WO2023168982A1 - 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法 - Google Patents

一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法 Download PDF

Info

Publication number
WO2023168982A1
WO2023168982A1 PCT/CN2022/132122 CN2022132122W WO2023168982A1 WO 2023168982 A1 WO2023168982 A1 WO 2023168982A1 CN 2022132122 W CN2022132122 W CN 2022132122W WO 2023168982 A1 WO2023168982 A1 WO 2023168982A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
abr
pretreatment
denitrification
sewage
Prior art date
Application number
PCT/CN2022/132122
Other languages
English (en)
French (fr)
Inventor
吴翼伶
吴鹏
张晓秾
陈俊江
王超超
Original Assignee
苏州科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科技大学 filed Critical 苏州科技大学
Publication of WO2023168982A1 publication Critical patent/WO2023168982A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of biological treatment of sewage, and specifically relates to an ABR pretreatment-short-path denitrification and anaerobic ammonium oxidation method for treating domestic sewage.
  • the combined process of short-cut denitrification and anaerobic ammonium oxidation has great research potential in deep nitrogen removal from wastewater.
  • denitrifying bacteria use organic matter as an electron donor to reduce nitrate nitrogen into nitrogen gas.
  • the theoretical value of COD consumed for every 1g of nitrate nitrogen reduced into nitrogen gas is 2.85g.
  • the combined short-course denitrification and anaerobic ammonium oxidation technology first uses heterotrophic denitrifying bacteria to reduce nitrate nitrogen to nitrite nitrogen under anoxic conditions, and then uses anaerobic ammonium oxidizing bacteria to use nitrite nitrogen as an electron acceptor.
  • the technical problem to be solved by the present invention is to provide an ABR pretreatment-short-path denitrification anaerobic ammonium oxidation method for treating domestic sewage.
  • ABR pretreatment By performing ABR pretreatment on domestic sewage, the carbon and nitrogen pollutants in the domestic sewage can be efficiently converted into high-quality carbon sources. conversion, and the use of split water inflow to adjust the matrix ratio required for the PD/A reaction chamber to meet the carbon source requirements of PD/A denitrification, while reducing the aeration amount of aerobic nitrification to achieve the goal of reducing carbon and nitrogen pollution in domestic sewage. Efficient removal of substances.
  • the present invention provides the following technical solutions:
  • the invention provides an ABR pretreatment-short-path denitrification anaerobic ammonium oxidation method for treating domestic sewage.
  • the ABR pretreatment includes fermentation, digestion, and nitrification pretreatment processes; the method specifically includes the following steps;
  • An ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor is constructed from the fermentation reaction chamber, digestion reaction chamber, nitrification reaction chamber and PD/A reaction chamber.
  • the method also includes the process of starting the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor, specifically: inoculating granular sludge or flocculent sludge containing the corresponding functional bacteria in each reaction chamber, and passing The ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor is started in a continuous operation mode with split inlet water and overflow effluent.
  • granular sludge containing fermentative acidogenic bacteria is inoculated in the fermentation reaction chamber; preferably, the relative abundance of fermentative acidogenic bacteria is greater than 12%.
  • granular sludge containing methanogens is inoculated in the digestion reaction chamber; preferably, the relative abundance of methanogens is greater than 12%.
  • flocculent sludge containing Nitrobacter is inoculated in the nitrification pretreatment chamber; preferably, the relative abundance of Nitrobacter is greater than 15%.
  • the PD/A reaction chamber is inoculated with flocculent sludge containing denitrifying bacteria and anaerobic ammonium oxidizing bacteria; for example, Thauera and Candidatus Brocadia.
  • the time for domestic sewage to flow through the fermentation reaction chamber is optimized so that the ratio of the high-quality carbon source to the total COD amount in the effluent of the fermentation reaction chamber is 0.77-0.81.
  • the aeration amount in the nitrification reaction chamber is optimized so that the concentration of NO 2 - -N in the effluent from the nitrification reaction chamber is 0.1-0.45 mg ⁇ L -1 .
  • the sewage after fermentation treatment carries high-quality carbon sources and NH 4 + -N, and part of it directly enters the PD/A reaction chamber to participate in the reaction, while the sewage containing NO 3 - -N after fermentation, digestion, and nitrification overflows to PD
  • the /A reaction chamber participates in the reaction, and controls the NO 3 - -N/NH 4 + -N entering the PD/A reaction chamber by regulating the split ratio of the fermented sewage left to the digestion reaction chamber and the PD/A reaction chamber.
  • the ratio is 1.20 ⁇ 1.25, which promotes efficient nitrogen removal in the PD/A process.
  • the start-up of the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor is completed.
  • the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor is continuously operated after being protected from light, and the operating temperature is 25 to 35°C.
  • the PD/A reaction chamber also contains biological filler with a filling ratio of 30% to 40%.
  • a mechanical stirring device is installed in the PD/A reaction chamber.
  • the biological filler and flocculent sludge quickly form a biofilm-activated sludge system under the action of the stirring device, thereby improving the nitrogen metabolism removal efficiency.
  • the present invention first ferments domestic sewage through a fermentation reaction chamber to convert macromolecular organic matter in the sewage into small molecule high-quality carbon sources such as acetic acid, propionic acid, butyric acid, isobutyric acid, etc.
  • the sewage is treated separately, and part of it enters the digestion reaction chamber.
  • the organic matter in the sewage is converted into biogas for storage under the action of anaerobic digestion bacteria.
  • the other part enters the PD/A reaction chamber to provide NH 4 + -N to the anaerobic ammonium oxidizing bacteria.
  • the sewage after entering the digestion reaction chamber overflows to the nitrification reaction chamber for aerobic nitrification treatment, and the NH 4 + -N in the sewage is converted into NO 3 - -N and enters the PD/ Reaction chamber A participates in the denitrification reaction.
  • the present invention makes up for the problem of insufficient high-quality carbon sources in sewage by degrading large-molecule organic matter in sewage into small-molecule high-quality carbon sources.
  • acetic acid as the main component of fermentation pretreatment effluent, can be used as a short-range denitrification electron donor. , Promote the denitrification of strange organisms.
  • the present invention controls the sewage entering the PD/A reaction chamber by regulating the hydraulic retention time in the fermentation reaction chamber, the ratio of effluent flow to the digestion chamber and the PD/A reaction chamber, and regulating the amount of aeration required in the nitrification reaction chamber.
  • the proportion of each matrix (NH 4 + -N, high-quality carbon source, NO 3 - -N) promotes efficient collaborative denitrification by PD/A, improves the denitrification efficiency of the PD/A process, and reduces aeration during the process. quantity, thereby reducing process energy consumption.
  • the present invention uses an ABR pretreatment-short-cut denitrification anaerobic ammonium oxidation process to treat domestic sewage, which reduces the need for aeration and the addition of external carbon sources, and at the same time greatly reduces the residual wastewater. Mud production.
  • the actual domestic sewage is treated by the method of the present invention.
  • the TN removal rate in the treated sewage is as high as 93.47%, and the corresponding TN and COD concentrations of the effluent are 3.76mg ⁇ L -1 and 29.86mg ⁇ L -1 respectively.
  • the contents are all lower than those in the Class A discharge standard of sewage plants, achieving economical and efficient treatment of actual domestic sewage.
  • Figure 1 is a schematic diagram of the experimental device for treating domestic sewage with the ABR pretreatment-short-path denitrification and anaerobic ammonium oxidation process
  • Figure 2 is a schematic diagram of the principle of ABR pretreatment-short-path denitrification and anaerobic ammonium oxidation process for treating domestic sewage;
  • Figure 3(a) shows the concentration of NH 4 + -N (star) and the concentration of COD (the upper shaded part in the figure) in the incoming water of the fermentation reaction chamber of the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor at different stages. ), the HRT of the fermentation reaction chamber (straight line) and the COD concentration of the effluent (the lower shaded part in the figure);
  • Figure 3(b) shows the split ratio (straight line) of the effluent from the fermentation reaction chamber at different stages of the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor, and the concentration of NH 4 + -N in the effluent from the digestion reaction chamber (the upper part of the figure) The shaded area) and the COD concentration (the lower shaded area in the figure);
  • Figure 3(c) shows the ratio of NH 4 + -N consumption to NO 3 - -N production in the nitrification reaction chamber at different stages of the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor (star), exposure Gas volume (straight line), NO 3 - -N concentration of effluent (shaded area in the upper corner of the figure) and NO 2 - -N concentration (shaded area in the lower right corner of the figure);
  • Figure 3(d) shows the ratio of NH 4 + -N to NO 3 - -N in the inlet water of the PD/A reaction chamber at different stages of the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor (star shape), PD/A COD concentration (the upper shaded part in the figure), NH 4 + -N concentration (the middle shaded part in the figure) and NO 3 - -N concentration (the lower shaded part in the figure) in the effluent of the reaction chamber;
  • Figure 3(e) shows the total nitrogen (TN) removal rate (star), the concentration of influent TN (the upper shaded part in the figure) and the effluent TN of the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor at different stages.
  • the concentration (the lower shaded part in the figure);
  • Figure 3(f) shows the ratio of NO 3 - -N consumption to NH 4 + -N consumption in the PD/A reaction chamber at different stages of the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor (star shape), The contribution of denitrification and denitrification (the upper shaded part in the figure) and the contribution of anaerobic ammonium oxidation (the lower shaded part in the figure);
  • Figure 4 shows the organic components and their corresponding concentrations in the effluent from the fermentation reaction room on the 188th day.
  • A1 is the fermentation reaction chamber
  • A2 is the digestion reaction chamber
  • A3 is the nitrification reaction chamber
  • A4 is the PD/A reaction chamber
  • Q1 is the amount of sewage flowing from the fermentation reaction chamber to the digestion reaction chamber
  • Q2 is the amount of wastewater flowing from the fermentation reaction chamber to the PD/A reaction chamber.
  • domestic sewage is transported to the fermentation reaction chamber through the water inlet pump. After fermentation treatment, most of the COD is converted into high-quality carbon sources. After fermentation treatment, part of the sewage overflows to the digestion reaction chamber. After being treated by anaerobic digestion bacteria, the wastewater is The COD is converted into biogas, and the treated sewage further overflows into the nitrification reaction chamber.
  • the NH4 + -N in the sewage is converted into NO 3 - -N after aerobic nitrification treatment, and then overflows to the PD/A reaction chamber for participation.
  • Denitrification reaction the other part of the fermented sewage is directly transported to the PD/A reaction chamber through a diverter pump.
  • NH4 + -N and high-quality carbon sources in the sewage participate in the anaerobic ammonium oxidation reaction and denitrification respectively in the PD/A reaction chamber. reaction ( Figure 2).
  • ABR pretreatment-short-cut denitrification anaerobic ammonium oxidation process is used to treat domestic sewage.
  • the sludge inoculated in the fermentation reaction chamber and digestion reaction chamber comes from anaerobic fermentation tanks that have been running stably for more than three years in the laboratory.
  • the MLSS are respectively 4.93 and 7.56g ⁇ L -1 ; the sludge inoculated in the nitrification reaction chamber comes from the aeration tank of a sewage plant, and the MLSS is 4.27g ⁇ L -1 ; the sludge inoculated in the PD/A reaction chamber comes from the laboratory's long-term high efficiency and stability
  • the MLSS of the operating PD/A reactor is 3.54g ⁇ L -1 ; the temperature in the reaction chamber is controlled by the water bath to be 30 ⁇ 1°C.
  • the domestic sewage used in the test was taken from the septic tank of a university.
  • the main water quality characteristics of the sewage are shown in the table 1:
  • the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor constructed above was operated continuously for 190 days, divided into 5 stages, and the HRT, split ratio of the fermentation reaction chamber and the aeration amount in the nitrification reactor in each stage were controlled. Specifically, as follows:
  • Stage I From the 1st to 36th day of operation, control the hydraulic retention time HRT in the fermentation reaction chamber to 4.5h, the split ratio Q1:Q2 to 10:10, and the aeration amount in the nitrification reactor to 2.0mg ⁇ L -1 ;
  • Stage II On the 37th to 76th day of operation, control the hydraulic retention time HRT in the fermentation reaction chamber to 4.5h, the split ratio Q1:Q2 to 11:9, and the aeration amount in the nitrification reactor to 2.0mg ⁇ L -1 ;
  • Stage III From the 77th to 116th day of operation, control the hydraulic retention time HRT in the fermentation reaction chamber to 4.5h, the split ratio Q1:Q2 to 11:9, and the aeration amount in the nitrification reactor to 1.8mg ⁇ L -1 ;
  • Stage IV On the 117th to 154th day of operation, control the hydraulic retention time HRT in the fermentation reaction chamber to 3.6h, the split ratio Q1:Q2 to 11:9, and the aeration amount in the nitrification reactor to 1.8mg ⁇ L -1 ;
  • Stage V From the 155th to 190th day of operation, control the hydraulic retention time HRT in the fermentation reaction chamber to 2.9h, the split ratio Q1:Q2 to 11:9, and the aeration amount in the nitrification reactor to 1.8mg ⁇ L -1 .
  • NH 4 + -N in , NH 4 + -N out , TN in and TN out respectively correspond to the NH 4 + -N and TN concentrations in the inlet and outlet water of the ABR pretreatment-short-path denitrification anaerobic ammonium oxidation reactor.
  • Figure 3(a) ⁇ (f) reflects the operating characteristics of the ABR pretreatment-PD/A process.
  • the reactor operation became stable on the 11th day, the TN removal rate was 76.23%, and the COD concentration of the fermentation reaction chamber effluent was 139.46 mg ⁇ L -1 .
  • the effluent flow ratio of the fermentation reaction chamber was adjusted to 11:9 and ran for a period of time ( Figures 3(c) to 3(f)).
  • the anaerobic ammonium oxidation process acts as an absolute in the coupled system. It is the dominant nitrogen removal pathway and its contribution rate to wastewater TN removal is as high as 85.43%.
  • stages I and II NH 4 + -N and NO 2 - -N were not detected in the effluent of the nitrification reaction chamber, indicating that the aeration volume (DO) of the nitrification reaction chamber may be higher than the actual aeration demand.
  • DO aeration volume
  • the DO of the nitrification reaction chamber is reduced to 1.8 mg ⁇ L -1 in stage III.
  • the HRT of the fermentation reaction chamber was adjusted to 3.6h in stage IV.
  • the COD concentration of the fermentation reaction chamber effluent increased to 162.36 mg ⁇ L -1
  • the system effluent NH 4 + -N and TN concentrations dropped to 5.07 and 6.61 mg ⁇ L -1 respectively.
  • the HRT of the fermentation reaction chamber is adjusted to 2.9h.
  • the COD concentration of the fermentation reaction chamber effluent rises to 183.76 mg ⁇ L -1 at this time, and the system coupling decouples.
  • the nitrogen effect is further improved, the system TN removal rate rises to 93.47%, the effluent TN concentration is only 3.76mg ⁇ L -1 , and the corresponding anaerobic ammonium oxidation process contributes to sewage TN removal as high as 89.67%.
  • the composition of the effluent from the fermentation reaction room on the 188th day of the above operation was studied. The results are shown in Figure 4.
  • the COD concentration in the effluent was 179.51mg ⁇ L -1 , of which the concentration of high-quality carbon source was 115.81mg ⁇ L -1 , accounting for the total 76% of COD, high-quality carbon sources in the effluent are composed of acetic acid, propionic acid, butyric acid and isobutyric acid, with corresponding concentrations of 91.51, 17.27, 3.76 and 3.17 mg ⁇ L -1 respectively.
  • Acetic acid is the main organic component in the effluent. It can be used as an electron donor for denitrification, which is beneficial to the denitrification of heterotrophic organisms.
  • the effluent flow ratio D1:D2 is 11:9, and the aeration amount in the nitrification reaction chamber is 1.8 mg ⁇ L -1 , no external carbon source is needed, and domestic sewage is pretreated by ABR-short process
  • the TN removal rate is as high as 93.47%, and the corresponding effluent TN and COD concentrations are 3.76mg ⁇ L -1 and 29.86mg ⁇ L -1 respectively, which meets the Class A emission standards of sewage plants.

Abstract

本发明公开了一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,所述ABR预处理包含发酵、消化、硝化预处理工艺,具体包含以下:1)生活污水进入发酵反应室内进行厌氧发酵,将发酵处理后的污水分流至消化反应室、PD/A反应室;2)进入消化反应室内的污水进行厌氧消化处理,将处理后的污水溢流至硝化反应室进行好氧硝化;3)将硝化处理后的污水转移至PD/A反应室,经处理后达标排放。本发明通过ABR预处理实现生活污水中碳氮污染物向优质碳源的高效转化,同时利用分流进水调控PD/A反应室所需的基质配比,降低好氧硝化的曝气量,同时提升PD/A工艺脱氮效能,经上述工艺处理后的污水可达到一级A排放标准。

Description

一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法 技术领域
本发明涉及污水生物处理技术领域,具体涉及一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法。
背景技术
随着污水排放标准逐渐提高,城市污水处理厂提标改造势在必行,其中瓶颈在于提高总氮去除效果。为保护环境,国内污水厂逐步开始升级改造,以使出水水质标准达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。污水厂升级改造中总氮的去除尤为重要,其难度最大且投资比重最大。
短程反硝化与厌氧氨氧化的组合工艺在污水深度除氮方面具有极大的研究潜势。在传统反硝化脱氮过程中,反硝化菌利用有机物作为电子供体,将硝酸氮还原为氮气,每还原1g硝酸氮为氮气需要消耗COD的理论值为2.85g。短程反硝化厌氧氨氧化联用技术是在缺氧状态下,首先利用异养反硝化菌将硝酸氮还原为亚硝酸氮,然后利用厌氧氨氧化菌,以亚硝酸氮为电子受体,将氨氮氧化转为氮气的自养生物脱氮过程,与传统反硝化脱氮技术相比,短程反硝化厌氧氨氧化组合工艺降低了对有机碳源的需求量,同时具有污泥产率低和运行稳定等优点。但生活污水存在低C/N比的问题,污水中原有的有机物无法仍满足PD/A工艺高效耦合脱氮对优质碳源的需求,需要投加甲醇、乙醇等外碳源以达到高效率的总氮去除,如此便增加了污水处理厂的运行费用,另外传统处理工艺需要大量曝气,消耗了大量能源。因此,亟需一种新型生活污水处理方法,实现对生活污水中碳氮污染物的高效去除。
发明内容
本发明要解决的技术问题是提供一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,通过对生活污水进行ABR预处理实现生活污水中碳氮污染物向优质碳源的高效转化,以及利用分流进水调控PD/A反应室所需的基质配比,满足PD/A脱氮对碳源的需求,同时降低好氧硝化的曝气量,实现对生活污水中碳氮污染物的高效去除。
为解决上述技术问题,本发明提供以下技术方案:
本发明提供了一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,所述ABR预处理包含发酵、消化、硝化预处理工艺;所述方法具体包括以下步骤;
S1:生活污水进入发酵反应室内进行厌氧发酵,将发酵处理后的污水分流至消化反应室、PD/A反应室;
S2:进入消化反应室内的污水进行厌氧消化处理,将处理后的污水溢流至硝化反应室进行好氧硝化;
S3:将硝化处理后的污水转移至PD/A反应室,经处理后达标排放。
由所述发酵反应室、消化反应室、硝化反应室以及PD/A反应室构建ABR预处理-短程反硝化厌氧氨氧化反应器。
进一步地,所述方法还包括启动ABR预处理-短程反硝化厌氧氨氧化反应器的过程,具体为:在各反应室中接种包含相应功能菌属的颗粒污泥或絮状污泥,通过分流进水、溢流出水连续运行的方式启动ABR预处理-短程反硝化厌氧氨氧化反应器。
进一步地,在发酵反应室内接种包含发酵产酸菌属的颗粒污泥;优选发酵产酸菌属的相对丰度大于12%。
进一步地,在消化反应室内接种包含产甲烷菌属的颗粒污泥;优选产甲烷 菌属的相对丰度大于12%。
进一步地,在硝化预处理室内接种包含硝化菌属的絮状污泥;优选硝化菌属的相对丰度大于15%。
进一步地,在PD/A反应室内接种包含反硝化菌属以及厌氧氨氧化菌种的絮状污泥;例如Thauera菌属、CandidatusBrocadia菌属。
进一步地,S1中,优化生活污水在发酵反应室中经流的时间,使发酵反应室出水中的优质碳源与总COD量的比值为0.77-0.81。
进一步地,优化硝化反应室内的曝气量,使硝化反应室出水NO 2 --N的浓度为0.1-0.45mg·L -1
进一步地,优化发酵处理后的污水流至消化反应室、PD/A反应室的分流比,使进入PD/A反应室内污水的NO 3 --N/NH 4 +-N的比值为1.20~1.25。
经过发酵处理后的污水中携带优质碳源和NH 4 +-N,部分直接进入PD/A反应室内参与反应,而经过发酵、消化以及硝化处理后含有NO 3 --N的污水溢流至PD/A反应室内参与反应,通过调控发酵处理后的污水留至消化反应室和PD/A反应室的分流比,以调控进入PD/A反应室内污水的NO 3 --N/NH 4 +-N的比值为1.20~1.25,促进PD/A工艺高效除氮。
进一步地,当处理后污水中TN含量小于10mg·L -1、COD含量小于50mg·L -1,完成ABR预处理-短程反硝化厌氧氨氧化反应器的启动。
进一步地,所述ABR预处理-短程反硝化厌氧氨氧化反应器经避光处理后连续运行,运行的温度为25~35℃。
进一步地,S2中,污水经消化处理后产生沼气。
进一步地,所述PD/A反应室还包含填充比为30%~40%的生物填料。
进一步地,所述PD/A反应室中安装有机械搅拌装置,生物填料和絮状污泥在搅拌装置的作用下快速形成生物膜-活性污泥体系,提高氮代谢去除效率。
本发明与现有技术相比,先将生活污水经过发酵反应室进行发酵处理,将污水中大分子有机物转化为乙酸、丙酸、丁酸、异丁酸等小分子优质碳源,将处理后污水进行分流处理,一部分进入消化反应室,污水中的有机物在厌氧消化菌的作用下转化为沼气储存,另一部分进入PD/A反应室中给厌氧氨氧化菌属提供NH 4 +-N以及给反硝化菌属提供优质碳源;进入消化反应室处理后的污水溢流至硝化反应室进行好氧硝化处理,污水中的NH 4 +-N转化为NO 3 --N,进入PD/A反应室参与反硝化反应。
本发明的有益效果在于:
1.本发明通过将污水中大分子有机物降解为小分子优质碳源,弥补了污水中优质碳源不足的问题,同时乙酸作为发酵预处理出水中的主要成分,可作为短程反硝化电子供体,促进异样生物的脱氮。
2.本发明通过调控发酵反应室中水力停留的时间、出水流至消化室和PD/A反应室中的比例以及调控硝化反应室所需的曝气量,控制进入PD/A反应室内污水中各基质(NH 4 +-N、优质碳源、NO 3 --N)的比例,促进PD/A高效协同脱氮,提升了PD/A工艺脱氮效能,同时减少了工艺过程中的曝气量,从而降低工艺能耗。
3.较之传统硝化反硝化工艺,利用本发明的一种ABR预处理-短程反硝化厌氧氨氧化工艺处理生活污水,减少了曝气需求和外碳源投加,同时大幅降低了剩余污泥产量。
4.将实际生活污水通过本发明所述方法进行处理,处理后污水中的TN去除率高达93.47%,相应出水的TN和COD浓度分别为3.76mg·L -1和29.86mg·L -1,均低于污水厂一级A排放标准中的含量,实现了实际生活污水的经济、高效处理。
附图说明
图1为ABR预处理-短程反硝化厌氧氨氧化工艺处理生活污水的试验装置示意图;
图2为ABR预处理-短程反硝化厌氧氨氧化工艺处理生活污水的原理示意图;
图3(a)为ABR预处理-短程反硝化厌氧氨氧化反应器不同阶段发酵反应室进水中NH 4 +-N的浓度(星形)、COD的浓度(图中靠上的阴影部分)、发酵反应室的HRT(直线)以及出水的COD浓度(图中靠下的阴影部分);
图3(b)为ABR预处理-短程反硝化厌氧氨氧化反应器不同阶段发酵反应室出水的分流比(直线)、消化反应室出水中NH 4 +-N的浓度(图中靠上的阴影部分)以及COD浓度(图中靠下的阴影部分);
图3(c)为ABR预处理-短程反硝化厌氧氨氧化反应器不同阶段硝化反应室中NH 4 +-N的消耗量与NO 3 --N的生成量的比值(星形)、曝气量(直线)、出水的NO 3 --N浓度(图中靠上的阴影部分)以及NO 2 --N浓度(图中右下角的阴影部分);
图3(d)为ABR预处理-短程反硝化厌氧氨氧化反应器不同阶段PD/A反应室进水中NH 4 +-N与NO 3 --N的比值(星形)、PD/A反应室出水中的COD浓度(图中靠上的阴影部分)、NH 4 +-N浓度(图中中间的阴影部分)以及NO 3 --N浓度(图中靠下的阴影部分);
图3(e)为ABR预处理-短程反硝化厌氧氨氧化反应器不同阶段总氮(TN)去除率(星形)、进水TN的浓度(图中靠上的阴影部分)以及出水TN的浓度(图中靠下的阴影部分);
图3(f)为ABR预处理-短程反硝化厌氧氨氧化反应器不同阶段PD/A反应室中的NO 3 --N消耗量与NH 4 +-N消耗量的比值(星形)、反硝化脱氮贡献(图中靠上的阴影部分)以及厌氧氨氧化脱氮贡献(图中靠下的阴影部分);
图4为第188天发酵反应室出水中的有机成分及其相应浓度。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例
如图1所示的试验装置图,A1为发酵反应室、A2为消化反应室、A3为硝化反应室、A4为PD/A反应室、Q1为发酵反应室流至消化反应室内的污水量、Q2为发酵反应室流至PD/A反应室的污水量。生活污水通过进水泵输送至发酵反应室中,经发酵处理后将大部分COD转换为优质碳源,发酵处理后的污水,一部分溢流至消化反应室,经厌氧消化菌处理后将废水中的COD转化为沼气,处理后的污水进一步溢流至硝化反应室中,污水中的NH4 +-N经过好氧硝化处理后转化为NO 3 --N,再溢流至PD/A反应室参与反硝化反应;发酵处理后的污水另一部分通过分流泵直接输送至PD/A反应室,污水中NH4 +-N、优质碳源在PD/A反应室中分别参与厌氧氨氧化反应、反硝化反应(图2)。
本实施例利用ABR预处理-短程反硝化厌氧氨氧化工艺处理生活污水,其中发酵反应室、消化反应室内接种的污泥来源于实验室稳定运行三年以上的厌氧发酵罐,MLSS分别为4.93和7.56g·L -1;硝化反应室接种的污泥来源于某污水厂曝气池,MLSS为4.27g·L -1;PD/A反应室接种的污泥来源于实验室长期高效稳定运行的PD/A反应器,MLSS为3.54g·L -1;通过水浴池控制个反应室内的温度为30±1℃,试验所用生活污水取自某高校化粪池,污水主要水质特征见表1:
表1生活污水水质特征
Figure PCTCN2022132122-appb-000001
(1)ABR预处理-短程反硝化厌氧氨氧化反应器内工艺参数的优化
将上述构建ABR预处理-短程反硝化厌氧氨氧化反应器连续运行190天,分为5个阶段,控制各阶段中发酵反应室的HRT、分流比以及硝化反应器内的曝气量,具体如下:
阶段I:运行第1~36天,控制发酵反应室内水力停留时间HRT为4.5h、分流比Q1:Q2为10:10、硝化反应器内的曝气量为2.0mg·L -1
阶段II:运行第37~76天,控制发酵反应室内水力停留时间HRT为4.5h、分流比Q1:Q2为11:9、硝化反应器内的曝气量为2.0mg·L -1
阶段III:运行第77~116天,控制发酵反应室内水力停留时间HRT为4.5h、分流比Q1:Q2为11:9、硝化反应器内的曝气量为1.8mg·L -1
阶段IV:运行第117~154天,控制发酵反应室内水力停留时间HRT为3.6h、分流比Q1:Q2为11:9、硝化反应器内的曝气量为1.8mg·L -1
阶段V:运行第155~190天,控制发酵反应室内水力停留时间HRT为2.9h、分流比Q1:Q2为11:9、硝化反应器内的曝气量为1.8mg·L -1
对运行期间各反应室进、出水样进行检测,分别采用纳氏试剂分光光度法、紫外分光光度法、N-(1-萘基)-乙二胺分光光度法、COD快速消解仪和滤纸称重法测定NH 4 +-N、NO 3 --N、NO 2 --N、COD和MLSS,采用多参数水质分析仪测定DO、温度和pH;并计算分析完全反硝化过程和厌氧氨氧化过程对生活污水去除的贡献率:
厌氧氨氧化过程(100%)=(NH 4 +-N -NH 4 +-N )×(1+1.32-0.26)×100%
/(TN –TN )
完全反硝化过程(100%)=1-厌氧氨氧化过程(100%)
上述NH 4 +-N 、NH 4 +-N 、TN 和TN 分别对应ABR预处理-短程反硝化 厌氧氨氧化反应器进出水NH 4 +-N和TN浓度。
图3(a)~(f)反应了ABR预处理-PD/A工艺运行特性,阶段I,调控发酵反应室出水分流比为10:10,发酵反应室HRT=4.5h,硝化反应室DO=2.0mg·L -1。如图3(a)、3(c)和3(e)所示,第11d反应器运行趋于稳定,TN去除率为76.23%,发酵反应室出水COD浓度为139.46mg·L -1,此时硝化反应室出水为NO 3 --N浓度为54.62mg·L -1,相应NO 3 --N生成/NH 4 +-N消耗为0.97,接近硝化反应理论氮转化比值(1.0),说明硝化反应室中可能存在的氮代谢去除途径可忽略不计;由图3(d)和3(f)可知,PD/A反应室内实际进水NO 3 --N/NH 4 +-N=0.95,低于PD/A工艺进水理论基质比范围(1.0~1.3),此时完全反硝化过程对污水TN去除贡献率为25.39%。
为进一步强化耦合系统中厌氧氨氧化协同氮代谢途径,阶段II将发酵反应室出水分流比调整至11:9,运行一段时间(图3(c)~3(f)),系统TN去除率升至80.14%,相应PD/A反应室内进水NO 3 --N/NH 4 +-N=1.24,符合PD/A工艺进水理论基质比,此时厌氧氨氧化过程作为耦合系统中绝对主导氮素去除途径,其对污水TN去除贡献率高达85.43%。在阶段I、II运行过程中,硝化反应室出水中并未检测出NH 4 +-N和NO 2 --N,说明硝化反应室曝气量(DO)可能高于实际曝气需求。
为降低工艺曝气能耗,阶段III将硝化反应室DO降至1.8mg·L -1,稳定运行时,如图3(c)所述,硝化反应室中NH 4 +-N被完全消耗,出水仅检测出极少量NO 2 --N,相应NO 2 --N max=0.21mg·L -1,说明硝化反应室内硝化反应所需DO min为1.8mg·L -1。另外,如图3(d)和3(e)所示,此时系统出水NH 4 +-N=8.61mg·L -1、NO 3 --N=5.34mg·L -1、COD=25.53mg·L -1
为进一步优化污水中TN的去除,阶段IV调整发酵反应室HRT为3.6h,运行一段时间,如图3(a)、3(d)和3(e),发酵反应室出水COD浓度提升至162.36mg·L -1,系统出水NH 4 +-N和TN浓度分别降至5.07和6.61mg·L -1。阶段V将发酵反应室HRT调整至2.9h,由图3(a)、3(e)和3(f)可知, 此时发酵反应室出水COD浓度升至183.76mg·L -1,系统耦合脱氮效果进一步提升,系统TN去除率升至93.47%,出水TN浓度仅为3.76mg·L -1,相应厌氧氨氧化过程对污水TN去除贡献率高达89.67%。
(2)发酵处理工艺对生活污水有机碳源的优化
对上述运行第188天发酵反应室的出水进行成分研究,结果如图4所示,出水中COD浓度为179.51mg·L -1,其中优质碳源的浓度为115.81mg·L -1,占总COD的76%,出水中的优质碳源由乙酸、丙酸、丁酸和异丁酸构成,相应浓度分别为91.51、17.27、3.76和3.17mg·L -1,乙酸作为出水中主要有机成分,可作为反硝化电子供体,利于异养生物脱氮。
在发酵反应室HRT=2.9、出水分流比D1:D2为11:9以及硝化反应室内的曝气量为1.8mg·L -1的条件下,无需外加碳源,生活污水经ABR预处理-短程反硝化厌氧氨氧化反应器后,TN去除率高达93.47%,相应出水TN和COD浓度分别为3.76mg·L -1和29.86mg·L -1,符合污水厂一级A排放标准。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,所述ABR预处理包含发酵、消化、硝化预处理工艺;所述方法具体包括以下步骤;
    S1:生活污水进入发酵反应室内进行厌氧发酵,将发酵处理后的污水分流至消化反应室、PD/A反应室;
    S2:进入消化反应室内的污水进行厌氧消化处理,将处理后的污水溢流至硝化反应室进行好氧硝化;
    S3:将硝化处理后的污水转移至PD/A反应室,经处理后达标排放;
    由所述发酵反应室、消化反应室、硝化反应室以及PD/A反应室构建ABR预处理-短程反硝化厌氧氨氧化反应器。
  2. 根据权利要求1所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,所述方法还包括启动ABR预处理-短程反硝化厌氧氨氧化反应器的过程,具体为:在各反应室中接种包含相应功能菌属的颗粒污泥或絮状污泥,通过分流进水、溢流出水连续运行的方式启动ABR预处理-短程反硝化厌氧氨氧化反应器。
  3. 根据权利要求1所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,S1中,发酵反应室出水中的优质碳源与总COD量的比值为0.77-0.81。
  4. 根据权利要求1所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,硝化反应室出水中NO 2 --N的浓度为0.10-0.45mg·L -1
  5. 根据权利要求4所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,PD/A反应室进水的NO 3 --N/NH 4 +-N的比值为1.20~1.25。
  6. 根据权利要求1所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,所述ABR预处理-短程反硝化厌氧氨氧化反应器经避光处理后连续运行。
  7. 根据权利要求1所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,所述ABR预处理-短程反硝化厌氧氨氧化反应器运行的温度为25~35℃。
  8. 根据权利要求1所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,S2中,污水经消化处理后产生沼气。
  9. 根据权利要求1所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,所述PD/A反应室还包含填充比为30%~40%的生物填料。
  10. 根据权利要求1所述的一种ABR预处理-短程反硝化厌氧氨氧化处理生活污水的方法,其特征在于,所述PD/A反应室中安装有机械搅拌装置。
PCT/CN2022/132122 2022-03-08 2022-11-16 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法 WO2023168982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210228642.1A CN114735819B (zh) 2022-03-08 2022-03-08 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法
CN202210228642.1 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023168982A1 true WO2023168982A1 (zh) 2023-09-14

Family

ID=82276049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132122 WO2023168982A1 (zh) 2022-03-08 2022-11-16 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法

Country Status (2)

Country Link
CN (1) CN114735819B (zh)
WO (1) WO2023168982A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735819B (zh) * 2022-03-08 2023-06-30 苏州科技大学 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法
CN217651071U (zh) * 2022-03-08 2022-10-25 苏州科技大学 一种生活污水处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074253A (ja) * 2003-08-28 2005-03-24 Kurita Water Ind Ltd Bod及び窒素含有排水の生物的処理方法
CN108658229A (zh) * 2018-03-21 2018-10-16 北京工业大学 一种自养/异养深度脱氮过程控制的装置与方法
CN110015757A (zh) * 2019-04-30 2019-07-16 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN110407418A (zh) * 2019-08-19 2019-11-05 海南大学 一种含硫酸盐的天然橡胶加工废水深度脱氮装置和方法
CN113173640A (zh) * 2021-03-29 2021-07-27 江苏裕隆环保有限公司 一种aoa耦合厌氧氨氧化深度脱氮除磷工艺
CN113402021A (zh) * 2021-06-18 2021-09-17 北京工业大学 原位污泥水解酸化耦合短程反硝化厌氧氨氧化一体化实现污水脱氮及污泥减量的装置与方法
CN114735819A (zh) * 2022-03-08 2022-07-12 苏州科技大学 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2725287Y (zh) * 2004-08-31 2005-09-14 湖南省爱普环境工程有限公司 厌氧折流板反应器
CN201605210U (zh) * 2009-11-27 2010-10-13 林长松 一种复合式沼气厌氧反应器
KR20190119344A (ko) * 2018-04-12 2019-10-22 두산중공업 주식회사 생물학적 질소 처리방법 및 장치
CN209143819U (zh) * 2018-07-04 2019-07-23 江苏中矩环保科技有限公司 一种复合式厌氧折流板反应器
CN110054291B (zh) * 2019-04-24 2021-09-10 北京工业大学 低c/n比生活污水短程硝化/厌氧氨氧化后接短程反硝化/厌氧氨氧化工艺的装置和方法
CN110498509B (zh) * 2019-08-22 2023-09-22 广西师范大学 一种高氨氮污水处理装置及利用其进行污水处理的方法
CN110697892A (zh) * 2019-09-12 2020-01-17 广西博世科环保科技股份有限公司 厌氧折流板反应器实现短程反硝化协同厌氧氨氧化的废水处理装置及处理方法
CN110526528A (zh) * 2019-10-10 2019-12-03 苏州科技大学 一体式短程反硝化厌氧氨氧化水处理快速启动方法及系统
CN111606419B (zh) * 2020-06-01 2022-05-06 北京工业大学 一种能源自给的污水处理系统及方法
CN112408593B (zh) * 2020-09-15 2022-09-30 北京工业大学 一种基于fa预处理强化同步短程反硝化厌氧氨氧化耦合原位发酵深度脱氮装置与方法
CN113666495A (zh) * 2021-08-26 2021-11-19 西北工业大学 一种高效深度脱氮系统和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074253A (ja) * 2003-08-28 2005-03-24 Kurita Water Ind Ltd Bod及び窒素含有排水の生物的処理方法
CN108658229A (zh) * 2018-03-21 2018-10-16 北京工业大学 一种自养/异养深度脱氮过程控制的装置与方法
CN110015757A (zh) * 2019-04-30 2019-07-16 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN110407418A (zh) * 2019-08-19 2019-11-05 海南大学 一种含硫酸盐的天然橡胶加工废水深度脱氮装置和方法
CN113173640A (zh) * 2021-03-29 2021-07-27 江苏裕隆环保有限公司 一种aoa耦合厌氧氨氧化深度脱氮除磷工艺
CN113402021A (zh) * 2021-06-18 2021-09-17 北京工业大学 原位污泥水解酸化耦合短程反硝化厌氧氨氧化一体化实现污水脱氮及污泥减量的装置与方法
CN114735819A (zh) * 2022-03-08 2022-07-12 苏州科技大学 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
巫恺澄 (WU, KAICHENG): "ABR-CSTR一体化反应器去碳脱氮的效能研究 (Study of the Effectiveness of ABR-CSTR Integrated Reactor for Removal of Carbon and Nitrogen)", 中国优秀硕士学位论文全文数据库 工程科技I辑 (ENGINEERING SCIENCE & TECHNOLOGY I, CHINA MASTER’S THESES FULL-TEXT DATABASE) SCIENCE & TECHNOLOGY I), no. 5, 15 May 2017 (2017-05-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN114735819B (zh) 2023-06-30
CN114735819A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2021051781A1 (zh) 一种基于deamox污泥双回流aoao污水深度脱氮除磷的装置与方法
CN110143725B (zh) 混合污泥发酵液为碳源连续流短程反硝化耦合厌氧氨氧化工艺处理城市污水装置和方法
WO2022062615A1 (zh) 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法
Gao et al. Advanced nitrogen removal of low C/N ratio sewage in an anaerobic/aerobic/anoxic process through enhanced post-endogenous denitrification
WO2023168982A1 (zh) 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法
CN108439595A (zh) 利用污泥发酵物实现污水部分短程硝化-Anammox/反硝化的方法
CN107381815B (zh) 一种主流内源短程反硝化/厌氧氨氧化工艺实现生活污水深度脱氮的装置和方法
CN108217950A (zh) Fna强化污泥发酵及实现污水短程脱氮除磷的装置和方法
CN110668566A (zh) 污泥发酵耦合短程反硝化串联二级厌氧氨氧化实现污泥减量与总氮去除的装置与方法
CN112408593B (zh) 一种基于fa预处理强化同步短程反硝化厌氧氨氧化耦合原位发酵深度脱氮装置与方法
CN113943056B (zh) 一种连续流平衡聚糖菌与聚磷菌实现同步氮磷去除的方法
CN112479362A (zh) 一种污泥发酵组合短程反硝化厌氧氨氧化处理城市污水的装置和方法
US20230100166A1 (en) Device and method for treating urban domestic sewage based on two-stage combined process of partial denitrification-anammox
Liu et al. Superior nitrogen removal and sludge reduction in a suspended sludge system with in-situ enriching anammox bacteria for real sewage treatment
He et al. Realization of partial nitrification and in-situ anammox in continuous-flow anaerobic/aerobic/anoxic process with side-stream sludge fermentation for real sewage
CN112174316A (zh) 一种连续流工艺主流发酵同步脱氮除磷的装置与方法
CN107840550B (zh) 一种垃圾渗沥液的处理方法
Cai et al. Sequencing batch reactor (SBR) and anoxic and oxic process (A/O) display opposite performance for pollutant removal in treating digested effluent of swine wastewater with low and high COD/N ratios
CN112479361A (zh) 一种深度处理含盐废水的装置及方法
CN110723816B (zh) 一种实现短程硝化厌氧氨氧化一体化处理城市污水长期稳定运行的方法
CN107973404A (zh) 氧化还原介体调控有机废物定向发酵产乙酸耦合低温反硝化脱氮的方法
WO2023151300A1 (zh) 一种同步处理高氨氮废水和剩余污泥的装置和方法
CN115108636B (zh) 可调控的水解酸化-好氧颗粒污泥组合污水处理系统及方法
CN115432819A (zh) 一体化硝化-部分反硝化-厌氧氨氧化深度脱氮的污水处理工艺
CN113105078A (zh) 一种厌氧氨氧化耦合垃圾渗滤液mbr生化系统的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930605

Country of ref document: EP

Kind code of ref document: A1