WO2023171156A1 - 異常検知装置および異常検知方法 - Google Patents

異常検知装置および異常検知方法 Download PDF

Info

Publication number
WO2023171156A1
WO2023171156A1 PCT/JP2023/001996 JP2023001996W WO2023171156A1 WO 2023171156 A1 WO2023171156 A1 WO 2023171156A1 JP 2023001996 W JP2023001996 W JP 2023001996W WO 2023171156 A1 WO2023171156 A1 WO 2023171156A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
abnormality
state
detection
change
Prior art date
Application number
PCT/JP2023/001996
Other languages
English (en)
French (fr)
Inventor
健典 初田
崇 垣内
琢也 山▲崎▼
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN202380023628.0A priority Critical patent/CN118786503A/zh
Publication of WO2023171156A1 publication Critical patent/WO2023171156A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere

Definitions

  • the present invention relates to an abnormality detection device and an abnormality detection method.
  • Patent Document 1 detects a load current supplied to a monitored motor (equipment) connected to a multi-relay, and detects whether an abnormality occurs based on the detection result of the load current and the detection result of the presence or absence of an abnormality.
  • a technique for determining whether or not a symptom exists is disclosed.
  • Sensors and the like for detecting motor load current etc. will be directly attached to the motor to be monitored, and new wiring will be installed to the control circuit. If a sensor or the like is directly attached to the motor in order to detect a failure in the motor being monitored, there is a risk that the cost will increase and it will be time consuming. Furthermore, it may be difficult to retrofit sensors and the like to existing motors due to reasons such as difficulty in modifying existing equipment or physical installation. Further, when detecting an abnormality by detecting the load current on the motor side, the processing load increases because the load current detection result is transferred to a monitoring server or the like connected to the relay side.
  • the present invention aims to provide a technology for detecting an abnormality in a device connected to a relay without using information acquired from the device side and indirectly predicting a failure of the device. .
  • the present invention employs the following configuration.
  • a first aspect of the present disclosure includes an acquisition unit that acquires the state of a relay that is connected to a device to be monitored and that controls opening and closing of a circuit to which the device is connected;
  • This is an abnormality detection device that includes a detection unit that detects an abnormality in a device, and a notification unit that notifies a user of the abnormality detected by the detection unit.
  • the abnormality detection device can acquire the state of the relay and predict or detect an abnormality in the device without using information acquired from the device side. There is no need to attach a monitoring sensor or the like to the device to be monitored, and the abnormality detection device can indirectly monitor the device while being separated from the circuit on the device side.
  • the detection unit uses the state of the relay or a change in the state of the relay as input data, and the state of the relay or a change in the state of the relay is used as output data to perform machine learning on a detection model that is subjected to machine learning.
  • An abnormality in the device may be detected by inputting the status of the relay or a change in the status of the relay.
  • the abnormality detection device can accurately predict or detect an abnormality in the device.
  • the detection model may be a trained model that is subjected to machine learning using as input data the amount of change in an index indicating the amount of wear on the contacts of the relay per unit time or per predetermined number of times of opening and closing.
  • the abnormality detection device can predict or detect an abnormality in the equipment when the amount of change in the index increases per unit time or per predetermined number of times of opening and closing, that is, when the wear of the relay contacts rapidly progresses. .
  • the detection model may be a trained model that is subjected to machine learning using time-series data indicating changes in an index indicating the amount of wear of the relay contacts with respect to the number of times the relay contacts are opened/closed or the usage time as input data.
  • the anomaly detection device can predict or detect an abnormality in the device when a change in the index when the device is operating normally and a change in a different index are measured.
  • the detection model may also be a trained model that is subjected to machine learning using the period until the equipment fails as output data.
  • the anomaly detection device can infer the period until equipment failure based on the current state of the relay or changes in the state of the relay up to the present. This allows the user to take appropriate measures before the device breaks down.
  • the detection model may be a trained model that is subjected to machine learning using relay abnormalities as output data.
  • the abnormality detection device can detect an abnormality such as failure or deterioration of the relay, for example, from the waveform of the current flowing through the coil when the contacts of the relay are opened and closed. Since an abnormality in a relay may be caused by an abnormality in a device, the abnormality detection device can predict or detect an abnormality in the device by detecting an abnormality in the relay itself.
  • the status of the relay includes information indicating the amount of wear on the relay contacts, information indicating the distance between the coil and the iron piece when the relay contacts are closed, the current waveform of the current flowing through the coil when the relay contacts open, and the relay
  • the voltage may include at least one of the voltage waveforms of the voltage applied to the coil when the contact opens.
  • the status of the relay may be any state that changes due to an abnormality in the device, and information that combines the amount of wear on the relay contacts, an index showing the amount of contact wear, the current flowing through the coil, the voltage related to the coil, etc. can do.
  • the abnormality detection device can accurately predict or detect abnormality in equipment based on various information regarding the state of the relay.
  • the detection unit may detect an abnormality in the relay based on the state of the relay or a change in the state of the relay.
  • the abnormality detection device detects abnormalities in the relay itself based on the state of the relay, such as the current waveform of the current flowing through the coil when the relay contacts open, or the voltage waveform of the voltage applied to the coil when the relay contacts open. be able to.
  • a second aspect of the present invention includes an acquisition step in which the computer is connected to a device to be monitored and acquires the state of a relay that controls opening and closing of a circuit to which the device is connected;
  • This is an anomaly detection method including a detection step of detecting an abnormality in a device based on the above, and a notification step of notifying a user of the abnormality detected in the detection step.
  • the present invention can also be understood as a program for realizing such a method or a recording medium on which the program is recorded non-temporarily. Note that each of the above means and processes can be combined to the extent possible to constitute the present invention.
  • an abnormality in a device connected to a relay can be detected without using information acquired from the device side, and a failure of the device can be indirectly predicted.
  • FIG. 1 is a diagram illustrating the configuration of an abnormality detection device.
  • FIG. 2 is a diagram illustrating the mechanism of the relay.
  • FIG. 3 is a diagram illustrating abnormality detection of a device based on a change in AF amount.
  • FIG. 4 is a diagram illustrating estimation of the AF amount.
  • 5A and 5B are diagrams illustrating the waveform of the coil current when the contact opens.
  • the abnormality detection device 10 indirectly predicts or detects a failure of the device 30 (including a motor that drives the device, etc.) by monitoring the state of the relay 20 connected to the device 30.
  • the relay 20 includes a coil 21 on the primary side (input side).
  • a switch (not shown) is connected to the input terminal 23, and when the switch is turned on, current flows through the coil 21.
  • electromagnetic force is generated.
  • the generated electromagnetic force causes the contacts 22 to close, and current flows through a secondary (output) circuit separated from the primary circuit.
  • the device 30 connected to the output terminal 24 is driven by the current flowing through the secondary circuit.
  • the primary side circuit of the relay 20 includes a circuit for measuring the current flowing through the coil 21 and outputting the measurement result.
  • the abnormality detection device 10 is connected to the primary circuit of the relay 20 and acquires the state of the relay 20 from the current flowing through the coil 21 and the like.
  • the status of the relay 20 includes, for example, information indicating the amount of wear on the contacts of the relay 20, information indicating the distance between the coil and the iron piece (AF amount, armature follow amount) when the contacts of the relay 20 are closed, and information indicating the amount of wear on the contacts of the relay 20. This is the current waveform of the current flowing through the coil when the contact opens.
  • the abnormality detection device 10 acquires the state of the relay 20 or a change in the state of the relay 20, and compares it with the state of the relay 20 or a change in the state of the relay 20 when an abnormality in the device 30 is detected. It is possible to detect abnormalities in
  • the abnormality detection device 10 may detect an abnormality in the device 30 using the detection model 121 for detecting an abnormality in the device 30 connected to the relay 20.
  • the detection model 121 is a trained model that is trained by machine learning using teacher data in which the state of the relay 20 is input data and the state of the relay 20 or an abnormality of the device 30 related to a change in the state of the relay 20 is output data. be.
  • the abnormality detection device 10 can detect an abnormality in the device 30 by inputting the acquired state of the relay 20 or a change in the state of the relay 20 to the detection model 121.
  • the detection model 121 is a model that has learned, for example, an abnormal state such as a failure, deterioration, or stoppage of the device 30 connected to the relay 20 from the state of the relay 20 or a change in the state of the relay 20 as output data. Further, the detection model 121 may be a model that further learns the period until the device 30 fails as output data, and can also infer the predicted period until the device 30 fails from a change in the state of the relay 20. .
  • the detection model 121 may be a model in which abnormalities such as failures and deterioration of the relay 20 itself are learned as output data.
  • An abnormality in the relay 20 is mainly caused by an abnormality in the device 30 connected to the relay 20. Therefore, the abnormality detection device 10 can predict or detect an abnormality in the device 30 based on the abnormality in the relay 20.
  • the abnormality detection device 10 notifies the user of the detected abnormality of the device 30. Thereby, the abnormality detection device 10 can predict or detect an abnormality in the device 30 by monitoring the state of the relay 20 or a change in the state of the relay 20.
  • the abnormality detection device 10 predicts or detects an abnormality in the device 30 using information on the primary side of the relay 20 instead of information on the secondary side (the connected device 30 side).
  • the abnormality detection device 10 detects an abnormality in the device 30 based on information acquired from the primary circuit, with the circuit on the device 30 side through which a current larger than the current flowing through the coil 21 is disconnected when the contact 22 is closed. can be predicted or detected. That is, the abnormality detection device 10 connected to the primary side can indirectly monitor the device 30 connected to the secondary side.
  • the abnormality detection device 10 since the abnormality detection device 10 is connected to the primary side circuit, the information on the status of the device 30 is obtained from the relay 20 from the primary side circuit rather than from a sensor attached to the device 30. information can be easily obtained.
  • the abnormality detection device 10 can monitor the equipment 30 at low cost by detecting an abnormality in the equipment 30 based on information acquired from the primary side circuit.
  • the abnormality detection device 10 is not limited to the device 30 connected to the relay 20, and can also detect an abnormality in the relay 20 from the state of the relay 20 or a change in the state of the relay 20.
  • Abnormalities in the relay 20 include, for example, contact welding or armature (iron piece) failure due to mechanical failure.
  • the abnormality detection device 10 includes a relay state acquisition section 11 , a storage section 12 , an abnormality detection section 13 , and a notification section 14 .
  • the relay state acquisition unit 11 acquires information on the state of the relay from a circuit connected to the primary side of the relay 20.
  • the status of the relay 20 may be information indicating a status such as a failure or deterioration of the relay 20 due to an abnormality in the device 30.
  • the state of the relay 20 includes, for example, information indicating the amount of wear on the contacts of the relay 20, information indicating the distance between the coil and the iron piece (AF amount) when the contacts of the relay 20 are closed, and information indicating the amount of AF when the contacts of the relay 20 are open. This is the current waveform of the current flowing through the coil.
  • the storage unit 12 stores the information acquired by the relay status acquisition unit 11.
  • the storage unit 12 also stores a detection model 121.
  • the detection model 121 is a trained model that is subjected to machine learning using the state of the relay 20 or a change in the state of the relay 20, the state of the relay 20 or an abnormality of the device 30 related to the change in the state of the relay 20, etc. as training data. .
  • the abnormality detection unit 13 (corresponding to a detection unit) detects an abnormality in the device 30 based on the information acquired by the relay state acquisition unit 11.
  • the abnormality detection unit 13 may predict or detect an abnormality in the device 30 by inputting the information acquired by the relay state acquisition unit 11 into the detection model 121.
  • the abnormality detection unit 13 is not limited to detecting an abnormality in the device 30, but can also detect an abnormality in the relay 20 itself. In the following, a case will be described in which an abnormality in the device 30 is detected, but the present embodiment can also be applied to the case where an abnormality in the relay 20 itself is detected to the extent possible.
  • the detection model 121 may be a model in which the state of the relay 20 or a change in the state of the relay 20 is used as input data, and an abnormal state such as a failure or deterioration of the device 30 is learned as output data. Furthermore, the detection model 121 may be a model in which the period until the device 30 fails is learned as output data. By using these detection models 121, the abnormality detection unit 13 can infer an abnormal state such as a failure or deterioration of the device 30, a predicted period until the device 30 fails, or the like.
  • the notification unit 14 notifies the user of an abnormality in the device 30 predicted or detected by the abnormality detection unit 13. For example, the notification unit 14 displays information regarding the abnormality of the device 30 on a display included in the abnormality detection device 10 or the like. The notification unit 14 may also notify the user of the abnormality of the device 30 by transmitting information about the abnormality of the device 30 to the user's terminal or the like.
  • each functional unit in FIG. 1 may or may not be separate hardware.
  • the functions of two or more functional units may be realized by common hardware.
  • Each of the plurality of functions of one functional unit may be realized by separate hardware.
  • Two or more functions of one functional unit may be realized by common hardware.
  • each functional unit may or may not be realized by hardware.
  • the device may include a processor and a memory in which a control program is stored. The functions of at least some of the functional units included in the device may be realized by a processor reading a control program from a memory and executing it.
  • the mechanism of the relay 20 will be described with reference to FIG. 2.
  • the relay 20 includes a coil 21, a contact 22, an input terminal 23, an output terminal 24, and an iron piece 25.
  • the contacts 22 include a movable contact 22a and a fixed contact 22b. Note that the movable contact 22a and the fixed contact 22b are collectively referred to as the contact 22.
  • the AF amount is the distance between the coil and the iron piece 25 when the contact 22 of the relay 20 is closed.
  • the AF amount can be measured, for example, by analyzing an image taken with a camera, or by using a laser displacement meter.
  • the AF amount can be an index indicating the amount of wear on the contacts 22 of the relay 20.
  • the configuration of the relay 20 is not limited to the example shown in FIG. 2.
  • the present embodiment is applicable to the relay 20 whose state changes due to an abnormality in the device 30 and from which the change in state can be acquired.
  • Example 1 of relay status A case will be described in which information on the amount of wear of the contacts 22 and information on the amount of AF are acquired as the state of the relay 20 with reference to FIGS. 3 and 4.
  • the amount of wear on the contact 22 has a correlation with the distance between the coil and the iron piece (AF amount) when the contact 22 is closed.
  • the AF amount can be used as an index for estimating the amount of wear on the contact 22.
  • the vertical axis of the graph shown in FIG. 3 is the AF amount
  • the horizontal axis is the number of times the contact 22 is opened and closed.
  • the horizontal axis will be explained as the number of times the contact 22 is opened and closed, but the horizontal axis may also be the usage time of the contact 22.
  • the AF amount at the start of use differs for each relay 20 due to manufacturing variations, but the AF amount of each relay 20 decreases as the number of times the contacts 22 open and close increases. That is, the amount of wear on the contacts 22 of each relay 20 increases as the number of times the contacts 22 are opened and closed increases.
  • the AF amount decreases approximately linearly, and when it decreases to the life determination standard value (0.1 in the example of FIG. 3), the contact 22 is determined to have reached the end of its life and is replaced.
  • the amount of decrease in the AF amount per predetermined number of openings and closings is greater after point P1 than before point P1. The significant decrease in the AF amount is considered to be due to a load on the circuit due to a failure of the device 30 connected to the relay 20 or the like.
  • the abnormality detection unit 13 can predict or detect an abnormality in the device 30 by monitoring changes in the AF amount.
  • the abnormality detection unit 13 can predict that an abnormality has occurred in the device 30 when the amount of decrease in the AF amount per predetermined number of times of opening and closing changes or exceeds a threshold value.
  • the abnormality detection unit 13 may predict or detect an abnormality in the device 30 using a detection model 121 that has been trained using the number of opening/closing times of the contact 22 and the AF amount as input data. If the AF amount is smaller than the normal state of the device 30 relative to the number of openings and closings, the abnormality detection unit 13 detects an abnormality in the device 30 by inputting the number of openings and closings of the contact 22 and the AF amount to the detection model 121. can do.
  • the detection model 121 may be a model in which the amount of change in the AF amount per unit time or per predetermined number of times of opening and closing is learned as input data.
  • the predetermined number of opening and closing times can be, for example, between 10 and 100 times.
  • the abnormality detection unit 13 detects the amount of change in the AF amount per unit time or per predetermined number of openings and closings. By inputting the information to the model 121, it is possible to detect an abnormality in the device 30.
  • the detection model 121 may be a model that is trained using time-series data indicating changes in the AF amount with respect to the number of opening/closing times of the contact 22 or the usage time as input data. By inputting time series data including the point PI of the graph 300 into the detection model 121, the abnormality detection unit 13 can detect an abnormality in the device 30.
  • the AF amount can be estimated from the current waveform flowing through the coil 21.
  • the current waveform graph shown in FIG. 4 shows the current flowing through the coil 21 (hereinafter also referred to as coil current) when the switch for flowing current through the coil 21 is turned off and the movable contact 22a returns to its original position. ).
  • the vertical axis of the graph shown in FIG. 4 is coil current, and the horizontal axis is time.
  • the coil current decreases.
  • the iron piece 25 separates from the coil 21 and the contacts 22 become open.
  • the iron piece 25 separates from the coil 21, a phenomenon occurs in which the coil current increases once and then decreases.
  • the time from when the switch is turned off until the contacts 22 become open becomes longer. Therefore, the AF amount can be estimated from the current waveform of the coil current when the movable contact 22a returns to its original position and the contact 22 opens.
  • a graph 401 shows the change in coil current when the AF amount is 0.35 or more.
  • a graph 402 shows a change in coil current when the AF amount is 0.25 or more and less than 0.35.
  • a graph 403 shows changes in coil current when the AF amount is 0.15 or more and less than 0.25.
  • Graph 404 shows the change in coil current when the AF amount is less than 0.15. In this way, as the AF amount decreases, the time it takes for the movable contact 22a to return to its original position becomes longer.
  • the abnormality detection unit 13 detects an abnormality in the device 30. can be predicted or detected.
  • the detection model 121 may be a model in which changes in AF amount per unit time or per predetermined number of times of opening and closing are learned as input data. Furthermore, the detection model 121 may be a model trained using time series data indicating changes in the estimated AF amount as input data.
  • FIGS. 5A and 5B A case where the current waveform of the current flowing through the coil 21 when the contact 22 of the relay 20 opens is obtained as the state of the relay 20 will be described using FIGS. 5A and 5B.
  • the vertical axis is coil current and the horizontal axis is time.
  • the switch for passing current through the coil 21 is turned off, the coil current decreases, and when the iron piece 25 separates from the coil 21, it rises once and then decreases.
  • FIG. 5A shows the current waveform of the coil current when the timing at which the contact 22 returns to the open state is normal.
  • FIG. 5B shows the current waveform of the coil current when the timing at which the contact 22 returns to the open state is delayed. In FIG. 5B, the timing of the return of the contact 22 is delayed, and the rise of the coil current is also delayed.
  • the delay in the timing of the return of the contact 22 may be due to an abnormality in the device 30 connected to the relay 20. For example, if a short circuit occurs in the secondary side circuit or if the motor locks up, an overcurrent may occur, causing the contacts 22 to melt or weld, resulting in a delay in recovery of the contacts 22.
  • the abnormality detection unit 13 can predict or detect an abnormality in the device 30 by monitoring the current waveform of the coil current when the contact 22 returns to the open state. For example, the abnormality detection unit 13 detects whether the device It can be predicted that 30 abnormalities have occurred.
  • the abnormality detection device 10 may predict or detect an abnormality in the device 30 using a detection model 121 trained as input data on the current waveform of the coil current when the contact 22 returns to the open state. . If the timing of the return of the contact 22 or the time until the coil current rises to the maximum value after the return is slower than normal, the abnormality detection unit 13 inputs the current waveform of the coil current to the detection model 121. , an abnormality in the device 30 can be detected.
  • the abnormality detection device 10 can acquire the state of the relay 20 from the primary side circuit of the relay 20 and predict or detect an abnormality in the device 30. Even without attaching a monitoring sensor or the like to the device 30 to be monitored, the abnormality detection device 10 can indirectly detect the device 30 connected to the secondary side using the information acquired on the primary side of the relay 20. can be monitored.
  • the status of the relay 20 includes information indicating the wear amount of the relay contacts, information indicating the distance between the coil and the iron piece when the relay contacts are closed, and information indicating the distance between the coil and the iron piece when the relay contacts are open.
  • the state of the relay 20 may be information that can indirectly predict or detect a failure of the device 30 connected to a circuit separated from the primary side circuit of the relay 20.
  • the detection model 121 may be a model in which at least one of the temperature and humidity at the time when the state of the relay 20 is acquired is further learned as input data.
  • the timing of opening and closing of the contacts 22 may change depending on the temperature or humidity. Therefore, by learning at least one of the temperature and humidity in addition to the state of the relay 20, etc., the detection model 121 can detect an abnormality in the device 30 with higher accuracy.
  • the abnormality detection device 10 can also detect an abnormality in the device 30 by analyzing the voltage waveform (voltage value) instead of the current waveform (current value). Using an appropriate shunt resistor, it is possible to convert the current value into a voltage value, and measuring the current value is equivalent to measuring the voltage value. Therefore, the abnormality detection device 10 can detect an abnormality in the device 30 based on the voltage waveform of the voltage applied to the coil when the contact of the relay is opened, as the state of the relay.
  • an acquisition unit (11) that is connected to a device (30) to be monitored and that acquires the state of a relay (20) that controls opening and closing of a circuit to which the device (30) is connected; a detection unit (13) that detects an abnormality in the device (30) based on the state of the relay (20) or a change in the state of the relay (20); a notification unit (14) that notifies a user of an abnormality in the device (30) detected by the detection unit (13);
  • An anomaly detection device (10) comprising:
  • the computer is an acquisition step of acquiring the state of a relay (20) that is connected to a device to be monitored (30) and controls opening and closing of a circuit to which the device (30) is connected; a detection step of detecting an abnormality in the device (30) based on the state of the relay (20) or a change in the state of the relay (20); a notification step of notifying a user of the abnormality of the device (30) detected in the detection step; Anomaly detection methods including.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Keying Circuit Devices (AREA)

Abstract

異常検知装置は、監視対象の機器に接続され、機器が接続される回路の開閉を制御するリレーの状態を取得する取得部と、リレーの状態またはリレーの状態の変化に基づいて、機器の異常を検知する検知部と、検知部が検知した異常をユーザに通知する通知部と、を備える。

Description

異常検知装置および異常検知方法
 本発明は、異常検知装置および異常検知方法に関する。
 機器の異常または劣化を検知したり、故障を予測したりすることは、システムの稼働率を向上させる上で重要である。各種機器は、リレー(継電器)に接続されることにより電気回路の開閉等を制御することができる。特許文献1は、マルチリレーに接続された監視対象のモータ(機器)に供給される負荷電流を検出し、負荷電流の検出結果と異常発生の有無の検出結果とに基づいて、異常が発生する兆候があるか否かを判定する技術を開示する。
特開2018-207589号公報
 モータの負荷電流等を検出するためのセンサ等は、監視対象のモータに直接取り付けられ、制御回路までの新たな配線が設置されることになる。監視対象のモータの故障を検知するために、モータにセンサ等を直接取り付ける場合、コストが上昇し手間がかかる恐れがある。また、既存設備の改修が困難、物理的に設置できないなどの理由により、既存のモータにセンサ等を後付けすることが難しい場合もある。また、モータ側で負荷電流を検出して異常を検知する場合、負荷電流の検出結果をリレー側に接続された監視サーバ等に転送することになるため、処理負荷は増加する。
 本発明は、一側面では、リレーに接続された機器の異常を、機器側から取得される情報を用いずに検知し、機器の故障を間接的に予測する技術を提供することを目的とする。
 本発明は、上記目的を達成するために、以下の構成を採用する。
 本開示の第一側面は、監視対象の機器に接続され、機器が接続される回路の開閉を制御するリレーの状態を取得する取得部と、リレーの状態またはリレーの状態の変化に基づいて、機器の異常を検知する検知部と、検知部が検知した異常をユーザに通知する通知部と、を備える異常検知装置である。異常検知装置は、リレーの状態を取得し、機器側から取得される情報を用いずに、機器の異常を予測または検知することができる。監視対象の機器に監視用のセンサ等を取り付けなくてもよく、異常検知装置は、機器側の回路と切り離した状態で、間接的に機器を監視することができる。
 検知部は、リレーの状態またはリレーの状態の変化を入力データとし、リレーの状態またはリレーの状態の変化に関連する機器の異常を出力データとして機械学習をさせた検知モデルに、取得部が取得したリレーの状態またはリレーの状態の変化を入力することにより、機器の異常を検知してもよい。機械学習による学習済みモデルを用いて、リレーの状態またはリレーの状態の変化から機器の異常を推論することで、異常検知装置は、精度良く機器の異常を予測または検知することができる。
 検知モデルは、単位時間あたりまたは所定の開閉回数あたりの、リレーの接点の摩耗量を示す指標の変化量を入力データとして機械学習をさせた学習済みモデルであってもよい。単位時間あたりまたは所定の開閉回数あたりの指標の変化量が大きくなった場合、すなわちリレーの接点の摩耗が急に進んだ場合に、異常検知装置は、機器の異常を予測または検知することができる。
 検知モデルは、リレーの接点の開閉回数または使用時間に対する、リレーの接点の摩耗量を示す指標の変化を示す時系列データを入力データとして機械学習をさせた学習済みモデルであってもよい。機器が正常に動作している場合の指標の変化と、異なる指標の変化が計測された場合に、異常検知装置は、機器の異常を予測または検知することができる。
 検知モデルは、さらに、機器が故障するまでの期間を出力データとして機械学習をさせた学習済みモデルであってもよい。異常検知装置は、現在のリレーの状態または現在までのリレーの状態の変化に基づいて、機器が故障するまでの期間を推論することができる。これにより、ユーザは、機器が故障するまでの間に適切な対応をとることができる。
 検知モデルは、リレーの異常を出力データとして機械学習をさせた学習済みモデルであってもよい。異常検知装置は、例えば、リレーの接点の開閉時にコイルに流れる電流波形から、リレーの故障または劣化等の異常を検知することができる。リレーの異常は、機器の異常によって引き起こされる場合があるため、異常検知装置は、リレー自体の異常を検知することで、機器の異常を予測または検知することができる。
 リレーの状態は、リレーの接点の摩耗量を示す情報、リレーの接点が閉じているときのコイルと鉄片との距離を示す情報、リレーの接点が開く際にコイルに流れる電流の電流波形、リレーの接点が開く際にコイルにかかる電圧の電圧波形の少なくともいずれかを含んでもよい。リレーの状態は、機器の異常に起因して変化する状態であればよく、リレーの接点の摩耗量、接点の摩耗量を示す指標、コイルに流れる電流、コイルに係る電圧等を組み合わせた情報とすることができる。異常検知装置は、リレーの状態に関する各種情報に基づいて、機器の異常を精度良く予測または検知することができる。
 検知部は、リレーの状態またはリレーの状態の変化に基づいて、リレーの異常を検知してもよい。異常検知装置は、リレーの接点が開く際にコイルに流れる電流の電流波形、またはリレーの接点が開く際にコイルにかかる電圧の電圧波形といったリレーの状態に基づいて、リレー自体の異常を検知することができる。
 本発明の第二側面は、コンピュータが、監視対象の機器に接続され、機器が接続される回路の開閉を制御するリレーの状態を取得する取得ステップと、リレーの状態またはリレーの状態の変化に基づいて、機器の異常を検知する検知ステップと、検知ステップで検知した異常をユーザに通知する通知ステップと、を含む異常検知方法である。
 また、本発明は、かかる方法を実現するためのプログラムまたはそのプログラムを非一時的に記録した記録媒体として捉えることもできる。なお、上記手段および処理の各々は可能な限り互いに組み合わせて本発明を構成することができる。
 本発明によれば、リレーに接続された機器の異常を、機器側から取得される情報を用いずに検知し、機器の故障を間接的に予測することができる。
図1は、異常検知装置の構成を例示する図である。 図2は、リレーの仕組みを説明する図である。 図3は、AF量の変化に基づく機器の異常検知を説明する図である。 図4は、AF量の推定について説明する図である。 図5Aおよび図5Bは、接点が開く際のコイル電流の波形を例示する図である。
 以下、本発明の一側面に係る実施の形態を、図面に基づいて説明する。
 <適用例>
 図1を参照して、異常検知装置10の適用例について説明する。異常検知装置は、機器30に接続されたリレー20の状態を監視することにより、機器30(機器を駆動するモータ等を含む)の故障を間接的に予測または検知する。
 リレー20は、1次側(入力側)にコイル21を備える。入力側端子23には不図示のスイッチが接続され、スイッチをオンにすることでコイル21に電流が流れる。コイル21に電流が流れることによって電磁力が発生する。発生した電磁力によって、接点22は閉じた状態となり、1次側の回路とは分離された2次側(出力側)の回路に電流が流れる。2次側の回路に電流が流れることで、出力側端子24側に接続された機器30は駆動される。
 リレー20の1次側の回路は、コイル21に流れる電流を計測し、計測結果を出力するための回路を備える。異常検知装置10は、リレー20の1次側の回路に接続され、コイル21に流れる電流等からリレー20の状態を取得する。リレー20の状態は、例えば、リレー20の接点の摩耗量を示す情報、リレー20の接点が閉じているときのコイルと鉄片との距離(AF量、アーマチュア・フォロー量)を示す情報、リレー20の接点が開く際にコイルに流れる電流の電流波形である。
 異常検知装置10は、リレー20の状態またはリレー20の状態の変化を取得し、機器30の異常が検知された際のリレー20の状態またはリレー20の状態の変化と対比することにより、機器30の異常を検知することができる。
 また、異常検知装置10は、リレー20に接続された機器30の異常を検知するための検知モデル121を用いて機器30の異常を検知してもよい。検知モデル121は、リレー20の状態を入力データとし、リレー20の状態またはリレー20の状態の変化に関連する機器30の異常を出力データとする教師データを機械学習により学習させた学習済みモデルである。異常検知装置10は、検知モデル121に、取得したリレー20の状態またはリレー20の状態の変化を入力することで、機器30の異常を検知することができる。
 検知モデル121は、例えば、リレー20の状態またはリレー20の状態の変化から、リレー20に接続された機器30の故障、劣化、稼働停止といった異常状態を出力データとして学習したモデルである。また、検知モデル121は、さらに機器30が故障するまでの期間を出力データとして学習し、リレー20の状態の変化から、機器30が故障するまでの予測期間も推論可能なモデルであってもよい。
 検知モデル121は、リレー20自体の故障、劣化等の異常を出力データとして学習させたモデルであってもよい。リレー20の異常は、主に、リレー20に接続された機器30の異常に起因する。このため、異常検知装置10は、リレー20の異常に基づいて、機器30の異常を予測または検知することができる。
 異常検知装置10は、検知した機器30の異常をユーザに通知する。これにより、異常検知装置10は、リレー20の状態またはリレー20の状態の変化を監視することで機器30の異常を予測または検知することができる。
 このように、異常検知装置10は、リレー20の2次側(接続された機器30側)の情報ではなく、1次側の情報を用いて機器30の異常を予測または検知する。異常検知装置10は、接点22が閉じるとコイル21に流れる電流よりも大きな電流が流れる機器30側の回路を切り離した状態で、1次側の回路から取得した情報に基づいて、機器30の異常を予測または検知することができる。すなわち、1次側に接続される異常検知装置10は、2次側に接続された機器30を間接的に監視することができる。
 また、異常検知装置10は、1次側の回路に接続されるため、機器30に取り付けられたセンサ等から機器30の状態の情報を取得するよりも、1次側の回路からのほうがリレー20の情報を容易に取得することができる。異常検知装置10は、1次側の回路から取得した情報に基づいて機器30の異常を検知することにより、低コストで機器30を監視することが可能となる。
 なお、異常検知装置10は、リレー20に接続された機器30に限られず、リレー20の状態またはリレー20の状態の変化から、リレー20の異常を検知することも可能である。リレー20の異常は、例えば、接点溶着や機械的故障によるアーマチュア(鉄片)の故障等である。
 <実施形態>
 (装置構成)
 図1を参照して、異常検知装置10の装置構成について説明する。異常検知装置10は、リレー状態取得部11、記憶部12、異常検知部13、通知部14を備える。
 リレー状態取得部11(取得部に相当)は、リレー20の1次側に接続される回路から、リレーの状態の情報を取得する。リレー20の状態は、機器30の異常に起因するリレー20の故障、劣化等の状態を示す情報であればよい。リレー20の状態は、例えば、リレー20の接点の摩耗量を示す情報、リレー20の接点が閉じているときのコイルと鉄片との距離(AF量)を示す情報、リレー20の接点が開く際にコイルに流れる電流の電流波形である。
 記憶部12は、リレー状態取得部11が取得した情報を記憶する。また、記憶部12は、検知モデル121を格納する。検知モデル121は、リレー20の状態またはリレー20の状態の変化、リレー20の状態またはリレー20の状態の変化に関連する機器30の異常等を教師データとして機械学習をさせた学習済みモデルである。
 異常検知部13(検知部に相当)は、リレー状態取得部11が取得した情報に基づいて、機器30の異常を検知する。異常検知部13は、リレー状態取得部11が取得した情報を検知モデル121に入力して、機器30の異常を予測または検知してもよい。なお、異常検知部13は、機器30の異常に限られず、リレー20自体の異常を検知することも可能である。以下では、機器30の異常を検知する場合について説明するが、本実施形態は、リレー20自体の異常を検知する場合にも可能な範囲で適用することができる。
 検知モデル121は、リレー20の状態またはリレー20の状態の変化を入力データとし、機器30の故障、劣化等の異常状態を出力データとして学習させたモデルであってもよい。また、検知モデル121は、機器30が故障するまでの期間を出力データとして学習させたモデルであってもよい。これらの検知モデル121を用いることで、異常検知部13は、機器30の故障、劣化等の異常状態、または機器30の故障までの予測期間等を推論することができる。
 通知部14は、異常検知部13が予測または検知した機器30の異常を、ユーザに通知する。例えば、通知部14は、異常検知装置10が備えるディスプレイ等に、機器30の異常に関する情報を表示する。また、通知部14は、機器30の異常の情報をユーザの端末等に送信して、ユーザに機器30の異常を通知してもよい。
 なお、図1の各機能部は、個別のハードウェアであってもよいし、そうでなくてもよい。2つ以上の機能部の機能が、共通のハードウェアによって実現されてもよい。1つの機能部の複数の機能のそれぞれが、個別のハードウェアによって実現されてもよい。1つの機能部の2つ以上の機能が、共通のハードウェアによって実現されてもよい。また、各機能部は、ハードウェアによって実現されてもよいし、そうでなくてもよい。例えば、装置が、プロセッサと、制御プログラムが格納されたメモリとを有していてもよい。そして、装置が有する少なくとも一部の機能部の機能が、プロセッサがメモリから制御プログラムを読み出して実行することにより実現されてもよい。
 (リレーの仕組み)
 図2を参照して、リレー20の仕組みについて説明する。リレー20は、コイル21、接点22、入力側端子23、出力側端子24、鉄片25を備える。接点22は、可動接点22aおよび固定接点22bを含む。なお、可動接点22aおよび固定接点22bは、総称して接点22と記載される。
 入力側端子23を介してコイル21に電流が流れると、発生した電磁力によって、鉄片25はコイル21側に引き寄せられる。鉄片25の角度が変わることで、可動接点22aは固定接点22bに接触し、接点22は閉じた状態になる。接点22が閉じることで出力側端子24側の回路に電流が流れ、出力側端子24に接続される機器30は駆動される。
 図2に示すように、AF量は、リレー20の接点22が閉じているときのコイルと鉄片25との距離である。AF量は、例えば、カメラで撮影した画像の解析によって計測したり、レーザ変位計を用いて計測したりすることができる。AF量は、リレー20の接点22の摩耗量を示す指標となり得る。
 コイル21に電流が流れなくなると電磁力が消失して、鉄片25はコイル21から離れる。鉄片25の角度が元に戻ることで、可動接点22aは固定接点22bから離れ、接点22は開いた状態になる。
 なお、以下では、図2に示すリレー20の状態に基づいて、機器30の異常を検知する例について説明するが、リレー20の構成は、図2に示される例に限られない。本実施形態は、機器30の異常に起因して状態が変化し、状態の変化を取得可能なリレー20に対して適用可能である。
 (リレーの状態の例1)
 図3および図4を用いて、リレー20の状態として、接点22の摩耗量の情報およびAF量の情報を取得する場合について説明する。接点22が開閉を繰り返すことにより、可動接点22aおよび固定接点22bは摩耗する。接点22の摩耗量は、接点22が閉じているときのコイルと鉄片との距離(AF量)と相関関係がある。接点22の摩耗が進むと、AF量は小さくなっていく。AF量は、接点22の摩耗量を推測する指標として用いることができる。
 図3を参照して、AF量の変化に基づく機器30の異常の検知について説明する。図3に示すグラフの縦軸はAF量、横軸は接点22の開閉回数である。以下の説明では、横軸は接点22の開閉回数であるものとして説明するが、横軸は接点22の使用時間であってもよい。
 図3において、使用開始時のAF量は、製造時のばらつきによりリレー20ごとに異なるが、各リレー20のAF量は、接点22の開閉回数が増加するにつれて減少する。すなわち、各リレー20の接点22の摩耗量は、接点22の開閉回数が増加するにつれて増加する。
 機器30に異常等がない場合、AF量は概ね線形に減少し、寿命判定基準の値(図3の例では0.1)まで減少すると、接点22は寿命と判定されて交換される。しかし、グラフ300で示されるリレー20については、所定の開閉回数あたりのAF量の減少量は、点P1以降で、点P1の前よりも増加している。AF量の大幅な減少は、リレー20に接続された機器30の故障等によって、回路に負荷がかかっていることが原因と考えられる。
 したがって、異常検知部13は、AF量の変化を監視することで、機器30の異常を予測または検知することができる。異常検知部13は、所定の開閉回数あたりのAF量の減少量が変化した場合、または閾値以上となった場合に、機器30の異常が発生したと予測することができる。
 異常検知部13は、接点22の開閉回数およびAF量を入力データとして学習させた検知モデル121を用いて、機器30の異常を予測または検知するようにしてもよい。開閉回数に対してAF量が機器30の正常時よりも小さい場合には、異常検知部13は、接点22の開閉回数およびAF量を検知モデル121に入力することで、機器30の異常を検知することができる。
 また、検知モデル121は、単位時間あたりまたは所定の開閉回数あたりのAF量の変化量を入力データとして学習させたモデルであってもよい。所定の開閉回数は、例えば10回から100回の間の回数とすることができる。グラフ300のように点P1以降ではAF量の変化量が点P1の前と比較して増加する場合、異常検知部13は、単位時間あたりまたは所定の開閉回数あたりのAF量の変化量を検知モデル121に入力することで、機器30の異常を検知することができる。
 さらに、検知モデル121は、接点22の開閉回数または使用時間に対するAF量の変化を示す時系列データを入力データとして学習させたモデルであってもよい。グラフ300の点PIを含む時系列データを検知モデル121に入力することで、異常検知部13は、機器30の異常を検知することができる。
 ここで、図4を参照して、AF量の推定について説明する。AF量は、コイル21に流れる電流波形から推定することができる。図4に示す電流波形のグラフは、コイル21に電流を流すためのスイッチがオフになり、可動接点22aが元の位置に復帰する際にコイル21に流れる電流(以下、コイル電流とも称される)の変化を示す。図4に示すグラフの縦軸はコイル電流、横軸は時間である。
 コイル21に電流を流すためのスイッチがオフになると、コイル電流は低下する。コイル電流が低下すると、鉄片25がコイル21から離れ、接点22は開いた状態になる。鉄片25がコイル21から離れる際、コイル電流は、一旦上昇しその後減少してくという現象が生じる。接点22の摩耗が進みAF量が減少すると、スイッチをオフにしてから接点22が開いた状態になるまでの時間が長くなる。したがって、AF量は、可動接点22aが元の位置に復帰して接点22が開く際のコイル電流の電流波形から推定することが可能である。
 図4では、グラフ401は、AF量が0.35以上の場合のコイル電流の変化を示す。グラフ402は、AF量が0.25以上0.35未満の場合のコイル電流の変化を示す。グラフ403は、AF量が0.15以上0.25未満の場合のコイル電流の変化を示す。グラフ404は、AF量が0.15未満の場合のコイル電流の変化を示す。このように、AF量が減少するにつれて、可動接点22aが元の位置に復帰するまでの時間が長くなっている。
 コイル電流の電流波形からAF量を推定し、推定したAF量および推定時の接点22の開閉回数を入力データとして学習させた検知モデル121を用いることで、異常検知部13は、機器30の異常を予測または検知することができる。
 また、検知モデル121は、単位時間あたりまたは所定の開閉回数あたりのAF量の変化を入力データとして学習させたモデルであってもよい。さらに、検知モデル121は、推定したAF量の変化を示す時系列データを入力データとして学習させたモデルであってもよい。
 (リレーの状態の例2)
 図5Aおよび図5Bを用いて、リレー20の状態として、リレー20の接点22が開く際にコイル21に流れる電流の電流波形を取得する場合について説明する。図5Aおよび図5Bのグラフで、縦軸はコイル電流、横軸は時間である。図4で説明したように、コイル21に電流を流すためのスイッチがオフになると、コイル電流は低下し、鉄片25がコイル21から離れる際、一旦上昇しその後減少する。
 図5Aは、接点22が開いた状態に復帰するタイミングが正常である場合のコイル電流の電流波形を示す。図5Bは、接点22が開いた状態に復帰するタイミングが遅れた場合のコイル電流の電流波形を示す。図5Bでは、接点22の復帰のタイミングが遅く、コイル電流の上昇も遅くなっている。
 接点22の復帰のタイミングの遅れは、リレー20に接続された機器30の異常に起因する可能性がある。例えば、2次側の回路でショートが発生した場合、またはモータがロックした場合等に過電流になることで、接点22が溶融ないし溶着し、接点22は復帰が遅れる場合がある。
 異常検知部13は、接点22が開いた状態に復帰する際のコイル電流の電流波形を監視することで、機器30の異常を予測または検知することができる。異常検知部13は、例えば、接点22の復帰のタイミング(最初に極小値となった時間)または復帰後にコイル電流が極大値に上昇するまでの時間が、正常時とくらべて遅い場合に、機器30の異常が発生したと予測することができる。
 異常検知装置10は、接点22が開いた状態に復帰する際のコイル電流の電流波形を入力データとして学習させた検知モデル121を用いて、機器30の異常を予測または検知するようにしてもよい。接点22の復帰のタイミングまたは復帰後にコイル電流が極大値に上昇するまでの時間が正常時よりも遅い場合には、異常検知部13は、コイル電流の電流波形を検知モデル121に入力することで、機器30の異常を検知することができる。
 上記の実施形態によれば、異常検知装置10は、リレー20の1次側の回路からリレー20の状態を取得し、機器30の異常を予測または検知することができる。監視対象の機器30に監視用のセンサ等を取り付けなくても、リレー20の1次側で取得した情報を用いて、異常検知装置10は、2次側に接続された機器30を間接的に監視することができる。
 なお、上記の実施形態では、リレー20の状態として、リレーの接点の摩耗量を示す情報、リレーの接点が閉じているときのコイルと鉄片との距離を示す情報、リレーの接点が開く際にコイルに流れる電流の電流波形を例に挙げて説明したが、これらに限られない。リレー20の状態は、リレー20の1次側の回路からは分離された回路に接続された機器30の故障を、間接的に予測または検知することができる情報であればよい。
 また、検知モデル121は、入力データとして、さらにリレー20の状態を取得したときの気温および湿度の少なくともいずれかを学習させたモデルであってもよい。接点22は、気温または湿度の影響を受けて開閉のタイミング等が変化する場合がある。このため、リレー20の状態等に加えて、気温および湿度の少なくともいずれかを学習させることで、検知モデル121は、より精度良く機器30の異常を検知することができる。
 <その他>
 上記の実施形態は、本発明の構成例を例示的に説明するものに過ぎない。本発明は上記の具体的な形態には限定されることはなく、その技術的思想の範囲内で種々の変形が可能である。
 なお、上記の実施形態において、異常検知装置10は、電流波形(電流値)に代えて電圧波形(電圧値)を解析することにより、機器30の異常を検知することも可能である。適切なシャント抵抗を用いれば電流値を電圧値に変換可能であり、電流値を計測することは、電圧値を計測することと等価である。したがって、異常検知装置10は、リレーの状態として、リレーの接点が開く際にコイルにかかる電圧の電圧波形に基づいて、機器30の異常を検知することができる。
 <付記1>
 監視対象の機器(30)に接続され、前記機器(30)が接続される回路の開閉を制御するリレー(20)の状態を取得する取得部(11)と、
 前記リレー(20)の状態または前記リレー(20)の状態の変化に基づいて、前記機器(30)の異常を検知する検知部(13)と、
 前記検知部(13)が検知した前記機器(30)の異常をユーザに通知する通知部(14)と、
を備える異常検知装置(10)。
 <付記2>
 コンピュータが、
 監視対象の機器(30)に接続され、前記機器(30)が接続される回路の開閉を制御するリレー(20)の状態を取得する取得ステップと、
 前記リレー(20)の状態または前記リレー(20)の状態の変化に基づいて、前記機器(30)の異常を検知する検知ステップと、
 前記検知ステップで検知した前記機器(30)の異常をユーザに通知する通知ステップと、
を含む異常検知方法。
10:異常検知装置、11:リレー状態取得部、12:記憶部、121:検知モデル、13:異常検知部、14:通知部、20:リレー、21:コイル、22:接点、22a:可動接点、22b:固定接点、23:入力側端子、24:出力側端子、25:鉄片、30:機器

Claims (10)

  1.  監視対象の機器に接続され、前記機器が接続される回路の開閉を制御するリレーの状態を取得する取得部と、
     前記リレーの状態または前記リレーの状態の変化に基づいて、前記機器の異常を検知する検知部と、
     前記検知部が検知した異常をユーザに通知する通知部と、
    を備える異常検知装置。
  2.  前記検知部は、前記リレーの状態または前記リレーの状態の変化を入力データとし、前記リレーの状態または前記リレーの状態の変化に関連する前記機器の異常を出力データとして機械学習をさせた検知モデルに、前記取得部が取得した前記リレーの状態または前記リレーの状態の変化を入力することにより、前記機器の異常を検知する、
    請求項1に記載の異常検知装置。
  3.  前記検知モデルは、単位時間あたりまたは所定の開閉回数あたりの、前記リレーの接点の摩耗量を示す指標の変化量を入力データとして機械学習をさせた学習済みモデルである、
    請求項2に記載の異常検知装置。
  4.  前記検知モデルは、前記リレーの接点の開閉回数または使用時間に対する、前記リレーの接点の摩耗量を示す指標の変化を示す時系列データを入力データとして機械学習をさせた学習済みモデルである、
    請求項2に記載の異常検知装置。
  5.  前記検知モデルは、さらに、前記機器が故障するまでの期間を前記出力データとして機械学習をさせた学習済みモデルである、
    請求項2から4のいずれか1項に記載の異常検知装置。
  6.  前記検知モデルは、前記リレーの異常を前記出力データとして機械学習をさせた学習済みモデルである、
    請求項2から4のいずれか1項に記載の異常検知装置。
  7.  前記リレーの状態は、前記リレーの接点の摩耗量を示す情報、前記リレーの接点が閉じているときのコイルと鉄片との距離を示す情報、前記リレーの接点が開く際にコイルに流れる電流の電流波形、前記リレーの接点が開く際にコイルにかかる電圧の電圧波形の少なくともいずれかを含む、
    請求項1から6のいずれか1項に記載の異常検知装置。
  8.  前記検知部は、前記リレーの状態または前記リレーの状態の変化に基づいて、前記リレーの異常を検知する、
    請求項1から7のいずれか1項に記載の異常検知装置。
  9.  コンピュータが、
     監視対象の機器に接続され、前記機器が接続される回路の開閉を制御するリレーの状態を取得する取得ステップと、
     前記リレーの状態または前記リレーの状態の変化に基づいて、前記機器の異常を検知する検知ステップと、
     前記検知ステップで検知した異常をユーザに通知する通知ステップと、
    を含む異常検知方法。
  10.  請求項9に記載の異常検知方法の各ステップをコンピュータに実行させるためのプログラム。
PCT/JP2023/001996 2022-03-07 2023-01-24 異常検知装置および異常検知方法 WO2023171156A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380023628.0A CN118786503A (zh) 2022-03-07 2023-01-24 异常检测装置以及异常检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022034825A JP2023130247A (ja) 2022-03-07 2022-03-07 異常検知装置および異常検知方法
JP2022-034825 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023171156A1 true WO2023171156A1 (ja) 2023-09-14

Family

ID=87936713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001996 WO2023171156A1 (ja) 2022-03-07 2023-01-24 異常検知装置および異常検知方法

Country Status (3)

Country Link
JP (1) JP2023130247A (ja)
CN (1) CN118786503A (ja)
WO (1) WO2023171156A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138745U (ja) * 1984-08-10 1986-03-11 三菱電機株式会社 機器保護装置
WO2020137260A1 (ja) * 2018-12-28 2020-07-02 オムロン株式会社 継電器状態予測装置、継電器状態予測システム、継電器状態予測方法、およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138745U (ja) * 1984-08-10 1986-03-11 三菱電機株式会社 機器保護装置
WO2020137260A1 (ja) * 2018-12-28 2020-07-02 オムロン株式会社 継電器状態予測装置、継電器状態予測システム、継電器状態予測方法、およびプログラム

Also Published As

Publication number Publication date
CN118786503A (zh) 2024-10-15
JP2023130247A (ja) 2023-09-20

Similar Documents

Publication Publication Date Title
US7705601B2 (en) Method and apparatus for monitoring wellness of contactors and starters
EP2372736A1 (en) Relay-end-of-service-life forecasting device and method
CN111801758A (zh) 具有触点载体位置感测的接触器
CN109256288B (zh) 电气开关装置和用于检测相关磨损的方法
CN101336463B (zh) 开关的状态监视装置
JP2013045325A (ja) 制御システムの制御装置及びエレベータシステム
CN101523680B (zh) 电气故障限制系统
JP2012199116A (ja) 電磁開閉装置
US10224165B2 (en) Circuit breaker characteristic monitoring device
JP2020501251A (ja) 自動化システムの電気機械コンポーネントをモニタリングするための方法
CA2641422C (en) Vacuum-type electrical switching apparatus
CN111137773B (zh) 用于检测电梯系统的故障的方法和系统
JP6391899B1 (ja) 電磁継電器診断装置
US20140002946A1 (en) Electromagnetic opening/closing device
CN113734925B (zh) 电梯系统中的故障分类
JP3512188B2 (ja) 電力用開閉装置の機能の確実性の監視装置(診断装置)
WO2023171156A1 (ja) 異常検知装置および異常検知方法
KR101132985B1 (ko) 릴레이 감시 시스템
JP2003308751A (ja) 開閉器の動作特性監視装置
JP2009025141A (ja) リレー診断装置及び半導体試験装置
CN113939888B (zh) 预测初级继电器故障的方法
EP3926771B1 (en) Switching equipment diagnostic device
CN115372806A (zh) 用于监控开关设备的方法和装置
KR102533975B1 (ko) IoT 네트워크 및 AI 기반 철도차량용 차단기 모니터링 장치, 방법 및 시스템
JP7553697B2 (ja) リレー出力信号の監視装置、監視システム及び監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766336

Country of ref document: EP

Kind code of ref document: A1