anti-scaling suspension on the grid: first load the anti-scaling liquid prepared in step 1 onto the grid through the dip dyeing process/coating process/printing process/spraying process, and then purge the suspension on the grid. Processing, loading the anti-scaling suspension on the grid, and finally drying to obtain a grid loaded with an anti-scale functional layer.
  • Step 3 Prepare the reverse osmosis filter element: According to the conventional membrane rolling process, roll the pure water bag, the grid carrying the anti-scaling functional layer prepared in step 2 and the reverse osmosis membrane on the central tube with through holes to obtain the reverse osmosis filter element. .
  • the hydrophilic agent is a substance containing a hydrophilic group.
  • a hydrophilic agent by adding a hydrophilic agent to the scale inhibitor suspension, compared with a grid without adding a hydrophilic agent, it can form a
  • the hydrophilic layer reduces the resistance of raw water flowing through the grid, increasing the surface flow rate of the reverse osmosis membrane. The increase in flow rate increases the scouring force, flushing away insoluble substances or other pollutants deposited on the grid, and reducing the presence of pollutants on the membrane surface.
  • the deposition can further extend the life of the reverse osmosis filter element, and the enhanced scouring force can further promote the dissolution of the scale inhibitor on the grid, reduce the scaling on the surface of the reverse osmosis membrane caused by concentration polarization, and further extend the life of the reverse osmosis filter element. service life.
  • Example 7 of the present application provides a preparation process for a seventh group of reverse osmosis filter elements with extended service life, including the following steps:
  • Step 1 Configure antiscale suspension: from acrylic emulsion, polyvinyl alcohol emulsion, styrene-acrylic emulsion, water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, polymaleic anhydride, Choose any three from starch and hydroxyl derivatives, cellulose and hydroxyl derivatives, sodium alginate, and polyethylene oxide, and mix them evenly to form a composite bond according to the mass percentage of 10:80:10 or 10:50:40.
  • a composite binder is formed into a composite binder. Multiple composite binders form a seventh group of binders.
  • the scale inhibitor is then mixed evenly with an appropriate amount of water to obtain a scale inhibitor solution.
  • the seventh group of binders are mixed with a stable The agent and the scale inhibitor solution are stirred and mixed evenly to obtain the scale inhibitor solution. suspension.
  • Step 2 Load the anti-scaling suspension on the grid: first load the grid in the mold, and then use the first partition mold to cover the first non-loading area of the grid; then use the dip dyeing process/coating process/printing process/spraying process Load the anti-scaling liquid prepared in step 1 onto the first load area of the grid, then purge the suspension on the grid, load the anti-scale suspension on the grid, and finally dry it to obtain loaded scale inhibition. Grid of functional layers.
  • Step 3 Prepare the reverse osmosis filter element: According to the conventional membrane rolling process, roll the pure water bag, the grid carrying the anti-scaling functional layer prepared in step 2 and the reverse osmosis membrane on the central tube with through holes to obtain the reverse osmosis filter element. .
  • the grid is first partitioned by the partitioning tool on the mold, and then various concentrations of anti-scaling liquid can be loaded onto the grid to obtain a multi-region and multi-concentration grid loaded with anti-scaling functional layers 1 or a fixed-point quantitative Grid 2 with a concentration of load anti-scaling functional layer.
  • Example 8 of the present application provides a preparation process for the eighth group of reverse osmosis filter elements with extended service life, including the following steps:
  • acrylic emulsion From acrylic emulsion, polyvinyl alcohol emulsion, styrene-acrylic emulsion, water-based polyurethane, vinyl polyurethane emulsion, gelatin, silica sol, chitosan, polyvinylpyrrolidone, polymaleic anhydride, starch and hydroxyl derivatives, cellulose and Choose any three of hydroxyl derivatives, sodium alginate, and polyethylene oxide, and stir and mix them in a mass percentage of 10:80:10 or 10:50:40 to form a composite binder, which is composed of multiple composite binders.
  • the eighth group of binders and then mix the antiscalant with an appropriate amount of water to obtain an antiscalant solution; finally, mix the eighth group of binders with the stabilizer and antiscalant solution, respectively, to obtain a scale inhibitor suspension. liquid.
  • Step 2 Load the anti-scaling suspension on the grid: first load the grid in the mold, and then use the first partition mold to cover the first non-loading area of the grid; then use the dip dyeing process/coating process/printing process/spraying process Load the anti-scaling liquid prepared in step 1 onto the first loading area of the grid, and then use the second partition mold to cover the second non-loading area of the grid; then use the dip dyeing process/coating process/printing process/spraying process to The prepared anti-scaling liquid is loaded onto the second load area of the grid, and then the suspension on the grid is purged, the anti-scaling suspension is loaded on the grid, and finally dried to obtain the anti-scaling functional layer loaded Grid.
  • Step 3 Prepare the reverse osmosis filter element: According to the conventional membrane rolling process, roll the pure water bag, the grid carrying the anti-scaling functional layer prepared in step 2 and the reverse osmosis membrane on the central tube with through holes to obtain the reverse osmosis filter element. .
  • the types of antiscalants in the first scale inhibitor suspension and the second scale inhibitor suspension are the same or different;
  • the concentration of the scale agent is the same or different;
  • the second non-loaded area is located in the first non-loaded area.
  • a third partition mold can also be used to block the third non-load area of the grid to achieve multi-region and multi-concentration loads of the grid.
  • Embodiment 9 of the present application provides a reverse osmosis filter element with extended service life.
  • the reverse osmosis filter element with extended service life includes: a central tube (1), a grid (4), and a reverse osmosis membrane (2 ), diversion cloth (3); among them, the central tube (1) is provided with a through hole, the reverse osmosis membrane (2) and the diversion cloth (3) folded in half form a pure water bag, and the outer periphery of the reverse osmosis membrane is folded in half
  • the membrane bag structure is formed by sealing by bonding or other methods.
  • the diversion cloth is located in the middle of the membrane bag structure.
  • the grid (4) is loaded with an anti-scaling functional layer.
  • the central tube is wound around the pure water bag and the grid (4), and the pure water bag is
  • the guide cloth (3) in the center is connected to the central tube (1).
  • the water purification process is as follows: raw water flows into the reverse osmosis membrane filter element through the grid along the axial direction of the central tube. Under the action of external pressure, the water molecules in the raw water enter the pure water bag through the reverse osmosis membrane, and then the pure water flows along the guide.
  • the flow cloth means that the central tube flows into the central tube in the circumferential direction to form pure water; the pure water bag is folded in half by the reverse osmosis membrane, and the open side is connected to the central tube through the flow guide cloth, and the outer periphery of the reverse osmosis membrane is sealed by glue A pure water bag is formed; the grid is loaded with an anti-scaling functional layer, and the anti-scaling agent in the anti-scaling functional layer adheres to the grid through a connecting agent.
  • the anti-scaling agent on the grid chelates cations in the raw water , crystallization and lattice distortion, preventing the crystallization of calcium and magnesium plasma in the reverse osmosis membrane, and exerting a directional scale inhibition effect on the reverse osmosis membrane;
  • the antiscalant is adhered to the grid, so that the concentration of the antiscalant is released stably, and the water purification process is avoided.
  • the concentration of the antiscalant caused by the impact of water flow is unstable, which effectively prevents insoluble salts from depositing on the surface of the reverse osmosis membrane and greatly extends the service life of the reverse osmosis filter element.
  • hydrophilic agents and water-soluble polymers can also be added to the antiscaling functional layer.
  • adding a hydrophilic agent can reduce the grid water contact angle to within 90°. It is beneficial for the raw water to be filtered to wet the grid and increase the contact area between the anti-scale functional layer in the grid and the raw water, thereby improving the scale removal effect.
  • the reverse osmosis membrane is first folded in half and then rolled with a guide cloth and rolled on the central tube. After rolling a layer of grid with anti-scaling function, in order to improve the filtration efficiency, another layer can be rolled up according to the needs. Or a second reverse osmosis membrane (5) with multiple layers folded in half and sandwiched with a guide cloth and a grid with anti-scaling function.
  • Example 10 is an example of testing a reverse osmosis filter element (conventional filter element) without a scale-inhibiting functional layer grid, and a reverse osmosis filter element with a scale-inhibiting functional layer grid prepared in Example 1 and Example 2.
  • test Steps Assemble the reverse osmosis filter element to the water purification equipment according to the conventional process, and then filter the cations (such as Ca 2+ , Mg 2+ , Ba 2+ , etc.) and anions (such as CO 3 2- , HCO 3 - , PO 4 3- , SO 4 2- , OH -, etc.) raw water, the test results show that compared with conventional reverse osmosis filter elements without scale-inhibiting functional layer grids, all the reverse osmosis filter elements provided in Example 1 and Example 2 can At the same time, Table 1 of this application also lists the specific data of the flow rate life of a reverse osmosis filter element provided in Example 1 and a reverse osmosis filter element provided in Example 2. The results show that the reverse osmosis filter element provided in this application can extend its service life. The penetration filter element can reach 2 times that of the conventional filter element.
  • cations such as Ca 2+ , Mg 2+ , Ba 2+ , etc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种延长使用寿命的反渗透滤芯及其制备方法和应用,本申请提供的制备方法将阻垢剂直接负载在格网上,与常规反渗透滤芯相比,有效防止了难溶盐类沉积在反渗透膜表面,延长了反渗透滤芯的使用寿命,解决了目前市面上缺乏大幅度延长使用寿命的反渗透滤芯的技术问题。

Description

一种延长使用寿命的反渗透滤芯及其制备方法和应用
本申请要求于2022年3月15日提交中国专利局、申请号为202210253342.9、发明名称为“一种延长使用寿命的反渗透滤芯及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于净水设备领域,尤其涉及一种延长使用寿命的反渗透滤芯及其制备方法和应用。
背景技术
随着人们生活品质的提高,人们对饮水质量的需求也随之提高,反渗透净水设备满足了人们对饮水质量的需求。
然而在RO高压环境下,原水中含有的阳离子(如Ca2+、Mg2+、Ba2+等)和阴离子(如CO3 2-、HCO3 -、PO4 3-、SO4 2-、OH-等)结合生成的碳酸盐、碳酸氢盐、硫酸盐、磷酸盐等会在反渗透膜表面形成微量难溶盐类沉积,造成反渗透膜的膜通量减小、脱盐效率下降、渗透压增大、膜表面的划伤、甚至膜阻塞等问题,当出现上述问题时,清洗膜和更换反渗透膜是唯一的解决办法,然而反渗透膜清洗的难度不是普通用户可以操作,且频繁的更换膜也增加了用户的使用成本;因此,近年来,科研人员采用物理法、电化学法以及化学法等方式减缓反渗透膜表面形成微量难溶盐类沉积,其中,添加阻垢剂的化学法由于操作简单且供选择的阻垢剂的种类丰富,被广泛应用;比如目前市面上在反渗透净水设备的前置进水通道设置阻垢剂粉末、阻垢剂颗粒和阻垢碳棒等方式减缓反渗透膜表面形成微量难溶盐类沉积现象,延长反渗透膜的寿命。
然而上述设置阻垢剂的方式由于阻垢剂设置在进水通道中,阻垢性能主要是依靠阻垢成分的溶解释放,在过流过程中由于水流的冲刷,阻垢剂的浓度存在不稳定的情况,且阻垢剂分散在前置进水通道中,阻垢剂无法发挥定向阻垢效果,因此难以减缓反渗透膜表面形成微量难溶盐类沉积现象,无法有效延长反渗透膜的寿命。
发明内容
有鉴于此,本申请提供了一种延长使用寿命的反渗透滤芯及其制备方法和应用,用于解决缺乏大幅度延长使用寿命的反渗透滤芯的技术问题。
本申请第一方面提供了一种延长使用寿命的反渗透滤芯,包括:中心管、纯水袋以及格网;
所述纯水袋以及所述格网依次卷膜在所述中心管表面;
所述格网负载阻垢功能层;
所述纯水袋包括反渗透膜和导流布;
所述反渗透膜夹带所述导流布;
所述阻垢功能层包括:连接剂和阻垢剂。
优选的,所述阻垢功能层还包括:亲水剂。
需要说明的是,本申请中的亲水剂选自带有亲水基团的物质,与常规格网的水接触角≥100°相比,本申请在负载阻垢功能层格网使用亲水剂后,能将格网水接触角降至90°以下。
优选的,所述阻垢功能层还包括:水溶性高分子。
本申请中的水溶性高分子选自聚乙烯醇、聚乙烯吡咯烷酮、醋酸纤维素中的任意一种或多种。
优选的,所述阻垢功能层中连接剂选自粘结剂。
优选的,所述阻垢功能层中粘结剂选自丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮、聚马来酸酐、淀粉及羟基衍生物、纤维素及羟基衍生物、海藻酸钠,聚氧化乙烯中的一种或多种粘结剂。
优选的,所述阻垢功能层中阻垢剂选自无机聚磷酸盐类、有机磷酸盐及酯类、聚羧酸类、磺酸基共聚物类、聚天冬氨酸、聚环氧琥珀酸、S-羧乙基硫代琥珀酸、马来酸酐、碳酸铵、聚环氧琥珀酸、咪唑啉、丙烯基聚乙氧基羧酸盐、丙烯酸、丙烯基磺酸钠、丙烯酰胺、环氧琥珀酸钠、丙烯酸、次亚磷酸钠、2-丙烯酰胺-2-甲基丙磺酸中任意一种或多种阻垢剂。
优选的,所述阻垢功能层还包括:稳定剂。
所述连接剂、所述阻垢剂以及所述稳定剂的质量比为1~70:30~60:1~20。
需要说明的是,本申请中的稳定剂为增稠剂,增稠剂可以提高物系黏 度,使物系保持均匀稳定的悬浮状态、乳浊状态或形成凝胶。
本申请第二方面提供了一种延长使用寿命的反渗透滤芯制备方法,包括以下步骤:
步骤1、通过浸染工艺、涂敷工艺、印刷工艺或喷涂工艺将阻垢悬浮液负载在格网上,得到负载阻垢液的格网;
步骤2、将所述负载阻垢液的格网干燥,得到负载阻垢功能层的格网;
步骤3、依次将纯水袋以及所述格网依次卷膜在所述中心管表面,得到反渗透滤芯;
所述纯水袋包括反渗透膜和导流布;
所述反渗透膜夹带所述导流布。
优选的,所述将阻垢悬浮液负载在格网上,得到负载阻垢液的格网包括:
步骤101、将阻垢悬浮液负载在格网上;
步骤102、对所述格网进行吹扫处理,得到负载阻垢液的格网。
优选的,所述将阻垢悬浮液负载在格网上,得到负载阻垢液的格网包括:
步骤103、将格网置于模具中;
步骤104、将阻垢悬浮液负载在所述格网上;
步骤105、取出所述格网,得到负载阻垢液的格网;
所述模具上的针头与所述格网的网孔一一对应。
需要说明的是,通过吹扫处理或通过将格网置于带有针头的模具中,待格网负载阻垢悬浮液后,取出格网就可将阻垢悬浮液负载在格网上,减少了格网与反渗透膜接触的流动死区,降低了膜表面浓差极化,提高了膜片的局部传质效果,提高了膜片的局部分离纯水效果,提高反渗透膜元件纯水通量并降低污堵程度。
优选的,所述将阻垢悬浮液负载在格网上,得到负载阻垢液的格网包括:
步骤106、将连接剂、阻垢剂以及表面活性剂搅拌,得到阻垢悬浮液;
步骤107、将阻垢悬浮液负载在格网上,静置,得到负载阻垢液的格网。
需要说明的是,表面活性剂可以减少液膜的表面张力,使阻垢悬浮液能自行破裂,因此,与吹扫处理悬浮液、针头刺穿悬浮液相比,不仅减少了格网与反渗透膜接触的流动死区,降低了膜表面浓差极化,提高了膜片的局部传质效果,提高了膜片的局部分离纯水效果,提高反渗透膜元件纯水通量并降低污堵程度,更重要的是,还简化了工艺步骤。
优选的,将阻垢悬浮液负载在格网上包括:
步骤108、用第一分区模具遮挡格网第一非负载区域;
步骤109、通过浸染工艺、涂敷工艺、印刷工艺或喷涂工艺将第一阻垢悬浮液负载在格网第一负载区域上。
优选的,步骤109之后还包括:
步骤110、用第二分区模具遮挡格网第二非负载区域;
步骤111、通过浸染工艺、涂敷工艺、印刷工艺或喷涂工艺将第二阻垢悬浮液负载在格网第二负载区域上;
所述第一阻垢悬浮液和第二阻垢悬浮液中阻垢剂种类相同或不同;
所述第一阻垢悬浮液和第二阻垢悬浮液中阻垢剂浓度相同或不同;
所述第二非负载区域位于第一非负载区域中。
需要说明的是,在对格网进行第一负载区域定点定量负载后,还可以对第二负载区域进行负载,负载的第二阻垢悬浮液中阻垢剂种类、浓度可以与第一阻垢悬浮液相同或不同,从而可以实现两个负载区域格网经纬线上同阻垢剂种类、浓度或不同阻垢剂种类、浓度的负载,以适应不同净水设备整机水路设计和待净化水质。
优选的,步骤111之后还包括:步骤112、重复步骤108-111一次或多次。
需要说明的是,重复步骤108-110,可以实现多个负载区域格网同阻垢剂种类、浓度或不同阻垢剂种类、浓度的负载。
本申请第三方面提供了上述反渗透滤芯在净水设备中的应用。
需要说明的是,本申请提供的包括反渗透滤芯的净水设备是指家用净水设备、小区用净水设备、办公楼宇用净水设备以及工厂用净水设备等生活、工业用途的净水设备。
综上所述,本申请提供了一种延长使用寿命的反渗透滤芯及其制备方 法和应用,其中,延长使用寿命的反渗透滤芯包括:依次卷膜在中心管表面的导流布、反渗透膜以及负载阻垢功能层的格网;本申请提供的延长使用寿命的反渗透滤芯格网上负载阻垢功能层,阻垢功能层中含有的阻垢剂通过连接剂粘附在格网上,当原水通过格网时,格网上的阻垢剂与原水中阳离子螯合/分散/晶格畸变,阻止钙、镁等离子在反渗透膜的结晶,发挥了对反渗透膜的定向阻垢效果,同时,将阻垢剂粘附在格网上,使得阻垢剂浓度稳定释放,避免净水过程中由于水流的冲击导致的阻垢剂浓度不稳定、阻垢剂阻垢效果有限,从而有效防止了难溶盐类沉积在反渗透膜表面,大幅度延长了反渗透滤芯的使用寿命,解决了目前市面上缺乏大幅度延长使用寿命的反渗透滤芯的技术问题。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1-8提供的延长使用寿命的反渗透滤芯的结构示意图;
图2为本申请实施例3提供的格网负载在模具的截面图;
图3为本申请实施例7-8提供的具有分区工具的模具示意图;
其中,说明书附图1中附图标记为:1-中心管,2-反渗透膜,3-导流布,4-格网,5-第二反渗透膜;
说明书附图2中附图标记为:6-模具截面图,7-针头截图,8-格网截面图;
说明书附图3a中附图标记为:9-第一分区模具,10-格网第一负载区域;
说明书附图3b中附图标记为:11-第二分区模具,12-格网第二负载区域,13-第三分区模具。
具体实施方式
本申请提供了一种延长使用寿命的反渗透滤芯及其制备方法和应用,用于解决缺乏大幅度延长使用寿命的反渗透滤芯的技术问题。
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围,如本申请实施例中提供的反渗透膜不单单指本领域高压过滤反渗透膜,也可指低压过滤纳滤膜。
实施例1
本申请实施例1提供了第一组延长使用寿命的反渗透滤芯的制备工艺,包括以下步骤:
步骤1、配置阻垢悬浮液:以质量份计算,从丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮,聚马来酸酐,淀粉及羟基衍生物,纤维素及羟基衍生物,海藻酸钠,聚氧化乙烯中选择任意三种都按照质量百分比为10:80:10的比例搅拌混合均匀成复合粘结剂,多个复合粘结剂组成第一组粘结剂,再将阻垢剂与适量的水混合均匀,得到阻垢剂溶液;最后将第一组粘结剂分别与稳定剂与阻垢剂溶液搅拌混合均匀,得到第一组阻垢悬浮液;其中,阻垢剂、复合粘结剂以及稳定剂的质量比为1~70:30~60:1~20。
步骤2、在格网上负载阻垢悬浮液:先通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网上,再对网格上的悬浮液进行吹扫处理,将阻垢悬浮液负载在格网上,最后干燥处理,得到负载阻垢功能层的格网。
步骤3、制备反渗透滤芯:按照常规卷膜工艺,将纯水袋、步骤2制备的负载阻垢功能层的格网以及反渗透膜卷在带有通孔的中心管上,得到反渗透滤芯。
需要说明是,本申请中纯水袋包括反渗透膜和导流布,反渗透膜折叠后两边粘接形成膜袋结构,导流布位于膜袋结构中间,导流布用于引导经过反渗透膜过滤的纯水流向中心管上的通孔或者从反渗透膜侧面流出,中心管流通原水和浓水。
实施例2
本申请实施例2提供了第二组延长使用寿命的反渗透滤芯的制备工艺,包括以下步骤:
步骤1、配置阻垢悬浮液:以质量份计算,从丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮,聚马来酸酐,淀粉及羟基衍生物,纤维素及羟基衍生物,海藻酸钠,聚氧化乙烯中选择任意三种都按照质量百分比为10:50:40的比例搅拌混合均匀成复合粘结剂,多个复合粘结剂组成第二组粘结剂,再将阻垢剂与适量的水混合均匀,得到阻垢剂溶液;最后将第二组粘结剂分别与稳定剂与阻垢剂溶液搅拌混合均匀,得到第二组阻垢悬浮液;其中,阻垢剂、复合粘结剂以及稳定剂的质量比为1~70:30~60:1~20。
步骤2、在格网上负载阻垢悬浮液:先通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网上,再对网格上的悬浮液进行吹扫处理,将阻垢悬浮液负载在格网上,最后干燥处理,得到负载阻垢功能层的格网。
步骤3、制备反渗透滤芯:按照常规卷膜工艺,将纯水袋、步骤2制备的负载阻垢功能层的格网以及反渗透膜卷在带有通孔的中心管上,得到反渗透滤芯。
实施例3
本申请实施例3提供了第三组延长使用寿命的反渗透滤芯的制备工艺,包括以下步骤:
步骤1、配置阻垢悬浮液:以质量份计算,从丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮,聚马来酸酐,淀粉及羟基衍生物,纤维素及羟基衍生物,海藻酸钠,聚氧化乙烯中选择任意三种都按照质量百分比为10:80:10或10:50:40的比例搅拌混合均匀成复合粘结剂,多个复合粘结剂组成第三组粘结剂,再将阻垢剂与适量的水混合均匀,得到阻垢剂溶液;最后将第三组粘结剂分别与稳定剂与阻垢剂溶液搅拌混合均匀,得到第三组阻垢悬浮液;其中,阻垢剂、复合粘结剂以及稳定剂的质量比为1~70: 30~60:1~20。
步骤2、在格网上负载阻垢悬浮液:先将格网置于带有针头的模具中,该针头与格网的网孔一一对应,再通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网上,最后取出格网,将阻垢悬浮液负载在格网上,最后干燥处理,得到负载阻垢功能层的格网。
步骤3、制备反渗透滤芯:按照常规卷膜工艺,将纯水袋、步骤2制备的负载阻垢功能层的格网以及反渗透膜卷在带有通孔的中心管上,得到反渗透滤芯。
实施例4
本申请实施例4提供了第四组延长使用寿命的反渗透滤芯的制备工艺,包括以下步骤:
步骤1、配置阻垢悬浮液:以质量份计算,从丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮,聚马来酸酐,淀粉及羟基衍生物,纤维素及羟基衍生物,海藻酸钠,聚氧化乙烯中选择任意三种都按照质量百分比为10:50:40的比例搅拌混合均匀成复合粘结剂,多个复合粘结剂组成第四组粘结剂,再将阻垢剂与适量的水混合均匀,得到阻垢剂溶液;最后将第四组粘结剂分别与稳定剂与阻垢剂溶液和表面活性剂搅拌以及混合均匀,得到第四组阻垢悬浮液;其中,阻垢剂、复合粘结剂、稳定剂以及表面活性剂的质量比为1~70:30~60:1~20:0.1~1。
步骤2、在格网上负载阻垢悬浮液:先通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网上,最后干燥处理,得到负载阻垢功能层的格网。
步骤3、制备反渗透滤芯:按照常规卷膜工艺,将纯水袋、步骤2制备的负载阻垢功能层的格网以及反渗透膜卷在带有通孔的中心管上,得到反渗透滤芯。
本实施例中,表面活性剂还可以选自椰油基葡糖苷、椰油酰氨基丙酸钠或其他降低悬浮液的表面张力,使悬浮液能自行破裂的物质,与吹扫处理悬浮液、针头刺穿悬浮液相比,简化了工艺步骤。
实施例5
本申请实施例5提供了第五组延长使用寿命的反渗透滤芯的制备工艺,包括以下步骤:
步骤1、配置阻垢悬浮液:以质量份计算,从丙烯酸乳液、聚乙烯醇乳液、
苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮,聚马来酸酐,淀粉及羟基衍生物,纤维素及羟基衍生物,海藻酸钠,聚氧化乙烯中选择任意三种都按照质量百分比为10:80:10的比例搅拌混合均匀成复合粘结剂,多个复合粘结剂组成第五组粘结剂,再将阻垢剂与适量的水混合均匀,得到阻垢剂溶液;最后将第五组粘结剂与阻垢剂溶液以及水溶性高分子搅拌混合均匀,得到阻垢悬浮液;其中,阻垢剂、复合粘结剂以及水溶性高分子的质量比为1~70:30~60:1~10。
步骤2、在格网上负载阻垢悬浮液:先通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网上,再对网格上的悬浮液进行吹扫处理,将阻垢悬浮液负载在格网上,最后干燥处理,得到负载阻垢功能层的格网。
步骤3、制备反渗透滤芯:制备反渗透滤芯:按照常规卷膜工艺,将纯水袋、步骤2制备的负载阻垢功能层的格网以及反渗透膜卷在带有通孔的中心管上,得到反渗透滤芯。
本实施例中,水溶性高分子还可以选自聚乙烯吡咯烷酮、醋酸纤维素或其他可在水中溶解或溶胀的高分子材料,本实施例通过在阻垢悬浮液中添加加快阻垢剂释放的水溶性高分子,当在高盐浓度原水过流时,水溶性高分子的溶解促进阻垢剂的溶出,减少反渗透膜表面因浓差极化造成的结垢,进一步延长了反渗透滤芯的使用寿命。
实施例6
本申请实施例6提供了第六组延长使用寿命的反渗透滤芯的制备工艺,包括以下步骤:
步骤1、配置阻垢悬浮液:以质量份计算,从丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮,聚马来酸酐,淀粉及羟基衍生物,纤维素 及羟基衍生物,海藻酸钠,聚氧化乙烯中选择任意三种都按照质量百分比为10:80:10的比例搅拌混合均匀成复合粘结剂,多个复合粘结剂组成第六组粘结剂,再将阻垢剂与适量的水混合均匀,得到阻垢剂溶液;最后将第六组粘结剂分别与稳定剂与阻垢剂溶液以及亲水剂搅拌混合均匀,得到阻垢悬浮液。其中,阻垢剂、复合粘结剂、稳定剂以及亲水剂的质量比为1~70:30~60:1~10:0.1-1。
步骤2、在格网上负载阻垢悬浮液:先通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网上,再对网格上的悬浮液进行吹扫处理,将阻垢悬浮液负载在格网上,最后干燥处理,得到负载阻垢功能层的格网。
步骤3、制备反渗透滤芯:按照常规卷膜工艺,将纯水袋、步骤2制备的负载阻垢功能层的格网以及反渗透膜卷在带有通孔的中心管上,得到反渗透滤芯。
本实施例中,亲水剂为含有亲水基团的物质,本实施例通过在阻垢悬浮液中添加亲水剂,与未添加亲水剂的格网相比,可以在格网表面形成亲水层,减少原水流过格网的阻力,使反渗透膜的表面流速增加,流速增加使冲刷力增强,将格网上沉积的难溶性物质或其他污染物冲刷掉,减少污染物在膜表面的沉积,从而可以进一步延长反渗透滤芯的寿命,并且冲刷力增强还能进一步促进格网上阻垢剂的溶出,减少反渗透膜表面因浓差极化造成的结垢,进一步延长了反渗透滤芯的使用寿命。
实施例7
本申请实施例7提供了第七组延长使用寿命的反渗透滤芯的制备工艺,包括以下步骤:
步骤1、配置阻垢悬浮液:从丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮,聚马来酸酐,淀粉及羟基衍生物,纤维素及羟基衍生物,海藻酸钠,聚氧化乙烯中选择任意三种都按照质量百分比为10:80:10或10:50:40的比例搅拌混合均匀成复合粘结剂成复合粘结剂,多个复合粘结剂组成第七组粘结剂,再将阻垢剂与适量的水混合均匀,得到阻垢剂溶液;最后将第七组粘结剂分别与稳定剂与阻垢剂溶液搅拌混合均匀,得到阻垢 悬浮液。
步骤2、在格网上负载阻垢悬浮液:先将格网负载在模具中,再用第一分区模具遮挡格网第一非负载区域;然后通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网第一负载区域上,接下来对网格上的悬浮液进行吹扫处理,将阻垢悬浮液负载在格网上,最后干燥处理,得到负载阻垢功能层的格网。
步骤3、制备反渗透滤芯:按照常规卷膜工艺,将纯水袋、步骤2制备的负载阻垢功能层的格网以及反渗透膜卷在带有通孔的中心管上,得到反渗透滤芯。
本实施例中,先通过模具上的分区工具将格网分区,随后可以将各种浓度的阻垢液负载至格网上,得到多区域多浓度的负载阻垢功能层的格网1或者定点定量浓度的负载阻垢功能层的格网2。
实施例8
本申请实施例8提供了第八组延长使用寿命的反渗透滤芯的制备工艺,包括以下步骤:
步骤1、
从丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮,聚马来酸酐,淀粉及羟基衍生物,纤维素及羟基衍生物,海藻酸钠,聚氧化乙烯中选择任意三种都按照质量百分比为10:80:10或10:50:40的比例搅拌混合均匀成复合粘结剂,多个复合粘结剂组成第八组粘结剂,再将阻垢剂与适量的水混合均匀,得到阻垢剂溶液;最后将第八组粘结剂分别与稳定剂与阻垢剂溶液搅拌混合均匀,得到阻垢悬浮液。
步骤2、在格网上负载阻垢悬浮液:先将格网负载在模具中,再用第一分区模具遮挡格网第一非负载区域;然后通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网第一负载区域上,再用第二分区模具遮挡格网第二非负载区域;然后通过浸染工艺/涂敷工艺/印刷工艺/喷涂工艺将步骤1制备的阻垢液负载至格网第二负载区域上,接下来对网格上的悬浮液进行吹扫处理,将阻垢悬浮液负载在格网上,最后干燥处理,得到负载阻垢功能层的格网。
步骤3、制备反渗透滤芯:按照常规卷膜工艺,将纯水袋、步骤2制备的负载阻垢功能层的格网以及反渗透膜卷在带有通孔的中心管上,得到反渗透滤芯。
需要说明的是,本实施例中所述第一阻垢悬浮液和第二阻垢悬浮液中阻垢剂种类相同或不同;所述第一阻垢悬浮液和第二阻垢悬浮液中阻垢剂浓度相同或不同;所述第二非负载区域位于第一非负载区域中。
还需要说明的是,本实施例中,还可以采用第三分区模具遮挡格网第三非负载区域,以实现格网多区域多浓度的负载。
实施例9
本申请实施例9提供了延长使用寿命的反渗透滤芯,参照说明书附图1所示,该延长使用寿命的反渗透滤芯包括:中心管(1)、格网(4),反渗透膜(2)、导流布(3);其中,中心管(1)上设置有通孔,对折的反渗透膜(2)和导流布(3)组成纯水袋,反渗透膜对折后外侧周沿通过粘接等方式密封形成膜袋结构,导流布位于膜袋结构中间,格网(4)上负载阻垢功能层,中心管卷绕纯水袋和格网(4),且纯水袋中的导流布(3)与中心管(1)连接。
水的净化过程如下:原水沿中心管的轴向方向通过格网流入反渗透膜滤芯,在外加压力的作用下,原水中的水分子通过反渗透膜进入纯水袋,然后纯水沿着导流布即中心管的周向方向流入中心管,形成纯水;其中纯水袋是由反渗透膜对折,开口的一侧通过导流布连接中心管,反渗透膜的外侧周沿通过胶密封形成纯水袋;格网上负载阻垢功能层,阻垢功能层中的阻垢剂通过连接剂粘附在格网上,当原水通过格网时,格网上的阻垢剂与原水中阳离子螯合、结晶以及晶格畸变,阻止钙、镁等离子在反渗透膜的结晶,发挥了对反渗透膜的定向阻垢效果;
同时与前置进水通道设置阻垢剂粉末、阻垢剂颗粒和阻垢碳棒等方式相比,将阻垢剂粘附在格网上,使得阻垢剂浓度稳定释放,避免净水过程中由于水流的冲击导致的阻垢剂浓度不稳定,从而有效防止了难溶盐类沉积在反渗透膜表面,大幅度延长了反渗透滤芯的使用寿命。
同时,为进一步提高除垢效果,也可以在阻垢功能层中增加亲水剂以及水溶性高分子,比如增加亲水剂后能将格网水接触角降低至90°以内, 有利于待过滤的原水润湿格网,提高格网中阻垢功能层与原水的接触面积,从而提高除垢效果。
还需要说明的是,先将反渗透膜对折后夹带导流布并卷在中心管上,再卷一层阻垢功能的格网后,为提高过滤效率,可以根据需求再依次卷上一层或多层对折后夹带导流布的第二反渗透膜(5)以及阻垢功能的格网。
实施例10
本实施例10为测试没有负载阻垢功能层格网的反渗透滤芯(常规滤芯)、实施例1以及实施例2所制备的具有负载阻垢功能层格网的反渗透滤芯的实施例,测试步骤按照常规工艺将反渗透滤芯装配至净水设备,之后过滤含有阳离子(如Ca2+、Mg2+、Ba2+等)和阴离子(如CO3 2-、HCO3 -、PO4 3-、SO4 2-、OH-等)的原水,测试结果显示,与没有负载阻垢功能层格网的常规反渗透滤芯相比,实施例1以及实施例2所提供的所有反渗透滤芯都能延长使用寿命,同时,本申请表1还列出了实施例1提供的一种以及实施例2提供的一种反渗透滤芯的流速寿命具体数据,结果显示,本申请提供的延长使用寿命的反渗透滤芯可以达到常规滤芯的2倍。
表1
以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参 照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种延长使用寿命的反渗透滤芯,其特征在于,所述反渗透滤芯包括:中心管、纯水袋以及格网;
    所述纯水袋以及所述格网依次卷膜在所述中心管表面;
    所述格网负载阻垢功能层;
    所述纯水袋包括反渗透膜和导流布;
    所述反渗透膜夹带所述导流布;
    所述阻垢功能层包括:连接剂和阻垢剂。
  2. 根据权利要求1所述的一种延长使用寿命的反渗透滤芯,其特征在于,所述阻垢功能层还包括:亲水剂。
  3. 根据权利要求1所述的一种延长使用寿命的反渗透滤芯,其特征在于,所述阻垢功能层还包括:水溶性高分子。
  4. 根据权利要求1所述的一种延长使用寿命的反渗透滤芯,其特征在于,
    所述阻垢功能层中连接剂选自粘结剂。
  5. 根据权利要求4所述的一种延长使用寿命的反渗透滤芯,其特征在于,
    所述粘结剂选自丙烯酸乳液、聚乙烯醇乳液、苯乙烯-丙烯酸乳液、水性聚氨酯、乙烯基聚氨酯乳液、明胶、硅溶胶、壳聚糖、聚乙烯吡咯烷酮、聚马来酸酐、淀粉及羟基衍生物、纤维素及羟基衍生物、海藻酸钠,聚氧化乙烯中的一种或多种粘结剂。
  6. 根据权利要求1所述的一种延长使用寿命的反渗透滤芯,其特征在于,
    所述阻垢功能层中阻垢剂选自无机聚磷酸盐类、有机磷酸盐及酯类、聚羧酸类、磺酸基共聚物类、聚天冬氨酸、聚环氧琥珀酸、S-羧乙基硫代琥珀酸、马来酸酐、碳酸铵、聚环氧琥珀酸、咪唑啉、丙烯基聚乙氧基羧酸盐、丙烯酸、丙烯基磺酸钠、丙烯酰胺、环氧琥珀酸钠、次亚磷酸钠、2-丙烯酰胺-2-甲基丙磺酸中任意一种或多种阻垢剂。
  7. 根据权利要求1所述的一种延长使用寿命的反渗透滤芯,其特征在于,
    所述阻垢功能层中还包括:稳定剂。
  8. 根据权利要求7所述的一种延长使用寿命的反渗透滤芯,其特征在于,
    所述连接剂、所述阻垢剂以及所述稳定剂的质量比为1~70:30~60:1~20。
  9. 权利要求1-8任一项所述的一种延长使用寿命的反渗透滤芯制备方法,其特征在于,包括以下步骤:
    步骤1、通过浸染工艺、涂敷工艺、印刷工艺或喷涂工艺将阻垢悬浮液负载在格网上,得到负载阻垢液的格网;
    步骤2、将所述负载阻垢液的格网干燥,得到负载阻垢功能层的格网;
    步骤3、依次将纯水袋以及所述格网卷膜在所述中心管表面,得到反渗透滤芯;
    所述纯水袋包括反渗透膜和导流布;
    所述反渗透膜夹带所述导流布。
  10. 根据权利要求9所述的一种延长使用寿命的反渗透滤芯制备方法,其特征在于,所述将阻垢悬浮液负载在格网上,得到负载阻垢液的格网包括:
    步骤101、将阻垢悬浮液负载在格网上;
    步骤102、对所述格网进行吹扫处理,得到负载阻垢液的格网。
  11. 根据权利要求9所述的一种延长使用寿命的反渗透滤芯制备方法,其特征在于,所述将阻垢悬浮液负载在格网上,得到负载阻垢液的格网包括:
    步骤103、将格网置于模具中;
    步骤104、将阻垢悬浮液负载在所述格网上;
    步骤105、取出所述格网,得到负载阻垢液的格网;
    所述模具上的针头与所述格网的网孔一一对应。
  12. 根据权利要求9所述的一种延长使用寿命的反渗透滤芯制备方法,其特征在于,所述将阻垢悬浮液负载在格网上,得到负载阻垢液的格网包括:
    步骤106、将连接剂、阻垢剂以及表面活性剂搅拌,得到阻垢悬浮液;
    步骤107、将阻垢悬浮液负载在格网上,静置,得到负载阻垢液的格 网。
  13. 根据权利要求9所述的一种延长使用寿命的反渗透滤芯制备方法,其特征在于,将阻垢悬浮液负载在格网上包括:
    步骤108、用第一分区模具遮挡格网第一非负载区域;
    步骤109、通过浸染工艺、涂敷工艺、印刷工艺或喷涂工艺将第一阻垢悬浮液负载在格网第一负载区域上。
  14. 根据权利要求13所述的一种延长使用寿命的反渗透滤芯制备方法,其特征在于,步骤109之后还包括:
    步骤110、用第二分区模具遮挡格网第二非负载区域;
    步骤111、通过浸染工艺、涂敷工艺、印刷工艺或喷涂工艺将第二阻垢悬浮液负载在格网第二负载区域上;
    所述第一阻垢悬浮液和第二阻垢悬浮液中阻垢剂种类相同或不同;
    所述第一阻垢悬浮液和第二阻垢悬浮液中阻垢剂浓度相同或不同;
    所述第二非负载区域位于第一非负载区域中。
  15. 根据权利要求14所述的一种延长使用寿命的反渗透滤芯制备方法,其特征在于,步骤111之后还包括:步骤112、重复步骤108-111一次或多次。
  16. 权利要求1-8任一项所述一种延长使用寿命的反渗透滤芯或权利要求9-15任一项所述的制备方法制备得到的反渗透滤芯在净水设备中的应用。
PCT/CN2023/081049 2022-03-15 2023-03-13 一种延长使用寿命的反渗透滤芯及其制备方法和应用 WO2023174203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210253342.9 2022-03-15
CN202210253342.9A CN116789224A (zh) 2022-03-15 2022-03-15 一种延长使用寿命的反渗透滤芯及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023174203A1 true WO2023174203A1 (zh) 2023-09-21

Family

ID=88022240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081049 WO2023174203A1 (zh) 2022-03-15 2023-03-13 一种延长使用寿命的反渗透滤芯及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN116789224A (zh)
WO (1) WO2023174203A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157139A1 (ja) * 2013-03-29 2014-10-02 栗田工業株式会社 スケール防止方法及び逆浸透膜用水酸化マグネシウムスケール防止剤
CN108854543A (zh) * 2018-08-06 2018-11-23 厦门百霖净水科技有限公司 一种浓水导流网制备工艺及具有其的反渗透膜滤芯
CN111825224A (zh) * 2020-08-12 2020-10-27 南京水联天下海水淡化技术研究院有限公司 一种具有阻垢功能的卷式膜元件
CN113135619A (zh) * 2020-01-19 2021-07-20 边文兵 阻垢基体材料及制备方法及阻垢膜、阻垢球和阻垢片
CN216005294U (zh) * 2021-08-06 2022-03-11 宁波灏钻科技有限公司 一种阻垢型反渗透膜组件
CN217809004U (zh) * 2022-03-15 2022-11-15 佛山市顺德区阿波罗环保器材有限公司 一种延长使用寿命的反渗透滤芯和净水设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157139A1 (ja) * 2013-03-29 2014-10-02 栗田工業株式会社 スケール防止方法及び逆浸透膜用水酸化マグネシウムスケール防止剤
CN108854543A (zh) * 2018-08-06 2018-11-23 厦门百霖净水科技有限公司 一种浓水导流网制备工艺及具有其的反渗透膜滤芯
CN113135619A (zh) * 2020-01-19 2021-07-20 边文兵 阻垢基体材料及制备方法及阻垢膜、阻垢球和阻垢片
CN111825224A (zh) * 2020-08-12 2020-10-27 南京水联天下海水淡化技术研究院有限公司 一种具有阻垢功能的卷式膜元件
WO2022032731A1 (zh) * 2020-08-12 2022-02-17 南京水联天下海水淡化技术研究院有限公司 一种具有阻垢功能的卷式膜元件
CN216005294U (zh) * 2021-08-06 2022-03-11 宁波灏钻科技有限公司 一种阻垢型反渗透膜组件
CN217809004U (zh) * 2022-03-15 2022-11-15 佛山市顺德区阿波罗环保器材有限公司 一种延长使用寿命的反渗透滤芯和净水设备

Also Published As

Publication number Publication date
CN116789224A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
TWI232773B (en) Treatment system having spiral membrane element and method for operating the treatment system
CN101472671B (zh) 聚合物分离膜及其制备方法
CN112023732A (zh) 一种正渗透复合膜及其制备方法和应用
CN102580561B (zh) 一种管式复合纳滤膜
CN109304088A (zh) 一种耐强酸强碱的海水淡化膜及其制备方法与应用
JP5346784B2 (ja) 分離膜の製造方法、分離膜およびイオン排除性能を有する分離膜モジュール
WO2023174203A1 (zh) 一种延长使用寿命的反渗透滤芯及其制备方法和应用
Wang et al. Engineering a protective surface layer to resist membrane scaling and scale-induced wetting in membrane distillation for the treatment of hypersaline wastewater
Tang et al. Leaf vein-inspired microfiltration membrane based on ultrathin nanonetworks
CN110270235A (zh) 一种对一价、二价盐高效分离的复合纳滤膜
CN111888943B (zh) 一种含缓冲层自由界面聚合的反渗透膜的制备方法
Ma et al. Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling study with cleaning
CN104470857B (zh) 杀生物过滤器介质
CN217809004U (zh) 一种延长使用寿命的反渗透滤芯和净水设备
CN101450290A (zh) 超低压耐污染复合反渗透膜的制备方法
CN110743383A (zh) 一种提高聚酰胺复合膜渗透通量的改性方法
CN110215846A (zh) 一种处理反渗透浓水用平板纳滤膜的清洗剂及清洗方法
CN112870994B (zh) 一种提高聚丙烯腈正渗透膜耐氯性能的改性方法
CN114887494A (zh) 一种无金属离子浸出的可响应释放型mil-53修饰膜的制备方法和应用
CN110385045B (zh) 一种数码喷墨墨水制备过程中的高效除盐方法
CN114452818A (zh) 一种基于分离-催化序构的超滤膜及其制备方法
CN115093055B (zh) 适用于强酸溶液的反渗透膜涂层及反渗透膜体
CN116078177B (zh) 一种中空纤维正渗透膜、制备方法及应用
CN105664732A (zh) 一种有机正渗透膜的制备方法
JP2003251154A (ja) ベッセル、膜モジュールおよびその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769706

Country of ref document: EP

Kind code of ref document: A1