WO2023171860A1 - 액화수소 저장탱크 zbo 시스템 - Google Patents

액화수소 저장탱크 zbo 시스템 Download PDF

Info

Publication number
WO2023171860A1
WO2023171860A1 PCT/KR2022/011840 KR2022011840W WO2023171860A1 WO 2023171860 A1 WO2023171860 A1 WO 2023171860A1 KR 2022011840 W KR2022011840 W KR 2022011840W WO 2023171860 A1 WO2023171860 A1 WO 2023171860A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
zbo
hydrogen storage
liquefied hydrogen
heat
Prior art date
Application number
PCT/KR2022/011840
Other languages
English (en)
French (fr)
Inventor
박지수
김태훈
도규형
유화롱
최병일
한용식
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220029829A external-priority patent/KR102673181B1/ko
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2023171860A1 publication Critical patent/WO2023171860A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0355Heat exchange with the fluid by cooling using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • F17C2227/0362Heat exchange with the fluid by cooling by expansion in a turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/026Improving properties related to fluid or fluid transfer by calculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the technology disclosed in this specification relates to a liquefied hydrogen storage tank ZBO system. More specifically, by measuring the heat flux on the outer surface of the storage tank and predicting the delay time, the refrigerator is quickly operated to maintain the temperature and pressure inside the storage tank. It is about a controlling system.
  • boil-off gas In order to increase the storage performance of a storage tank, the insulation performance of the storage tank is very important. If heat intrusion from the outside is not properly blocked, boil-off gas is generated inside the storage tank, increasing the pressure inside the storage tank. Therefore, boil-off gas (BOG) is used to properly maintain the pressure in the storage tank. It must be released. Accordingly, in the past, there was a problem in that the material stored inside the storage tank was lost. Accordingly, technology to effectively control flow rate is required to efficiently increase the performance of storage tanks.
  • the existing liquefied hydrogen storage tank Zero Boil-off (ZBO) system operates the refrigerator on/off or operates it at all times by measuring the pressure inside the tank by boil off gas generated by heat introduced into the tank. The internal temperature and pressure were controlled through this. Therefore, in the case of the existing ZBO system that uses the pressure increase due to BOG generated by incoming heat as a refrigerator control variable, as the volume of the liquefied hydrogen storage tank is considerable, the period during which heat incoming from the outside passes through the insulation wall is long. There was a disadvantage in that there was a time delay or a time delay in the temperature rise period due to latent heat before the liquid evaporated, that is, a time delay occurred before controlling the temperature and pressure of the expanded liquefied hydrogen storage tank.
  • the technical task to be achieved by the liquefied hydrogen storage tank ZBO system of the present invention is to determine the heat flux value and delay time on the outer surface of the storage tank using a sensor pad attached to a specific area of the liquefied hydrogen storage tank, an infrared measurement device, and received data.
  • the aim is to provide a system that can quickly control the cooling start speed of the liquefied hydrogen storage tank using a calculation unit that calculates .
  • the technical task to be achieved by the liquefied hydrogen storage tank ZBO system of the present invention is to determine the heat flux value and delay time on the outer surface of the storage tank using a sensor pad attached to a specific area of the liquefied hydrogen storage tank, an infrared measurement device, and received data.
  • the aim is to provide a system that can maintain the heat flux value of the liquefied hydrogen storage tank at zero by using an arithmetic unit that calculates .
  • the liquefied hydrogen storage tank ZBO system includes a sensor pad attached to one side of the storage tank, an operation unit that calculates a heat flux value using the sensor pad, and a calculation unit that calculates a heat flux value using the sensor pad. It may include a control unit configured to offset the heat energy flowing into the storage tank in consideration of the delay time.
  • the calculation unit may calculate a heat flux value using infrared energy emitted from the sensor pad.
  • the sensor pad further includes an infrared measuring device that measures the amount of infrared energy emitted from the sensor pad, and the calculation unit can receive the amount of infrared energy measured from the infrared measuring device and calculate a heat flux value.
  • the operation control of the controller may be based on at least one delay time among the time for thermal energy to pass through the insulation of the storage tank and the time for temperature rise due to latent heat.
  • the operation control of the control unit may include power control of the refrigerator.
  • the operation control of the control unit may include controlling the refrigerant flow rate of the refrigerator.
  • it further includes a refrigerant refrigeration system, wherein the refrigerant refrigeration system is configured to control at least one of an expansion turbine, a heat exchanger, a compressor configured to use energy generated by the expansion turbine as power, and an expander. It can be.
  • the first side of the sensor pad may be entirely coated with an infrared opaque coating, and a portion of the second side of the sensor pad may be coated with an infrared opaque coating.
  • the calculation of the heat flux value assumes the temperature of the medium of the sensor pad to be a specific value, and calculates the temperature of the first surface of the sensor pad using the amount of infrared energy and the assumed temperature of the medium. Then, the final temperature of the first surface is determined by repeating the assumptions and calculation operations until the temperature of the medium calculated using the calculated temperature of the first surface is the same as the temperature of the assumed medium, and the final temperature of the first surface is determined. It may include calculating the heat flux value outside the storage tank from .
  • the liquefied hydrogen storage tank ZBO method includes measuring the amount of infrared energy emitted from a sensor pad attached to one surface of the storage tank, and using the measured amount of infrared energy to measure the amount of infrared energy on the outer surface of the storage tank. It may include calculating a heat flux value and controlling the operation of the control unit by considering a delay time predicted from the heat flux value.
  • the operation control of the control unit may include at least one of power control of the refrigerator and control of the refrigerant flow rate of the refrigerator.
  • the operation control of the controller may be based on at least one delay time among the time for thermal energy to pass through the insulation of the storage tank and the time for temperature rise due to latent heat.
  • a computer program stored on a medium according to an embodiment of the present invention may be a computer program stored on a medium including computer-readable instructions configured to perform a method according to an embodiment of the present invention.
  • the liquefied hydrogen storage tank ZBO system according to an embodiment of the technology disclosed in this specification has the following effects.
  • the present invention uses the heat flux on the outside of the tank as a control variable in a liquefied hydrogen storage tank to predict the time and amount of heat flowing into the tank through the insulation wall of the storage tank and quickly determines the temperature and pressure of the storage tank. It has the effect of controlling. In other words, preemptive cooling of the internal liquid is possible, and evaporation of LH2 can be minimized through preemptive cooling.
  • operating power can be saved by reducing the operating time of the refrigerator by controlling the refrigerator based on the amount of heat flowing in, rather than the internal pressure of the storage tank.
  • the present invention can be easily used not only for liquefied hydrogen storage tanks but also for controlling the internal pressure of other objects.
  • the present invention can provide a method of calculating the heat flux of the outer surface of the liquefied hydrogen storage tank from the outside using an infrared measuring device.
  • FIG 1 briefly shows a liquefied hydrogen storage tank system in which BOG is generated according to the prior art.
  • FIG. 2 briefly shows a conventional liquefied hydrogen storage tank ZBO system.
  • Figure 3 briefly shows a system for controlling time delay in the liquefied hydrogen storage tank ZBO system disclosed herein.
  • Figure 4 shows a system implementing a liquefied hydrogen storage tank ZBO system according to an embodiment of the technology disclosed herein.
  • Figure 5 briefly shows a liquefied hydrogen storage tank according to an embodiment of the technology disclosed herein.
  • FIG. 6 shows the detailed structure of the sensor pad disclosed in this specification.
  • Figure 7 shows the energy distribution of the sensor pad for analyzing heat flux disclosed herein.
  • Figure 8 sequentially shows each step of the liquefied hydrogen storage tank ZBO system heat flux analysis method according to an embodiment of the technology disclosed herein.
  • FIG. 9 briefly shows a power control system for a refrigerator according to an embodiment of the technology disclosed herein.
  • Figure 10 shows a flow chart of a power control system for a refrigerator according to an embodiment of the technology disclosed in this specification.
  • FIG 11 briefly shows a refrigerant flow control system according to an embodiment of the technology disclosed herein.
  • Figure 12 shows a flow chart of a refrigerant flow control system according to an embodiment of the technology disclosed herein.
  • a component when referred to as “connected” or “combined” with another component, the component may be directly connected or combined with the other component, but in particular, the opposite It should be understood that unless a base material exists, it may be connected or combined through another component in the middle.
  • components expressed as ' ⁇ part' in this specification may be two or more components combined into one component, or one component may be differentiated into two or more components according to more detailed functions.
  • each of the components described below may additionally perform some or all of the functions of other components in addition to the main functions that each component is responsible for, and some of the main functions of each component may be different from other components. Of course, it can also be performed exclusively by a component.
  • first,” “second,” “first,” or “second” used in various embodiments may modify various elements regardless of order and/or importance, and refer to the elements. It is not limited.
  • a first component may be renamed a second component without departing from the scope of the technology disclosed in this specification, and similarly, the second component may also be renamed the first component.
  • Figure 1 shows a liquefied hydrogen storage tank system in which BOG is generated according to the prior art.
  • boil-off gas In order to increase the storage performance of a storage tank, the insulation performance of the storage tank is very important. If heat intrusion from the outside of the storage tank is not properly blocked, boil-off gas (BOG) is generated inside the storage tank as shown in FIG. 1, and this BOG increases the pressure inside the storage tank. Ultimately, in order to properly maintain the pressure of the storage tank, boil-off gas is released to the outside, resulting in energy loss from the storage tank.
  • BOG boil-off gas
  • FIG. 2 briefly shows a conventional liquefied hydrogen storage tank ZBO system.
  • the Zero boil-off (ZBO) system is used to solve the problem of the traditional storage tank.
  • the conventional system measures the pressure inside the storage tank where BOG occurs, and when the critical pressure is reached, the power of the freezer is turned on. It works by turning on/off or operating the refrigerator at all times.
  • a heat exchanger in which cooled refrigerant (He) circulates is installed inside the storage tank, and when the freezer is turned on, boil-off gas to be emitted to the outside is eliminated by offsetting the heat energy flowing in from the outside of the storage tank. can do.
  • He cooled refrigerant
  • the ZBO system of the liquefied hydrogen storage tank takes into account the delay time of heat passing through the insulation material and predicts the time for heat to flow into the tank through transient analysis of the insulation material according to the heat flux on the outside of the tank. By doing so, it is intended to preemptively offset the amount of heat introduced through the inner wall of the tank by the amount of heat introduced from the outside. Since heat flux is the amount of heat per unit area and unit time, measuring heat flux means measuring the amount of heat over time in the sensor area.
  • Figure 3 briefly shows a system for controlling time delay in the liquefied hydrogen storage tank ZBO system disclosed herein.
  • the amount of heat on the outside of the tank over time is shown as a solid line, and the amount of heat on the inside of the tank over time is shown as a dotted line.
  • a solid line represents the time it takes for heat passing through the outer wall of the storage tank to pass through the insulation and reach the inner wall.
  • the reference value of the amount of heat on the outer surface of the storage tank preset in the ZB0 system according to an embodiment of the present invention ( ) can satisfy Equation 1 below.
  • the amount of heat flowing in from the outer surface of the storage tank is the standard value ( ), the refrigerator must be operated taking into account the delay time until the heat flux from the outer surface of the storage tank reaches the inner wall. At this time, in the graph ( : frozen calories; heat exchange amount with the refrigerant) can be satisfied.
  • the time for heat to pass through the insulation is calculated according to Equation 2 using the following Fourier number ( ) can be calculated numerically.
  • the time it takes for heat to pass through the insulation ( ) means the time when the temperature of the inner wall of the storage tank begins to change due to the heat flux flowing into the outer wall of the storage tank.
  • the delay time ( ) is the time for heat to pass through the insulation ( ) can be set to the value minus the 1 cycle circulation time of the refrigerant supplied to the cooling means (e.g., heat exchange tube). in other words, am.
  • Figure 4 shows a system implementing a liquefied hydrogen storage tank ZBO system according to an embodiment of the technology disclosed herein.
  • the ZBO system of the liquefied hydrogen storage tank according to the present invention may largely include a storage tank 101, a sensor pad 102, an energy measurement device, an operation unit 104, a control unit 106, and a refrigerator 107.
  • the storage tank 101 is configured to store fluid inside, and the sensor pad 102 may be attached to the outer surface of the storage tank 101 and configured to emit infrared energy.
  • the energy measuring device is, for example, an infrared measuring device 103 and may be configured to measure the amount of infrared energy emitted from the sensor pad 102.
  • the calculation unit 104 may be configured to calculate the heat flux value of the outer surface of the storage tank 101 and predict the delay time using the measured amount of infrared energy.
  • the refrigerator 107 may be configured to offset the thermal energy flowing into the storage tank 101, and the control unit 106 operates the refrigerator 107 based on the calculated value in consideration of the delay time predicted from the heat flux value. Can be configured to control.
  • Operation control of the refrigerator 107 may be based on at least one predicted value of the time for thermal energy to pass through the insulation of the storage tank 101 and the time for temperature rise due to latent heat.
  • Figure 5 briefly shows a liquefied hydrogen storage tank according to an embodiment of the technology disclosed herein.
  • the sensor pad 102 indicates that it can be attached to a specific side of the liquefied hydrogen storage tank 101, and as the sensor pad 102 is attached to a specific side of the tank 101, the tank Rather than measuring the overall average heat flux of (101), it is possible to provide a system that can measure the heat flux of a specific surface.
  • the infrared measurement device 103 measures infrared energy generated from the sensor pad 102, and the infrared measurement device 103 may be an infrared camera, for example. Using the infrared energy value received from the infrared measurement device 103, the calculation unit 104 can calculate the heat flux.
  • Figure 6 briefly shows the structure of the sensor pad 102 disclosed in this specification.
  • the sensor pad 102 includes a medium 201 and an infrared non-transparent coating 202.
  • the sensor pad 102 has one side (the first side) entirely coated with an infrared opaque coating (black coating 202), and the other side (the second side) is partially coated with an infrared opaque coating 202. It can be.
  • a substrate 201 may be included inside the sensor pad 102.
  • the medium 201 as an example may have an infrared transmittance of 0.95 (95%) or more and a thermal conductivity of 20 W/mK or less.
  • the infrared non-transparent coating 202 may have an infrared transmittance of 0.05 (5%) or less.
  • the numerical ranges of the infrared transmittance, thermal conductivity, and infrared transmittance of the medium 201 and the infrared non-transmissive coating 202 are one example, and were set to maximize the efficiency of the insulation performance evaluation method, and are also set in ranges other than the set values.
  • the thermal insulation performance evaluation method can be implemented and is therefore not limited to the range of the values set above.
  • the material of the medium 201 and the infrared non-transparent coating 202 is not limited to one specific material and may be any material that satisfies the above conditions.
  • Figure 7 shows the energy distribution of the sensor pad 102 for analyzing the heat flux disclosed herein
  • Figure 8 shows the heat of the liquefied hydrogen storage tank ZBO system 100 according to an embodiment of the technology disclosed herein. Each step of the flux analysis method is shown in order.
  • the temperature of the medium 201 is T(x, t)
  • the temperature of the overall infrared non-transparent coated side (first side) of the surface of the sensor pad 102 is T(x, t).
  • the temperature of the partially infrared non-transmissive coated side (second side) of the sensor pad 102 is It can be expressed as represents the amount of infrared energy emitted from the sensor pad 102.
  • the infrared measurement device 103 measures the amount of infrared energy emitted from the sensor pad 102. Values can be measured.
  • the data measured by the infrared measurement device 103 is transmitted to the calculation unit 104, and the calculation unit 104 can calculate the heat flux flowing into the liquefied hydrogen storage tank by performing the detailed steps below.
  • the temperature (T(x, )) is assumed to be a specific value.
  • the heat flux to be measured in the thermal insulation performance evaluation method of the present invention is the heat flux of the surface (first surface) on which the entire portion of FIG. 3 is coated with an infrared non-transmissive coating (first surface), but the data measured by the infrared measuring device 103 is the heat flux emitted from the first surface. It does not only represent infrared rays. Data measured by the infrared measuring device 103 represents a value including both the portion where infrared rays emitted from the first surface pass through the medium and the infrared energy emitted from the medium. Therefore, the data measured by the infrared measurement device 103 can be expressed by a radiant energy equation as shown in Equation 3 below.
  • is the infrared transmittance through which energy emitted from the tank's outer wall (the surface to which the sensor pad is attached) passes through the sensor pad 102.
  • step S402 the temperature (T(x, )) is substituted into Equation 3 above to obtain the temperature of the first side, can be calculated.
  • the temperature of the first surface ( ) as a boundary condition (BC) can be calculated, and the following Equation 4 is used to solve the governing equations related to heat conduction inside the medium 201 through numerical analysis.
  • is the thermal diffusivity of the medium 201, which is the value of the thermal conductivity of the medium divided by density and specific heat.
  • Equation 4 As a result of calculating Equation 4 above according to the boundary condition (B.C.), the temperature distribution of the medium 201 can be obtained.
  • L is the distance between the first and second surfaces of the sensor pad 102.
  • step S404 an operation is performed to determine whether the temperature of the medium 201 obtained in step S403 is the same as the temperature of the medium 201 assumed in S401. At this time, if the amount of data is the same, the next step S405 is performed. However, if the amount of data is not the same, the process returns to step S402 and the same detailed steps are repeatedly performed by assuming a new temperature value of the medium 201.
  • step S405 the calculation unit 104 finally determines the value determined to be the same in step S404 as the temperature of the medium 201, and calculates the heat flux according to Equation 5 below.
  • FIG. 9 briefly shows a refrigerator power control system according to an embodiment of the technology disclosed herein
  • FIG. 10 shows a flowchart of a refrigerator power control system according to an embodiment of the technology disclosed herein.
  • Operation control of the refrigerator 107 may include power control of the refrigerator 107. That is, in this embodiment, the refrigerator 107 is controlled on/off.
  • the heat flux value obtained from the sensor pad 102 on the outer surface of the storage tank is the reference value ( ) is performed to determine whether it exceeds.
  • the reference value ( ) is 0 or a value smaller than the latent heat of the stored fluid.
  • the amount of heat measured on the outside of the storage tank ( ) is the reference value ( ), you can go back to the beginning and repeat the judgment process.
  • the amount of heat measured on the outside of the storage tank ( ) is the reference value ( ), the time at which heat began to flow ( ), the predicted delay time ( ) is performed to compare the time added with the current time (t). If the current time (t) is the time when heat began to flow ( ), the predicted delay time ( ), the power of the refrigerator (107) is turned on if it is greater than or equal to the time added. However, the current time (t) is the time when heat began to flow ( ), the predicted delay time ( ), if it is less than the time added, you can go back and repeat the judgment process.
  • the refrigeration heat ( ) that is, the amount of heat absorbed by the circulating refrigerant is compared to the amount of heat introduced from the outside ( ) and perform a judgment process of comparison.
  • Frozen calories ( ) is the amount of heat brought in from outside ( ), turn off the power to the freezer (107), and the frozen heat amount is ( ) is the amount of heat brought in from outside ( ), you can go back and repeat the judgment process.
  • FIG 11 briefly shows a refrigerant flow control system according to an embodiment of the technology disclosed herein.
  • the operation control of the control unit 106 may include control of the refrigerant flow rate of the refrigerator 107, and for this purpose, a refrigerant refrigeration system 110 is further included. can do. At this time, the refrigerator 107 operates at all times, and the flow rate of the refrigerant can be controlled.
  • the refrigerant refrigeration system 110 controls at least one of the expansion turbine 113, the heat exchanger 111, the compressor 112 and the expander 114 configured to use the energy generated by the expansion turbine 113 as electric power. It can be configured.
  • the efficiency of the refrigerator can be increased by using the energy generated by the expansion turbine 113 as power of the compressor 112.
  • the refrigerant refrigeration system 110 including this refrigerant flow control system sets the heat flux on the inner wall of the storage tank 101 to 0 or the reference value ( ) can be controlled to maintain it.
  • Figure 12 shows a flow chart of a refrigerant flow control system according to an embodiment of the technology disclosed herein.
  • the heat quantity measured on the outer surface of the storage tank ( ) is the reference value ( ) and determine whether it is the same as If the heat quantity measured on the outside of the storage tank ( ) is the reference value ( ), if it is not the same as the heat quantity measured on the outer side of the storage tank ( ) is the reference value ( ) Determine whether it is smaller than .
  • the amount of heat measured on the outside of the storage tank ( ) is the reference value ( ), you can go back to the beginning and repeat the judgment process.
  • the amount of heat measured on the outer surface of the storage tank ( ) is the reference value ( ), the time at which heat began to flow in ( ), the predicted delay time ( ) is performed to compare the time added with the current time (t). If the current time (t) is the time when heat began to flow ( ), the predicted delay time ( If it is greater than or equal to the time added, the mass flow rate flowing into the expansion turbine 113 ( ) to increase the flow rate of refrigerant flowing into the storage tank 101. However, the current time (t) is the time when heat began to flow ( ), the predicted delay time ( ), if it is less than the time added, you can go back and repeat the judgment process.
  • the amount of heat measured on the outside of the storage tank ( ) is the reference value ( Even if it is less than ), the time at which heat began to flow in ( ), the predicted delay time ( ) is performed to compare the time added with the current time (t). If the current time (t) is the time when heat began to flow ( ), the predicted delay time ( If it is greater than or equal to the time added, the mass flow rate flowing into the expansion turbine 113 ( ) to reduce the flow rate of refrigerant flowing into the storage tank 101. However, the current time (t) is the time when heat began to flow ( ), the predicted delay time ( ), if it is less than the time added, you can go back and repeat the judgment process.
  • Mass flow rate of refrigerant flowing into the expansion turbine 113 ( ) increases and the flow rate of the refrigerant flowing into the storage tank 101 decreases, the efficiency of the refrigerant refrigeration system 110 increases by producing energy and the cooling heat amount ( ) decreases.
  • the mass flow rate of the refrigerant flowing into the expansion turbine 113 ( ) decreases and the flow rate of refrigerant flowing into the storage tank 101 increases, the efficiency of the refrigerant refrigeration system 110 decreases and the cooling heat amount ( ) increases.
  • the present invention may further include a computer program including instructions for executing the methods.
  • the computer program is stored in a data storage medium, and instructions for performing the methods described above are read through the computer's calculation unit according to values input by the user or a set environment.
  • the method and control thereof described above may be implemented with hardware components, software components, and/or a combination of hardware components and software components.
  • the methods and components described in the embodiments include an operation unit, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA), and a programmable logic unit (PLU).
  • ALU arithmetic logic unit
  • FPGA field programmable gate array
  • PLU programmable logic unit
  • It may be implemented using one or more general-purpose or special-purpose computers, such as a logic unit, microcomputing unit, or any other device capable of executing and responding to instructions.
  • the processing device may execute an operating system (OS) and one or more software applications running on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • OS operating system
  • a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • a single processing device may be described as being used; however, one of ordinary skill in the art will recognize that a processing device may include multiple processing elements and/or multiple types of processing elements. You can see that there is.
  • a processing device may include a plurality of calculation units or one calculation unit and one controller. Additionally, other processing configurations, such as parallel processors, are possible.
  • Software may include a computer program, code, instructions, or a combination of one or more of these, which configures a processing unit to operate as desired or, independently or in combination, instructs a processing unit. can do.
  • Software and/or data may be stored, permanently or temporarily, on any type of machine, component, physical device, virtual device, computer storage medium or device for the purpose of being interpreted by or providing instructions or data to a processing device. It can be materialized.
  • Software may be distributed over networked computer systems and stored or executed in a distributed manner.
  • Software and data may be stored on one or more computer-readable recording media.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc., singly or in combination.
  • Program instructions recorded on the medium may be specially designed and configured for the embodiment or may be known and available to those skilled in the art of computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • program instructions include machine language code, such as that produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter, etc.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
  • the technology disclosed in this specification relates to a liquefied hydrogen storage tank ZBO system. More specifically, by measuring the heat flux on the outer surface of the storage tank and predicting the delay time, the refrigerator is quickly operated to maintain the temperature and pressure inside the storage tank. It is about a controlling system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

적외선 센서를 이용한 탱크 외면의 열유속(heat flux) 측정을 통해 지연 시간을 유추함으로써 냉동기를 신속하게 작동시켜 저장탱크 내부의 온도와 압력을 제어하는 액화수소 저장탱크 ZBO 시스템에 관한 것으로서, 저장탱크의 일면에 부착되는 센서 패드, 상기 센서 패드를 이용하여 열유속(heat flux) 값을 연산하는 연산부, 냉동기의 작동을 제어하도록 구성된 제어부를 포함하는 액화수소 저장탱크 ZBO 시스템을 제공한다.

Description

액화수소 저장탱크 ZBO 시스템
본 명세서에 개시된 기술은 액화수소 저장탱크 ZBO 시스템에 관한 것으로서, 더욱 자세하게는 저장탱크 외면의 열유속(heat flux)을 측정하고 지연 시간을 예측함으로써 냉동기를 신속하게 작동시켜 저장탱크 내부의 온도와 압력을 제어하는 시스템에 관한 것이다.
저장탱크의 저장 성능을 높이기 위해서는, 저장탱크의 단열 성능이 매우 중요하다. 외부로부터의 열 침입을 적절하게 차단하지 못하면 저장탱크 내부에 Boil-off Gas가 발생하여 저장탱크 내부의 압력을 상승시키게 되고, 따라서 저장탱크의 압력을 적절히 유지하기 위해서는 Boil-off Gas(BOG)를 방출해주어야 한다. 이에 따라, 종래에는 저장탱크 내부에 저장된 물질의 손실이 발생하게 되는 문제점이 있다. 이에, 저장탱크의 성능을 효율적으로 높이기 위해 유량을 효과적으로 제어하는 기술이 요구되고 있다.
기존의 액화수소 저장탱크 Zero Boil-off(ZBO) 시스템은, 탱크 내에서 유입된 열에 의해 발생한 가스(boil off gas)에 의한 탱크 내부 압력을 측정함으로써 냉동기를 on/off 하도록 작동시키거나, 상시 작동시키는 것을 통하여 내부 온도와 압력을 제어하였다. 따라서, 유입된 열로써 발생된 BOG에 의한 압력 상승을 냉동기 제어 변수로 이용하는 기존의 ZBO 시스템의 경우, 액화수소 저장탱크의 부피가 상당함에 따라, 외부에서 유입되는 열이 단열벽을 통과하는 기간의 시간 지연 또는 액체가 증발되기 전 잠열에 의한 온도 상승 기간의 시간 지연, 즉, 팽창된 액화수소 저장탱크의 온도와 압력을 제어하기까지 시간 지연이 발생한다는 단점이 있었다.
이에, 이러한 기존의 액화수소 저장탱크 내부를 냉각하는 기술의 문제점을 해결하기 위하여, heat flux가 저장탱크의 단열재를 통과하여 액화수소로 침투하는 시간과 양을 예측함으로써 신속하게 열량을 제어할 수 있는 기술의 필요성이 대두되고 있다.
본 발명의 액화수소 저장탱크 ZBO 시스템이 이루고자 하는 기술적 과제는 액화수소 저장탱크의 특정 영역에 부착된 센서 패드, 적외선 측정 장치 및 수신한 데이터를 이용해 저장탱크 외면의 열유속(heat flux) 값과 지연시간을 연산하는 연산부를 이용하여, 액화수소 저장탱크의 냉각 개시 속도를 신속하게 제어할 수 있는 시스템을 제공하는 것이다.
본 발명의 액화수소 저장탱크 ZBO 시스템이 이루고자 하는 기술적 과제는 액화수소 저장탱크의 특정 영역에 부착된 센서 패드, 적외선 측정 장치 및 수신한 데이터를 이용해 저장탱크 외면의 열유속(heat flux) 값과 지연시간을 연산하는 연산부를 이용하여, 액화수소 저장탱크의 열유속 값을 제로로 유지할 수 있는 시스템을 제공하는 것이다.
본 명세서에 개시된 기술의 액화수소 저장탱크 ZBO 시스템이 이루고자 하는 기술적 과제는 이상에서 언급한 문제점을 해결하기 위한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제는 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 액화수소 저장탱크 ZBO 시스템은, 상기 저장탱크의 일면에 부착되는 센서 패드, 상기 센서 패드를 이용하여 열유속(heat flux) 값을 연산하는 연산부, 상기 열유속 값으로부터 예측된 지연시간을 고려하여 상기 저장탱크에 유입된 열에너지를 상쇄시키도록 구성된 제어부를 포함할 수 있다.
일 실시형태에 따르면, 상기 연산부는 상기 센서 패드로부터 방출된 적외선 에너지를 이용하여 열유속 값을 연산할 수 있다.
일 실시형태에 따르면, 상기 센서 패드로부터 방출되는 적외선 에너지 양을 측정하는 적외선 측정 장치를 더 포함하며, 상기 연산부는 상기 적외선 측정 장치로부터 측정된 적외선 에너지 양을 전달받아 열유속 값을 연산할 수 있다.
일 실시형태에 따르면, 상기 제어부의 작동 제어는 열에너지가 상기 저장탱크의 단열재를 통과하는 시간 및 잠열에 의한 온도 상승 시간 중 적어도 하나 이상의 지연시간을 기초로 할 수 있다.
일 실시형태에 따르면, 상기 제어부의 작동 제어는 냉동기의 전원 제어를 포함할 수 있다.
일 실시형태에 따르면, 상기 제어부의 작동 제어는 냉동기의 냉매유량 제어를 포함할 수 있다.
일 실시형태에 따르면, 냉매 냉동 시스템을 더 포함하고, 상기 냉매 냉동 시스템은, 팽창 터빈, 열교환기, 상기 팽창 터빈에서 발전된 에너지를 전력으로 이용하도록 구성된 압축기, 및 팽창기 중 적어도 하나 이상을 제어하도록 구성될 수 있다.
일 실시형태에 따르면, 상기 센서 패드의 제 1 면은 전체가 적외선 비투과 코팅되고, 상기 센서 패드의 제 2 면은 일부가 적외선 비투과 코팅될 수 있다.
일 실시형태에 따르면, 상기 열유속 값의 연산은, 상기 센서 패드의 매질의 온도를 특정 값으로 가정하고, 적외선 에너지 양 및 가정한 매질의 온도를 이용하여 상기 센서 패드의 제 1 면의 온도를 계산하고, 계산된 제 1 면의 온도를 이용하여 계산된 매질의 온도가 가정한 매질의 온도와 같을 때까지 가정 및 계산 동작들을 반복하여 최종 제 1 면의 온도를 결정하고, 최종 제 1 면의 온도로부터 상기 저장탱크 외부에서의 열유속 값을 연산하는 것을 포함할 수 있다.
본 발명의 일 실시예에 따른 액화수소 저장탱크 ZBO 방법은, 상기 저장탱크의 일면에 부착된 센서 패드로부터 방출된 적외선 에너지 양을 측정하는 단계, 측정된 적외선 에너지 양을 이용하여 상기 저장탱크 외면의 열유속(heat flux) 값을 연산하는 단계 및 상기 열유속 값으로부터 예측된 지연시간을 고려하여 제어부의 작동을 제어하는 단계를 포함할 수 있다.
일 실시형태에 따르면, 상기 제어부의 작동 제어는 냉동기의 전원 제어 및 냉동기의 냉매유량 제어 중 적어도 하나 이상을 포함할 수 있다.
일 실시형태에 따르면, 상기 제어부의 작동 제어는 열에너지가 상기 저장탱크의 단열재를 통과하는 시간 및 잠열에 의한 온도 상승 시간 중 적어도 하나 이상의 지연시간을 기초로 할 수 있다.
본 발명의 일 실시예에 따른 매체에 저장된 컴퓨터 프로그램으로서, 본 발명의 일 실시예에 따른 방법을 수행하도록 구성된 컴퓨터 판독가능 명령어를 포함하는 매체에 저장된 컴퓨터 프로그램일 수 있다.
본 명세서에 개시된 기술의 일 실시예에 따른 액화수소 저장탱크 ZBO 시스템은 아래와 같은 효과를 가진다.
본 발명은 액화수소 저장탱크에서 탱크 외면의 열유속(heat flux)을 제어 변수로 이용함으로써 저장탱크의 단열벽을 지나 탱크 내부로 열이 유입되는 시간과 양을 예측하여 신속하게 저장탱크의 온도와 압력을 제어할 수 있는 효과를 가진다. 즉, 내부 액체의 선제적인 냉각이 가능하며, 선제적인 냉각을 통해 LH2의 증발을 최소화할 수 있다.
또한, 저장탱크의 내부 압력이 아닌, 유입되는 열량을 통한 냉동기 제어를 통해 냉동기 작동 시간을 저감시켜 가동 전력을 절약할 수 있다.
더불어, 본 발명은 액화수소 저장탱크뿐 아니라 다른 대상의 내부 압력을 조절하는 경우에도 간편하게 활용이 가능하다.
또한, 본 발명은, 적외선 측정 장치를 이용하여 외부로부터 액화수소 저장탱크의 외면의 열유속을 계산하는 방법을 제공할 수 있다.
다만, 본 명세서에 개시된 기술의 일 실시예에 따른 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 종래 기술에 따른 BOG가 발생된 액화수소 저장탱크 시스템을 간략하게 나타낸 것이다.
도 2는 종래의 액화수소 저장탱크 ZBO 시스템을 간략하게 나타낸 것이다.
도 3은 본 명세서에 개시된 액화수소 저장탱크 ZBO 시스템에서 시간 지연을 제어하기 위한 시스템을 간략하게 나타낸 것이다.
도 4는 본 명세서에 개시된 기술의 일 실시예에 따른 액화수소 저장탱크 ZBO 시스템을 구현하는 시스템을 나타낸 것이다.
도 5는 본 명세서에 개시된 기술의 일 실시예에 따른 액화수소 저장탱크를 간략하게 나타낸 것이다.
도 6은 본 명세서에 개시된 센서 패드의 상세 구조를 나타낸 것이다.
도 7은 본 명세서에 개시된 heat flux를 분석하기 위한 센서 패드의 에너지 분포를 도시한 것이다.
도 8은 본 명세서에 개시된 기술의 일 실시예에 따른 액화수소 저장탱크 ZBO 시스템 heat flux 분석방법의 각 단계를 순서대로 나타낸 것이다.
도 9는 본 명세서에 개시된 기술의 일 실시예에 따른 냉동기의 전원 제어 시스템을 간략하게 나타낸 것이다.
도 10은 본 명세서에 개시된 기술의 일 실시예에 따른 냉동기의 전원 제어 시스템의 순서도를 나타낸 것이다.
도 11은 본 명세서에 개시된 기술의 일 실시예에 따른 냉매 유량제어 시스템을 간략하게 나타낸 것이다.
도 12는 본 명세서에 개시된 기술의 일 실시예에 따른 냉매 유량제어 시스템의 순서도를 나타낸 것이다.
본 명세서에 개시된 기술은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 명세서에 개시된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 명세서에 개시된 기술은 본 명세서에 개시된 기술의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에 개시된 기술을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 기술의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "결합된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결 또는 결합될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결 또는 결합될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에서 '~부'로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.
다양한 실시예에서 사용된 "제1", "제2", "첫째", 또는 "둘째" 등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 해당 구성요소들을 한정하지 않는다. 예를 들면, 본 명세서에 개시된 기술의 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 바꾸어 명명될 수 있다.
이하, 상기 과제를 해결하기 위한 본 발명의 실시예들을 차례로 상세히 설명한다.
먼저, 도 1은 종래 기술에 따른 BOG가 발생된 액화수소 저장탱크 시스템을 나타낸 것이다.
저장탱크의 저장 성능을 높이기 위해서는 저장탱크의 단열성능이 매우 중요하게 작용한다. 만약, 저장탱크의 외부로부터 열침입을 적절하게 차단하지 못하면 도 1에 도시된 바와 같이 저장탱크 내부에 Boil-off gas(BOG)가 생기게 되고, 이러한 BOG는 저장탱크 내부의 압력을 상승시키게 된다. 결국 저장탱크의 압력을 적절하게 유지시키기 위해 Boil-off gas를 외부로 방출하게 되는데, 이에 따라 저장탱크에 의한 에너지 손실이 발생하게 된다.
도 2는 종래의 액화수소 저장탱크 ZBO 시스템을 간략하게 나타낸 것이다.
이후, 상기 전통적인 방식의 저장탱크의 문제를 해결하기 위하여 Zero boil-off(ZBO) 시스템이 사용되며, 종래의 시스템은 BOG가 발생한 저장탱크 내부의 압력을 측정함으로써 임계 압력에 도달하는 경우 냉동기의 전원을 on/off 하거나, 냉동기를 상시 작동시키는 방식으로 작용한다. 해당 시스템은 냉각된 냉매(He)가 순환하는 열교환기가 저장탱크의 내부에 설치되어, 냉동기의 전원을 작동시키는 경우 저장탱크의 외부로부터 유입된 열에너지를 상쇄시킴으로써 외부로 방출될 Boil-off gas를 제거할 수 있다.
하지만, 종래 기술에 따른 액화수소 저장탱크 ZBO 시스템의 경우에도, 유입된 열에 의해 발생된 boil off-gas에 의한 압력 상승을 냉동기 작동의 제어 변수로 사용하는 경우, 외부에서 유입되는 열이 저장탱크의 단열재를 통과하여 내벽에 도달하는 동안의 시간 지연이 발생하거나 액체가 증발되기 전 잠열에 의한 온도 상승 동안의 시간 지연이 발생하게 된다는 문제점이 있었다. 이로 인하여, 임계 압력에서 냉동기 작동 시기부터 저장탱크의 내부 압력과 온도를 낮추기까지의 냉동기 작동 종기까지 실질적으로 약 4 일 이상의 기간이 소요되었다.
이에 본 발명에 의한 액화수소 저장탱크의 ZBO 시스템은 단열재를 통과하는 열의 지연시간을 고려하여, 탱크 외면의 열유속(heat flux)에 따른 단열재의 과도해석을 통해 탱크 내부로 열이 유입되는 시간을 예측함으로써 외부로부터 유입된 열량만큼 탱크 내벽을 통해 상기 유입된 열량을 선제적으로 상쇄하고자 한다. 열유속은 단위면적·단위시간 당 열량이므로, 열유속을 측정하는 것은 센서 면적의 시간에 따른 열량을 측정하는 것이다.
도 3은 본 명세서에 개시된 액화수소 저장탱크 ZBO 시스템에서 시간 지연을 제어하기 위한 시스템을 간략하게 나타낸 것이다.
도 3의 상측 그래프를 참고하면, 시간에 따른 탱크 외측면에서의 열량이 실선으로 나타나고, 탱크 내측면에서의 열량이 점선으로 나타나고 있다. 여기서,
Figure PCTKR2022011840-appb-img-000001
는 저장탱크의 외벽을 통과하는 열이 단열재를 통과하여 내벽에 도달하기 까지의 시간을 나타내는 것이다.
이에 따라, 도 3의 하측 그래프에 도시된 바와 같이, 본 발명에서는 탱크 외면의 열이 단열재를 통과하여 내벽으로 도달하기 까지의 지연시간을 고려하여, 외부로부터 유입된 열량만큼 탱크 내벽을 통해 상기 유입된 열량을 선제적으로 상쇄하고자 한다.
우선, 본 발명의 일 실시예에 따른 ZB0 시스템에서 미리 설정된 저장탱크 외면에서의 열량의 기준값(
Figure PCTKR2022011840-appb-img-000002
)은, 아래 수학식 1을 만족할 수 있다.
Figure PCTKR2022011840-appb-img-000003
(hf: 저장유체의 잠열; 저장유체가 끓기 위해 필요한 열량)
이에 따라, 저장탱크의 외면으로부터 유입되는 열량이 기준값(
Figure PCTKR2022011840-appb-img-000004
)을 넘어서게 되는 경우 저장탱크 외면의 열유속이 내벽에 도달하기 까지의 지연시간을 고려하여 냉동기를 작동시켜야 하는 것이다. 이때, 그래프에서
Figure PCTKR2022011840-appb-img-000005
(
Figure PCTKR2022011840-appb-img-000006
: 냉동 열량; 냉매와의 열교환 열량)을 만족할 수 있다.
한편, 본 발명에 따른 ZBO 시스템(100)의 경우, 하기 푸리에 수를 이용한 수학식 2에 따라 계산하여 열이 단열재를 통과하는 시간(
Figure PCTKR2022011840-appb-img-000007
)을 수치적으로 계산하여 산출할 수 있으며, 이 때, 상용 중인 저장탱크의 경우, 단열재 및 저장탱크의 특성에 따라 기계산된 데이터를 이용할 수 있으므로 추가적인 계산이 필요하지 않을 수 있다. 열이 단열재를 통과하는 시간(
Figure PCTKR2022011840-appb-img-000008
)이란 저장탱크 외벽으로 유입되는 열유속에 의해 저장탱크 내벽의 온도가 변화하기 시작하는 시간을 의미한다.
Figure PCTKR2022011840-appb-img-000009
(
Figure PCTKR2022011840-appb-img-000010
: 푸리에 수,
Figure PCTKR2022011840-appb-img-000011
: 열확산계수, L: 단열재 두께)
반면, 탱크 외벽을 통과하는 열유속(heat flux) 값을 측정하지 않는 종래의 기술에서는 저장된 유체의 끓음(boiling) 및 대류에 의한 열전달을 고려한 3차원의 복잡한 수치 해석을 수행하여, 기화하는 유체의 BOG (Boil off Gas) 및 BOR (Boil off rate)을 산출하였으며, 이러한 계산에 약 30일에서 60일 가량의 시간이 소요되었다.
여기서, 열이 단열재를 통과하는 시간보다 빠르게 냉동기를 가동하는 것이 바람직하다. 따라서, 지연시간(
Figure PCTKR2022011840-appb-img-000012
)은 열이 단열재를 통과하는 시간(
Figure PCTKR2022011840-appb-img-000013
)에서 냉각수단(예를 들어, 열교환 튜브)으로 공급된 냉매의 1cycle 순환시간을 뺀 값으로 설정될 수 있다. 즉,
Figure PCTKR2022011840-appb-img-000014
이다.
도 4는 본 명세서에 개시된 기술의 일 실시예에 따른 액화수소 저장탱크 ZBO 시스템을 구현하는 시스템을 나타낸 것이다.
본 발명에 의한 액화수소 저장탱크의 ZBO 시스템은, 크게 저장탱크(101), 센서 패드(102), 에너지 측정 장치, 연산부(104), 제어부(106) 및 냉동기(107)를 포함할 수 있다.
저장탱크(101)는 내부에 유체를 저장하도록 구성되며, 센서 패드(102)는 저장탱크(101)의 외면에 부착되어 적외선 에너지를 방출하도록 구성될 수 있다. 에너지 측정 장치는 일 예로 적외선 측정 장치(103)로서, 센서 패드(102)로부터 방출되는 적외선 에너지 양을 측정하도록 구성될 수 있다. 연산부(104)는 측정된 적외선 에너지 양을 이용하여 저장탱크(101) 외면의 열유속 (heat flux) 값을 연산하고 지연시간을 예측하도록 구성될 수 있다. 냉동기(107)는 저장탱크(101)에 유입된 열에너지를 상쇄시키도록 구성될 수 있고, 제어부(106)는 열유속 값으로부터 예측된 지연시간을 고려하여 상기 연산값을 기초로 냉동기(107)의 작동을 제어하도록 구성될 수 있다.
냉동기(107)의 작동 제어는 열에너지가 저장탱크(101)의 단열재를 통과하는 시간 및 잠열에 의한 온도 상승 시간 중 적어도 하나 이상의 예측 값을 기초로 할 수 있다.
도 5는 본 명세서에 개시된 기술의 일 실시예에 따른 액화수소 저장탱크를 간략하게 나타낸 것이다.
도 5에 도시된 바와 같이, 센서 패드(102)는 액화수소 저장탱크(101)의 특정 면에 부착될 수 있음을 나타내고, 센서 패드(102)가 탱크(101)의 특정 면에 부착됨에 따라 탱크(101)의 전체 평균적인 열유속을 측정하는 것이 아니라, 특정 면의 열유속을 측정할 수 있는 시스템을 제공할 수 있다. 여기서, 적외선 측정 장치(103)는 센서 패드(102)로부터 발생하는 적외선 에너지를 측정하고, 상기 적외선 측정 장치(103)는 일 예로 적외선 카메라일 수 있다. 상기 적외선 측정 장치(103)로부터 수신된 적외선 에너지 값을 이용하여, 연산부(104)는 열유속을 연산할 수 있다.
도 6은 본 명세서에 개시된 센서 패드(102)의 구조를 간략하게 나타낸 것이다.
도 6에 도시된 바와 같이 센서 패드(102)는 매질(201) 및 적외선 비투과 코팅(202)을 포함한다. 일 실시예로서의 센서 패드(102)는, 하나의 면(제1 면)의 전체가 적외선 비투과 코팅(black coating)(202)되며, 다른 한 면(제2 면)은 부분적으로 적외선 비투과 코팅(202)될 수 있다. 센서 패드(102)의 내부에는, 매질(substrate)(201)이 포함될 수 있다. 일 실시예로서의 상기 매질(201)은, 적외선 투과도가 0.95 (95%) 이상이며, 열 전도도는 20W/mK 이하일 수 있다. 또한, 적외선 비투과 코팅(202)은 0.05 (5%) 이하의 적외선 투과도를 가질 수 있다. 상기 매질(201)의 적외선 투과도, 열 전도도 및 적외선 비투과 코팅(202)의 적외선 투과도 수치 범위들은 하나의 실시예로서, 단열 성능 평가 방법의 효율을 극대화하기 위하여 설정되었으며, 상기 설정한 수치 외의 범위에서도 단열 성능 평가 방법은 구현될 수 있고, 따라서 상기 설정한 수치의 범위로 제한되는 것이 아니다. 더불어, 상기 매질(201) 및 적외선 비투과 코팅(202) 물질은 특정한 하나의 물질로 제한되지 않으며, 상기 조건들을 만족하는 어떠한 물질들 중 하나일 수 있다.
도 7은 본 명세서에 개시된 heat flux를 분석하기 위한 센서 패드(102)의 에너지 분포를 도시한 것이며, 도 8은 본 명세서에 개시된 기술의 일 실시예에 따른 액화수소 저장탱크 ZBO 시스템(100) heat flux 분석방법의 각 단계를 순서대로 나타낸 것이다.
이하에서는, 도 7 및 8을 참고하여 본 명세서에 개시된 액화수소 저장탱크 시스템(100)의 heat flux 분석방법을 구체적으로 설명한다.
도 7을 참고하면, 매질(201)의 온도는 T(x, t)로, 센서 패드(102)의 면 중 전체적으로 적외선 비투과 코팅된 면(제1 면)의 온도는
Figure PCTKR2022011840-appb-img-000015
로, 센서 패드(102)의 면 중 부분적으로 적외선 비투과 코팅된 면(제2 면)의 온도는
Figure PCTKR2022011840-appb-img-000016
로 나타낼 수 있다.
Figure PCTKR2022011840-appb-img-000017
는 센서 패드(102)로부터 방출된 적외선 에너지 양을 나타낸다.
적외선 측정 장치(103)는, 센서 패드(102)로부터 방출된 적외선 에너지 양인
Figure PCTKR2022011840-appb-img-000018
값을 측정할 수 있다. 적외선 측정 장치(103)에서 측정된 데이터는 연산부(104)로 송신되고, 연산부(104)는 아래와 같은 세부적인 단계를 수행함에 따라 액화수소 저장탱크로 유입되는 열유속을 계산할 수 있다.
도 8의 단계 S401에서, 첫번째로 매질(201)의 온도(T(x,
Figure PCTKR2022011840-appb-img-000019
))를 특정 값으로 가정한다. 본 발명의 단열 성능 평가 방법에서 측정하고자 하는 열유속은 도 3의 전체 부분이 적외선 비투과 코팅된 면(제1 면)의 열유속이지만, 적외선 측정 장치(103)가 측정하는 데이터는 제1 면에서 방출된 적외선만을 나타내는 것이 아니다. 적외선 측정 장치(103)에서 측정되는 데이터는, 제1 면에서 방출한 적외선이 매질을 통과한 부분과, 매질에서 방출하는 적외선 에너지를 모두 포함한 값을 나타낸다. 따라서, 적외선 측정 장치(103)에서 측정되는 데이터는 아래 수학식 3과 같은 복사 에너지 관계식으로 나타낼 수 있다.
Figure PCTKR2022011840-appb-img-000020
여기서, τ는 탱크 외벽(센서 패드가 부착된 면)에서 방출된 에너지가 센서 패드(102)를 투과하는 적외선 투과율이다.
다음으로, 단계 S402에서, 단계 S401에서 가정하였던 매질의 온도(T(x,
Figure PCTKR2022011840-appb-img-000021
))를 상기 수학식 3에 대입하여 제1 면의 온도인
Figure PCTKR2022011840-appb-img-000022
를 계산할 수 있다.
다음 단계 S403에서는, 상기 제1 면의 온도(
Figure PCTKR2022011840-appb-img-000023
)를 경계 조건(boundary condition, B.C.)으로 하여, 하기 수학식 4를 연산할 수 있으며, 하기 수학식 4는 매질(201) 내부에서의 열전도와 관련한 지배방정식을 수치해석적으로 풀기 위한 것이다.
Figure PCTKR2022011840-appb-img-000024
B.C.:
Figure PCTKR2022011840-appb-img-000025
,
Figure PCTKR2022011840-appb-img-000026
여기서, α는 매질(201)의 열확산율로, 매질의 열전도율을 밀도와 비열로 나눈 값이다.
위 수학식 4를 경계 조건(B.C.)에 따라 연산한 결과, 매질(201)의 온도 분포를 얻을 수 있다. 여기서, L은 센서 패드(102)의 제1 면과 제2 면 사이의 거리이다.
단계 S404에서는, 단계 S403에서 얻은 매질(201)의 온도가 S401에서 가정한 매질(201)의 온도와 동일한지 판단하는 동작을 수행한다. 이 때, 양 데이터가 동일한 경우에는 다음 단계 S405를 수행하나, 양 데이터가 동일하지 않은 경우에는 다시 단계 S402로 되돌아가 매질(201)의 온도 값을 새롭게 가정하여 동일한 세부 단계를 반복적으로 수행한다.
단계 S405에서, 연산부(104)는 최종적으로 상기 단계 S404에서 동일한 값으로 판단된 값을 매질(201)의 온도로 결정하고, 아래 수학식 5에 따라 열유속(heat flux)을 연산할 수 있다.
Figure PCTKR2022011840-appb-img-000027
여기서,
Figure PCTKR2022011840-appb-img-000028
는 block coating 층의 열전도율이다.
상기 각 단계로부터 산출한 열유속 값을 이용하여, 액화수소 저장탱크의 냉각 개시 속도를 신속하게 제어할 수 있는 시스템을 제공할 수 있다.
도 9는 본 명세서에 개시된 기술의 일 실시예에 따른 냉동기의 전원 제어 시스템을 간략하게 나타낸 것이며, 도 10은 본 명세서에 개시된 기술의 일 실시예에 따른 냉동기 전원 제어 시스템의 순서도를 나타낸 것이다.
냉동기(107)의 작동 제어는 냉동기(107)의 전원 제어를 포함할 수 있다. 즉, 본 실시 예에서 냉동기(107)는 on/off 제어된다.
먼저, 저장탱크 외측면에서의 센서 패드(102)로부터 얻은 열유속 값, 즉 저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000029
)이 기준값(
Figure PCTKR2022011840-appb-img-000030
)을 초과하는지 판단하는 동작을 수행한다. 이때, 기준값(
Figure PCTKR2022011840-appb-img-000031
)은 0이거나 저장유체의 잠열보다 작은 값이다. 저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000032
)이 기준값(
Figure PCTKR2022011840-appb-img-000033
) 보다 작다면 다시 처음으로 돌아가 판단 과정을 반복적으로 수행할 수 있다.
다만, 저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000034
)이 기준값(
Figure PCTKR2022011840-appb-img-000035
)을 초과하는 경우, 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000036
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000037
)을 더한 시간과 현재 시간(t)을 비교하는 동작을 수행한다. 만약, 현재 시간(t)이 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000038
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000039
)을 더한 시간보다 크거나 같다면 냉동기(107)의 전원을 작동시킨다. 하지만, 현재 시간(t)이 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000040
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000041
)을 더한 시간보다 작다면 다시 전으로 돌아가 판단 과정을 반복적으로 수행할 수 있다.
냉동기(107)의 전원을 작동시킨 후에는, 냉동 열량(
Figure PCTKR2022011840-appb-img-000042
), 즉 순환하는 냉매가 흡수한 열량을 외부로부터 유입된 열량(
Figure PCTKR2022011840-appb-img-000043
)과 비교하는 판단 과정을 수행한다. 냉동 열량(
Figure PCTKR2022011840-appb-img-000044
)이 외부로부터 유입된 열량(
Figure PCTKR2022011840-appb-img-000045
)보다 크거나 같다면 냉동기(107)의 전원을 off시키고, 냉동 열량이(
Figure PCTKR2022011840-appb-img-000046
)이 외부로부터 유입된 열량(
Figure PCTKR2022011840-appb-img-000047
)보다 더 작다면 다시 전으로 돌아가 판단 과정을 반복적으로 수행할 수 있다.
도 11은 본 명세서에 개시된 기술의 일 실시예에 따른 냉매 유량제어 시스템을 간략하게 나타낸 것이다.
본 발명에 따른 액화수소 저장탱크 ZBO 시스템의 또 다른 실시예로서, 제어부(106)의 작동 제어는 냉동기(107)의 냉매유량 제어를 포함할 수 있으며, 이를 위해 냉매 냉동시스템(110)을 더 포함할 수 있다. 이 때, 냉동기(107)는 상시 가동되며, 냉매의 유량이 제어될 수 있다.
냉매 냉동 시스템(110)은, 팽창 터빈(113), 열교환기(111), 팽창 터빈(113)에서 발전된 에너지를 전력으로 이용하도록 구성된 압축기(112) 및 팽창기(114) 중 적어도 하나 이상을 제어하도록 구성될 수 있다.
냉매(He)의 유량을 제어함으로써, 팽창 터빈(113)에서 발전된 에너지를 압축기(112)의 전력으로 이용하여 냉동기의 효율을 증가시킬 수 있다.
이러한 냉매 유량제어 시스템을 포함하는 냉매 냉동 시스템(110)은 저장탱크(101) 내벽에서의 열유속을 0 또는 기준값(
Figure PCTKR2022011840-appb-img-000048
)으로 유지하도록 제어할 수 있다.
도 12는 본 명세서에 개시된 기술의 일 실시예에 따른 냉매 유량제어 시스템의 순서도를 나타낸 것이다.
순서도에 따르면 우선 저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000049
)이 기준값(
Figure PCTKR2022011840-appb-img-000050
)과 동일한지 판단한다. 만약, 저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000051
)이 기준값(
Figure PCTKR2022011840-appb-img-000052
)과 동일하지 않은 경우에는 저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000053
)이 기준값(
Figure PCTKR2022011840-appb-img-000054
)보다 작은지 판단한다. 저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000055
)이 기준값(
Figure PCTKR2022011840-appb-img-000056
)과 동일하면 다시 처음으로 돌아가 판단 과정을 반복적으로 수행할 수 있다.
판단 결과, 저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000057
)이 기준값(
Figure PCTKR2022011840-appb-img-000058
)보다 큰 경우에는 이어서 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000059
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000060
)을 더한 시간과 현재 시간(t)을 비교하는 동작을 수행한다. 만약, 현재 시간(t)이 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000061
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000062
)을 더한 시간보다 크거나 같다면 팽창 터빈(113)으로 유입되는 질량유량(
Figure PCTKR2022011840-appb-img-000063
)을 감소시켜 저장 탱크(101)로 유입되는 냉매의 유량을 늘린다. 하지만, 현재 시간(t)이 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000064
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000065
)을 더한 시간보다 작다면 다시 전으로 돌아가 판단 과정을 반복적으로 수행할 수 있다.
저장탱크 외측면에서 측정된 열량(
Figure PCTKR2022011840-appb-img-000066
)이 기준값(
Figure PCTKR2022011840-appb-img-000067
)보다 작은 경우에도 이어서 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000068
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000069
)을 더한 시간과 현재 시간(t)을 비교하는 동작을 수행한다. 만약, 현재 시간(t)이 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000070
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000071
)을 더한 시간보다 크거나 같다면 팽창 터빈(113)으로 유입되는 질량유량(
Figure PCTKR2022011840-appb-img-000072
)을 증가시켜 저장 탱크(101)로 유입되는 냉매의 유량을 감소시킨다. 하지만, 현재 시간(t)이 열량이 유입되기 시작한 시간(
Figure PCTKR2022011840-appb-img-000073
)에 예측된 지연시간(
Figure PCTKR2022011840-appb-img-000074
)을 더한 시간보다 작다면 다시 전으로 돌아가 판단 과정을 반복적으로 수행할 수 있다.
팽창 터빈(113)으로 유입되는 냉매의 질량 유량(
Figure PCTKR2022011840-appb-img-000075
)이 증가하고 저장 탱크(101)로 유입되는 냉매의 유량이 감소하면, 에너지를 생산함으로써 냉매 냉동 시스템(110)의 효율이 상승하고 냉각 열량(
Figure PCTKR2022011840-appb-img-000076
)은 감소하게 된다. 반면, 팽창 터빈(113)으로 유입되는 냉매의 질량 유량(
Figure PCTKR2022011840-appb-img-000077
)이 감소하고 저장 탱크(101)로 유입되는 냉매의 유량이 증가하면, 냉매 냉동 시스템(110)의 효율은 감소하고 냉각 열량(
Figure PCTKR2022011840-appb-img-000078
)은 증가하게 된다.
본 발명은 상기 설명한 방법들을 효과적으로 제어하기 위하여, 상기 방법의 실행에 관한 명령어를 포함하는 컴퓨터 프로그램을 더 포함할 수 있다. 상기 컴퓨터 프로그램은 데이터 저장 매체에 저장되고, 상기 설명된 방법들을 수행하는 명령어들은 사용자가 입력하는 값 또는 설정된 환경에 따라 컴퓨터의 연산부를 통해 판독된다.
이상에서 설명된 방법 및 이에 대한 제어는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 방법 및 구성요소는, 연산부, 컨트롤러, ALU(arithmetic logic unit), 디지털 신호 연산부(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로연산부, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제상에서 수행되는 하나 이상의 소프트웨어 어플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 연산부 또는 하나의 연산부 및 하나의 컨트롤러를 포함할 수 있다. 또한, 병렬 연산부(parallel processor)와 같은, 다른 처리 구성도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소, 물리적 장치, 가상 장치, 컴퓨터 저장 매체 또는 장치에 영구적으로, 또는 일시적으로 구체화될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로 그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
본 명세서에 개시된 기술은 액화수소 저장탱크 ZBO 시스템에 관한 것으로서, 더욱 자세하게는 저장탱크 외면의 열유속(heat flux)을 측정하고 지연 시간을 예측함으로써 냉동기를 신속하게 작동시켜 저장탱크 내부의 온도와 압력을 제어하는 시스템에 관한 것이다.

Claims (13)

  1. 액화수소 저장탱크의 ZBO 시스템으로서,
    상기 저장탱크의 일면에 부착되는 센서 패드;
    상기 센서 패드를 이용하여 열유속(heat flux) 값을 연산하는 연산부; 및
    상기 열유속 값으로부터 예측된 지연시간을 고려하여 상기 저장탱크에 유입된 열에너지를 상쇄시키도록 구성된 제어부를 포함하는, 액화수소 저장탱크 ZBO 시스템.
  2. 제 1 항에 있어서,
    상기 연산부는 상기 센서 패드로부터 방출된 적외선 에너지를 이용하여 열유속 값을 연산하는 것을 특징으로 하는, 액화수소 저장탱크 ZBO 시스템.
  3. 제 2 항에 있어서,
    상기 센서 패드로부터 방출되는 적외선 에너지 양을 측정하는 적외선 측정 장치;를 더 포함하며,
    상기 연산부는 상기 적외선 측정 장치로부터 측정된 적외선 에너지 양을 전달받아 열유속 값을 연산하는 것을 특징으로 하는, 액화수소 저장탱크 ZBO 시스템.
  4. 제 1 항에 있어서,
    상기 제어부의 작동 제어는 열에너지가 상기 저장탱크의 단열재를 통과하는 시간 및 잠열에 의한 온도 상승 시간 중 적어도 하나 이상의 지연시간을 기초로 하는, 액화수소 저장탱크 ZBO 시스템.
  5. 제 1 항에 있어서,
    상기 제어부의 작동 제어는 냉동기의 전원 제어를 포함하는, 액화수소 저장탱크 ZBO 시스템.
  6. 제 1 항에 있어서,
    상기 제어부의 작동 제어는 냉동기의 냉매유량 제어를 포함하는, 액화수소 저장탱크 ZBO 시스템.
  7. 제 6 항에 있어서,
    냉매 냉동 시스템을 더 포함하고,
    상기 냉매 냉동 시스템은, 팽창 터빈; 열교환기; 상기 팽창 터빈에서 발전된 에너지를 전력으로 이용하도록 구성된 압축기; 및 팽창기 중 적어도 하나 이상을 제어하도록 구성된, 액화수소 저장탱크 ZBO 시스템.
  8. 제 2 항에 있어서,
    상기 센서 패드의 제1 면은 전체가 적외선 비투과 코팅되고, 상기 센서 패드의 제2 면은 일부가 적외선 비투과 코팅되는, 액화수소 저장탱크 ZBO 시스템.
  9. 제 8 항에 있어서, 상기 열유속 값의 연산은:
    상기 센서 패드의 매질의 온도를 특정 값으로 가정하고;
    적외선 에너지 양 및 가정한 매질의 온도를 이용하여 상기 센서 패드의 제1면의 온도를 계산하고;
    계산된 제1 면의 온도를 이용하여 계산된 매질의 온도가 가정한 매질의 온도와 같을 때까지 가정 및 계산 동작들을 반복하여 최종 제1 면의 온도를 결정하고, 최종 제1 면의 온도로부터 상기 저장탱크 외부에서의 열유속 값을 연산하는 것을 포함하는, 액화수소 저장탱크 ZBO 시스템.
  10. 액화수소 저장탱크의 ZBO 방법으로서,
    상기 저장탱크의 일면에 부착된 센서 패드로부터 방출된 적외선 에너지 양을 측정하는 단계;
    측정된 적외선 에너지 양을 이용하여 상기 저장탱크 외면의 열유속(heat flux) 값을 연산하는 단계; 및
    열유속 값으로부터 예측된 지연시간을 고려하여 제어부의 작동을 제어하는 단계를 포함하는, 액화수소 저장탱크 ZBO 방법.
  11. 제 10 항에 있어서,
    상기 제어부의 작동 제어는 냉동기의 전원 제어 및 냉동기의 냉매 유량 제어 중 적어도 하나 이상을 포함하는, 액화수소 저장탱크 ZBO 방법.
  12. 제 10 항에 있어서,
    상기 제어부의 작동 제어는 열에너지가 상기 저장탱크의 단열재를 통과하는 시간 및 잠열에 의한 온도 상승 시간 중 적어도 하나 이상의 지연시간을 기초로 하는, 액화수소 저장탱크 ZBO 방법.
  13. 매체에 저장된 컴퓨터 프로그램으로서, 제 10 항 내지 제 12 항 중 어느 한 항의 방법을 수행하도록 구성된 컴퓨터 판독가능 명령어를 포함하는 매체에 저장된 컴퓨터 프로그램.
PCT/KR2022/011840 2022-03-10 2022-08-09 액화수소 저장탱크 zbo 시스템 WO2023171860A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0029829 2022-03-10
KR1020220029829A KR102673181B1 (ko) 2022-03-10 액화수소 저장탱크 zbo 시스템

Publications (1)

Publication Number Publication Date
WO2023171860A1 true WO2023171860A1 (ko) 2023-09-14

Family

ID=87935588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011840 WO2023171860A1 (ko) 2022-03-10 2022-08-09 액화수소 저장탱크 zbo 시스템

Country Status (1)

Country Link
WO (1) WO2023171860A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070019076A (ko) * 2005-08-11 2007-02-15 주식회사 케이씨텍 가스 용기의 과열 방지 장치
KR20100088437A (ko) * 2009-01-30 2010-08-09 주식회사 디섹 열영상 적외선카메라를 이용한 lngc 화물창 누설검사 방법
JP2015064022A (ja) * 2013-09-24 2015-04-09 株式会社Ihi タンク設備
JP2019185368A (ja) * 2018-04-10 2019-10-24 俊 平山 写真画像データを記録情報として積極的に利用する高圧ガス設備管理システム及びコンピュータプログラム
CN112944205A (zh) * 2021-03-12 2021-06-11 中国恩菲工程技术有限公司 氯硅烷充装系统和充装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070019076A (ko) * 2005-08-11 2007-02-15 주식회사 케이씨텍 가스 용기의 과열 방지 장치
KR20100088437A (ko) * 2009-01-30 2010-08-09 주식회사 디섹 열영상 적외선카메라를 이용한 lngc 화물창 누설검사 방법
JP2015064022A (ja) * 2013-09-24 2015-04-09 株式会社Ihi タンク設備
JP2019185368A (ja) * 2018-04-10 2019-10-24 俊 平山 写真画像データを記録情報として積極的に利用する高圧ガス設備管理システム及びコンピュータプログラム
CN112944205A (zh) * 2021-03-12 2021-06-11 中国恩菲工程技术有限公司 氯硅烷充装系统和充装方法

Also Published As

Publication number Publication date
KR20230132945A (ko) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2023171860A1 (ko) 액화수소 저장탱크 zbo 시스템
Harpole Droplet evaporation in high temperature environments
Jiang et al. Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for thorium-based molten salt reactor
Yeh An analysis of rewetting of a nuclear fuel rod in water reactor emergency core cooling
KR102673181B1 (ko) 액화수소 저장탱크 zbo 시스템
CN116070374A (zh) 一种考虑热辐射的涡轮叶片气膜冷却效率修正方法
CN113656967B (zh) 一种低温氦舱辐射冷屏冷却优化设计方法
WO2022114854A1 (ko) 저온저장탱크의 단열 성능 평가 방법 및 시스템
WO2024117560A1 (ko) 패턴이 형성된 열유속 측정용 센서 패드와 이를 이용한 측정방법 및 시스템
Breon et al. Thermal design of the XRS helium cryostat
Finley et al. Thermal performance verification of the SIRTF cryogenic telescope assembly
WO2014098346A1 (ko) 초전도 자석의 초기냉각 예측 시스템 및 방법
Shiroyanagi et al. Thermal analysis of a helical superconducting undulator cryostat
Franck et al. The Use of Real Time Models to Produce Virtual Sensor Telemetry During the JWST OTIS Test
WO2018084346A1 (ko) 초전도코일 상변화 시 온도예측 시뮬레이션 장치 및 그 방법
CN115587507B (zh) 一种舱段内吹除环境温度计算方法、监测方法及存储设备
Zhang et al. COMPASS-U Global Heat Balance Calculations
Wei-hua et al. Coupled heat transfer characteristics study of multi-flow field between lead lithium and helium gas for liquid blanket breeder zone of fusion reactor
Nicoletti et al. Testing of a cryogenic recooler heat exchanger at Brookhaven National Laboratory
CN114935222B (zh) 半导体制冷器动态温度分布获取、制冷控制方法及系统
Yang et al. Numerical Simulations of Sub-Atmospheric JT Heat Exchanger for Superfluid Helium Cryogenic System
RU2713780C1 (ru) Способ эффективного теплообмена в теплообменном аппарате криогенной установки (варианты)
Lietzow et al. Performance of heat exchanger models in upside-down orientation for the use in HTS current leads for W7-X
WO2017014411A1 (ko) 저온 펌프의 온도 제어 장치 및 방법
Zhang et al. Optimization for Thermal Control System of Centrifuge and Operating Status Prediction Experiment in Orbit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931107

Country of ref document: EP

Kind code of ref document: A1