WO2023173988A1 - 一种无人机跟踪装置 - Google Patents

一种无人机跟踪装置 Download PDF

Info

Publication number
WO2023173988A1
WO2023173988A1 PCT/CN2023/076208 CN2023076208W WO2023173988A1 WO 2023173988 A1 WO2023173988 A1 WO 2023173988A1 CN 2023076208 W CN2023076208 W CN 2023076208W WO 2023173988 A1 WO2023173988 A1 WO 2023173988A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
locking
antenna
component
driving module
Prior art date
Application number
PCT/CN2023/076208
Other languages
English (en)
French (fr)
Inventor
李阳帆
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2023173988A1 publication Critical patent/WO2023173988A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole

Definitions

  • the embodiments of the present application relate to the field of drone communication technology, and in particular, to a drone tracking device.
  • the inventor found that: currently, the ground tracking system on the market has a single monitoring angle. During the monitoring process, it is necessary to manually rotate the angle of the tracking antenna to align the drone, which is inconvenient to operate and has poor monitoring results. Not good.
  • the main technical problem solved by the embodiments of this application is to provide a UAV tracking device that can rotate the omnidirectional antenna and the directional antenna, so that the omnidirectional antenna and the directional antenna communicate with external UAVs at a better angle, improving Accuracy of drone monitoring results.
  • one technical solution adopted by the embodiment of the present application is to provide a drone tracking device, which includes a base, a real-time dynamic measurement module, a first drive module, a second drive module, an antenna module, and a controller.
  • the base is provided with a receiving space, the real-time dynamic measurement module and the first driving module are all arranged on the base, the second driving module is arranged on the first driving module, and the antenna module includes an omnidirectional antenna Components and Orientation Days line, the omnidirectional antenna assembly is provided on the first driving module, the directional antenna is provided on the second driving module, the first driving module is used to drive the second driving module and the omnidirectional antenna assembly Rotate along the first direction, the second driving module is used to drive the directional antenna to rotate along the second direction, wherein the first direction and the second direction are different, the controller is arranged in the receiving space, the The controller is connected to the real-time dynamic measurement module, the first driving module, and the second driving module respectively. The controller controls the first driving module and the second driving module according to the monitoring information received by the real-time dynamic measurement module.
  • the second drive module moves.
  • the first driving module includes a first driving component and a rotating disk, the first driving component is disposed on the base, the first stator of the first driving component is fixed on the base, and the The first rotor of the first driving assembly is connected to the rotating disk.
  • the first driving assembly is used to drive the rotating disk to rotate in a first direction relative to the base.
  • the omnidirectional antenna assembly and the second driving module are installed On the rotating disk, the controller is connected with the first driving component.
  • the rotating disk is provided with a locking hole
  • the base is provided with a sliding groove and a guide groove
  • the drone tracking device further includes a first locking module, and the first locking module is provided on the base,
  • the first locking module includes a first slide block and a second slide block. The first slide block is exposed to the sliding groove.
  • the first slide block is provided with a first inclined surface boss.
  • the second slide block A second inclined surface boss, a guide post and a locking post are provided, the guide post is inserted into the guide groove, and the locking post corresponds to the locking hole; when the first slider is slid, the The first inclined boss presses or moves away from the second inclined boss, so that the guide post moves in the guide groove, and the second slider drives the locking post to insert into or leave the locking hole, so as to The first locking module is caused to lock or unlock the rotating disk.
  • the second drive module includes a first bracket, a second bracket and a second drive assembly.
  • One end of the first bracket is fixed to the rotating disk, and the other end of the first bracket is provided with a rotating groove.
  • the second bracket is provided with a mounting hole
  • the second driving component is connected to the first bracket and the second bracket respectively
  • the second stator of the second driving component is fixed to the rotation groove, so
  • the second rotor of the second driving assembly is fixed on the mounting hole, the second rotor is cooperatively connected with the second stator, and the directional antenna is fixed on the second support Frame;
  • the controller controls the movement of the second driving component, and the second driving component is used to drive the second bracket to rotate relative to the first bracket.
  • a second locking module is also included.
  • the second locking module includes an electromagnet locking shaft, a metal plate, a friction plate, and a groove plate.
  • the electromagnet locking shaft is connected to the second bracket, and the metal plate , the friction plate and the groove plate are arranged in the rotation groove, the friction plate is located between the metal plate and the groove plate, when the electromagnet locking shaft is energized, the metal plate Separated from the groove plate, the friction plate and the electromagnet locking shaft can rotate synchronously with the second bracket.
  • the electromagnet is powered off, the metal plate and the groove plate are attracted to each other.
  • the friction plate is clamped, and the friction plate and the electromagnet locking shaft are fixed relative to the first bracket, so that the second bracket is fixed relative to the first bracket.
  • the omnidirectional antenna assembly includes an omnidirectional antenna, an antenna mounting frame, a first connector and a fixed component.
  • One end of the omnidirectional antenna is provided with a first interface, and one end of the antenna mounting frame is connected to the rotating
  • the first connector and the fixed component are both arranged at the other end of the antenna mounting frame, the first connector is connected to the controller, and the omnidirectional antenna is connected to the other end of the antenna mounting frame.
  • One end is detachably connected.
  • the omnidirectional antenna is provided with a locking groove;
  • the fixing assembly includes a push rod and a locking block, the push rod is provided with a pushing column, the locking block is provided with a groove, and the pushing column is plugged into The groove, when the push rod is driven to drive the pushing column to move in the groove, so that the locking block is inserted into or leaves the locking groove, thereby locking the omnidirectional antenna to the antenna Mount or unlock the omnidirectional antenna.
  • the wiring port is provided on the base, the wiring port is connected to the controller, and the wiring port is used to connect with external equipment, so that the drone tracking device Can transmit data information with external devices.
  • the second driving module is connected, and the controller controls the movement of the first driving module and the second driving module according to the monitoring information of the real-time dynamic measurement module to drive the omnidirectional antenna assembly and the
  • the directional antenna rotates so that the omnidirectional antenna assembly and the directional antenna are aligned with the external drone.
  • the drone tracking device can rotate the omnidirectional antenna and the directional antenna so that the omnidirectional antenna And directional antennas communicate with external drones at better angles to improve the accuracy of drone monitoring results.
  • Figure 2 is an exploded view of the base of the drone tracking device according to the embodiment of the present application.
  • Figure 3 is an exploded view of the antenna module of the drone tracking device according to the embodiment of the present application.
  • Figure 5 is an exploded view of the first driving module of the drone tracking device according to the embodiment of the present application.
  • Figure 7 is an exploded view of the first locking module of the drone tracking device according to the embodiment of the present application.
  • the UAV tracking device 1 includes a base 10, a real-time dynamic measurement module 30, a first driving module 40, a second driving module 50, an antenna module 20, and a controller 70.
  • the real-time dynamic measurement module 30 and the first driving module 40 are provided on the base 10, the base 10 is provided with a receiving space 11, the controller is provided in the receiving space, and the second driving module
  • the module 50 is provided in the first driving module 40 .
  • the antenna module 20 includes an omnidirectional antenna component 21 and a directional antenna 22.
  • the omnidirectional antenna component 21 is provided on the first driving module 40, and the directional antenna 22 is provided on the second driving module 50.
  • the first driving module 40 can rotate in a first direction relative to the base 10
  • the second driving module 50 can rotate in a second direction relative to the base 10 . It can be understood that, in some embodiments, the plane on which the first direction is located and the plane on which the second direction is located are perpendicular to each other.
  • the UAV tracking device 1 also includes a modulation and demodulation module 60.
  • the modulation and demodulation module 60 is connected to the antenna module 20.
  • the modulation and demodulation module 60 is used to demodulate the signal received by the antenna module 20 and then send it to the controller 70, and to communicate with the controller 70.
  • the signal is modulated and then sent out through the antenna module 20, so that the drone tracking device 1 communicates with external drones or external equipment.
  • the UAV tracking device 1 also includes a power module 80, which is connected to the real-time dynamic measurement module 30, the first driving module 40, the second driving module 50, the antenna module 20, the modem and demodulation module respectively.
  • the module 60 and the controller 70 are electrically connected, so that the power module 80 can control the real-time dynamic measurement module 30, the first driving module 40, the second driving module 50, the antenna module 20, the modulation and demodulation module 60 and all
  • the controller 70 provides power.
  • the base 10 is also provided with the first locking module 90.
  • the first locking module 90 is used to lock or unlock the first driving module 40.
  • the antenna module 20 can only move in the second direction.
  • the first locking module 90 unlocks the first driving module 40, the first driving module 40 can The antenna module 20 is driven to move along the first direction and the second direction.
  • the base 10 is also provided with a wiring port, and the wiring port 110 is connected to the controller 70.
  • the wiring port 110 is used to connect with external equipment, so that the UAV tracking device 1 can transmit with external equipment. Data information.
  • the base 10 is also provided with a second locking module 100.
  • the specific structure of the second locking module 100 will be described below (as shown in FIG. 8).
  • the base 10 is provided with a receiving space 11 , a sliding groove 12 , a guide groove 13 and a first receiving groove 14 .
  • the receiving space 11 is used to accommodate the first driving module 40, The modem module 60 , the controller 70 and the power module 80 .
  • the sliding groove 12 is provided on a surface of the base 10 .
  • the sliding groove 12 communicates the receiving space 11 with the outside world.
  • the sliding groove 12 is used for the first locking module 90 to pass through.
  • the guide groove 13 is provided on the base 10 , and the guide groove 13 is used for the first locking module 90 to be inserted.
  • the sliding groove 12 , the guide groove 13 and the first locking module 90 cooperate together to enable the first locking module 90 to lock or unlock the first driving module 40 .
  • the first receiving groove 14 is provided on the side wall of the base 10.
  • the first receiving groove 14 is formed inwardly from the side wall of the base 10 toward the receiving space 11.
  • the first receiving space 11 is used for The real-time dynamic measurement module 30 is housed.
  • the antenna module 20 includes an omnidirectional antenna component 21 and a directional antenna 22 .
  • the omnidirectional antenna assembly 21 is provided in the first driving module 40, and the directional antenna 22 is provided in the second driving module 50. Both the omnidirectional antenna assembly 21 and the directional antenna 22 are connected to the modulation The demodulation module 60 and the controller 70 are electrically connected.
  • the omnidirectional antenna assembly 21 and the directional antenna 22 are both used to track the drone and enable the drone tracking device 1 to transmit information with the drone. .
  • the omnidirectional antenna assembly 21 includes an omnidirectional antenna 211 , an antenna mounting frame 212 , a first connector 213 and the fixing component 214 .
  • One end of the antenna mounting bracket 212 is provided on the first driving module 40 , and the other end of the antenna mounting bracket 212 is used for detachable connection with one end of the omnidirectional antenna 211 .
  • the first connector 213 and the fixing component 214 are both provided at the other end of the antenna mounting frame 212.
  • the first connector 213 is connected to the controller 70, and the first connector 213 is used to connect to the antenna mounting bracket 212.
  • One end of the omnidirectional antenna 211 is detachably connected, and the fixing component 214 is used to fix one end of the omnidirectional antenna 211 to the other end of the antenna mounting bracket 212, or to fix one end of the omnidirectional antenna 211 from the other end.
  • the other end of the antenna mounting bracket 212 is unlocked.
  • the omnidirectional antenna 211 is connected to the antenna mounting bracket 212 through the fixing component 214, at this time, the omnidirectional antenna 211 and the antenna mounting bracket 212 are only mechanically connected.
  • the omnidirectional antenna 211 is electrically connected to the controller 70.
  • the fixing assembly 214 includes a push rod 2141 and a locking block 2142.
  • the push rod 2141 is provided with a push column 21411.
  • the lock block 2142 is provided with a groove 21421.
  • the groove 21421 is used for the push column 21411 to be inserted. Then, when the push rod 2141 is driven to drive the pushing column 21411 to move in the groove 21421, so that the locking block 2142 is inserted into or leaves the locking groove 2112, thereby locking the omnidirectional antenna 211 in The antenna mounting bracket 212 or unlocks the omnidirectional antenna 211 .
  • the fixing component 214 further includes an elastic member, the elastic member is provided at the other end of the antenna mounting frame 212, and the elastic member is respectively connected with the antenna mounting frame 212 and the antenna mounting frame 212.
  • the push rod 2141 is connected, and the elastic member is in a compressed state.
  • the elastic member is used to provide elastic force for the push rod 2141 so that the push rod 2141 can automatically reset when the external force is removed.
  • the real-time dynamic measurement module 30 includes a real-time dynamic measurement component 31 and a support arm component 32 .
  • the support arm assembly 32 is disposed in the first receiving space 11. One end of the support arm assembly 32 is rotationally connected to the base 10, and the other end of the support arm assembly 32 is used to communicate with the real-time dynamic measurement.
  • the module 30 is detachably connected, and the support arm assembly 32 can rotate relative to the base 10 so that the support arm assembly 32 is received in the first receiving groove 14, or the support arm assembly 32 is removed from the first receiving groove 14.
  • the first receiving groove 14 extends. When the support arm assembly 32 is received in the first receiving slot 14, the volume of the UAV tracking device 1 can be reduced, making the UAV tracking device 1 easy to carry.
  • the real-time dynamic measurement component 31 and the support arm component 32 are detachably connected, which can facilitate the real-time dynamic measurement.
  • the measurement component 31 fails, only the real-time dynamic measurement component 31 needs to be replaced, thereby reducing costs.
  • the real-time dynamic measurement assembly 31 is provided with a second interface 311.
  • the support arm assembly 32 includes a support arm body 321 and a second joint 322.
  • the support arm body 321 is provided with a joint receiving slot 3211.
  • the joint receiving slot 3211 The second connector 322 is used to receive the second connector 322 , the second connector 322 is connected to the controller 70 , and the second connector 322 is used to detachably connect to the second interface 311 .
  • the component is fixed on the other end of the support arm body 321.
  • the real-time dynamic measurement component 31 is connected to the second connector 322 through the second connector 322.
  • the controller 70 is electrically connected, and the real-time dynamic measurement component 31 is in a working state.
  • the real-time dynamic measurement component 31 is used to dynamically measure the monitoring information of the UAV tracking system, and send the bit monitoring information to the controller 70 .
  • the first receiving slot 14 only accommodates the support arm assembly 32 . It can be understood that in other embodiments, the first receiving slot 14 can also accommodate the support arm assembly. 32 and the real-time dynamic measurement assembly 31 to reduce the number of disassembly and assembly of the real-time dynamic measurement assembly 31 and the support arm assembly 32 to improve the work efficiency of technicians and extend the service life of the UAV tracking device 1 service life.
  • the number of the real-time dynamic measurement component 31 , the support arm component 32 and the first receiving slot 14 is two.
  • the real-time dynamic measurement component 31 , the support arm component 32 and the first receiving slot 14 are The first receiving grooves 14 are symmetrically arranged on both sides of the base 10 .
  • the real-time dynamic measurement component 31 is a RTK (Real Time Kinematic, real-time dynamic measurement) component.
  • the first driving module 40 includes a first driving assembly 41 and a rotating disk 42 .
  • the first driving component 41 is disposed in the receiving space 11 .
  • the first driving component 41 is connected to the rotating disk 42 and the controller 70 respectively.
  • the controller 70 measures the real-time dynamic measurement component 31 based on the real-time dynamic measurement of the component 31 .
  • the sent monitoring information controls the movement of the first driving component 41 to drive the transmission plate to rotate in the first direction relative to the base 10 .
  • the first driving assembly 41 includes a first rotor 412 and a first stator 411 .
  • the first rotor 412 is fixedly connected to the rotating disk 42
  • the first stator 411 is fixed to the base 10 .
  • the rotating plate 42 is used to install the second driving module 50 and the omnidirectional antenna assembly 21.
  • the first driving assembly 41 drives the rotating plate 42 to rotate, the omnidirectional antenna assembly 21 and the omnidirectional antenna assembly 21 are rotated.
  • the second driving module 50 rotates synchronously with the rotating disk 42 .
  • the rotating plate 42 is provided with a locking hole 421, and the locking hole 421 is used for the first locking module 90 to be inserted.
  • the first locking module 90 is inserted into the locking hole 421, the first locking module 90 is inserted into the locking hole 421.
  • the locking module 90 can lock the rotating disk 42 to the base 10 .
  • the rotating disk 42 is in an unlocked state, and the rotating disk 42 can be positioned relative to the locking hole 421 .
  • the base 10 rotates.
  • the second driving module 50 includes a first bracket 51 , a second bracket 52 and the second driving assembly 53 .
  • One end of the first bracket 51 is fixed to a surface of the rotating disk 42, and the second driving component 53 is connected to the other end of the first bracket 51 and one end of the second bracket 52 respectively.
  • the other end of the second bracket 52 is used for fixed connection with the antenna module 20 .
  • the second driving component 53 is connected to the controller 70 .
  • the controller 70 controls the second driving component 53 relative to the base 10 along the second direction according to the monitoring signal sent by the real-time dynamic measurement component 31 . direction of rotation.
  • the first bracket 51 is provided with a rotation groove 511, and the rotation groove 511 is provided at the other end of the first bracket 51.
  • the second bracket 52 is provided with a mounting hole 521, and the mounting hole 521 is provided at the other end of the first bracket 51.
  • the rotation groove 511 corresponds to the mounting hole 521 .
  • the second driving assembly 53 includes a second stator 531 and a second rotor 532.
  • the second stator 531 is fixed to the rotation groove 511, and the second rotor 532 is fixed to the mounting hole 521.
  • the first locking module 90 includes a first slider 91 and a second slider 92 .
  • the first slider 91 is exposed to the slide groove 12
  • the second slider 92 is disposed on the sliding groove 12 .
  • the first slider 91 is provided with a first inclined surface boss 911
  • the second slider 92 is provided with a second inclined surface boss 921 , a guide post 922 and a locking post 923 .
  • the first inclined surface boss 911 and the second inclined surface boss 921 are arranged in close contact, and the guide post 922 is inserted into the guide groove. 13.
  • the position of the locking post 923 corresponds to the position of the locking hole 421.
  • the second locking module 100 includes an electromagnet locking shaft 101 , a metal plate 102 , a friction plate 103 and a groove plate 104 .
  • the electromagnet locking shaft 101 is engaged with the second bracket 52, and the electromagnet locking shaft 101 and the second bracket 52 rotate synchronously.
  • the electromagnet locking shaft 101, the metal plate 102, the The friction plate 103 and the grooved plate 104 are both arranged in the rotation groove 511.
  • the friction plate 103 is arranged between the metal plate 102 and the grooved plate 104.
  • the friction plate 103 and the electromagnet The locking shaft 101 is connected. When the electromagnet locking shaft 101 is energized, there is a gap between the metal plate 102 and the groove plate 104.
  • the friction plate 103 and the electromagnet locking shaft 101 can be connected with the third The two brackets 52 rotate synchronously.
  • the metal plate 102 attracts the groove plate 104 to clamp the friction plate 103.
  • the friction plate 103 and the electromagnet The locking shaft 101 is fixed relative to the first bracket 51 so that the second bracket 52 is fixed relative to the first bracket 51 to achieve the purpose of locking the second bracket 52 .
  • the UAV tracking device 1 further includes a wireless communication module.
  • the wireless communication module is disposed in the receiving space 11 .
  • the wireless communication module is connected to the controller 70 .
  • the wireless communication module is used for data transmission with external remote control equipment, receiving control instructions from the external remote control equipment, and sending the control instructions to the controller 70 .
  • the wireless communication module includes a Wi-Fi (wireless network communication) module and a Bluetooth module.
  • the UAV tracking device 1 includes a base 10, a real-time dynamic measurement module 30, a first driving module 40, a second driving module 50, an antenna module 20, and a controller 70.
  • the real-time dynamic measurement module 30, the first driving module 40, and the controller 70 are all provided on the base 10, the second driving module 50 is provided on the first driving module 40, and the antenna module 20 includes An omnidirectional antenna assembly 21 and a directional antenna 22 are provided.
  • the omnidirectional antenna assembly 21 is provided on the first driving module 40
  • the directional antenna 22 is provided on the first drive module 40 .
  • the controller 70 is connected to the real-time dynamic measurement module 30, the first driving module 40 and the second driving module 50 respectively.
  • the controller 70 According to the monitoring information of the real-time dynamic measurement module 30, the movement of the first driving module 40 and the second driving module 50 is controlled to drive the omnidirectional antenna assembly 21 and the directional antenna 22 to rotate, so that the The omnidirectional antenna assembly 21 and the directional antenna 22 are aimed at the external drone.
  • the drone tracking device 1 can rotate the omnidirectional antenna 211 and the directional antenna 22, so that the omnidirectional antenna 211 and the directional antenna
  • the antenna 22 communicates with external drones at a better angle to improve the accuracy of drone monitoring results.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种无人机跟踪装置(1),无人机跟踪装置(1)包括底座(10)、实时动态测量模块(30)、第一驱动模块(40)、第二驱动模块(50)、天线模块(20)、控制器(70),控制器(70)分别与实时动态测量模块(30)、第一驱动模块(40)第二驱动模块(50)连接,控制器(70)根据实时动态测量模块(30)接收的监测信息,控制第一驱动模块(40)和第二驱动模块(50)运动,第一驱动模块(40)运动以驱动第二驱动模块(50)和全向天线组件(21)沿第一方向转动,第二驱动模块(50)运动以驱动定向天线(22)沿第二方向转动,第一方向和第二方向不相同。通过上述方式,该装置能够转动全向天线(21)和定向天线(22),以使得全向天线(21)和定向天线(22)以更好的角度与外界无人机进行通讯,提高外界无人机监测结果的准确性。

Description

一种无人机跟踪装置
本申请要求于2022年03月16日提交中国专利局、申请号为2022205894941、申请名称为“一种无人机跟踪装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无人机通讯技术领域,特别是涉及一种无人机跟踪装置。
背景技术
随着无人机技术的发展,无人机的续航能力也越来越强,因此,市面上很多无人机的能够执行远距离的飞行任务,技术人员可以通过地面跟踪系统来实时监测无人机的位置,以及进行信息传递。
本申请实施例在实施过程中,发明人发现:目前,市面上的地面跟踪系统监测角度单一,在监测过程中需要人工转动跟踪天线的角度,以对准无人机,操作过程不便并且监测效果不佳。
申请内容
本申请实施例主要解决的技术问题是提供一种无人机跟踪装置,能够转动全向天线和定向天线,以使得全向天线和定向天线以更好的角度与外界无人机进行通讯,提高无人机监测结果的准确性。
为解决上述技术问题,本申请实施例采用的一个技术方案是:提供一种无人机跟踪装置,包括底座、实时动态测量模块、第一驱动模块、第二驱动模块、天线模块、控制器。所述底座设有收容空间,所述实时动态测量模块、第一驱动模块、均设置于所述底座,所述第二驱动模块设置于所述第一驱动模块,所述天线模块包括全向天线组件和定向天 线,所述全向天线组件设置于所述第一驱动模块,所述定向天线设置于所述第二驱动模块,所述第一驱动模块用于驱动所述第二驱动模块和全向天线组件沿第一方向转动,所述第二驱动模块用于驱动定向天线沿第二方向转动,其中,所述第一方向和第二方向不相同,所述控制器设置于所述收容空间,所述控制器分别与所述实时动态测量模块、所述第一驱动模块、所述第二驱动模块连接,所述控制器根据所述实时动态测量模块接收的监测信息,控制所述第一驱动模块和所述第二驱动模块运动。
可选地,所述第一驱动模块包括第一驱动组件和转动盘,所述第一驱动组件设置于所述底座,所述第一驱动组件的第一定子固定于所述底座,并且所述第一驱动组件的第一转子与所述转动盘连接,所述第一驱动组件用于驱动转动盘沿第一方向相对于底座转动,所述全向天线组件和所述第二驱动模块安装于转动盘,所述控制器与所述第一驱动组件连接。
可选地,所述转动盘设有锁定孔,所述底座设有滑动槽和导向槽;所述无人机跟踪装置还包括第一锁定模块,所述第一锁定模块设置于所述底座,所述第一锁定模块包括第一滑块和第二滑块,所述第一滑块暴露于所述滑动槽,所述第一滑块设有第一斜面凸台,所述第二滑块设有第二斜面凸台、导向柱以及锁定柱,所述导向柱插接于所述导向槽,所述锁定柱与所述锁定孔相对应;当滑动所述第一滑块时,所述第一斜面凸台挤压或者远离所述第二斜面凸台,使得所述导向柱在所述导向槽内运动,所述第二滑块带动所述锁定柱插入或者离开所述锁定孔,以使得所述第一锁定模块锁定或者解锁所述转动盘。
可选地,所述第二驱动模块包括第一支架、第二支架以及第二驱动组件,所述第一支架的一端固定于所述转动盘,所述第一支架的另一端设置有转动槽,所述第二支架设置有安装孔,所述第二驱动组件分别与所述第一支架和所述第二支架连接,所述第二驱动组件的第二定子固定于所述转动槽,所述第二驱动组件的第二转子固定于所述安装孔,所述第二转子与所述第二定子配合连接,所述定向天线固定于所述第二支 架;所述控制器控制所述第二驱动组件运动,所述第二驱动组件用于驱动所述第二支架相对于所述第一支架转动。
可选地,还包括第二锁定模块,所述第二锁定模块包括电磁铁锁定轴、金属板、摩擦片以及槽盘,所述电磁铁锁定轴与所述第二支架连接,所述金属板、所述摩擦片以及所述槽盘均设置于所述转动槽内,所述摩擦片位于所述金属板与所述槽盘之间,当所述电磁铁锁定轴通电时,所述金属板和所述槽盘相离,所述摩擦片和所述电磁铁锁定轴能够与所述第二支架同步转动,当所述电磁铁断电时,所述金属板和所述槽盘吸合以将所述摩擦片夹紧,所述摩擦片和所述电磁铁锁定轴相对于所述第一支架固定,使得所述第二支架相对于所述第一支架固定。
可选地,所述全向天线组件包括全向天线、天线安装架、第一接头以及固定组件,所述全向天线的一端设有第一接口,所述天线安装架的一端与所述转动盘连接,所述第一接头和所述固定组件均设置于所述天线安装架的另一端,所述第一接头与所述控制器连接,所述全向天线与所述天线安装架的另一端可拆卸连接,当所述全向天线与所述天线安装架连接时,所述固定组件将所述全向天线固定于所述天线安装架,所述第一接头与所述第一接口连接,以使所述全向天线与所述控制器连接。
可选地,所述全向天线设有锁定槽;所述固定组件包括推杆和锁定块,所述推杆设有推动柱,所述锁定块设有凹槽,所述推动柱插接于所述凹槽,当驱动所述推杆以带动所述推动柱在所述凹槽内运动,以使得所述锁定块插入或者离开所述锁定槽,从而锁定所述全向天线于所述天线安装架或者解锁所述全向天线。
可选地,所述全向天线设有锁定槽;所述固定组件包括推杆和锁定块,所述推杆设有推动柱,所述锁定块设有凹槽,所述推动柱插接于所述凹槽,当驱动所述推杆以带动所述推动柱在所述凹槽内运动,以使得所述锁定块插入或者离开所述锁定槽,从而锁定所述全向天线于所述天线安装架或者解锁所述全向天线。
可选地,所述实时动态测量组件设有第二接口;所述支撑臂组件包括支撑臂本体和第二接头,所述支撑臂本体设有接头收容槽,所述接头 收容槽用于收容所述第二接头,所述第二接头与所述控制器连接,所述第二接头用于与所述第二接口可拆卸连接。
可选地,还包括接线端口,所述接线端口设置于所述底座,所述接线端口与所述控制器连接,所述接线端口用于与外界设备连接,以使得所述无人机跟踪装置可以与外界设备传输数据信息。
本申请实施例的有益效果是:区别于现有技术的情况,本申请实施例无人机跟踪装置包括底座、实时动态测量模块、第一驱动模块、第二驱动模块、天线模块、控制器,所述实时动态测量模块、所述第一驱动模块、所述控制器均设置于所述底座,所述第二驱动模块设置于所述第一驱动模块,所述天线模块包括全向天线组件和定向天线,所述全向天线组件设置于所述第一驱动模块,所述定向天线设置于所述第二驱动模块,所述控制器分别与所述实时动态测量模块、所述第一驱动模块以及所述第二驱动模块连接,所述控制器根据所述实时动态测量模块的监测信息,控制所述第一驱动模块和所述第二驱动模块运动,以驱动所述全向天线组件和所述定向天线转动,从而使得所述全向天线组件和所述定向天线对准外界无人机,通过上述结构,所述无人机跟踪装置能够转动全向天线和定向天线,以使得全向天线和定向天线以更好的角度与外界无人机进行通讯,提高无人机监测结果的准确性。
附图说明
为了更清楚地说明本申请具体实施例或现有技术中的技术方案,下面将对具体实施例或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1是本申请实施例无人机跟踪装置一视角的爆炸图;
图2是本申请实施例无人机跟踪装置的底座一视角的爆炸图;
图3是本申请实施例无人机跟踪装置的天线模块一视角的爆炸图;
图4是本申请实施例无人机跟踪装置的实时动态测量模块一视角的爆炸图;
图5是本申请实施例无人机跟踪装置的第一驱动模块一视角的爆炸图;
图6是本申请实施例无人机跟踪装置的第二驱动模块一视角的爆炸图;
图7是本申请实施例无人机跟踪装置的第一锁定模块一视角的爆炸图;
图8是本申请实施例无人机跟踪装置的第二锁定模块一视角的爆炸图;
图9是本申请实施例无人机跟踪装置一视角的示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“垂直的”、“水平的”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1和图3,所述无人机跟踪装置1包括底座10、实时动态测量模块30、第一驱动模块40、第二驱动模块50、天线模块20、控制器70。其中,所述实时动态测量模块30、所述第一驱动模块40设置于所述底座10,所述底座10设有收容空间11,所述控制器设置于所述收容空间,所述第二驱动模块50设置于所述第一驱动模块40。所述天线模块20包括全向天线组件21和定向天线22,所述全向天线组件21设置于所述第一驱动模块40,所述定向天线22设置于所述第二驱动模块50,所述第一驱动模块40用于驱动所述第二驱动模块50和所述全向天线组件21沿第一方向转动,所述第二驱动模块50用于驱动所述定向天线22沿第二方向转动,其中,所述第一方向和第二方向不相同。所述控制器70分别与所述实时动态测量模块30、所述第一驱动模块40、所述第二驱动模块50连接,所述控制器70根据所述实时动态测量模块30接收的监测信息,控制所述第一驱动模块40和所述第二驱动模块50运动。
通过上述结构,所述无人机跟踪装置1能够转动所述全向天线组件21和所述定向天线22,使得所述全向天线组件21和所述定向天线22对准外界无人机,以使得所述全向天线组件21和所述定向天线22以更好的角度与外界无人机进行通讯,提高对外界无人机监测结果的准确性。
具体地,所述第一驱动模块40可以相对于所述底座10沿第一方向转动,所述第二驱动模块50可以相对于所述底座10沿第二方向转动。可以理解的是,在一些实施例中,所述第一方向所在平面与所述第二方向所在平面互相垂直。
所述控制器70分别与所述实时动态测量模块30、所述第一驱动模块40、所述第二驱动模块50连接,所述控制器70根据所述实时动态测量模块30接收的监测信息,控制所述第一驱动模块40和所述第二驱动模块50运动,其中,所述监测信息包括但不限于外界无人机的三维坐标信息、运动方向信息以及运动速度信息等。
所述无人机跟踪装置1还包括调制解调模块60,所述调制解调模块 60与所述天线模块20连接,所述调制解调模块60用于对所述天线模块20接到的信号进行解调然后发给所述控制器70,以及对所述控制器70发出的通信信号进行调制,再通过天线模块20发送出去,以使得所述无人机跟踪装置1与外界无人机或者外界设备进行通信。
所述无人机跟踪装置1还包括电源模块80,所述电源模块80分别与所述实时动态测量模块30、所述第一驱动模块40、第二驱动模块50、天线模块20、调制解调模块60以及控制器70电连接,以便于所述电源模块80对所述实时动态测量模块30、所述第一驱动模块40、第二驱动模块50、天线模块20、调制解调模块60以及所述控制器70提供电源。
在本实施例中,所述电源模块80包括储能电池和电源接口,所述储能电池收容于所述收容空间11,所述储能电池能够直接为所述实时动态测量模块30、所述第一驱动模块40、第二驱动模块50、天线模块20、调制解调模块60以及所述控制器70提供电源。所述电源接口设置于所述底座10,所述电源接口用于与外界电源连接,以使得外界电源能够对所述无人机跟踪装置1提供电源。可以理解的是,在一些实施例中,所述电源模块80可以只包括储能电池和所述电源接口的其中一个。
所述底座10还设置有所述第一锁定模块90,所述第一锁定模块90用于锁定或者解锁所述第一驱动模块40,当所述第一锁定模块90将所述第一驱动模块40锁定于所述底座10时,所述天线模块20只能沿所述第二方向运动,当所述第一锁定模块90解锁所述第一驱动模块40时,所述第一驱动模块40能够驱动所述天线模块20沿所述第一方向和所述第二方向运动。
所述底座10还设置有接线端口,所述接线端口110与所述控制器70连接,所述接线端口110用于与外界设备连接,以使得所述无人机跟踪装置1可以与外界设备传输数据信息。
所述底座10还设置有第二锁定模块100,所述第二锁定模块100的具体结构参考下文(如图8所示)描述。
请参阅图2,所述底座10设置有收容空间11、滑动槽12、导向槽13以及第一收容槽14。所述收容空间11用于收容所述第一驱动模块40、 所述调制解调模块60、所述控制器70以及所述电源模块80。所述滑动槽12设置于所述底座10的一表面,所述滑动槽12将所述收容空间11与外界连通,所述滑动槽12用于供所述第一锁定模块90穿过。所述导向槽13设置于所述底座10,所述导向槽13用于供所述第一锁定模块90插接。所述滑动槽12、所述导向槽13以及所述第一锁定模块90共同配合以使得所述第一锁定模块90能够锁定或者解锁所述第一驱动模块40。所述第一收容槽14设置于所述底座10的侧壁,所述第一收容槽14自所述底座10侧壁向所述收容空间11内凹形成,所述第一收容空间11用于收容所述实时动态测量模块30。
请参阅图3,所述天线模块20包括全向天线组件21和定向天线22。所述全向天线组件21设置于所述第一驱动模块40,所述定向天线22设置于所述第二驱动模块50,所述全向天线组件21和所述定向天线22均与所述调制解调模块60以及所述控制器70电连接,所述全向天线组件21和所述定向天线22均用于跟踪无人机以及使得所述无人机跟踪装置1与无人机进行信息传输。
所述全向天线组件21包括全向天线211、天线安装架212、第一接头213以及所述固定组件214。所述天线安装架212的一端设置于所述第一驱动模块40,所述天线安装架212的另一端用于与所述全向天线211的一端可拆卸连接。所述第一接头213和所述固定组件214均设置于所述天线安装架212的另一端,所述第一接头213与所述控制器70连接,所述第一接头213用于与所述全向天线211的一端可拆卸连接,所述固定组件214用于固定所述全向天线211的一端于所述天线安装架212的另一端,或者,将所述全向天线211的一端从所述天线安装架212的另一端解锁。当所述全向天线211通过所述固定组件214与所述天线安装架212连接时,此时,所述全向天线211与所述天线安装架212仅为机械连接,当所述第一接头213与所述全向天线211的一端连接时,所述全向天线211与所述控制器70电连接。
所述全向天线211设有第一接口2111和锁定槽2112,所述第一接口2111和所述锁定槽2112均设置于所述全向天线211的一端,所述第 一接口2111用于与所述第一接头213可拆卸连接,所述锁定槽2112用于与所述固定组件214配合连接,以使得所述固定组件214锁定或者解锁所述全向天线211。
所述固定组件214包括推杆2141和锁定块2142,所述推杆2141设有推动柱21411,所述锁定块2142设有凹槽21421,所述凹槽21421用于供所述推动柱21411插接,当驱动所述推杆2141以带动所述推动柱21411在所述凹槽21421内运动,以使得所述锁定块2142插入或者离开所述锁定槽2112,从而锁定所述全向天线211于所述天线安装架212或者解锁所述全向天线211。
可以理解的是,在一些实施例中,所述固定组件214还包括弹性件,所述弹性件设置于所述天线安装架212的另一端,所述弹性件分别与所述天线安装架212以及所述推杆2141连接,所述弹性件处于压缩状态,所述弹性件用于为所述推杆2141提供弹性作用力,以使得所述推杆2141在撤销外力时能够自动复位。
请参阅图4,所述实时动态测量模块30包括实时动态测量组件31和支撑臂组件32。所述支撑臂组件32设置于所述第一收容空间11内,所述支撑臂组件32的一端与所述底座10转动连接,所述支撑臂组件32的另一端用于与所述实时动态测量模块30可拆卸连接,所述支撑臂组件32可相对于所述底座10转动,以使所述支撑臂组件32收容于所述第一收容槽14内,或者,所述支撑臂组件32从所述第一收容槽14伸出。当将所述支撑臂组件32收容于所述第一收容槽14时,能够减小所述无人机跟踪装置1的体积,使得所述无人机跟踪装置1便于携带。
相较于所述实时动态测量组件31和所述支撑臂组件32固定连接的现有技术相比,所述实时动态测量组件31和所述支撑臂组件32可拆卸连接,能够方便所述实时动态测量组件31在失效时,仅需更换所述实时动态测量组件31,降低成本。
在本实施例中,所述支撑臂组件32的另一端与所述实时动态测量组件31的连接方式为螺旋连接,可以理解的是,在其他的实施例中,所述支撑臂组件32的另一端与所述实时动态测量组件31的连接方式可 以是卡接、插接或者磁吸等,只需满足所述支撑臂组件32的另一端与所述实时动态测量组件31为可拆卸连接即可。
所述实时动态测量组件31设有第二接口311,所述支撑臂组件32包括支撑臂本体321和第二接头322,所述支撑臂本体321设有接头收容槽3211,所述接头收容槽3211用于收容所述第二接头322,所述第二接头322与所述控制器70连接,所述第二接头322用于与所述第二接口311可拆卸连接。当将所述实时动态测量组件31与所述支撑臂本体321的另一端螺旋连接时,此时,所述实时动态测量组件31与所述支撑臂本体321仅为机械连接,即所述实时动态组件固定于所述支撑臂本体321的另一端,当将所述第二接头322与所述第二接口311连接时,此时,所述实时动态测量组件31通过所述第二接头322与所述控制器70电连接,所述实时动态测量组件31处于工作状态。所述实时动态测量组件31用于动态测量所述无人机跟踪系统的监测信息,并且将所述位监测信息发送至所述控制器70。
在本实施例中,所述第一收容槽14仅收容所述支撑臂组件32,可以理解的是,在其他一些实施例中,所述第一收容槽14能够一并收容所述支撑臂组件32和所述实时动态测量组件31,以减少所述实时动态测量组件31和所述支撑臂组件32的拆装次数,以提供技术人员的工作效率,以及延长所述无人机跟踪装置1的使用寿命。
在本实施例中,所述实时动态测量组件31、所述支撑臂组件32以及所述第一收容槽14的数量为两个,所述实时动态测量组件31、所述支撑臂组件32以及所述第一收容槽14对称设置于所述底座10的两侧。所述实时动态测量组件31为RTK(Real Time Kinematic,实时动态测量)组件。
请参阅图5,所述第一驱动模块40包括第一驱动组件41和转动盘42。所述第一驱动组件41设置于所述收容空间11,所述第一驱动组件41分别与所述转动盘42以及所述控制器70连接,所述控制器70根据所述实时动态测量组件31发送的监测信息,控制所述第一驱动组件41运动,以驱动所述传动盘相对于所述底座10沿第一方向转动。其中, 所述第一驱动组件41包括第一转子412和第一定子411,所述第一转子412与所述转动盘42固定连接,所述第一定子411固定于所述底座10。
所述转动盘42用于安装所述第二驱动模块50和所述全向天线组件21,当所述第一驱动组件41驱动所述转动盘42转动时,所述全向天线组件21和所述第二驱动模块50与所述转动盘42同步转动。
所述转动盘42设有锁定孔421,所述锁定孔421用于供所述第一锁定模块90插接,当所述第一锁定模块90插进所述锁定孔421时,所述第一锁定模块90能够将所述转动盘42锁定于所述底座10,当所述第一锁定模块90退出所述锁定孔421时,所述转动盘42处于解锁状态,所述转动盘42能够相对于所述底座10转动。
请参阅图6,所述第二驱动模块50包括第一支架51、第二支架52以及所述第二驱动组件53。所述第一支架51的一端固定于所述转动盘42的一表面,所述第二驱动组件53分别与所述第一支架51的另一端以及所述第二支架52的一端连接,所述第二支架52的另一端用于与所述天线模块20固定连接。所述第二驱动组件53与所述控制器70连接,所述控制器70根据所述实时动态测量组件31发送的监测信号,控制所述第二驱动组件53相对于所述底座10沿第二方向转动。
所述第一支架51设有转动槽511,所述转动槽511设置于所述第一支架51的另一端,所述第二支架52设有安装孔521,所述安装孔521设置于所述第二支架52的一端,所述转动槽511与所述安装孔521相对应。所述第二驱动组件53包括第二定子531和第二转子532,所述第二定子531固定于所述转动槽511,所述第二转子532固定于所述安装孔521,当所述第二支架52与所述第一支架51连接时,所述第二转子532和所述第二定子531配合连接。
请参阅图7,所述第一锁定模块90包括第一滑块91和第二滑块92,所述第一滑块91暴露于所述滑动槽12,所述第二滑块92设置于所述底座10。所述第一滑块91设有第一斜面凸台911,所述第二滑块92设有第二斜面凸台921、导向柱922以及锁定柱923。所述第一斜面凸台911与所述第二斜面凸台921贴合设置,所述导向柱922插接于所述导向槽 13,所述锁定柱923的位置与所述锁定孔421的位置相对应,当滑动所述第一滑块91时,所述第一斜面凸台911挤压或者远离所述第二斜面凸台921,使得所述导向柱922在所述导向槽13内运动,所述第二滑块92带动所述锁定柱923插入或者离开所述锁定孔421,以使得所述第一锁定模块90锁定或者解锁所述转动盘42。
请参阅图8,所述第二锁定模块100包括电磁铁锁定轴101、金属板102、摩擦片103以及槽盘104。所述电磁铁锁定轴101与所述第二支架52卡接,所述电磁铁锁定轴101和所述第二支架52同步转动,所述电磁铁锁定轴101、所述金属板102、所述摩擦片103以及所述槽盘104均设置于所述转动槽511内,所述摩擦片103设置于所述金属板102和所述槽盘104之间,所述摩擦片103与所述电磁铁锁定轴101连接,当所述电磁铁锁定轴101通电时,所述金属板102与所述槽盘104之间存在间隙,所述摩擦片103与所述电磁铁锁定轴101可以与所述第二支架52同步转动,当所述电磁铁锁定轴101断电时,所述金属板102与所述槽盘104相吸以夹紧所述摩擦片103,所述摩擦片103和所述电磁铁锁定轴101相对于所述第一支架51固定,以使得所述第二支架52相对于所述第一支架51固定,达到锁定所述第二支架52的目的。
在本实施例中,所述无人机跟踪装置1还包括无线通信模块,所述无线通信模块设置于所述收容空间11内,所述无线通信模块与所述控制器70连接,所述无线通信模块用于与外界遥控设备进行数据传输,以及接收外界遥控设备的控制指令,并且向所述控制器70发送所述控制指令。其中,所述无线通信模块包括Wi-Fi(无线网络通信)模块和蓝牙模块。
请参阅图1至图9,本申请实施例无人机跟踪装置1包括底座10、实时动态测量模块30、第一驱动模块40、第二驱动模块50、天线模块20、控制器70,所述实时动态测量模块30、所述第一驱动模块40、所述控制器70均设置于所述底座10,所述第二驱动模块50设置于所述第一驱动模块40,所述天线模块20包括全向天线组件21和定向天线22,所述全向天线组件21设置于所述第一驱动模块40,所述定向天线22设 置于所述第二驱动模块50,所述控制器70分别与所述实时动态测量模块30、所述第一驱动模块40以及所述第二驱动模块50连接,所述,所述控制器70根据所述实时动态测量模块30的监测信息,控制所述第一驱动模块40和所述第二驱动模块50运动,以驱动所述全向天线组件21和所述定向天线22转动,从而使得所述全向天线组件21和所述定向天线22对准外界无人机,通过上述结构,所述无人机跟踪装置1能够转动全向天线211和定向天线22,以使得全向天线211和定向天线22以更好的角度与外界无人机进行通讯,提高无人机监测结果的准确性。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种无人机跟踪装置,其特征在于,包括:
    底座,设置有收容空间;
    实时动态测量模块,设置于所述底座;
    第一驱动模块,设置于所述底座;
    第二驱动模块,设置于所述第一驱动模块;
    控制器,设置于所述收容空间,所述控制器分别与所述实时动态测量模块、所述第一驱动模块、所述第二驱动模块连接;
    天线模块,包括全向天线组件和定向天线,所述全向天线组件设置于所述第一驱动模块,所述定向天线设置于所述第二驱动模块;
    所述控制器根据所述实时动态测量模块接收的监测信息,控制所述第一驱动模块和所述第二驱动模块运动;
    所述第一驱动模块运动以驱动所述第二驱动模块和所述全向天线组件沿第一方向转动,所述第二驱动模块运动以驱动所述定向天线沿第二方向转动,其中,所述第一方向和第二方向不相同。
  2. 根据权利要求1所述的无人机跟踪装置,其特征在于,
    所述第一驱动模块包括第一驱动组件和转动盘,所述第一驱动组件设置于所述底座,所述第一驱动组件的第一定子固定于所述底座,并且所述第一驱动组件的第一转子与所述转动盘连接,所述第一驱动组件用于驱动转动盘沿第一方向相对于所述底座转动,所述全向天线组件和所述第二驱动模块安装于转动盘,所述控制器与所述第一驱动组件连接。
  3. 根据权利要求2所述的无人机跟踪装置,其特征在于,
    所述转动盘设有锁定孔,所述底座设有滑动槽和导向槽;
    所述无人机跟踪装置还包括第一锁定模块,所述第一锁定模块设置于所述底座,所述第一锁定模块包括第一滑块和第二滑块,所述第一滑块暴露于所述滑动槽,所述第一滑块设有第一斜面凸台,所述第二滑块 设有第二斜面凸台、导向柱以及锁定柱,所述导向柱插接于所述导向槽,所述锁定柱与所述锁定孔相对应;当滑动所述第一滑块时,所述第一斜面凸台挤压或者远离所述第二斜面凸台,使得所述导向柱在所述导向槽内运动,所述第二滑块带动所述锁定柱插入或者离开所述锁定孔,以使得所述第一锁定模块锁定或者解锁所述转动盘。
  4. 根据权利要求2或3所述的无人机跟踪装置,其特征在于,
    所述第二驱动模块包括第一支架、第二支架以及第二驱动组件,所述第一支架的一端固定于所述转动盘,所述第一支架的另一端设置有转动槽,所述第二支架设置有安装孔,所述第二驱动组件分别与所述第一支架和所述第二支架连接,所述第二驱动组件的第二定子固定于所述转动槽,所述第二驱动组件的第二转子固定于所述安装孔,所述第二转子与所述第二定子配合连接,所述定向天线固定于所述第二支架;
    所述控制器控制所述第二驱动组件运动,所述第二驱动组件用于驱动所述第二支架相对于所述第一支架转动。
  5. 根据权利要求4所述的无人机跟踪装置,其特征在于,
    还包括第二锁定模块,所述第二锁定模块包括电磁铁锁定轴、金属板、摩擦片以及槽盘,所述电磁铁锁定轴与所述第二支架连接,所述金属板、所述摩擦片以及所述槽盘均设置于所述转动槽内,所述摩擦片位于所述金属板与所述槽盘之间,当所述电磁铁锁定轴通电时,所述金属板和所述槽盘相离,所述摩擦片和所述电磁铁锁定轴能够与所述第二支架同步转动,当所述电磁铁断电时,所述金属板和所述槽盘吸合以将所述摩擦片夹紧,所述摩擦片和所述电磁铁锁定轴相对于所述第一支架固定,使得所述第二支架相对于所述第一支架固定。
  6. 根据权利要求2所述的无人机跟踪装置,其特征在于,
    所述全向天线组件包括全向天线、天线安装架、第一接头以及固定组件,所述全向天线的一端设有第一接口,所述天线安装架的一端与所 述转动盘连接,所述第一接头和所述固定组件均设置于所述天线安装架的另一端,所述第一接头与所述控制器连接,所述全向天线与所述天线安装架的另一端可拆卸连接,当所述全向天线与所述天线安装架连接时,所述固定组件将所述全向天线固定于所述天线安装架,所述第一接头与所述第一接口连接,以使所述全向天线与所述控制器连接。
  7. 根据权利要求6所述的无人机跟踪装置,其特征在于,
    所述全向天线设有锁定槽;
    所述固定组件包括推杆和锁定块,所述推杆设有推动柱,所述锁定块设有凹槽,所述推动柱插接于所述凹槽,当驱动所述推杆以带动所述推动柱在所述凹槽内运动,使得所述锁定块插入或者离开所述锁定槽,从而锁定所述全向天线于所述天线安装架或者解锁所述全向天线。
  8. 根据权利要求1所述的无人机跟踪装置,其特征在于,
    所述底座的侧壁设有第一收容槽;
    所述实时动态测量模块包括实时动态测量组件和支撑臂组件,所述支撑臂组件一端与所述底座转动连接,所述支撑臂组件的另一端与所述实时动态测量组件可拆卸连接,所述支撑臂组件可相对于所述底座转动,以使所述支撑臂组件收容于所述第一收容槽内,或者,所述支撑臂组件从所述第一收容槽伸出。
  9. 根据权利要求8所述的无人机跟踪装置,其特征在于,
    所述实时动态测量组件设有第二接口;
    所述支撑臂组件包括支撑臂本体和第二接头,所述支撑臂本体设有接头收容槽,所述接头收容槽用于收容所述第二接头,所述第二接头与所述控制器连接,所述第二接头用于与所述第二接口可拆卸连接。
  10. 根据权利要求1所述的无人机跟踪装置,其特征在于,
    还包括接线端口,所述接线端口设置于所述底座,所述接线端口与 所述控制器连接,所述接线端口用于与外界设备连接,以使得所述无人机跟踪装置与外界设备传输数据信息。
PCT/CN2023/076208 2022-03-16 2023-02-15 一种无人机跟踪装置 WO2023173988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220589494.1U CN217932035U (zh) 2022-03-16 2022-03-16 一种无人机跟踪装置
CN202220589494.1 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023173988A1 true WO2023173988A1 (zh) 2023-09-21

Family

ID=84147478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076208 WO2023173988A1 (zh) 2022-03-16 2023-02-15 一种无人机跟踪装置

Country Status (2)

Country Link
CN (1) CN217932035U (zh)
WO (1) WO2023173988A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217932035U (zh) * 2022-03-16 2022-11-29 深圳市道通智能航空技术股份有限公司 一种无人机跟踪装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505953A (zh) * 2017-10-13 2017-12-22 南昌大学 一种无人机自动跟踪天线系统及其跟踪方法
CN108008741A (zh) * 2017-12-29 2018-05-08 深圳市道通智能航空技术有限公司 无人飞行器跟踪天线,遥控器套件以及无人飞行器套件
CN109861001A (zh) * 2018-12-31 2019-06-07 深圳市多翼创新科技有限公司 天线控制系统、地面控制终端及其方法
US20200159209A1 (en) * 2018-10-18 2020-05-21 Taoglas Group Holdings Limited Drone tracking steered antenna system
CN212047859U (zh) * 2020-04-30 2020-12-01 广东电网有限责任公司电力科学研究院 一种无人机跟踪装置
CN217932035U (zh) * 2022-03-16 2022-11-29 深圳市道通智能航空技术股份有限公司 一种无人机跟踪装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505953A (zh) * 2017-10-13 2017-12-22 南昌大学 一种无人机自动跟踪天线系统及其跟踪方法
CN108008741A (zh) * 2017-12-29 2018-05-08 深圳市道通智能航空技术有限公司 无人飞行器跟踪天线,遥控器套件以及无人飞行器套件
US20200159209A1 (en) * 2018-10-18 2020-05-21 Taoglas Group Holdings Limited Drone tracking steered antenna system
CN109861001A (zh) * 2018-12-31 2019-06-07 深圳市多翼创新科技有限公司 天线控制系统、地面控制终端及其方法
CN212047859U (zh) * 2020-04-30 2020-12-01 广东电网有限责任公司电力科学研究院 一种无人机跟踪装置
CN217932035U (zh) * 2022-03-16 2022-11-29 深圳市道通智能航空技术股份有限公司 一种无人机跟踪装置

Also Published As

Publication number Publication date
CN217932035U (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2023173988A1 (zh) 一种无人机跟踪装置
CN108700251B (zh) 云台
WO2019128421A1 (zh) 无人飞行器跟踪天线,遥控器套件以及无人飞行器套件
CN109119936B (zh) 一种配电线路夹线行走式巡视机器人装置
CN105292477A (zh) 腕式便携伴飞自主监控无人机
WO2020062758A1 (zh) 无人机及倾转机构
CN213705772U (zh) 一种带夹持功能的四旋翼无人机
CN108100312B (zh) 卫星对接结构、对接卫星及对接方法
WO2021184722A1 (zh) 一种电动拧紧装置
CN218113014U (zh) 一种无人机高空喊话设备
CN208758988U (zh) 自动对位设备
CN109356450B (zh) 智能门锁
CN215259090U (zh) 云台及稳定器
CN114291264A (zh) 一种无人飞机的急救装置
CN215108134U (zh) 一种智能锁把手换向装置及智能锁
CN211124348U (zh) 一种无人机地面信号器
CN221258228U (zh) 旋转机构及会议设备
CN210225628U (zh) 视频采集装置
CN216131730U (zh) 控制与驱动稳定通讯的云台稳定器
CN220233451U (zh) 一种快锁结构及天线阵面系统
CN221240594U (zh) 一种监控设备安装定位装置
CN111910332A (zh) 一种选针器
CN220822111U (zh) 一种磁吸式连接器快速定位装置
CN221034950U (zh) 一种新型高速稳像专用云台
WO2022094875A1 (zh) 定位装置、遥控终端、无人飞行器及无人飞行装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769497

Country of ref document: EP

Kind code of ref document: A1