WO2023171041A1 - マグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法 - Google Patents

マグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法 Download PDF

Info

Publication number
WO2023171041A1
WO2023171041A1 PCT/JP2022/042043 JP2022042043W WO2023171041A1 WO 2023171041 A1 WO2023171041 A1 WO 2023171041A1 JP 2022042043 W JP2022042043 W JP 2022042043W WO 2023171041 A1 WO2023171041 A1 WO 2023171041A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
magnesium
aluminum
aluminum alloy
raw material
Prior art date
Application number
PCT/JP2022/042043
Other languages
English (en)
French (fr)
Inventor
毅 山口
主税 川邊
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Publication of WO2023171041A1 publication Critical patent/WO2023171041A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Definitions

  • the present invention relates to a magnesium-lithium-aluminum alloy, a method for producing the same, and a method for producing a molded article made of a magnesium-lithium-aluminum alloy.
  • Magnesium alloy is one of the lightest metals in practical use, and in an effort to further reduce its weight, various lithium-containing magnesium alloys with the addition of lithium, which has a light specific gravity, have been studied and developed.
  • Such lithium-containing magnesium alloys include, for example, magnesium alloys with high lithium content containing 10.5% by mass or more of lithium, and Mg-Li-Al-Zn system containing aluminum and zinc in addition to lithium. alloys (for example, see Patent Document 1), etc. are known.
  • Such lightweight magnesium-lithium alloys (Mg-Li alloys) and magnesium-lithium-aluminum alloys (Mg-Li-Al alloys) contain a large amount of lithium, which has a low specific gravity, and have a low specific gravity. Also from the viewpoint of improving the poor plastic workability of magnesium, which is a hexagonal close-packed crystal (hcp), alloys containing a large amount of lithium and having body-centered cubic (bcc) crystals have been developed.
  • hcp hexagonal close-packed crystal
  • bcc body-centered cubic
  • the Mg-Li alloy forms a simple eutectic phase diagram, and when 5.7% by mass or more of lithium is added to magnesium, the solid solution ⁇ phase of lithium crystallizes together with the solid solution ⁇ phase of magnesium, and the lithium When 8.5% by mass or more is added, a ⁇ phase becomes a single phase.
  • Magnesium has an hcp structure and is therefore generally somewhat inferior in cold workability, whereas lithium has a bcc structure and can be expected to improve its plastic workability through its crystallization.
  • the Young's modulus tends to decrease.
  • the wall must be made thicker to compensate for that. Even if the specific gravity is reduced by adding lithium, increasing the wall thickness will reduce the weight of the metal product. The effects may cancel each other out.
  • the present invention aims to solve the above-mentioned problems of magnesium alloys and to make it possible to provide lightweight magnesium alloys with excellent mechanical properties through an industrially stable process.
  • a magnesium-lithium-aluminum alloy that is an embodiment of the present application contains magnesium, 2 to 6.0% by mass of lithium, and 5 to 10% by mass of aluminum.
  • a method for producing a magnesium-lithium-aluminum alloy which is an embodiment of the present application, comprises a first magnesium-aluminum alloy containing magnesium, 5 to 10% by mass of aluminum, and 0 to 1% by mass of zinc. and a second raw material chip made of a magnesium-lithium alloy containing magnesium and lithium are prepared, and these raw material chips are mixed to obtain the magnesium-lithium-aluminum alloy.
  • a method for manufacturing a magnesium-lithium-aluminum alloy which is another embodiment of the present application, includes magnesium, lithium, and aluminum, and the ratio of the lithium content to the aluminum content (Li/Al) is 8.
  • a third raw material chip made of a smaller magnesium-lithium-aluminum alloy and a fourth raw material chip made of a magnesium alloy that does not contain lithium are prepared, and these raw material chips are mixed to form the above-mentioned magnesium-lithium. - Obtain an aluminum alloy.
  • a method for manufacturing a molded article made of a magnesium-lithium-aluminum alloy which is an embodiment of the present application, is a magnesium-aluminum alloy containing magnesium, 5 to 10% by mass of aluminum, and 0 to 1% by mass of zinc.
  • a first raw material chip and a second raw material chip of a magnesium-lithium alloy containing magnesium and lithium are prepared, and these raw material chips are mixed to form the magnesium-lithium-aluminum alloy.
  • the obtained magnesium-lithium-aluminum alloy is made into a molded article by injection molding.
  • a method for manufacturing a molded article made of a magnesium-lithium-aluminum alloy which is another embodiment of the present application, includes magnesium, lithium, and aluminum, and the ratio of the lithium content to the aluminum content (Li/ A third raw material chip of a magnesium-lithium-aluminum alloy having Al) smaller than 8 and a fourth raw material chip of a magnesium alloy that does not contain lithium are prepared, and these raw material chips are mixed to produce the above-mentioned magnesium. - Obtaining a lithium-aluminum alloy. Furthermore, the obtained magnesium-lithium-aluminum alloy is made into a molded article by injection molding.
  • magnesium-lithium-aluminum alloy and its manufacturing method which is an embodiment of the present application, it is possible to provide a lightweight magnesium alloy with excellent mechanical properties.
  • a molded article made of a magnesium-lithium-aluminum alloy which is an embodiment of the present application, a molded article made of a lightweight magnesium alloy with excellent mechanical properties can be manufactured using an industrially stable process. can be provided.
  • magnesium-lithium-aluminum alloy of the present invention its manufacturing method, and the manufacturing method of a molded article made of the magnesium-lithium-aluminum alloy will be described with reference to one embodiment.
  • a magnesium-lithium-aluminum alloy that is an embodiment of the present invention is a magnesium alloy that contains magnesium (Mg) as a main component and further contains predetermined amounts of lithium (Li) and aluminum (Al).
  • lithium (Li) is a component that has the effect of reducing the weight of a magnesium alloy and improving its plastic workability.
  • the content in the magnesium-lithium-aluminum alloy is determined by mass% (hereinafter also simply referred to as "%"), taking into consideration the formability during injection molding. In this specification, unless otherwise specified, “%" represents mass %), and is characterized in that it is 2 to 6.0%.
  • the lower limit of the lithium content is preferably 4.8% or more. Moreover, it is preferable that the upper limit is 5.8% or less.
  • the ⁇ phase (Li) tends to crystallize.
  • a magnesium-lithium-aluminum alloy is subjected to plastic working such as rolling or extrusion, the presence of a ⁇ phase is preferred in order to improve workability.
  • the ⁇ phase crystallizes when the lithium content exceeds 5.7%, but the presence of other alloy components such as Al and Zn causes the ⁇ phase to crystallize.
  • the phase diagram can change, and in casting processes with fast cooling rates, such as injection molding, perfect equilibrium is not achieved. Therefore, in the composition of this embodiment, even if the content exceeds 5.7%, the ⁇ phase is difficult to crystallize, and this point has actually been confirmed.
  • the ⁇ phase of magnesium-lithium is not only unnecessary, but also tends to stick to the screw in the case of injection molding, clinging to the mold. There is also a risk that this may become a factor that deteriorates productivity, such as making it easier for mold to remain.
  • the lithium content is less than 2%, the weight reduction effect of the magnesium alloy will hardly be obtained.
  • Aluminum (Al) hardly forms a solid solution in the magnesium matrix, but is concentrated at the front of the solidification of magnesium primary crystals, and as a result, the alloy material remains in good condition until a eutectic compound with magnesium or calcium (Ca) is formed. It is a component that acts to obtain good fluidity.
  • the content of aluminum in the alloy is preferably 5 to 10%.
  • Aluminum has the effect of lowering the melting point of the alloy material, but if it is less than 5%, the melting point will not be lowered sufficiently, so it is necessary to raise the melting temperature of the alloy material during alloy melting or casting, which reduces workability. There is a risk.
  • the aluminum content exceeds 10%, intermetallic compounds increase, which tends to increase casting crack susceptibility and deteriorate corrosion resistance. Therefore, it is preferable to contain 5% or more of aluminum from the viewpoint of preventing problems from occurring during casting, etc., and from causing problems in corrosion resistance.
  • Zinc (Zn) is a component that improves strength and is an optional component. Although zinc can improve the castability of the alloy, it reduces creep resistance and increases susceptibility to casting cracking.
  • the content of zinc in the alloy is 1% or less, and it does not need to be included. When containing zinc, the content is preferably 0.35 to 1%.
  • Manganese (Mn) is a component that suppresses deterioration of corrosion resistance by combining with aluminum to form an intermetallic compound and dissolving iron (Fe), which is an impurity element, as a solid solution.
  • Fe iron
  • Manganese is an optional component. When manganese is contained, its content is preferably 0.15 to 0.8%. If it is less than 0.15%, the above effect cannot be obtained sufficiently, and if it exceeds 0.8%, the dissolution yield may deteriorate.
  • the main component of the magnesium-lithium-aluminum alloy in this embodiment is magnesium, and the remainder of the components described above is basically magnesium, but other components may be added to the extent that the effects of the present invention are not impaired. It can be included. Examples of such components include unavoidable impurities that are unavoidably contained during the production of alloys.
  • unavoidable impurities include iron, copper, nickel, and the like. It is preferable that these unavoidable impurities are not substantially contained in the magnesium-lithium-aluminum alloy, and "substantially not contained” herein means that the content of each in the alloy is 0.03% or less of iron. , means 0.25% or less for copper and 0.01% or less for nickel.
  • the magnesium-lithium-aluminum alloy according to the present embodiment is characterized in that each blending amount satisfies the above range, and furthermore, the lithium content and aluminum content are adjusted to have a predetermined ratio. Adjustment is preferred.
  • aluminum is often equal to or higher than lithium in terms of mass %, but in this embodiment, the ⁇ phase derived from lithium is prevented from crystallizing.
  • the predetermined ratio is preferably in the range of 0.5 to 0.9, with the ratio of lithium content to aluminum content (Li/Al) being in the range of 0.5 to 0.85. More preferred.
  • lithium has a small atomic weight
  • Li/Al is 0.5 to 0.9 in mass %
  • Li/Al is approximately 2 in atomic %.
  • an alloy of 4 mass% Li, 8 mass% Al, and 88 mass% Mg becomes 12.83 at.% Li, 6.6 at.% Al, and 80.58 at.% Mg.
  • the number before the element represents the content of that element in the alloy; if the magnesium content is omitted, the balance of the stated elemental content is magnesium).
  • the ⁇ phase of magnesium extends from 100% magnesium to an alloy containing more lithium than aluminum.
  • the alloy composition is adjusted so that as much aluminum and lithium as possible are dissolved in solid solution and the ⁇ phase does not crystallize. This is one way to improve mechanical properties and corrosion resistance.
  • the metal structure in the alloy is formed of ⁇ -Mg and Al-Li intermetallic compound in which Li is dissolved as a solid solution.
  • the ⁇ phase (Mg 17 Al 12 ) and ⁇ phase (Li) can be reduced to almost no content. By reducing the ⁇ phase in this way, it is possible to eliminate the influence on the desired properties (particularly, sticking to the mold in injection molding).
  • the raw material used here it is preferable to use powdered raw material chips.
  • the raw material chips may have a suitable size depending on the manufacturing method thereof, and preferably those that can be easily heated and melted and mixed.
  • As the raw material chips for example, raw material chips with an average particle diameter of 0.5 to 2.5 mm are preferable, and raw material chips with an average particle diameter of 1.0 to 2.0 mm are more preferable.
  • An example of a method for producing this alloy includes, for example, (a1) a first raw material chip made of a magnesium-aluminum alloy containing magnesium, 5 to 10% by mass of aluminum, and 0 to 1% by mass of zinc; A second raw material chip made of a magnesium-lithium based alloy containing magnesium and lithium is prepared, and then (b1) the first raw material chip and the second raw material chip are mixed, and magnesium, 2 to 6.0% A method for obtaining a magnesium-lithium-aluminum alloy containing lithium in a mass % and aluminum in a range of 5 to 10 mass % can be mentioned.
  • (a2) contains magnesium, lithium, and aluminum, and the ratio of the lithium content to the aluminum content (Li/Al) is 8 or more.
  • a third raw material chip made of a small magnesium-lithium-aluminum alloy and a fourth raw material chip made of a magnesium alloy that does not contain lithium are prepared, and then (b2) the third raw material chip and the fourth raw material chip are prepared.
  • a method for obtaining a magnesium-lithium-aluminum alloy containing magnesium, 2 to 6.0% by mass of lithium, and 5 to 10% by mass of aluminum is mentioned.
  • the first to fourth raw material chips described above may be obtained by obtaining commercially available raw material chips or by preparing them to have specific ingredients.
  • This method for manufacturing a molded article is a method in which an alloy material obtained by the above-described alloy manufacturing method is formed into a molded article using a mold by a casting method or the like.
  • various generally known methods can be adopted, including high-pressure casting methods such as injection molding, die casting, squeeze casting, and metal injection molding. It is a material suitable for
  • injection molding is more desirable since it is a magnesium alloy containing flammable lithium, so there is no need to melt the alloy in the atmosphere. In injection molding, it is possible to mold not only in a completely molten state but also in a semi-molten state.
  • the molten alloy (including semi-molten alloy) has high fluidity, so it can be cast with good flow even when forming thin-walled products, and complex shapes that cannot be formed by rolling or extrusion can be formed. Products can be molded in near-net shape, resulting in a high product yield. Moreover, the obtained member has excellent properties.
  • One method is to do so.
  • (a2) contains magnesium, lithium, and aluminum, and the ratio of the lithium content to the aluminum content (Li/Al) is 8.
  • a third raw material chip made of a smaller magnesium-lithium-aluminum alloy and a fourth raw material chip made of a magnesium alloy that does not contain lithium are prepared, and (b2) the third raw material chip and the fourth raw material chip are prepared.
  • a magnesium-lithium-aluminum alloy containing magnesium, 2 to 6.0% by mass of lithium, and 5 to 10% by mass of aluminum is obtained by mixing with raw material chips, and (c2) obtained in step (b2) above.
  • a method of injection molding a magnesium-lithium-aluminum alloy obtained by molding is mentioned.
  • exemplified methods for producing molded products are obtained by adding steps (c1) and (c2) to the above-mentioned method for producing alloys, and in both cases, molded products are produced by injection molding.
  • the injection molding can be performed by a known method, and this method for producing a molded article is characterized in that two types of raw material chips are mixed.
  • two types of raw material chips either separate the two types of raw material chips in the desired mass ratio in advance and mix them in one container, or use two hoppers for each raw material chip.
  • a predetermined amount of raw material chips may be supplied from each hopper so as to have a predetermined composition.
  • high lithium-containing magnesium alloys such as Mg-14%Li-1%Al (LA141) have a narrow half-melting temperature range, and when molded by injection molding, they may melt rapidly during transportation with a screw. This may cause the molding to become unstable.
  • the semi-melting temperature range becomes wider and the stability of forming can be improved.
  • %Al-1%Zn LAZ771
  • AZ91D Mg-9%Al-1%Zn
  • the molded product obtained by the molded product manufacturing method of this embodiment can be used as a member that is lightweight, has high strength, and has excellent corrosion resistance in various applications. Therefore, it is expected that the amount of use will increase in automobile parts and various portable devices that require these characteristics. Moreover, these magnesium alloy products are more recyclable than plastic products, and can also contribute to preserving the global environment.
  • magnesium-lithium-aluminum alloy according to the present embodiment has been described above, but the magnesium-lithium-aluminum alloy obtained in this way also has the following advantages. .
  • Lithium is extremely expensive, costing 6,000 to 10,000 yen/kg, more than 10 times as expensive as raw materials for magnesium and aluminum, which cost around 200 to 300 yen/kg. Therefore, the price of the alloy increases as it contains more lithium, but according to the magnesium-lithium-aluminum alloy of the above embodiment, the amount of lithium can be suppressed, and the manufacturing cost can be suppressed.
  • Magnesium has a very base natural potential and has poor corrosion resistance compared to iron and aluminum. Since lithium has a lower potential than magnesium and is an active metal, increasing the addition of lithium further deteriorates the corrosion resistance of the magnesium alloy. According to the magnesium-lithium-aluminum alloy of the above embodiment, the amount of lithium can be suppressed and corrosion resistance can be improved.
  • magnesium is an active metal, it burns with a violent flash when dissolved in the atmosphere. Additionally, if fine powder generated during machining is not properly disposed of and ignites in the atmosphere, there is a possibility of a dust explosion. Lithium is a more active metal than magnesium, and adding a large amount of lithium to magnesium makes it even more combustible and more dangerous. According to the magnesium-lithium-aluminum alloy of the above embodiment, the amount of lithium can be suppressed and the flammability of the magnesium-lithium-aluminum alloy can be improved.
  • Mg-Li alloys have a very small temperature difference between the solidus line and liquidus line in the phase diagram, and the solid-liquid coexistence temperature range is very narrow, so when heated, they melt all at once in a narrow temperature range. . Therefore, in injection molding in which the material is melted while being transported by a screw, the melting behavior is unstable and injection molding is difficult. Further, since magnesium alloy chips containing about 5.7% by mass or more of lithium have a beta phase with a bcc structure, they easily flow plastically, and when transported by a rotating screw, they stick to the screw and are difficult to form. Because the solid-liquid coexistence temperature range is narrow, solidification cracking is also likely to occur in the casting method. In this regard, according to the embodiment described above, the solid-liquid coexistence temperature range can be widened, and injection moldability can be improved.
  • magnesium-lithium-aluminum alloy of the present embodiment its manufacturing method, and the manufacturing method of a molded article made from the alloy will be described in detail using Examples and Comparative Examples.
  • Examples 1-5 Comparative Examples 1-2
  • LAZ771 Mg-7%Li-7%Al-1%Zn; manufactured by Anli Materials Technology Co., Ltd. (Taiwan)
  • AZ91D Mg-9%Al-0.7%Zn; (manufactured by Chuo Kosan Co., Ltd.) was prepared.
  • LAZ771 and AZ91D which are raw material chips, are supplied to a hopper at the predetermined mixing ratio shown in Table 1, and injection molded into a mold (mold temperature setting: 473K) to produce magnesium as a molded body.
  • Table 1 shows the element content in the alloy of the obtained compact.
  • dumbbell-shaped No. 13B test pieces in accordance with JIS were cut out and used as samples.
  • the obtained sample was subjected to a tensile test using an INSTRON 5982 type tensile tester at a test speed of 10 MPa/s (the test speed after proof stress was 11.4 mm/min).
  • values were measured at three locations on the sample's operation side, center, and non-operation side, and the values of each measurement location and their average values were calculated for tensile strength, elongation at break, yield strength, and Young's modulus. did.
  • the results are summarized in tables and figures.
  • the tensile strength is shown in Table 2 and FIG. 1, the elongation at break is shown in Table 3 and FIG. 2, the yield strength is shown in Table 4 and FIG. 3, and the Young's modulus is shown in Table 5 and FIG. 4.
  • corrosion resistance A 5% saline solution was prepared and sprayed onto the sample and left at 35° C. for 24 hours. The mass before and after the test was measured, and the mass change rate (%) was calculated. The test results are shown in Table 6 and FIG. 5. Normally, corrosion resistance is said to be better as the corrosion loss decreases, but in this example, due to safety concerns, corrosion products were not removed using hydrofluoric acid. The larger the increase in weight is, the worse the corrosion resistance is, and the smaller the increase in weight is, the better the corrosion resistance is.
  • XRD X-ray diffraction
  • the magnesium-lithium-aluminum alloy of this embodiment has 40% LAZ771 (Mg-2.9%Li-8.1%Al-0) compared to the alloy of AZ91D alone (0% LAZ771). .8% Zn), the strength was greatly improved, and almost the same strength as 50% LAZ771, 60% LAZ771, 70% LAZ771, and 80% LAZ771 was maintained.
  • LAZ771 alone (100% LAZ771) tends to have a slight decrease in strength, and considering the known results of molding a mixture of LA141 (Mg-14%Li-1%Al), which has a high lithium content, and AZ91D. It was found that the strength tends to increase when the lithium content is about 2 to 6%. The same tendency was observed for 0.2% yield strength.
  • the Young's modulus which is important when designing rigidity, increases from an alloy of AZ91D alone (0% LAZ771) to 40% LAZ771, and gradually increases to 80% LAZ771. Further, even if LAZ771 was increased further, the Young's modulus did not tend to increase. Normally, the Young's modulus of metals does not change much depending on alloy components, and the only way to increase rigidity is to create a metal matrix composite material by mixing inorganic particles or fibers, but composite materials are difficult to manufacture and are expensive. It is expensive and the quality is not stable.
  • the molded article of this embodiment contained an ⁇ phase (Mg) and an intermetallic compound phase, AlLi. From this, it is clear that AlLi greatly contributes to the improvement of Young's modulus, and it can be said that AlLi is characterized by having an ⁇ phase and an AlLi phase.
  • lithium-containing magnesium alloys have poor corrosion resistance, but when we conducted a salt spray test on the molded products obtained, the corrosion resistance of 100% LAZ771 was still poor, but that of 60-80% LAZ771 When mixed with AZ91D (0% LAZ771), the corrosion resistance was better than that of AZ91D (0% LAZ771). Although the cause of this is unknown, it is thought that preventing the ⁇ phase (Li) from crystallizing and crystallizing the AlLi phase are also effective in improving corrosion resistance.
  • lithium-containing magnesium alloys with an appropriate amount of lithium, no ⁇ phase, and an AlLi phase instead have a lower specific gravity and improved mechanical properties and corrosion resistance than magnesium alloys that do not contain lithium. It has become clear that this material is ideal for reducing the weight of parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

機械的特性に優れた軽量なマグネシウム合金を、工業的に安定したプロセスで提供可能とする。 マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金。所定の元素を含有する2種類の原料チップを用意し、これを混合することで、上記マグネシウム-リチウム-アルミニウム系合金の製造方法、および該製造方法により得られたマグネシウム-リチウム-アルミニウム系合金を、射出成形する成形品の製造方法。

Description

マグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法
 この発明は、マグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法に関する。
 マグネシウム合金は、実用される金属中で最も軽い材料の1つであり、さらに軽量化しようと、比重の軽いリチウムを添加したリチウム含有マグネシウム合金が種々検討され開発されてきている。
 このようなリチウム含有マグネシウム合金としては、例えば、リチウムを10.5質量%以上含んだ、リチウム含有量の高いマグネシウム合金や、リチウムに加え、アルミニウムおよび亜鉛を含んだMg-Li-Al-Zn系合金(例えば、特許文献1参照)、などが知られている。
特許第6408037号公報
 このような軽量マグネシウム-リチウム系合金(Mg-Li系合金)、マグネシウム-リチウム-アルミニウム系合金(Mg-Li-Al系合金)では、比重の軽いリチウムを多く含有することによる低比重化とともに、最密六方晶(hcp)であるマグネシウムの塑性加工性の悪さを改善する観点からも、リチウムを多く含み、体心立方晶(bcc)を晶出させた合金が開発されてきた。
 すなわち、Mg-Li系合金は単純な共晶型の状態図を作り、マグネシウムにリチウムを約5.7質量%以上添加するとマグネシウムの固溶体α相と共にリチウムの固溶体β相が晶出し、リチウムを約8.5質量%以上添加するとβ相単相となる。マグネシウムはhcp構造を有するため一般に冷間加工性に幾分劣っているが、リチウムはbcc構造であるためその晶出により塑性加工能の向上が期待できる。
 しかしながら、リチウム含有量が増えるにしたがって、ヤング率が低下する傾向がある。金属製品において剛性設計がなされる場合、ヤング率が低ければその分だけ肉厚にする必要があり、リチウムを添加したことで比重が軽くなったとしても、肉厚の増加により金属製品の軽量化効果が相殺される可能性がある。
 本発明は、上記のようなマグネシウム合金が有する課題を解決し、機械的特性に優れた軽量なマグネシウム合金を、工業的に安定したプロセスで提供可能とすることを目的としている。
 本願の一実施の形態であるマグネシウム-リチウム-アルミニウム系合金は、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含む。
 本願の一実施の形態であるマグネシウム-リチウム-アルミニウム系合金の製造方法は、マグネシウム、5~10質量%のアルミニウム、および0~1質量%の亜鉛、を含むマグネシウム-アルミニウム系合金からなる第1の原料チップと、マグネシウム、およびリチウムを含むマグネシウム-リチウム系合金からなる第2の原料チップとを用意し、これら原料チップを混合して、上記マグネシウム-リチウム-アルミニウム系合金を得る。
 本願の他の実施の形態であるマグネシウム-リチウム-アルミニウム系合金の製造方法は、マグネシウムと、リチウムと、アルミニウムとを含み、リチウムの含有量とアルミニウムの含有量の比(Li/Al)が8より小であるマグネシウム-リチウム-アルミニウム系合金からなる第3の原料チップと、リチウムを含まないマグネシウム合金からなる第4の原料チップとを用意し、これら原料チップを混合して、上記マグネシウム-リチウム-アルミニウム系合金を得る。
 本願の一実施の形態であるマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法は、マグネシウム、5~10質量%のアルミニウム、および0~1質量%の亜鉛、を含むマグネシウム-アルミニウム系合金の第1の原料チップと、マグネシウム、およびリチウムを含むマグネシウム-リチウム系合金の第2の原料チップとを用意し、これら原料チップを混合して、上記マグネシウム-リチウム-アルミニウム系合金とする。さらに、得られたマグネシウム-リチウム-アルミニウム系合金を、射出成形することにより成形品とする。
 本願の他の実施の形態であるマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法は、マグネシウムと、リチウムと、アルミニウムとを含み、リチウムの含有量とアルミニウムの含有量の比(Li/Al)が8より小であるマグネシウム-リチウム-アルミニウム系合金の第3の原料チップと、リチウムを含まないマグネシウム合金の第4の原料チップとを用意し、これら原料チップを混合して、上記マグネシウム-リチウム-アルミニウム系合金を得る。さらに、得られたマグネシウム-リチウム-アルミニウム系合金を、射出成形することにより成形品とする。
 本願の一実施の形態であるマグネシウム-リチウム-アルミニウム系合金およびその製造方法によれば、機械的特性に優れた軽量なマグネシウム合金を提供できる。
 また、本願の一実施の形態であるマグネシウム-リチウム-アルミニウム系合金から成る成形品の製造方法によれば、機械的特性に優れた軽量なマグネシウム合金からなる成形品を、工業的に安定したプロセスで提供できる。
実施例および比較例における引張強さのデータを示したグラフである。 実施例および比較例における破断伸びのデータを示したグラフである。 実施例および比較例における耐力のデータを示したグラフである。 実施例および比較例におけるヤング率のデータを示したグラフである。 実施例および比較例における耐食性のデータを示したグラフである。 実施例および比較例におけるXRDによる回折パターンを示したグラフである。
 以下、本発明のマグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法について、一実施の形態を参照しながら説明する。
 [マグネシウム-リチウム-アルミニウム系合金]
 本発明の一実施形態であるマグネシウム-リチウム-アルミニウム系合金は、マグネシウム(Mg)を主成分として含有し、さらに、リチウム(Li)およびアルミニウム(Al)を所定量含有するマグネシウム合金である。
 (リチウム)
 リチウム(Li)は、公知のように、マグネシウム合金の軽量化を図り、その塑性加工性を改善する作用を有する成分である。本実施の形態においては、上記作用を確保しつつ、射出成形時の成形性等も考慮し、そのマグネシウム-リチウム-アルミニウム系合金中における含有量を、質量%(以下、単に「%」とも表す。本明細書において、特に説明をしていない場合、「%」は質量%を表す。)で、2~6.0%とする点に特徴を有する。このリチウムの含有量は、その下限値を4.8%以上とすることが好ましい。また、その上限値を5.8%以下とすることが好ましい。
 リチウムの含有量が、6.0%を超えるとβ相(Li)が晶出しやすくなると考えられる。マグネシウム-リチウム-アルミニウム系合金に対し、圧延、押出などの塑性加工を行うにあたっては、加工性を向上させるためにβ相の存在が好ましいものである。なお、単純なMg-Li合金の平衡状態図ではリチウムの含有量が5.7%を超えるとβ相が晶出するとされているが、Al、Znなどの他の合金成分が含まれることで状態図は変化しえるし、射出成形のような冷却速度の速い鋳造方法では、完全な平衡状態にならない。そのため、本実施形態の組成では、5.7%を超えてもβ相が晶出しにくくなっており、この点は実際に確認できている。
 一方、鋳造法による加工に適用することを想定した場合、その加工時に、マグネシウム-リチウムのβ相は必要ないばかりか、射出成形の場合にはスクリュにこびりつき易くなってしまい、金型に抱き付いて型残りしやすくなるなど生産性を悪化させる要因ともなるおそれがある。
 また、リチウムが2%よりも少ないと、マグネシウム合金に対する軽量化の効果がほとんど得られない。十分に軽量化を図るために、リチウムは4%以上含有させることが好ましい。
 (アルミニウム)
 アルミニウム(Al)は、マグネシウム母相にはほとんど固溶せず、マグネシウム初晶の凝固前面に濃縮される結果、マグネシウムあるいはカルシウム(Ca)との共晶化合物が形成されるまで、合金材料の良好な流動性を得られるように作用する成分である。
 アルミニウムの含有量は、合金中に5~10%であることが好ましい。アルミニウムは合金材料の融点を下げる作用もあるが、5%未満では融点が十分に下がらないため、合金溶製時や鋳造時の合金材料の溶解温度を高くする必要があり、作業性が低下するおそれがある。また、アルミニウムの含有量が10%超となると、金属間化合物が増加するため、鋳造割れ感受性が増加し、かつ耐食性が劣化する傾向がある。したがって、鋳造時などに不具合が生じにくく、耐食性も問題が生じないようにする観点から、アルミニウムを5%以上含有させることが好ましい。
 (亜鉛)
 亜鉛(Zn)は、強度を向上させる成分であり任意成分である。亜鉛は、合金の鋳造性を改善させることができるが、クリープ抵抗性を低下させる上、鋳造割れ感受性が高くなってしまう。亜鉛の含有量は、合金中に1%以下とし、含んでいなくても構わない。亜鉛を含有させる場合には、その含有量は0.35~1%が好ましい。
 (マンガン)
 マンガン(Mn)は、アルミニウムと化合して金属間化合物を形成し、不純物元素である鉄(Fe)を固溶することにより、耐食性の劣化を抑制する成分である。マンガンは任意成分である。マンガンを含有させる場合、その含有量は、0.15~0.8%が好ましい。0.15%未満では上記作用が充分に得られず、0.8%超では溶解歩留まりが劣化してしまうおそれがある。
 (その他)
 本実施の形態におけるマグネシウム-リチウム-アルミニウム系合金は、マグネシウムが主成分であり、上記説明した成分の残部は基本的にマグネシウムであるが、本発明の効果を阻害しない範囲で、その他の成分を含有させることができる。このような成分としては、例えば、合金の製造にあたって、不可避的に含有する不可避不純物が例示できる。
 このような不可避不純物としては、具体的には、鉄、銅、ニッケル等が挙げられる。この不可避的不純物は、マグネシウム-リチウム-アルミニウム系合金中に実質的に含有しないことが好ましく、ここで「実質的に含有しない」とは、合金中の含有量がそれぞれ鉄で0.03%以下、銅で0.25%以下、ニッケルで0.01%以下であることを意味する。
 (リチウムとアルミニウムの含有量比)
 また、本実施の形態におけるマグネシウム-リチウム-アルミニウム系合金は、各配合量が上記範囲を満たすことを特徴としているが、さらに、リチウムの含有量とアルミニウムの含有量を所定の比となるように調整することが好ましい。
 これまで公知のマグネシウム-リチウム-アルミニウム合金は、質量%で、アルミニウムがリチウムと同等か、それ以上の合金であることが多いが、本実施の形態においてはリチウム由来のβ相を晶出させないように、リチウムの含有量を減らしつつ、かつ、機械的特性や耐食性を向上させるため必要量のアルミニウムを含有させることが好ましい。すなわち、リチウムの含有量とアルミニウムの含有量とを、所定の関係にすることで、軽量化を図りつつ、成形性を改善し、さらに、機械的特性や耐食性をも確保した合金とできる。
 上記所定の比としては、具体的には、リチウムの含有量とアルミニウムとの含有量の比(Li/Al)が0.5~0.9の範囲が好ましく、0.5~0.85がより好ましい。
 なお、リチウムは原子量が小さいため、質量%でLi/Alが0.5~0.9は、原子%でLi/Alが2程度になる。例えば、4質量%Li-8質量%Al-88質量%Mgの合金は、12.83原子%Li-6.6原子%Al-80.58原子%Mgとなる(ここで、合金組成の表記について、元素の前の数値が合金中におけるその元素の含有量を表し、マグネシウムの含有量が省略されている場合は、記載されている元素含有量の残部がマグネシウムである)。この3成分を含む材料について、公知文献の三元状態図によれば、マグネシウム100%のところからアルミニウムに対しリチウムを多く含んだ合金範囲に、マグネシウムのα相が広がっている。すなわち、このα相が広がっている範囲で、リチウムやアルミニウムを多く含有させ、射出成形で急冷させることで、アルミニウムやリチウムをできるだけ固溶させて、β相を晶出させない方向に合金組成を調整することができ、機械的性質や耐食性を向上させる手段の1つである。
 具体的には、実施の形態においては、合金中の金属組織として、Liが固溶したα-MgとAl-Li金属間化合物で形成されている。その一方、β相(Mg17Al12)およびβ相(Li)を低減し、ほぼ有していないものとできる。このようにβ相を低減することで、求める特性への影響(特に、射出成形における成形型へのこびりつき)を排除することができる。
 [マグネシウム-リチウム-アルミニウム系合金の製造方法]
 本実施の形態のマグネシウム-リチウム-アルミニウム系合金の製造方法は、上記説明した配合となるように、マグネシウム、リチウム、アルミニウムおよびその他の成分となる原料を用意し、これら原料を公知の手法により混合することにより実施できる。
 ここで用いる原料としては、粉末状の原料チップを用いることが好ましい。原料チップとしては、その製造方法に応じて適した大きさの原料チップとすればよく、原料チップを加熱溶融して、混合することを簡便に行うことができるものが好ましい。原料チップとしては、例えば、平均粒子径が0.5~2.5mmの原料チップが好ましく、1.0~2.0mmの原料チップがより好ましい。
 この合金の製造方法の一例としては、例えば、(a1)マグネシウム、5~10質量%のアルミニウム、および0~1質量%の亜鉛、を含むマグネシウム-アルミニウム系合金からなる第1の原料チップと、マグネシウムおよびリチウムを含むマグネシウム-リチウム系合金からなる第2の原料チップとを用意し、次いで、(b1)第1の原料チップと第2の原料チップとを混合し、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金を得る方法が挙げられる。
 また、この合金の製造方法の他の例としては、例えば、(a2)マグネシウムと、リチウムと、アルミニウムとを含み、前記リチウムの含有量とアルミニウムの含有量の比(Li/Al)が8より小であるマグネシウム-リチウム-アルミニウム系合金からなる第3の原料チップと、リチウムを含まないマグネシウム合金からなる第4の原料チップとを用意し、次いで、(b2)第3の原料チップと第4の原料チップとを混合し、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金を得る方法が挙げられる。
 上記した第1~第4の原料チップは、市販の原料チップを入手したり、特定の配合成分となるように調製したり、すればよい。
 [マグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法]
 この成形品の製造方法は、上記の合金の製造方法により得られる合金材料を、鋳造法等により成形型を用いて成形品とする方法である。ここで行う鋳造方法としては、一般に知られている各種方法を採用することができ、射出成形、ダイカスト、スクイーズキャスト、金属射出成形法などの高圧鋳造法が挙げられ、上記合金材料は高圧鋳造法に好適な材料である。これら鋳造法での条件は特に限定されるものではないが、発火性のあるリチウムを含有するマグネシウム合金であるため大気中で合金を溶解する必要のない、射出成形がより望ましい。射出成形では、完全溶融以外に半溶融状態での成形も可能である。
 上記の高圧鋳造法では、溶解した合金(半溶融の場合も含む)が高い流動性を有するので、薄肉の製品に成形する際にも湯流れよく鋳造でき、圧延や押出では成形できない複雑形状の製品をニアネットシェイプにて成形することができ、高い製品歩留りが得られる。また得られた部材は、優れた特性が確保される。
 以下、射出成形を用いた場合を例に、詳細に説明する。
 この成形品の製造方法の一例としては、例えば、(a1)マグネシウム、5~10質量%のアルミニウム、および0~1質量%の亜鉛、を含むマグネシウム-アルミニウム系合金からなる第1の原料チップと、マグネシウムおよびリチウムを含むマグネシウム-リチウム系合金からなる第2の原料チップとを用意し、(b1)第1の原料チップと第2の原料チップとを混合し、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金を得て、さらに、(c1)上記(b1)工程で得られたマグネシウム-リチウム-アルミニウム系合金を、射出成形する方法が挙げられる。
 また、この成形品の製造方法の他の例としては、例えば、(a2)マグネシウムと、リチウムと、アルミニウムとを含み、前記リチウムの含有量とアルミニウムの含有量の比(Li/Al)が8より小であるマグネシウム-リチウム-アルミニウム系合金からなる第3の原料チップと、リチウムを含まないマグネシウム合金からなる第4の原料チップとを用意し、(b2)第3の原料チップと第4の原料チップとを混合し、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金を得て、(c2)上記(b2)工程で得られたマグネシウム-リチウム-アルミニウム系合金を、射出成形する方法が挙げられる。
 これら例示した成形品の製造方法は、それぞれ、上記した合金の製造方法において、(c1)工程、(c2)工程が追加されたものであり、いずれも射出成形により成形品とするものである。ここで、射出成形は公知の手法により実施でき、この成形品の製造方法においては、2種類の原料チップを混合している点に特徴を有する。2種類の原料チップを用いる場合、予め2種類の原料チップを目的とする質量比で取り分けて、一つの容器内で混合しておくか、原料チップを投入するホッパーを、原料チップごとに2つ用意し、各ホッパーから所定の配合となるように、所定量の原料チップを供給するようにすればよい。なお,一つあるいは複数のホッパーを使用して2種類の原料チップを投入する場合には、それぞれの原料チップを供給するフィーダーを用意し、目的とする混合質量割合になるよう、それぞれの原料チップを供給するようにする。
 射出成形により成形品を得る場合、ダイカストのような溶解炉を使用しないため、燃えやすいリチウム含有マグネシウム合金が燃える危険性を極めて小さくできる。
 また、例えば、Mg-14%Li-1%Al(LA141)など高リチウム含有マグネシウム合金は、半溶融温度範囲が狭く、射出成形により成形する場合には、スクリュで輸送する途中で急激に溶融してしまい、成形が安定しないことがある。これに対して、リチウム量を抑えることで、半溶融温度範囲が広くなり、成形の安定性を向上できること、さらに、例えば、成形安定性が悪いリチウム含有マグネシウム合金であるMg-7%Li-7%Al-1%Zn(LAZ771)を原料とする場合でも、一般的に使用されており成形が安定するAZ91D(Mg-9%Al-1%Zn)のチップと混合して射出成形することで、成形安定性が改善し、かつ、混合比の調整が容易で、簡易な操作で所望の合金成分からなる成形品を得られる。
 本実施の形態の成形品の製造方法により得られる成形品は、各種用途において軽量、高強度で、耐食性に優れた部材として使用することができる。したがって、これら特性が要求される自動車用部品や各種ポータブル機器への使用量の拡大が期待できる。しかも、これらのマグネシウム合金製品は、プラスチック製品に比べてリサイクル可能であり、地球環境の保全にも貢献できる。
 以上、本実施の形態のマグネシウム-リチウム-アルミニウム系合金、その製造方法および成形品の製造方法について説明したが、このように得られるマグネシウム-リチウム-アルミニウム系合金には次のような利点もある。
 (1)リチウムは非常に価格が高く、マグネシウムやアルミニウムの原料が200~300円/kg程度なのに対し6,000~10,000円/kgと10倍以上の値段がする。そのため、リチウムを多く含むほど合金価格は高くなるが、上記実施の形態のマグネシウム-リチウム-アルミニウム系合金によれば、リチウム量を抑えることができ、製造コストを抑制できる。
 (2)マグネシウムは自然電位が非常に卑であり、鉄やアルミニウムに比べて耐食性が悪い。リチウムはマグネシウムよりもさらに電位が卑であり、活性な金属であるため、リチウムの添加を増やすことにより、マグネシウム合金の耐食性は更に悪化する。上記実施の形態のマグネシウム-リチウム-アルミニウム系合金によれば、リチウム量を抑えることができ、耐食性を改善できる。
 (3)マグネシウムは活性な金属であるため、大気中で溶解すると激しい閃光とともに燃焼する。また、機械加工などで発生した微粉を適正に処理せず、大気中で着火すると粉塵爆発の可能性もある。リチウムはマグネシウムよりも更に活性な金属であり、マグネシウムに多量のリチウムを添加することで、更に燃焼しやすくなり危険性が高まる。上記実施の形態のマグネシウム-リチウム-アルミニウム系合金によれば、リチウム量を抑えることができ、マグネシウム-リチウム-アルミニウム系合金の燃焼性を改善できる。
 (4)Mg-Li系合金は、状態図における固相線と液相線の温度差が非常に小さく、固液共存温度範囲が非常に狭いため、加熱していくと狭い温度幅で一気に溶ける。そのため、スクリュで輸送しながら溶融させる射出成形では溶融挙動が安定せず射出成形しにくい。またリチウムを約5.7質量%以上含んだマグネシウム合金チップはbcc構造のβ相を有するため塑性流動しやすく、回転するスクリュで輸送するとスクリュにこびりつくなどして成形しにくい。固液共存温度範囲が狭いため、鋳造法では凝固割れも発生しやすい。この点、上記実施の形態によれば、固液共存温度範囲を広くでき、射出成型性が改善できる。
 以下に、本実施の形態のマグネシウム-リチウム-アルミニウム系合金、その製造方法およびその合金からなる成形品の製造方法を、実施例および比較例を用いて詳細に説明する。
 (実施例1~5、比較例1~2)
 原料チップとして、LAZ771(Mg-7%Li-7%Al-1%Zn;安立材料科技股▲ふん▼有限公司(台湾)製)と、AZ91D(Mg-9%Al-0.7%Zn;中央工産株式会社製)を用意した。
 株式会社日本製鋼所製のマグネシウム合金用射出成形機(商品名:JLM280MGIIe、型締め力:2740kN、シリンダ内径:51mm)を用い、シリンダ温度設定を、チップが供給されるホッパーを723K、先端の溶融部を873Kとした。
 原料チップである、LAZ771とAZ91Dを、表1に記載した所定の混合割合となるようにホッパーに供給して、金型に射出成形を行い(金型温度設定:473K)、成形体として、マグネシウム-リチウム-アルミニウム系合金からなる幅100mm、長さ200mm、厚さ2mmの平板を得た。得られた成形体の合金中の元素含有量について表1に示した。
Figure JPOXMLDOC01-appb-T000001
 [特性]
 上記得られた合金について、引張試験(引張強さ、破断伸び、耐力、ヤング率)、XRD測定を以下の通り行った。
 (引張試験)
 各例で得られた板状の成形品において、JISに準拠したダンベル形状の13B号試験片を切出し、サンプルとした。
 得られたサンプルに対し、INSTRON5982型引張試験機を用い、試験速度:10MPa/sとして引張試験を行った(耐力以降の試験速度は、11.4mm/minとした)。この試験において、サンプルの操作側、中央部、反操作側の3カ所について、それぞれ値を測定し、引張強さ、破断伸び、耐力およびヤング率について、各測定箇所およびその平均値の値を算出した。それらの結果を表および図にまとめて示した。なお、引張強さは表2および図1、破断伸びは表3および図2、耐力は表4および図3、ヤング率は表5および図4にそれぞれ示している。
 (耐食性)
 5%の塩水を用意し、これを上記サンプルに噴霧して、35℃で24時間放置した。試験前後の質量をそれぞれ測定し、その質量変化の割合(%)を算出した。その試験結果を表6および図5に示した。通常、耐食性は腐食減量が少ないほど良いとされるが、本実施例では安全上の問題からフッ酸を使用した腐食生成物の除去は実施しておらず、腐食生成物が多いほど、すなわち腐食増量が大きいほど耐食性が悪く、腐食増量が少ないほど耐食性が良いことを示している。
 (XRD)
 各例で得られた成形品が含有する結晶について、X線回折法によって測定した。X線回折装置としては、多目的X線回折装置Empyrean(スペクトリス株式会社製、商品名)を用い、ターゲット:Co、管電圧:45kV、管電流:40mAにて測定を行った。得られた回折パターンを、図6に示した。
 なお、図6において、実施例1~5、比較例1~2の結果をまとめて示した。また、各ピークに対応する結晶については、ピークの上方に記号を付し、各記号が示す結晶についてはグラフの右上にまとめて示している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記結果から、本実施の形態のマグネシウム-リチウム-アルミニウム系合金は、AZ91D単独(0%LAZ771)の合金に対して、40%LAZ771(Mg-2.9%Li-8.1%Al-0.8%Zn)とすることで大きく強度が改善され、50%LAZ771、60%LAZ771、70%LAZ771、80%LAZ771とほぼ同じ強度を維持したものであった。しかし、LAZ771単独(100%LAZ771)で若干強度が低下する傾向があり、リチウム含有量が多いLA141(Mg-14%Li-1%Al)とAZ91Dを混合して成形した公知の結果を考慮すると、リチウム含有量が2から6%程度で強度が高くなる傾向が分かった。これは0.2%耐力でも同じ傾向であった。
 さらに剛性設計する場合に重要となるヤング率は、AZ91D単独(0%LAZ771)の合金から40%LAZ771で増加し、80%LAZ771まで徐々に増加することが分かった。また、それ以上LAZ771を増やしてもヤング率は増加しない傾向があった。通常、金属のヤング率は合金成分によってあまり変化せず、剛性を上げる場合には、無機粒子や繊維などを混合させた金属基複合材料を作製するしかないが、複合材料は製造が難しく、コストも高く、品質も安定しない。一方、LAZ771を所定量添加することでヤング率が増加することは新たな知見であり、本発明者らはこの知見に基づいて、本実施の形態により、安定した剛性の得られるマグネシウム-リチウム-アルミニウム系合金を見出すことができた。
 また、成形品のXRD分析結果から、本実施の形態における成形品ではα相(Mg)と金属間化合物相であるAlLiが存在することが分かった。このことからAlLiがヤング率の向上に大きく寄与していることが明らかとなり、α相とAlLi相を有する点に特徴を有すると言うこともできる。
 なお、特許文献1に記載されている100%LAZ771の場合には、XRD分析でα相以外にβ相が検出されている。Al量が少なく、5.7%以上のリチウム添加された合金においては、リチウム量を増やすことでAlLiではなくβ相(Li)を生成させる結果となり、ヤング率がそれ以上改善されないと考えられる。そのため、β相を生成させずにAlLiを生成させるような成分調整が機械的性質の向上に重要であることが分かった。
 また、通常、リチウム含有マグネシウム合金は耐食性が悪いと言われているが、得られた成形品に対し塩水噴霧試験を実施したところ、100%LAZ771の耐食性はやはり悪かったが、60~80%LAZ771を混合した場合には、AZ91D(0%LAZ771)よりも耐食性が良くなった。この原因は不明だが、β相(Li)を晶出させないことと、AlLi相を晶出させることが耐食性の改善にも効果的であると考えられる。
 以上のように、β相が晶出するほどリチウムを添加した場合には、比重が軽くなるものの、耐食性が悪化したり、機械的性質の向上が期待できなかったりする。これに対し、適量のリチウム量に抑え、β相が存在せず、代わりにAlLi相を有するリチウム含有マグネシウム合金は、リチウムを含有しないマグネシウム合金と比べ、比重が軽く、機械的性質と耐食性が改善されることが明らかとなり、部品の軽量化用途に最適な材料であると考えられる。
 以上、本発明者らによってなされた発明を実施の形態および実施例に基づき具体的に説明したが、本発明は上記実施の形態または実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。

Claims (9)

  1.  以下を含む、マグネシウム-リチウム-アルミニウム系合金:
     マグネシウム、
     2~6.0質量%のリチウム、および
     5~10質量%のアルミニウム。
  2.  請求項1記載のマグネシウム-リチウム-アルミニウム系合金において、
     さらに、0.35~1質量%の亜鉛、および0.15~0.8質量%のマンガンを含む、マグネシウム-リチウム-アルミニウム系合金。
  3.  請求項1記載のマグネシウム-リチウム-アルミニウム系合金において、
     前記リチウムの含有量と前記アルミニウムとの含有量の比(Li/Al)が0.5~0.9である、マグネシウム-リチウム-アルミニウム系合金。
  4.  請求項2記載のマグネシウム-リチウム-アルミニウム系合金において、
     前記リチウムが、4.8~6.0質量%のリチウムである、マグネシウム-リチウム-アルミニウム系合金。
  5.  請求項1記載のマグネシウム-リチウム-アルミニウム系合金において、
     前記マグネシウム-リチウム-アルミニウム系合金は、その金属組織として、Liが固溶したα-MgとAl-Li金属間化合物で形成されており、β相(Mg17Al12)およびβ相(Li)を有していない、マグネシウム-リチウム-アルミニウム系合金。
  6.  以下を含む、マグネシウム-リチウム-アルミニウム系合金の製造方法:
     (a1)マグネシウム、5~10質量%のアルミニウム、および0~1質量%の亜鉛、を含むマグネシウム-アルミニウム系合金からなる第1の原料チップと、マグネシウムおよびリチウムを含むマグネシウム-リチウム系合金からなる第2の原料チップとを用意する工程、ならびに
     (b1)前記第1の原料チップと前記第2の原料チップとを混合し、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金を得る工程。
  7.  以下を含む、マグネシウム-リチウム-アルミニウム系合金の製造方法:
     (a2)マグネシウムと、リチウムと、アルミニウムとを含み、前記リチウムの含有量とアルミニウムの含有量の比(Li/Al)が8より小であるマグネシウム-リチウム-アルミニウム系合金からなる第3の原料チップと、リチウムを含まないマグネシウム合金からなる第4の原料チップとを用意する工程、および
     (b2)前記第3の原料チップと前記第4の原料チップとを混合し、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金を得る工程。
  8.  以下を含む、マグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法:
     (a1)マグネシウム、5~10質量%のアルミニウム、および0~1質量%の亜鉛、を含むマグネシウム-アルミニウム系合金からなる第1の原料チップと、マグネシウムおよびリチウムを含むマグネシウム-リチウム系合金からなる第2の原料チップとを用意する工程、
     (b1)前記第1の原料チップと前記第2の原料チップとを混合し、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金を得る工程、ならびに
     (c1)前記(b1)工程で得られたマグネシウム-リチウム-アルミニウム系合金を、射出成形する工程。
  9.  以下を含む、マグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法:
     (a2)マグネシウムと、リチウムと、アルミニウムとを含み、前記リチウムの含有量とアルミニウムの含有量の比(Li/Al)が8より小であるマグネシウム-リチウム-アルミニウム系合金からなる第3の原料チップと、リチウムを含まないマグネシウム合金からなる第4の原料チップとを用意する工程、
     (b2)前記第の3原料チップと前記第4の原料チップとを混合し、マグネシウム、2~6.0質量%のリチウム、および5~10質量%のアルミニウムを含むマグネシウム-リチウム-アルミニウム系合金を得る工程、ならびに
     (c2)前記(b2)工程で得られたマグネシウム-リチウム-アルミニウム系合金を、射出成形する工程。
PCT/JP2022/042043 2022-03-11 2022-11-11 マグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法 WO2023171041A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-037759 2022-03-11
JP2022037759A JP2023132433A (ja) 2022-03-11 2022-03-11 マグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法

Publications (1)

Publication Number Publication Date
WO2023171041A1 true WO2023171041A1 (ja) 2023-09-14

Family

ID=87936561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042043 WO2023171041A1 (ja) 2022-03-11 2022-11-11 マグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法

Country Status (2)

Country Link
JP (1) JP2023132433A (ja)
WO (1) WO2023171041A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618758A (zh) * 2012-04-13 2012-08-01 江汉大学 一种低线收缩率铸造镁合金
CN102618764A (zh) * 2012-04-13 2012-08-01 江汉大学 一种抗热裂低线收缩率镁合金
CN102618759A (zh) * 2012-04-13 2012-08-01 江汉大学 一种低收缩率镁合金
CN104004950A (zh) * 2014-06-05 2014-08-27 宁波高新区融创新材料科技有限公司 易溶性镁合金材料及其制造方法和应用
CN104946947A (zh) * 2015-05-25 2015-09-30 哈尔滨工程大学 利用铜模快速凝固制备高强度镁锂合金的方法及铜模
CN114250393A (zh) * 2021-12-29 2022-03-29 北京理工大学 一种高强度高模量双相的镁锂合金及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618758A (zh) * 2012-04-13 2012-08-01 江汉大学 一种低线收缩率铸造镁合金
CN102618764A (zh) * 2012-04-13 2012-08-01 江汉大学 一种抗热裂低线收缩率镁合金
CN102618759A (zh) * 2012-04-13 2012-08-01 江汉大学 一种低收缩率镁合金
CN104004950A (zh) * 2014-06-05 2014-08-27 宁波高新区融创新材料科技有限公司 易溶性镁合金材料及其制造方法和应用
CN104946947A (zh) * 2015-05-25 2015-09-30 哈尔滨工程大学 利用铜模快速凝固制备高强度镁锂合金的方法及铜模
CN114250393A (zh) * 2021-12-29 2022-03-29 北京理工大学 一种高强度高模量双相的镁锂合金及制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BACH FRIEDRICH, SCHAPER MIRKO, JASCHIK CHRISTIAN: "Influence of Lithium on hcp Magnesium Alloys", MATERIALS SCIENCE FORUM, TRANS TECH PUBLICATIONS LTD, CH, vol. 419-422, 1 March 2003 (2003-03-01), CH , pages 1037 - 1042, XP009548698, ISSN: 1662-9752, DOI: 10.4028/www.scientific.net/MSF.419-422.1037 *
TROJANOVA, Z. et al., Deformation behaviour of Mg-Li alloys at elevated temperatures, Materials Science and Engineering A, 2005, vol. 410, 411, pp. 148-151 *
WANG, S.J. et al., Microstructure and mechanical properties of YAl2 reinforeced MgLiAl composite, Materials Science and Engineering A, 2009, vol. 518, pp. 158-161 *
ZHANG LEHAO; ZOU YUN; WANG HONGTAO; MENG LIANG; LIU JIABIN; ZHANG ZHONGWU: "Surface nanocrystallization of Mg-3wt.% Li-6wt.% Al alloy by surface mechanical attrition treatment", MATERIALS CHARACTERIZATION., ELSEVIER, NEW YORK, NY., US, vol. 120, 19 August 2016 (2016-08-19), US , pages 124 - 128, XP029752271, ISSN: 1044-5803, DOI: 10.1016/j.matchar.2016.08.017 *
ZOU YUN, ZHANG LEHAO, LI YANG, WANG HONGTAO, LIU JIABIN, LIAW PETER K., BEI HONGBIN, ZHANG ZHONGWU: "Improvement of mechanical behaviors of a superlight Mg-Li base alloy by duplex phases and fine precipitates", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 735, 1 February 2018 (2018-02-01), CH , pages 2625 - 2633, XP093090518, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2017.12.025 *
清水光春 ほか, Mg-Li鋳造合金の健全性に及ぼすAl添加の影響, 鋳造工学, 25 January 1996, vol. 68, no. 1, pp. 49-53 (SHIMIZU, Mitsuharu et al. Effects of Al Addition on Soundess of Mg-Li Alloy Castings. Journal of Japan Foundry Engineering Society.) *

Also Published As

Publication number Publication date
JP2023132433A (ja) 2023-09-22

Similar Documents

Publication Publication Date Title
JP6439683B2 (ja) 難燃マグネシウム合金及びその製造方法
US9657372B2 (en) Manufacturing method of aluminum alloy in which Al—Fe—Si compound is refined
JP2010528187A (ja) 熱間割れ感受性を減じるためのアルミニウム合金配合物
JP6229130B2 (ja) 鋳造用アルミニウム合金及びそれを用いた鋳物
EP3216884B1 (en) Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom
CN112301259A (zh) 高强压铸铝合金、其制备方法和应用
JP2009203545A (ja) ダイカスト用Zn合金およびダイカスト用Zn合金を用いたダイカスト部材の製造方法
JP5691477B2 (ja) Al−Si系合金及びその製造方法
JP7152977B2 (ja) アルミニウム合金
MX2013012681A (es) Procedimiento para el refino y modificación de la estructura de aleaciones de almgsi.
JPS63140059A (ja) 高強度アルミニウム合金
WO2023171041A1 (ja) マグネシウム-リチウム-アルミニウム系合金、その製造方法およびマグネシウム-リチウム-アルミニウム系合金からなる成形品の製造方法
JP2021021138A (ja) ダイカスト鋳造用アルミニウム合金及びそれを用いた鋳造製品の製造方法
EP3613866B1 (en) Al-si-fe aluminum alloy casting material and production method therefor
JP4925028B2 (ja) アルミニウム合金成形材
JP3283550B2 (ja) 初晶シリコンの最大結晶粒径が10μm以下の過共晶アルミニウム−シリコン系合金粉末の製造方法
JP6726058B2 (ja) Al合金鋳造物の製造方法
JP5699774B2 (ja) アルミニウム合金材及びその製造方法
AU2019101757A4 (en) Aluminum-zinc-magnesium-copper alloy containing ceramic particles, preparation method therefor and use thereof
US11008640B2 (en) Aluminum alloy for low-pressure casting
KR101858856B1 (ko) 난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법
JP2020125527A (ja) アルミニウム合金鋳造材
JP2604663B2 (ja) 軽量高強度マグネシウム合金
JPS6215626B2 (ja)
WO2007094300A1 (ja) 半融合金鋳造用原料アルミニウム青銅合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931013

Country of ref document: EP

Kind code of ref document: A1