WO2023170863A1 - 漏洩光を解析する装置及び方法 - Google Patents

漏洩光を解析する装置及び方法 Download PDF

Info

Publication number
WO2023170863A1
WO2023170863A1 PCT/JP2022/010589 JP2022010589W WO2023170863A1 WO 2023170863 A1 WO2023170863 A1 WO 2023170863A1 JP 2022010589 W JP2022010589 W JP 2022010589W WO 2023170863 A1 WO2023170863 A1 WO 2023170863A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber
condensing
optical
light
Prior art date
Application number
PCT/JP2022/010589
Other languages
English (en)
French (fr)
Inventor
一貴 納戸
卓威 植松
裕之 飯田
栄伸 廣田
研司 井上
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/010589 priority Critical patent/WO2023170863A1/ja
Publication of WO2023170863A1 publication Critical patent/WO2023170863A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables

Definitions

  • the present disclosure relates to an apparatus and method for analyzing and acquiring leakage light from a bent portion of an optical fiber.
  • an optical subscriber terminal (OLT) 1 installed at a base station and an optical subscriber network unit (ONU) 2 in a user's premises are connected via an optical fiber 3. ing.
  • the optical fiber 3 is bent and the ONU optical signal emitted from the ONU 2 is detected from the leaked light 7 from the bent portion 4. 5, extracts the MAC (Media Access Control) address of the ONU 2 from the extracted ONU optical signal 5, and confirms whether the extracted MAC address matches the MAC address confirmed before the operation.
  • MAC Media Access Control
  • the MAC address is something that OLT1 and ONU2 transmit by putting their own MAC address on ONU optical signal 5 only when OLT1 and ONU2 are connected normally through optical fiber 3. By checking the MAC address, It is possible to determine whether the work is completed at the work site.
  • a similar optical fiber 3 is used to connect the OLT 1 and ONU 2 to the bent portion 4 of the optical fiber 3.
  • a single mode optical fiber is attached. Thereby, a part of the leaked light 7 from the bent portion 4 of the optical fiber 3 is collected.
  • the transmission loss at the bent portion 4 of the optical fiber 3 must be suppressed to 2 dB or less, and the leakage light 7 from the bent portion 4 of the optical fiber 3 must be suppressed to 2 dB or less.
  • the light intensity is limited.
  • the present disclosure aims to efficiently collect limited leakage light from a bent portion of an optical fiber.
  • the leaked light is refracted by the cladding of the optical fiber and becomes several light beams. Therefore, in the present disclosure, a multimode optical fiber having a large core diameter is brought into contact with a bent portion of the optical fiber, thereby condensing the leaked light in the form of several light beams.
  • the device of the present disclosure includes: In a device that analyzes leakage light from a bent part of an optical fiber, a condensing fiber that condenses the leaked light and has a core diameter larger than that of the optical fiber; a mode dispersion compensator that shapes the waveform of an optical signal included in the leaked light propagated through the condensing fiber in multiple modes; Equipped with.
  • the method of the present disclosure includes: In a method for analyzing leakage light from a bent part of an optical fiber, condensing the leaked light using a condensing fiber having a larger core diameter than the optical fiber; The waveform of the optical signal included in the leaked light propagated in multimode through the condensing fiber is shaped.
  • the modal dispersion compensator may adopt a mode of restoring transmission signals of multiple modes included in the electrical signal converted by the light receiving element.
  • a condensing lens may be further provided, which is connected between the condensing fiber and the light receiving element, and condenses the leaked light propagated in multimode through the condensing fiber.
  • the apparatus may further include an analysis section that extracts identification information of a transmission source device of the transmission signal from the transmission signal restored by the modal dispersion compensation section.
  • the apparatus and method of the present disclosure comprising a light receiving element that converts the optical signal into an electrical signal
  • the mode dispersion compensator is connected between the condensing fiber and the light receiving element, and the mode dispersion compensator is connected between the condensing fiber and the light receiving element, and the mode dispersion compensator is configured to compensate for a plurality of modes of optical signals generated by propagating the condensing fiber in multiple modes from the bent portion of the optical fiber.
  • An aspect may be adopted in which an optical signal included in the leaked light is regenerated.
  • the apparatus and method of the present disclosure may further include a lens connected to the optical fiber side tip of the condensing fiber to condense the leaked light around the optical fiber.
  • limited leakage light from the bent portion of the optical fiber can be efficiently collected.
  • FIG. 2 is a diagram showing an overview of MAC address capture.
  • 1 is a diagram illustrating Embodiment 1 related to the present disclosure.
  • FIG. It is a figure explaining the example 2 of embodiment concerning this indication. It is a figure explaining the example 3 of embodiment concerning this indication.
  • Non-Patent Document 1 As can be seen from Non-Patent Document 1, the leakage light 7 from the bent portion 4 of the optical fiber 3 propagates while being diffused. Therefore, in order to condense all the diffused leakage light 7, the apparatus and method according to the present disclosure abuts an optical fiber with a large core diameter against the bending part 4 of the optical fiber 3, so that the conventional single mode optical fiber In this case, more leakage light 7 is collected than when the leakage light 7 from the bent portion 4 of the optical fiber 3 is collected.
  • the present disclosure includes a function to compensate for modal dispersion. Thereby, the waveform of the ONU optical signal 5 is shaped and restored from the multiple modes to the original single mode ONU optical signal 5, so that deterioration in communication quality can be suppressed. Therefore, according to the present disclosure, by using a large-diameter condensing fiber with a large core diameter, it is possible to condense more leakage light 7 from the bent portion 4 of the optical fiber 3 than in the prior art.
  • FIG. 2 shows a first embodiment.
  • the apparatus of this embodiment includes a probe optical fiber 12 and a mode dispersion compensator 13.
  • Probe optical fiber 12 is a multimode fiber having a larger core diameter than optical fiber 3, which functions as a condensing fiber according to the present disclosure.
  • the material of the multimode fiber is arbitrary and may be quartz glass or plastic.
  • the ONU 2 connected to the OLT 1 via an optical fiber 3 emits an ONU optical signal 5 from the ONU 2 toward the OLT 1.
  • the emitted ONU optical signal 5 propagates through the optical fiber 3.
  • the ONU optical signal 5 propagating through the optical fiber 3 is converted into leakage light 7 at the bending portion 4 .
  • the ONU optical signal 5 is an optical signal in the present disclosure, and includes a predetermined transmission signal.
  • This transmission signal includes identification information of the ONU 2, which is the source device of the ONU optical signal 5.
  • the identification information is, for example, the MAC address of the ONU 2.
  • the leaked light 7 from the bent portion 4 of the optical fiber 3 is collected by the probe optical fiber 12.
  • the leaked light 7 collected by the probe optical fiber 12 is converted into an electrical signal by the light receiving element 8.
  • the waveform of the electrical signal is shaped by the mode dispersion compensator 13.
  • the waveform-shaped electrical signal is obtained by converting the ONU optical signal 5 emitted from the ONU 2 into an electrical signal, and the analysis unit 9 can extract the MAC address.
  • the extracted MAC address is displayed on the display unit 10.
  • the core diameter of the probe optical fiber 12 may be, for example, any value greater than 10 ⁇ m, and may be, for example, 50 ⁇ m, 62.5 ⁇ m, or 100 ⁇ m, or 1 mm or more.
  • any method capable of compensating for the mode dispersion of multimode light can be used.
  • a circuit having a clock data recovery function or an equalizer can be used in a transmission signal on which a clock is superimposed.
  • FIG. 3 shows a second embodiment.
  • the apparatus of this embodiment includes a lens 11 at the tip of the probe optical fiber 12 on the optical fiber 3 side.
  • the lens 11 is any means capable of coupling the leakage light 7 around the optical fiber 3 to the end of the probe optical fiber 12, and may be a shape of the end of the probe optical fiber 12 that is modified.
  • a GRIN lens gradient index lens
  • the ONU 2 is connected to the OLT 1 by the optical fiber 3, and the ONU optical signal 5 is emitted from the ONU 2 toward the OLT 1, and the emitted ONU optical signal 5 propagates through the optical fiber 3.
  • the ONU optical signal 5 propagating through the optical fiber 3 is converted into the leaked light 7 at the bending portion 4 .
  • the leaked light 7 from the bent portion 4 of the optical fiber 3 is focused by a lens 11 and coupled to the probe optical fiber 12.
  • the leaked light 7 coupled to the probe optical fiber 12 is converted into the electrical signal by the light receiving element 8.
  • the waveform of the electrical signal is shaped by the mode dispersion compensator 13.
  • the waveform-shaped electrical signal is obtained by converting the ONU optical signal 5 emitted from the ONU 2 into an electrical signal, and the analysis section 9 can extract the MAC address.
  • the extracted MAC address is displayed on the display section 10.
  • the apparatus of this embodiment focuses the leaked light 7 from the bent portion 4 of the optical fiber 3 more than the probe optical fiber 12 by the lens 11 provided at the tip of the probe optical fiber 12. I can do it.
  • FIG. 4 shows a third embodiment.
  • the apparatus of this embodiment includes a condenser lens 14 between the probe optical fiber 12 and the light receiving element 8.
  • the ONU 2 connected to the OLT 1 via the optical fiber 3 emits the ONU optical signal 5 toward the OLT 1.
  • the emitted ONU optical signal 5 propagates through the optical fiber 3.
  • the ONU optical signal 5 propagated through the optical fiber 3 is converted into the leaked light 7 at the bending portion 4 .
  • the leaked light 7 from the bent portion 4 of the optical fiber 3 is collected by the probe optical fiber 12.
  • the leaked light 7 collected by the probe optical fiber 12 is collected by a condensing lens 14 and enters the light receiving element 8 .
  • the incident leaked light 7 is converted into the electrical signal by the light receiving element 8.
  • the waveform of the electrical signal is shaped by the mode dispersion compensator 13.
  • the waveform-shaped electrical signal is obtained by converting the ONU optical signal 5 emitted from the ONU 2 into an electrical signal, and the analysis section 9 can extract the MAC address.
  • the extracted MAC address is displayed on the display unit 10.
  • the condenser lens 14 between the probe optical fiber 12 and the light-receiving element 8 is arranged so that even when the core diameter of the probe optical fiber 12 is larger than the light-receiving size of the light-receiving element 8, The coupling loss of the element 8 can be reduced.
  • the present disclosure may include a mode dispersion compensator (not shown) connected between the probe optical fiber 12 and the light receiving element 8 instead of the mode dispersion compensator 13.
  • the mode dispersion compensator uses optical 3R regeneration or the like (for example, see Non-Patent Document 2) to extract the leaked light 7 from the optical signal of multiple modes generated by propagating the probe optical fiber 12 in multiple modes. regenerates the optical signal contained in the.
  • the present disclosure can be applied to maintenance and operation technology for optical access networks.
  • Optical subscriber terminal 2: Optical subscriber network unit (ONU) 3: Optical fiber 4: Bending section 5: ONU optical signal 6: Probe optical fiber 7: Leakage light 8: Light receiving element 9: Analysis section 10: Display section 11: Lens 12: Probe optical fiber 13: Mode dispersion compensator 14: Condenser lens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本開示は、光ファイバの曲げ部からの限られた漏洩光を効率よく集光することを目的とする。 本開示は、光ファイバ(3)の曲げ部(4)からの漏洩光(7)を解析する装置において、前記漏洩光(7)を集光する、前記光ファイバ(3)よりも大口径なコア径を持つプローブ光ファイバ(12)と、前記プローブ光ファイバ(12)をマルチモードで伝搬した前記漏洩光(7)に含まれる光信号(5)の波形を整形するモード分散補償部(13)と、を具備する。

Description

漏洩光を解析する装置及び方法
 本開示は、光ファイバ曲げ部からの漏洩光を解析取得するための装置及び方法に関するものである。
 光アクセスネットワークの実網では図1に示すよう、基地局に設置されている光加入者終端装置(OLT)1とユーザ宅内の光加入者ネットワーク装置(ONU)2が光ファイバ3にて接続されている。光アクセスネットワークの保守運用においては、作業心線の作業が適切に実施されたかを判定するために、光ファイバ3を曲げ、曲げ部4からの漏洩光7から、ONU2から出射されるONU光信号5を取り出し、取り出したONU光信号5からONU2のMAC(Media Access Control)アドレスを抽出し、抽出したMACアドレスが作業前に確認したMACアドレスと一致したかを確認する技術が検討されている。MACアドレスはOLT1とONU2が正常に光ファイバ3にて接続された場合のみ、OLT1とONU2が自らのMACアドレスをONU光信号5に乗せて、送信するものであり、MACアドレスを確認することで作業の完了可否を作業現場にて判定することができる。
 従来技術では図1に示すように光ファイバ3の曲げ部4からの漏洩光7を集光するために、光ファイバ3の曲げ部4にOLT1とONU2を接続している光ファイバ3と同様のシングルモード光ファイバを突き当てている。これにより、光ファイバ3の曲げ部4からの漏洩光7の一部を集光している。
 従来技術では、シングルモード光ファイバを用いているため、光ファイバ3の曲げ部4からの漏洩光7の一部のみしか使用できず、OLT1とONU2の通信速度の増加に対応することができない。これは、通信速度の増加に伴い、ONU2から出射されたONU光信号5を漏洩光7から取り出すために、高い光強度が求められるためである。通信速度は動画配信サービスの普及などにより、高速化が求められており、従来技術では通信速度の高速化に対応するためには漏洩光7の光強度が不足する。
 また、光アクセスネットワークの実網では通信品質に影響を与えないために、光ファイバ3の曲げ部4の伝送損失は2dB以下に抑える必要があり、光ファイバ3の曲げ部4からの漏洩光7の光強度は限られている。
 これらのことから、高速通信速度に対応するために、光ファイバ3の曲げ部4からの限られた漏洩光7の集光が課題となる。
H. Hirota et al., "Optical cable changeover tool with light injection and detection technology", J. Lightw. Technol., vol. 34, no. 14, pp. 3379-3388, Jul. 2016. 山田他、「多波長一括処理型全光3R再生中継器の一検討」、ITE Technical Report、Vol.27、No.16,PP.41~44、(2003)
 本開示は、光ファイバの曲げ部からの限られた漏洩光を効率よく集光することを目的とする。
 漏洩光は、光ファイバのクラッドなどで屈折し、幾つかの光線となっている。そこで、本開示は、コア径が大きいマルチモード光ファイバを光ファイバの曲げ部に突き当てることで、幾つかの光線になっている漏洩光を集光する。
 本開示の装置は、
 光ファイバの曲げ部からの漏洩光を解析する装置において、
 前記漏洩光を集光する、前記光ファイバよりも大口径なコア径を持つ集光ファイバと、
 前記集光ファイバをマルチモードで伝搬した前記漏洩光に含まれる光信号の波形を整形するモード分散補償部と、
 を具備する。
 本開示の方法は、
 光ファイバの曲げ部からの漏洩光を解析する方法において、
 前記光ファイバよりも大口径なコア径を持つ集光ファイバを用いて、前記漏洩光を集光し、
 前記集光ファイバをマルチモードで伝搬した前記漏洩光に含まれる光信号の波形を整形する。
 本開示の装置及び方法では、
 前記光信号を電気信号に変換する受光素子を具備し、
 前記モード分散補償部は、前記受光素子で変換された電気信号に含まれる複数モードの伝送信号を復元する態様を採用することができる。
 ここで、本態様では、前記集光ファイバと前記受光素子の間に接続され、前記集光ファイバをマルチモードで伝搬した前記漏洩光を集光する集光レンズをさらに具備してもよい。
 また、前記モード分散補償部で復元された伝送信号から、前記伝送信号の送信元の装置の識別情報を抽出する解析部をさらに具備してもよい。
 本開示の装置及び方法では、
 前記光信号を電気信号に変換する受光素子を具備し、
 前記モード分散補償部は、前記集光ファイバと前記受光素子の間に接続され、前記集光ファイバをマルチモードで伝搬することによって生じる複数モードの光信号から、前記光ファイバの前記曲げ部からの前記漏洩光に含まれる光信号を再生する態様を採用することができる。
 本開示の装置及び方法では、前記集光ファイバの前記光ファイバ側の先端に接続され、前記光ファイバの周囲の前記漏洩光を集光するレンズをさらに具備してもよい。
 なお、上記各開示は、可能な限り組み合わせることができる。
 本開示によれば、光ファイバの曲げ部からの限られた漏洩光を効率よく集光することができる。
MACアドレスキャプチャの概要を示す図である。 本開示に関わる実施形態例1を説明する図である。 本開示に関わる実施形態例2を説明する図である。 本開示に関わる実施形態例3を説明する図である。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(本開示の概要)
 非特許文献1からも分かるように、光ファイバ3の曲げ部4からの漏洩光7は拡散しながら伝搬している。そこで、拡散した漏洩光7を全て集光するため、本開示に係る装置及び方法は、コア径が大きい光ファイバを光ファイバ3の曲げ部4に突き当てることで、従来技術のシングルモード光ファイバで光ファイバ3の曲げ部4からの漏洩光7を集光する場合よりも多くの漏洩光7を集光する。
 コア径が大きい光ファイバはマルチモード伝送となるため、ONU光信号5にモード分散が発生し、通信品質が劣化する。そこで、本開示では、モード分散を補償する機能を具備する。これにより、ONU光信号5の波形が整形され、複数モードから元の単一モードのONU光信号5に復元されるため、通信品質の劣化を抑制することができる。よって、本開示によれば、コア径が大きい大口径の集光ファイバを用いることで、光ファイバ3の曲げ部4からの漏洩光7を従来技術より多く集光することが可能となる。
(本開示の効果)
 光ファイバ3の曲げ部4からの漏洩光7を、従来技術よりも多く集光することが可能である。これにより、OLT1とONU2が高速な通信速度な場合においても、ONU2から出射されるONU光信号5を漏洩光7から取り出すことが可能となり、取り出したONU光信号5からONU2のMACアドレスを抽出することができる。これにより、本開示は、光アクセスネットワークの実網において、通信速度の高速化した場合であっても、作業現場にて作業の完了可否を判定することができる。
(実施形態例1)
 図2に第一の実施形態例を示す。本実施形態の装置は、プローブ光ファイバ12及びモード分散補償部13を備える。プローブ光ファイバ12は、本開示の集光ファイバとして機能する、光ファイバ3よりも大口径なコア径を持つマルチモードファイバである。マルチモードファイバの材質は任意であり、石英ガラスであってもよいし、プラスチックであってもよい。
 OLT1と光ファイバ3にて接続されたONU2は、前記ONU2から前記OLT1に向けてONU光信号5を出射する。出射された前記ONU光信号5は、前記光ファイバ3を伝搬する。前記光ファイバ3を伝搬している前記ONU光信号5は曲げ部4にて漏洩光7に変換される。
 ここで、ONU光信号5は、本開示における光信号であり、予め定められた伝送信号が載せられている。この伝送信号には、ONU光信号5の送信元の装置であるONU2の識別情報が含まれる。識別情報は、例えばONU2のMACアドレスである。
 前記光ファイバ3の前記曲げ部4からの前記漏洩光7はプローブ光ファイバ12にて集光される。前記プローブ光ファイバ12で集光された前記漏洩光7は受光素子8にて電気信号に変換される。前記電気信号はモード分散補償部13にて波形が整形される。波形の整形された前記電気信号は前記ONU2から出射された前記ONU光信号5を電気信号に変換したものであり、解析部9にてMACアドレスを抽出することができる。抽出された前記MACアドレスは表示部10にて表示される。
 ここで、プローブ光ファイバ12は、マルチモード光を伝送可能な任意の光ファイバを用いることができる。プローブ光ファイバ12のコア径は、例えば、10μm超の任意の値でありうるが、例えば、50μm、62.5μm又は100μmのほか、1mm以上のものであってもよい。
 また、モード分散補償部13における波形の整形は、マルチモード光のモード分散を補償可能な任意の方法を用いることができる。例えば、クロックが重畳されている伝送信号において、クロック・データ・リカバリ機能を有する回路、又はイコライザを用いることができる。
(実施形態例2)
 図3に第二の実施形態例を示す。本実施形態の装置は、プローブ光ファイバ12の光ファイバ3側の先端にレンズ11を備える。レンズ11は、光ファイバ3の周囲の漏洩光7をプローブ光ファイバ12の端部に結合可能な任意の手段であり、プローブ光ファイバ12の端部の形状を変形させたものであっても良いし、GRINレンズ(Gradient index lens)であっても良い。
 前記OLT1と前記光ファイバ3にて接続された前記ONU2は、前記ONU2から前記OLT1に向けて前記ONU光信号5が出射され、出射された前記ONU光信号5は前記光ファイバ3を伝搬する。前記光ファイバ3を伝搬している前記ONU光信号5は曲げ部4にて前記漏洩光7に変換される。
 本実施形態では、前記光ファイバ3の前記曲げ部4からの前記漏洩光7はレンズ11にて集光され、プローブ光ファイバ12に結合される。前記プローブ光ファイバ12に結合された前記漏洩光7は前記受光素子8にて前記電気信号に変換される。前記電気信号は前記モード分散補償部13にて波形が整形される。波形の整形された前記電気信号は前記ONU2からの出射された前記ONU光信号5を電気信号に変換したものであり、前記解析部9にて前記MACアドレスを抽出することができる。抽出された前記MACアドレスは前記表示部10にて表示される。
 本実施形態の装置は、前記プローブ光ファイバ12の先端に具備される前記レンズ11によって、前記プローブ光ファイバ12よりも前記光ファイバ3の前記曲げ部4からの前記漏洩光7を集光することができる。
(実施形態例3)
 図4に第三の実施形態例を示す。本実施形態の装置は、プローブ光ファイバ12と受光素子8の間に、集光レンズ14を備える。
 前記OLT1と前記光ファイバ3にて接続された前記ONU2は、前記OLT1に向けて前記ONU光信号5を出射する。出射された前記ONU光信号5は前記光ファイバ3を伝搬する。前記光ファイバ3を伝搬された前記ONU光信号5は前記曲げ部4にて前記漏洩光7に変換される。
 前記光ファイバ3の前記曲げ部4からの前記漏洩光7は前記プローブ光ファイバ12にて集光される。前記プローブ光ファイバ12で集光された前記漏洩光7は集光レンズ14にて集光され、前記受光素子8に入射される。入射された前記漏洩光7は前記受光素子8にて前記電気信号に変換される。前記電気信号は前記モード分散補償部13にて波形が整形される。波形の整形された前記電気信号は前記ONU2からの出射された前記ONU光信号5を電気信号に変換したものであり、前記解析部9にてMACアドレスを抽出することができる。抽出された前記MACアドレスは前記表示部10にて表示される。
 前記プローブ光ファイバ12と前記受光素子8の間の前記集光レンズ14は前記プローブ光ファイバ12のコア径が前記受光素子8の受光可能サイズより大きい場合においても、前記プローブ光ファイバ12と前記受光素子8の結合損失を低減することができる。
 なお、上述の実施形態では受光素子8で変換された電気信号を用いてモード分散補償を行うモード分散補償部13の例を示したが、本開示はこれに限定されない。例えば、本開示は、モード分散補償部13に代えて、プローブ光ファイバ12と受光素子8の間に接続されているモード分散補償部(不図示)を備えていてもよい。この場合、モード分散補償部は、光3R再生などを用いて(例えば、非特許文献2参照。)、プローブ光ファイバ12をマルチモードで伝搬することによって生じる複数モードの光信号から、漏洩光7に含まれる光信号を再生する。
 本開示は光アクセスネットワークの保守運用技術に適用することができる。
1:光加入者終端装置(OLT)
2:光加入者ネットワーク装置(ONU)
3:光ファイバ
4:曲げ部
5:ONU光信号
6:プローブ光ファイバ
7:漏洩光
8:受光素子
9:解析部
10:表示部
11:レンズ
12:プローブ光ファイバ
13:モード分散補償部
14:集光レンズ

Claims (7)

  1.  光ファイバの曲げ部からの漏洩光を解析する装置において、
     前記漏洩光を集光する、前記光ファイバよりも大口径なコア径を持つ集光ファイバと、
     前記集光ファイバをマルチモードで伝搬した前記漏洩光に含まれる光信号の波形を整形するモード分散補償部と、
     を具備する装置。
  2.  前記光信号を電気信号に変換する受光素子を具備し、
     前記モード分散補償部は、前記受光素子で変換された電気信号に含まれる複数のモードの伝送信号を補償し、元の伝送信号に復元する、
     請求項1に記載の装置。
  3.  前記集光ファイバと前記受光素子の間に接続され、前記集光ファイバをマルチモードで伝搬した前記漏洩光を集光する集光レンズをさらに具備することを特徴とした請求項2に記載の装置。
  4.  前記モード分散補償部で復元された伝送信号から、前記伝送信号の送信元の装置の識別情報を抽出する解析部をさらに具備することを特徴とした請求項2に記載の装置。
  5.  前記光信号を電気信号に変換する受光素子を具備し、
     前記モード分散補償部は、前記集光ファイバと前記受光素子の間に接続され、前記集光ファイバをマルチモードで伝搬することによって生じる複数モードの光信号から、前記光ファイバの前記曲げ部からの前記漏洩光に含まれる光信号を再生する、
     請求項1に記載の装置。
  6.  前記集光ファイバの前記光ファイバ側の先端に接続され、前記光ファイバの周囲の前記漏洩光を集光するレンズ
     をさらに具備する請求項1に記載の装置。
  7.  光ファイバの曲げ部からの漏洩光を解析する方法において、
     前記光ファイバよりも大口径なコア径を持つ集光ファイバを用いて、前記漏洩光を集光し、
     前記集光ファイバをマルチモードで伝搬した前記漏洩光に含まれる光信号の波形を整形する、
     方法。
PCT/JP2022/010589 2022-03-10 2022-03-10 漏洩光を解析する装置及び方法 WO2023170863A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010589 WO2023170863A1 (ja) 2022-03-10 2022-03-10 漏洩光を解析する装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010589 WO2023170863A1 (ja) 2022-03-10 2022-03-10 漏洩光を解析する装置及び方法

Publications (1)

Publication Number Publication Date
WO2023170863A1 true WO2023170863A1 (ja) 2023-09-14

Family

ID=87936315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010589 WO2023170863A1 (ja) 2022-03-10 2022-03-10 漏洩光を解析する装置及び方法

Country Status (1)

Country Link
WO (1) WO2023170863A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002229081A (ja) * 2001-02-02 2002-08-14 Nec Corp 全光型光信号再生方法および装置
JP2008530904A (ja) * 2005-02-11 2008-08-07 アナログ デバイスズ インコーポレイテッド マルチモードファイバを介した高ビットレート光通信
CN101304284A (zh) * 2008-06-20 2008-11-12 华中科技大学 一种多通道全光3r再生器
US20120263480A1 (en) * 2009-11-11 2012-10-18 Ernesto Ciaramella All-optical phase-modulated data signal regeneration
JP2014219286A (ja) * 2013-05-08 2014-11-20 住友電気工業株式会社 信号光取得構造、信号光測定装置、および信号光取得方法
JP2015129804A (ja) * 2014-01-06 2015-07-16 日本電信電話株式会社 光ファイバ側方入出力装置および光通信切替システム
JP2017090837A (ja) * 2015-11-17 2017-05-25 日本電信電話株式会社 光ファイバテープ心線モニタ用受光装置、光ファイバテープ心線モニタ方法、及び光回線モニタ方法
JP2017219751A (ja) * 2016-06-09 2017-12-14 日本電信電話株式会社 光ファイバ側方入出力装置およびアクティブアライメント方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002229081A (ja) * 2001-02-02 2002-08-14 Nec Corp 全光型光信号再生方法および装置
JP2008530904A (ja) * 2005-02-11 2008-08-07 アナログ デバイスズ インコーポレイテッド マルチモードファイバを介した高ビットレート光通信
CN101304284A (zh) * 2008-06-20 2008-11-12 华中科技大学 一种多通道全光3r再生器
US20120263480A1 (en) * 2009-11-11 2012-10-18 Ernesto Ciaramella All-optical phase-modulated data signal regeneration
JP2014219286A (ja) * 2013-05-08 2014-11-20 住友電気工業株式会社 信号光取得構造、信号光測定装置、および信号光取得方法
JP2015129804A (ja) * 2014-01-06 2015-07-16 日本電信電話株式会社 光ファイバ側方入出力装置および光通信切替システム
JP2017090837A (ja) * 2015-11-17 2017-05-25 日本電信電話株式会社 光ファイバテープ心線モニタ用受光装置、光ファイバテープ心線モニタ方法、及び光回線モニタ方法
JP2017219751A (ja) * 2016-06-09 2017-12-14 日本電信電話株式会社 光ファイバ側方入出力装置およびアクティブアライメント方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAGAWA MASATOSHI, MURAL, HITOSHI: "Multi-format all-optical regeneration technology ", OKI TECHNICAL REVIEW, vol. 79, no. 1, 1 April 2012 (2012-04-01), pages 38 - 41, XP093091645 *

Similar Documents

Publication Publication Date Title
CN106461868B (zh) 多芯多模光纤耦合装置
Sakaguchi et al. Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels
US5708499A (en) Optical components for live-fiber identifier and coupler
WO2022001230A1 (zh) 分光器、odn、识别onu所在光链路的方法、olt、onu和pon系统
Saito et al. Side-view based angle alignment technique for multi-core fiber
Uematsu et al. Design of a temporary optical coupler using fiber bending for traffic monitoring
WO2023170863A1 (ja) 漏洩光を解析する装置及び方法
Schöllmann et al. Experimental realisation of 3× 3 MIMO system with mode group diversity multiplexing limited by modal noise
US4840482A (en) Method of coated fiber identification in optical transmission network
Yanagi et al. Characteristics of fibre-optic connector at high-power optical incidence
WO2022254540A1 (ja) 光ファイバの曲げ部からの漏洩光を受光する装置及び方法
Schöllmann et al. First experimental transmission over 50 m GI-POF at 40 Gb/s for variable launching offsets
JP6542653B2 (ja) プローブファイバ及び光ファイバ側方入出力装置
WO2023166656A1 (ja) 漏洩光を解析する装置及び方法
CN209707750U (zh) 一种高密集型微型光分路器
Uematsu et al. High-efficiency light injection and extraction using fiber bending
CN210626718U (zh) 一种高容量带宽波分设备
US20230421258A1 (en) Capturing signals in free space optical communications
Suslov et al. Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers
CN110149150B (zh) 基于柱矢量光束(cvb)的通信复用系统及方法
CN115016072B (zh) 一种提高光器件耦合效率的方法
Goyal et al. Performance evaluation of trench-assisted multi-core fiber for passive optical network
JP2540166Y2 (ja) 光信号受信装置
Hirota et al. Fiber identification below an optical splitter with a test light injection tool
CN215574603U (zh) 一种高速相机检测裂纹装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930844

Country of ref document: EP

Kind code of ref document: A1