WO2022062615A1 - 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法 - Google Patents

半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法 Download PDF

Info

Publication number
WO2022062615A1
WO2022062615A1 PCT/CN2021/107610 CN2021107610W WO2022062615A1 WO 2022062615 A1 WO2022062615 A1 WO 2022062615A1 CN 2021107610 W CN2021107610 W CN 2021107610W WO 2022062615 A1 WO2022062615 A1 WO 2022062615A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
sludge
water tank
denitrification
short
Prior art date
Application number
PCT/CN2021/107610
Other languages
English (en)
French (fr)
Inventor
彭永臻
赵月茹
张琼
李夕耀
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2022062615A1 publication Critical patent/WO2022062615A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms

Definitions

  • the device and method for realizing deep denitrification of urban domestic sewage by semi-short-range nitrification-anammox coupled autotrophic denitrification involved in the present application belong to the field of biological sewage treatment and are suitable for deep denitrification of urban domestic sewage with low C/N ratio.
  • Sulfur autotrophic denitrification utilizes the unique metabolic characteristics of denitrifying and desulfurizing bacteria such as Thiobacillus denitrificans, uses reducing sulfur compounds as electron donors and energy sources, and uses NO 3 - -N or NO 2 - -N as electron acceptors.
  • the front end of this experiment uses semi-short-range nitrification effluent to provide NH 4 + -N and NO 2 - -N for anammox, and the back end is based on the chemoautotrophic characteristics of sulfur autotrophic denitrifying bacteria, which is coupled with anammox , with the advantages of saving aeration amount and low sludge output.
  • Short-range nitrification means that the traditional nitrification process is controlled in the ammonia oxidation stage, which can be realized by real-time control, that is, in the nitrification process, when the ammonia oxidation reaction ends, no H + is produced in the system, and the pH value change curve will appear.
  • the inflection point from falling to rising is the "ammonia nitrogen valley point”, so the pH change in the system can be monitored in real time.
  • the pH curve reaches the "ammonia nitrogen valley point”
  • the aeration is stopped to control the nitrification reaction in the ammonia oxidation stage, which is anaerobic ammonia.
  • the oxidation reaction provides the substrate NO 2 - -N, and the semi-short-range nitrification needs to stop aeration before the ammonia valley point, and the mass concentration ratio of NH 4 + -N to NO 2 - -N in the effluent is 1-1.32.
  • the autotrophic denitrification of sulfur can use a variety of electron donors.
  • FeS as the electron donor, has no toxic effect on anammox bacteria during the autotrophic denitrification process, and both types of bacteria use CO2 as the carbon source. Therefore, the complementarity of the metabolic pathways of the two types of bacteria and the consistency of the proliferation rate can achieve a stable coexistence relationship.
  • the two types of bacteria can synergistically remove the total nitrogen in the system and improve the total nitrogen removal rate of the system, thereby Improve effluent quality.
  • the application provides a device and method for semi-short-range nitrification-anammox coupled sulfur autotrophic denitrification to realize deep denitrification of urban domestic sewage, the purpose is to solve the problem of insufficient carbon source in the traditional sewage treatment process, and at the same time improve the effluent water quality.
  • the device of semi-short-range nitrification-anammox coupled sulfur autotrophic denitrification treatment of urban domestic sewage is characterized in that: be provided with raw water tank (1), semi-short-range nitrification reactor (2), intermediate water tank (3) and upstream type anammox nitrification and denitrification granular sludge reactor (4): the raw water tank (1) is provided with an inlet pump I; the semi-short-range nitrification reactor (2) is provided with a pH measuring instrument (2.1), an aeration device (2.2) ), DO measuring instrument (2.5), gas flow meter (2.7), air pump (2.6), stirring device (2.8), drain valve (2.4) and mud valve (2.3); the intermediate water tank (3) is provided with an inlet pump II;
  • the up-flow anammox coupled denitrification granular sludge reactor (4) is provided with a temperature control device (4.1), a pH/DO measuring instrument (4.4), a water outlet pipe (4.6) and a
  • the raw water tank (1) is connected to the water inlet of the short-range nitrification reactor (2) through the inlet pump I (1.1); ) is connected; the water inlet of the up-flow anammox coupled denitrification granular sludge reactor (4) is connected to the intermediate water tank (3) through the feed pump II (3.1), and the up-flow anammox coupled denitrification granular sludge reaction
  • the water outlet of the device (4) is drained through the water outlet pipe (4.6).
  • the device of semi-short-range nitrification-anammox coupled sulfur autotrophic denitrification treatment of urban domestic sewage is characterized in that: be provided with raw water tank (1), semi-short-range nitrification reactor (2), intermediate water tank (3) and anaerobic Oxygen ammonium oxidation coupled autotrophic denitrification reactor (4): the raw water tank (1) is provided with an inlet pump I; the short-range nitrification reactor (2) is provided with a pH measuring instrument (2.1), aeration device (2.2), DO measurement instrument (2.5), gas flow meter (2.7), air pump (2.6), stirring device (2.8), drain valve (2.4) and mud valve (2.3); the intermediate water tank (3) is provided with an inlet pump II; The anammox coupled denitrification granular sludge reactor (4) is provided with a temperature control device (4.1), a pH/DO measuring instrument (4.4), a water outlet pipe (4.6) and a gas collecting port (4.7).
  • a temperature control device
  • the raw water tank (1) is connected to the water inlet of the semi-short-range nitrification reactor (2) through the inlet pump I (1.1); ) is connected; the water inlet of the anammox coupled denitrification reactor (4) is connected to the intermediate water tank (3) through the inlet pump II (3.1), and the water outlet of the anammox coupled denitrification reactor (4) is connected with the water outlet pipe ( 4.6) Drainage.
  • the nitrifying bacteria are controlled by the temperature control device to control the temperature in the reactor to 30 ⁇ 1°C, and adjust the pH to 7-8; cultivate for more than 3 months to fully enrich the functional microorganisms, collect sludge samples to identify the microbial community structure, and carry out pollution control.
  • the temperature control device controls the temperature in the reactor to 30 ⁇ 1°C, and adjust the pH to 7-8; cultivate for more than 3 months to fully enrich the functional microorganisms, collect sludge samples to identify the microbial community structure, and carry out pollution control.
  • the concentration of FeS is 5 times the concentration of the mixed sludge, and FeS is added to the mixed sludge.
  • the mass concentration of FeS added in each 1L reactor is 10% to 20% of the ammonia nitrogen mass concentration of the influent in the reactor; the sludge concentration in the reactor after control is 4000. ⁇ 5000mg/L, the ascending flow rate is 0.5m/h, and the hydraulic retention time is 150-160min; when the NH 4 + -N and NO 2 - -N concentrations in the effluent of the reactor are both less than 5mg/L, the reactor is considered to be started success;
  • the domestic sewage enters the semi-short-range nitrification reactor through the inlet pump I, and the AO operation is turned on.
  • the SBR reactor undergoes five processes of water inflow, reaction, standing, precipitation, and water effluent.
  • the SBR effluent containing NH 4 + -N and NO 2 - -N enters the intermediate water tank, and the sewage from the intermediate water tank is pumped into the anammox coupled denitrification reactor through the inlet pump II; the hydraulic retention time of the UASB is controlled to be 3 ⁇ 6h, that is, the flow rate is 1L/h ⁇ 3L/h; the sludge is not actively discharged during the operation; the temperature in the reactor is controlled by the temperature control device to be 30 ⁇ 1°C;
  • the NH 4 + -N and NO 2 - -N of water are converted into N 2 ; while the autotrophic denitrifying bacteria use FeS as an electron donor to react with NO 3 - -N to produce NO 2 - -N, which further supplies anaerobic ammonia Oxidation reaction, so as to achieve the effect of deep denitrification; the effluent is discharged through the overflow of the U-shaped outlet pipe.
  • the combined real-time control of hypoxic aeration is not only conducive to the realization of semi-short-range nitrification, providing substrates for anammox, but also saving energy consumption for aeration and reducing treatment costs;
  • FeS as an electron donor for autotrophic denitrifying bacteria, has no toxic effect on anammox bacteria, and excessive FeS addition has no inhibitory effect on anammox bacteria;
  • Both anammox bacteria and autotrophic denitrifiers are chemoautotrophic microorganisms with CO 2 as carbon source, so the complementarity of the two types of bacteria metabolic pathways and the consistency of proliferation rate can achieve a stable coexistence relationship .
  • FIG. 1 is a schematic diagram of the apparatus of the present application.
  • the raw water tank (1) is connected with the water inlet of the semi-short-range nitrification reactor (2) through the inlet pump I (1.1); the water outlet of the short-range nitrification reactor ((2) is connected with the intermediate water tank (3) through the drain valve (2.4);
  • the water inlet of the up-flow anammox coupled denitrification granular sludge reactor (4) is connected to the intermediate water tank (3) through the feed pump II (3.1), and the up-flow anammox coupled denitrification granular sludge reactor (4) )
  • the water outlet is drained through the water outlet pipe (4.6).
  • the device of semi-short-range nitrification-anammox coupling denitrification treatment of urban domestic sewage is characterized in that: be provided with raw water tank (1), semi-short-range nitrification reactor (2), intermediate water tank (3) and anammox Coupled autotrophic denitrification reactor (4): the raw water tank (1) is provided with an inlet pump I; the short-range nitrification reactor (2) is provided with a pH tester (2.1), an aeration device (2.2), and a DO tester (2.5) ), gas flow meter (2.7), air pump (2.6), stirring device (2.8), drain valve (2.4) and mud valve (2.3); the intermediate water tank (3) is provided with an inlet pump II; up-flow anaerobic ammonia
  • the oxidation coupled denitrification granular sludge reactor (4) is provided with a temperature control device (4.1), a pH/DO measuring instrument (4.4), a water outlet pipe (4.6) and a gas collecting port (4.7).
  • the raw water tank (1) is connected to the water inlet of the semi-short-range nitrification reactor (2) through the inlet pump I (1.1); ) is connected; the water inlet of the anammox coupled denitrification reactor (4) is connected to the intermediate water tank (3) through the inlet pump II (3.1), and the water outlet of the anammox coupled denitrification reactor (4) is connected with the water outlet pipe ( 4.6) Drainage.
  • the mass concentration of FeS added in each 1L reactor is 10% to 20% of the mass concentration of ammonia nitrogen in the influent water in the reactor;
  • the sludge concentration in the reactor after mixing is controlled to be 4000 to 5000 mg /L, the ascending flow rate is 0.5m/h, and the hydraulic retention time is 150-160min; when the NH 4 + -N and NO 2 - -N concentrations in the effluent of the reactor are both less than 5 mg/L, the reactor is considered to be successfully started;
  • the domestic sewage enters the semi-short-range nitrification reactor through the inlet pump I, and the AO operation is turned on.
  • the SBR reactor undergoes five processes of water inflow, reaction, standing, precipitation, and water effluent.
  • the SBR effluent containing NH 4 + -N and NO 2 - -N enters the intermediate water tank, and the sewage from the intermediate water tank is pumped into the anammox coupled denitrification reactor through the inlet pump II; the hydraulic retention time of the UASB is controlled to be 3 ⁇ 6h, that is, the flow rate is 1L/h ⁇ 3L/h; the sludge is not actively discharged during the operation; the temperature in the reactor is controlled by the temperature control device to be 30 ⁇ 1°C;
  • the NH 4 + -N and NO 2 - -N of water are converted into N 2 ; while the autotrophic denitrifying bacteria use FeS as an electron donor to react with NO 3 - N to produce NO 2 - -N, which is further used for anaerobic ammonium oxidation reaction, so as to achieve the effect of deep denitrification; the effluent is discharged through the overflow of the U-shaped outlet pipe.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法,属污水生物处理领域。装置包括原水水箱,半短程硝化反应器,调节水箱,厌氧氨氧化耦合反硝化反应器。生活污水进入半短程硝化反应器中,通过实时控制达到出水NO 2 --N和NH 4 +-N质量浓度比为1~1.32,出水进入中间水箱,后进入厌氧氨氧化耦合自养反硝化反应器,反应器内同时实现厌氧氨氧化和硫的自养反硝化的协同反应,达到脱氮的效果。本申请通过充分利用微生物间的协同作用,提高了脱氮效率,实现了高效节能的城市污水深度脱氮。

Description

半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法
交叉引用
本申请要求在2020年9月24日提交中国专利局、申请号为202011011160.8、发明名称为“半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请所涉及的半短程硝化-厌氧氨氧化耦合自养反硝化实现城市生活污水深度脱氮的装置与方法,属污水生物处理领域,适用于低C/N比城市生活污水深度脱氮。
背景技术
人类活动会产生大量废水,其中包含C、N、P等多种元素副产物,导致了水体的氮、磷污染。其中城市污水中的氮素主要以有机氮和氨氮形式存在,不但对人体健康有极大的威胁;同时也会引起水体富营养化,破坏生态环境,造成水资源短缺。传统的硝化反硝化污水生物处理技术存在能耗较高,脱氮效率低的问题,为实现废水处理的可持续发展,可利用低耗高效的厌氧氨氧化工艺加以解决,而厌氧氨氧化反应会生成NO 3 --N,将其与反硝化相耦合是普遍选择。硫自养反硝化是利用脱氮硫杆菌等反硝化脱硫细菌独特的代谢特性,以还原性硫化合物作为电子供体和能源,以NO 3 --N或NO 2 --N作为电子受体。本实验前端以半短程硝化出水为厌氧氨氧化提供NH 4 +-N和NO 2 --N,后端基于硫自养反硝化菌的化能自养特性,将其与厌氧氨氧化耦合,具有节省曝气量,污泥产量低的优点。
短程硝化是指将传统的硝化过程控制在氨氧化阶段,可通过实时控制的方式实现,即在硝化过程中,当氨氧化反应结束时,系统内不再产生H +,pH值变化曲线会出现由下降转为上升的拐点,即“氨氮谷点”,因此可实时监测系统内pH变化,在pH曲线达到“氨氮谷点”时停止曝气将硝化反应控制在氨氧化阶段,为厌氧氨氧化反应提供底物NO 2 --N,而半短程硝化需要在氨谷点之前停止曝气,达到出水NH 4 +-N与NO 2 --N的质量浓度比为1~1.32。
硫的自养反硝化可以采用多种电子供体,其中FeS作为电子供体在自养反硝化过程中对厌氧氨氧化菌无毒害作用,且两类菌均是以CO 2为碳源的化能自养微生物,因此两类菌代谢途径的互补性和增殖速率的一致性,可以实现稳定的共存关系,两类菌可协同去除系统中的总氮,提高系统总氮的去除率,从而改善出水水质。
发明内容
本申请提供的是一种半短程硝化-厌氧氨氧化耦合硫自养反硝化实现城市生活污水深度脱氮的装置与方法,目的是解决传统污水处理工艺中碳源不足的问题,同时提高出水水质。
1.半短程硝化-厌氧氨氧化耦合硫自养反硝化处理城市生活污水的装置其特征在于:设有原水箱(1)、半短程硝化反应器(2)、中间水箱(3)和上流式厌氧氨氧化合反硝化颗粒污泥反应器(4):原水箱(1)设有进水泵Ⅰ;半短程硝化反应器(2)设有pH测定仪(2.1)、曝气装置(2.2)、DO测定仪(2.5)、气体流量计(2.7)、空气泵(2.6)、搅拌装置(2.8)、排水阀(2.4)和排泥阀(2.3);中间水箱(3)设有进水泵Ⅱ;上流式厌氧氨氧化耦合反硝化颗粒污泥反应器(4)设有温控装置(4.1)、pH/DO测定仪(4.4)、出水管(4.6)和集气口(4.7)。
实验装置连接:原水箱(1)通过进水泵Ⅰ(1.1)与短程硝化反应器(2)进水口相连;程硝化反应器((2)出水口通过排水阀(2.4)与与中间水箱(3)相连;上流式厌氧氨氧化耦合反硝化颗粒污泥反应器(4)进水口通过进水泵Ⅱ(3.1)与中间水箱(3)相连,上流式厌氧氨氧化耦合反硝化颗粒污泥反应器(4)出水口通过出水管(4.6)进行排水。
1.半短程硝化-厌氧氨氧化耦合硫自养反硝化处理城市生活污水的装置其特征在于:设有原水箱(1)、半短程硝化反应器(2)、中间水箱(3)和厌氧氨氧化耦合自养反硝化反应器(4):原水箱(1)设有进水泵Ⅰ;短程硝化反应器(2)设有pH测定仪(2.1)、曝气装置(2.2)、DO测定仪(2.5)、气体流量计(2.7)、空气泵(2.6)、搅拌装置(2.8)、排水阀(2.4)和排泥阀(2.3);中间水箱(3)设有进水泵Ⅱ;上流式厌氧氨氧化耦合反硝化颗粒污泥反应器(4)设有温控装置 (4.1)、pH/DO测定仪(4.4)、出水管(4.6)和集气口(4.7)。
实验装置连接:原水箱(1)通过进水泵Ⅰ(1.1)与半短程硝化反应器(2)进水口相连;程硝化反应器((2)出水口通过排水阀(2.4)与中间水箱(3)相连;厌氧氨氧化耦合反硝化反应器(4)进水口通过进水泵Ⅱ(3.1)与中间水箱(3)相连,厌氧氨氧化耦合反硝化反应器(4)出水口通过出水管(4.6)进行排水。
2.实验步骤:
(1)系统的启动:
(1.1)半短程硝化反应器的启动:接种短程硝化絮体污泥,控制污泥浓度为2500~3000mg/L,水力停留时间4~5h,污泥龄10~15d;每周期通过蠕动泵将污水从原水箱抽入反应器中,低氧曝气搅拌,控制反应器内溶解氧为0.5~2.0mg/L,沉淀排水,排水比为50%,当半短程硝化SBR反应器出水中的NH 4 +-N与NO 2 --N的质量浓度比为1~1.3时,完成半短程硝化SBR反应器的启动过程,其出水排入调节水箱;
(1.2)厌氧氨氧化耦合反硝化反应器的启动:①接种厌氧氨氧化颗粒污泥,污泥平均粒径为0.3~0.5mm;运行过程中不主动排泥;通过温控装置控制反应器内温度为30±1℃;②在缺氧UASB反应器中以浓度为30~50mg/LNa 2S 2O 3和20~40mg/LNaNO 3配的模拟废水为进水富集培养自养反硝化菌,通过温控装置控制反应器内温度为30±1℃,调节pH为7~8;培养3个月以上使功能微生物充分富集,收集污泥样品进行微生物群落结构的辨识,进行污泥内微生物丰度分析,当菌群丰度>10%即可;③依照污泥浓度将厌氧氨氧化污泥与反硝化污泥混合,厌氧氨氧化污泥浓度大于等于反硝化污泥浓度的5倍,在混合污泥内加入FeS,每1L反应器内FeS所加质量浓度是反应器内进水氨氮质量浓度的10%~20%;控制混合后反应器内污泥浓度为4000~5000mg/L,上升流速为0.5m/h,水力停留时间为150~160min;当反应器出水NH 4 +-N及NO 2 --N浓度均小于5mg/L时,即认为该反应器启动成功;
(2)启动成功后的运行操作:
(2.1)生活污水通过进水泵Ⅰ进入半短程硝化反应器中,开启AO运行,SBR反应器经历进水、反应、静置、沉淀、出水五个过程,进水后厌氧搅拌,反应时间为30~60min,可去除水中有机物;随后开启空气泵,进行好氧搅拌,通过调节气体流量计控制溶解氧为0.3~2mg/L,进行半短程硝化反应,反应时间为3~4h;搅拌结束后,静置沉淀30~60min后开启排水阀,排水比为50%,通过定期排泥控制污泥龄为10~15d;反应出水中NH 4 +-N与NO 2 --N的质量浓度比为1~1.32;
(2.2)含有NH 4 +-N与NO 2 --N的SBR出水进入中间水箱,通过进水泵Ⅱ将中间水箱的污水泵入厌氧氨氧化耦合反硝化反应器内;控制UASB水力停留时间为3~6h,即流速为1L/h~3L/h;运行过程中不主动排泥;通过温控装置控制反应器内温度为30±1℃;反应器内通过厌氧氨氧化菌作用将进水的NH 4 +-N与NO 2 --N转化为N 2;而自养反硝化菌则通过FeS作为电子供体与NO 3 --N反应产生NO 2 --N,进一步供厌氧氨氧化反应,从而达到深度脱氮的作用;出水通过U型出水管溢流排出。
(3)实验装置的优点:
1.通过低氧曝气联合实时控制不仅有利于半短程硝化的实现,为厌氧氨氧化提供底物,还能够节约曝气能耗,降低处理成本;
2.通过自养反硝化作用去除厌氧氨氧化反应的副产物,提高了系统的脱氮效率,改善了出水水质;
3.FeS作为自养反硝化菌的电子供体,对厌氧氨氧化菌无毒害作用,且过量的FeS加入对厌氧氨氧化菌没有抑制作用;
4.厌氧氨氧化菌和自养反硝化菌均是以CO 2为碳源的化能自养微生物,因此两类菌代谢途径的互补性和增殖速率的一致性,可以实现稳定的共存关系。
附图说明
图1是本申请的装置示意图。
主要符号说明如下:
1-进水箱 2-半短程硝化SBR反应器 3-中间水箱
4-厌氧氨氧化耦合自养反硝化反应器
1.1-蠕动泵Ⅰ 2.1-pH测定仪
2.2-曝气盘 2.3-排泥阀 2.4-排水阀
2.5-DO测定仪 2.6-气泵 2.7-转子流量计
2.8-搅拌装置
3.1-蠕动泵
4.1-温控 4.2-进水阀 4.3-蠕动泵
4.4-pH/DO测定仪 4.5-回流口
4.6-出水口区 4.7-集气口
具体实施方式
原水箱(1)通过进水泵Ⅰ(1.1)与半短程硝化反应器(2)进水口相连;程硝化反应器((2)出水口通过排水阀(2.4)与与中间水箱(3)相连;上流式厌氧氨氧化耦合反硝化颗粒污泥反应器(4)进水口通过进水泵Ⅱ(3.1)与中间水箱(3)相连,上流式厌氧氨氧化耦合反硝化颗粒污泥反应器(4)出水口通过出水管(4.6)进行排水。
1.半短程硝化-厌氧氨氧化耦合反硝化处理城市生活污水的装置其特征在于:设有原水箱(1)、半短程硝化反应器(2)、中间水箱(3)和厌氧氨氧化耦合自养反硝化反应器(4):原水箱(1)设有进水泵Ⅰ;短程硝化反应器(2)设有pH测定仪(2.1)、曝气装置(2.2)、DO测定仪(2.5)、气体流量计(2.7)、空气泵(2.6)、搅拌装置(2.8)、排水阀(2.4)和排泥阀(2.3);中间水箱(3)设有进水泵Ⅱ;上流式厌氧氨氧化耦合反硝化颗粒污泥反应器(4)设有温控装置(4.1)、pH/DO测定仪(4.4)、出水管(4.6)和集气口(4.7)。
实验装置连接:原水箱(1)通过进水泵Ⅰ(1.1)与半短程硝化反应器(2)进水口相连;程硝化反应器((2)出水口通过排水阀(2.4)与中间水箱(3)相连;厌氧氨氧化耦合反硝化反应器(4)进水口通过进水泵Ⅱ(3.1)与中间水箱(3)相连,厌氧氨氧化耦合反硝化反应器(4)出水口通过出水管(4.6)进行排水。
2.实验步骤:
(1)系统的启动:
(1.1)半短程硝化反应器的启动:接种短程硝化絮体污泥,控制污泥浓度为2500~3000mg/L,水力停留时间4~5h,污泥龄10~15d;每周期通过蠕动泵将污水从原水箱抽入反应器中,低氧曝气搅拌,控制反应器内溶解氧为0.5~2.0mg/L,沉淀排水,排水比为50%,当半短程硝化SBR反应器出水中的NH 4 +-N与NO 2 --N的质量浓度比为1~1.3时,完成半短程硝化SBR反应器的启动过程,其出水排入调节水箱;
(1.2)厌氧氨氧化耦合反硝化反应器的启动:①接种厌氧氨氧化颗粒污泥,污泥平均粒径为0.3~0.5mm;运行过程中不主动排泥;通过温控装置控制反应器内温度为30±1℃;②在缺氧UASB中以浓度为30~50mg/LNa 2S 2O 3和20~40mg/LNaNO 3配的模拟废水为进水富集培养自养反硝化菌,通过温控装置控制反应器内温度为30±1℃,调节pH为7~8;培养3个月以上使功能微生物充分富集,收集污泥样品进行微生物群落结构的辨识,进行污泥内微生物丰度分析,当菌群丰度>10%即可;③依照污泥浓度将厌氧氨氧化污泥与反硝化污泥混合,厌氧氨氧化污泥浓度大于等于反硝化污泥浓度的5倍,在混合污泥内加入FeS,每1L反应器内FeS所加质量浓度是反应器内进水氨氮质量浓度的10%~20%;控制混合后反应器内污泥浓度为4000~5000mg/L,上升流速为0.5m/h,水力停留时间为150~160min;当反应器出水NH 4 +-N及NO 2 --N浓度均小于5mg/L时,即认为该反应器启动成功;
(2)启动成功后的运行操作:
(2.1)生活污水通过进水泵Ⅰ进入半短程硝化反应器中,开启AO运行,SBR反应器经历进水、反应、静置、沉淀、出水五个过程,进水后厌氧搅拌,反应时间为30~60min,可去除水中有机物;随后开启空气泵,进行好氧搅拌,通过调节气体流量计控制溶解氧为0.3~2mg/L,进行半短程硝化反应,反应时间为3~4h;搅拌结束后,静置沉淀30~60min后开启排水阀,排水比为50%,通过定期排泥控制污泥龄为10~15d;反应出水中NH 4 +-N与NO 2 --N的质量浓度比为1~1.32;
(2.2)含有NH 4 +-N与NO 2 --N的SBR出水进入中间水箱,通过进水泵Ⅱ将中间水箱的污水泵入厌氧氨氧化耦合反硝化反应器内;控制UASB水力停留时间为3~6h,即流速为1L/h~3L/h;运行过程中不主动排泥;通过温控装置控制反应器内温度为30±1℃;反应器内通过厌氧氨氧化菌作用将进水的NH 4 +-N与NO 2 --N转化为N 2;而自养反硝化菌则通过FeS作为电子供体与NO 3 N反应产生NO 2 --N,进一步供厌氧氨氧化反应,从 而达到深度脱氮的作用;出水通过U型出水管溢流排出。

Claims (2)

  1. 半短程硝化-厌氧氨氧化耦合硫自养反硝化处理城市生活污水的装置,其特征在于:设有原水箱(1)、半短程硝化反应器(2)、中间水箱(3)和厌氧氨氧化耦合自养反硝化反应器(4):原水箱(1)设有进水泵Ⅰ;半短程硝化反应器(2)设有pH测定仪(2.1)、曝气装置(2.2)、DO测定仪(2.5)、气体流量计(2.7)、空气泵(2.6)、搅拌装置(2.8)、排水阀(2.4)和排泥阀(2.3);中间水箱(3)设有进水泵Ⅱ;上流式厌氧氨氧化耦合反硝化颗粒污泥反应器(4)设有温控装置(4.1)、pH/DO测定仪(4.4)、出水管(4.6)和集气口(4.7);
    实验装置连接:原水箱(1)通过进水泵Ⅰ(1.1)与半短程硝化反应器(2)进水口相连;程硝化反应器((2)出水口通过排水阀(2.4)与中间水箱(3)相连;厌氧氨氧化耦合反硝化反应器(4)进水口通过进水泵Ⅱ(3.1)与中间水箱(3)相连,厌氧氨氧化耦合反硝化反应器(4)出水口通过出水管(4.6)进行排水。
  2. 应用如权利要求1所述装置的方法,其特征在于:
    (1)系统的启动:
    (1.1)半短程硝化反应器的启动:接种短程硝化絮体污泥,控制污泥浓度为2500~3000mg/L,水力停留时间4~5h,污泥龄10~15d;每周期通过蠕动泵将污水从原水箱抽入半短程硝化反应器中,低氧曝气搅拌3~5h,控制溶解氧为0.5~2.0mg/L,沉淀排水,排水比为50%,当半短程硝化SBR反应器出水中的NH 4 +-N与NO 2 --N的质量浓度比为1~1.3时,完成半短程硝化SBR反应器的启动过程,其出水排入调节水箱;
    (1.2)厌氧氨氧化耦合反硝化反应器的启动:①接种厌氧氨氧化颗粒污泥,污泥平均粒径为0.3~0.5mm;运行过程中不主动排泥;通过温控装置控制反应器内温度为30±1℃;
    ②在缺氧UASB反应器中以浓度为30~50mg/L Na 2S 2O 3和20~40mg/L NaNO 3配的模拟废水为进水富集培养自养反硝化菌,通过温控装置控制反应器内温度为30±1℃,调节pH为7~8;培养3个月以上进行污泥内微生物丰度分析,当菌群丰度>10%即可;
    ③依照污泥浓度将厌氧氨氧化污泥与反硝化污泥混合,厌氧氨氧化污泥浓度大于等于反硝化污泥浓度的5倍,在混合污泥内加入FeS,每1L反应器内FeS所加质量浓度是反应器内进水氨氮质量浓度的10%~20%;控制混合后反应器内污泥浓度为4000~5000mg/L,上升流速为0.5m/h,水力停留时间为150~160min;当反应器出水NH 4 +-N及NO 2 --N浓度均小于5mg/L时,即认为该反应器启动成功;
    (2)启动成功后的运行操作:
    (2.1)生活污水通过进水泵Ⅰ进入半短程硝化反应器中,开启AO运行,SBR反应器经历进水、反应、静置、沉淀、出水五个过程,进水后厌氧搅拌,反应时间为30~60min,去除水中有机物;随后开启空气泵,进行好氧搅拌,通过调节气体流量计控制溶解氧为0.3~2mg/L,进行半短程硝化反应,反应时间为3~4h;搅拌结束后,静置沉淀30~60min后开启排水阀,排水比为50%,通过定期排泥控制污泥龄为10~15d;反应出水中NH 4 +-N与NO 2 --N的质量浓度比为1~1.32;
    (2.2)含有NH 4 +-N与NO 2 --N的SBR出水进入中间水箱,通过进水泵Ⅱ将中间水箱的污水泵入厌氧氨氧化耦合反硝化反应器内;控制UASB水力停留时间为3~6h,即流速为1L/h~3L/h;运行过程中不主动排泥;通过温控装置控制反应器内温度为30±1℃;反应器内通过厌氧氨氧化菌作用将进水的NH 4 +-N与NO 2 --N转化为N 2;而自养反硝化菌则通过FeS作为电子供体与NO 3 N反应产生NO 2 --N,出水通过U型出水管溢流排出。
PCT/CN2021/107610 2020-09-24 2021-07-21 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法 WO2022062615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011011160.8 2020-09-24
CN202011011160.8A CN112250180B (zh) 2020-09-24 2020-09-24 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法

Publications (1)

Publication Number Publication Date
WO2022062615A1 true WO2022062615A1 (zh) 2022-03-31

Family

ID=74231971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107610 WO2022062615A1 (zh) 2020-09-24 2021-07-21 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法

Country Status (2)

Country Link
CN (1) CN112250180B (zh)
WO (1) WO2022062615A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114684918A (zh) * 2022-03-28 2022-07-01 北京工业大学 一种通过先控制超短好氧时间淘洗硝化菌再富集aob以快速恢复短程硝化的方法
CN114940539A (zh) * 2022-06-17 2022-08-26 北京工业大学 一种基于deamox技术强化a2n工艺生物脱氮除磷的装置与方法
CN114956333A (zh) * 2022-06-12 2022-08-30 北京工业大学 一种快速实现部分短程硝化污泥颗粒化的系统与方法
CN114988577A (zh) * 2022-06-24 2022-09-02 北京工业大学 一种通过硅藻土的投加快速启动短程反硝化耦合厌氧氨氧化生物脱氮的装置和方法
CN115043488A (zh) * 2022-06-07 2022-09-13 广东轻工职业技术学院 一种调控单级自养脱氮性能的方法
CN115259386A (zh) * 2022-08-19 2022-11-01 济南大学 一种微动力菌藻全程自养生物膜废水处理系统及方法
CN115432806A (zh) * 2022-09-15 2022-12-06 北京工业大学 一种短程硝化同步生物除磷接厌氧氨氧化耦合反硝化联合处理垃圾渗滤液和市政污水的工艺
CN115571981A (zh) * 2022-09-29 2023-01-06 吉林建筑科技学院 改进型a2nsbr双泥反硝化除磷工艺方法
CN115571984A (zh) * 2022-11-01 2023-01-06 北京工业大学 从生活污水中回收羟基磷灰石颗粒及自养脱氮的装置与方法
CN115594287A (zh) * 2022-09-19 2023-01-13 北京工业大学(Cn) 投加羟胺启动Anammox菌原位富集的PNA一体化MBBR深度脱氮的方法
CN115650523A (zh) * 2022-11-15 2023-01-31 北京工业大学 紫外-过氧化氢预处理耦合硝化-短程反硝化-厌氧氨氧化处理含氮石化废水的装置及方法
CN115745144A (zh) * 2022-11-24 2023-03-07 北京工业大学 一种pd/a混养同步脱氮除磷方法及装置
CN115745165A (zh) * 2022-10-06 2023-03-07 北京工业大学 硝化/反硝化耦合硫自养反硝化/厌氧氨氧化强化生活污水深度脱氮的装置与方法
CN115925184A (zh) * 2022-12-30 2023-04-07 桂润环境科技股份有限公司 一种酱香型白酒酿造工业废水处理工艺
CN116002858A (zh) * 2023-01-09 2023-04-25 北京工业大学 一种利用塑料际富集厌氧氨氧化菌并快速启动厌氧氨氧化过程的方法
CN116040792A (zh) * 2023-01-08 2023-05-02 北京工业大学 一种利用悬浮沸石填料实现一体化短程硝化-厌氧氨氧化高效脱氮的装置与方法
CN116062883A (zh) * 2023-01-04 2023-05-05 北京工业大学 分步式厌氧氨氧化强化养殖废水碳源利用同步脱氮回收磷的装置与方法
CN116081813A (zh) * 2023-02-28 2023-05-09 大连理工大学 一种以脱硫废液为电子供体的废水自养反硝化方法
CN116143277A (zh) * 2023-01-08 2023-05-23 北京工业大学 一种利用沸石填料维持高氨氮废水稳定短程硝化-厌氧氨氧化的装置与方法
CN116218640A (zh) * 2023-02-28 2023-06-06 乐山师范学院 一种将浓缩污泥驯化为Feammox菌群的装置
CN116874077A (zh) * 2023-08-25 2023-10-13 广东清研环境科技有限公司 一体化短程硝化-厌氧氨氧化反应系统及反应工艺

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250180B (zh) * 2020-09-24 2022-03-15 北京工业大学 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法
CN112811590B (zh) * 2020-11-09 2021-10-08 北京建筑大学 一种垃圾分类回收后厨余垃圾渗沥液的处理方法
CN112850900A (zh) * 2021-03-06 2021-05-28 苏州绿业环境发展有限公司 一种基于短程硝化-厌氧氨氧化-硫自养反硝化体系同步去除污水中氮、硫的方法
CN113200600B (zh) * 2021-05-14 2023-03-10 北京工业大学 半短程硝化厌氧氨氧化串联短程反硝化厌氧氨氧化处理高氨氮有机物废水的装置与方法
CN115536151B (zh) * 2021-06-29 2024-05-31 中国石油化工股份有限公司 一种提高污泥同步脱氮除磷的方法及装置
CN114314838A (zh) * 2022-01-06 2022-04-12 华东理工大学 甲酸抑制型半短程硝化耦合硫基自养脱氮工艺装置与方法
CN114772725B (zh) * 2022-03-10 2024-03-26 北京工业大学 一种硫自养短程反硝化耦合厌氧氨氧化强化生活污水脱氮除磷的装置和方法
CN116143280B (zh) * 2022-09-07 2024-04-19 北京工业大学 硫自养反硝化强化短程反硝化厌氧氨氧化实现低碳氮比城市污水深度脱氮的装置与方法
CN116102163B (zh) * 2022-09-07 2024-04-26 北京工业大学 一种在短程反硝化颗粒中富集厌氧氨氧化菌强化生活污水脱氮的装置与方法
CN115432805B (zh) * 2022-09-15 2024-07-12 北京工业大学 一种短程硝化同步厌氧氨氧化耦合硫自养反硝化实现发酵类废水深度脱氮除硫的方法与装置
CN115611428A (zh) * 2022-11-04 2023-01-17 山东生态家园环保股份有限公司 一种适用于养殖污水的厌氧氨氧化脱氮装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923853A (zh) * 2012-11-06 2013-02-13 沈阳建筑大学 硫自养反硝化-厌氧氨氧化耦合除硫脱氮的废水处理方法
CN107162184A (zh) * 2017-06-07 2017-09-15 南京大学 一种利用厌氧氨氧化‑硫自养反硝化耦合脱氮的ubf反应器及其系统和脱氮方法
KR20190037078A (ko) * 2017-09-27 2019-04-05 (주)전테크 하·폐수에 함유된 질소 제거 시스템
CN110563271A (zh) * 2019-09-19 2019-12-13 北京工业大学 短程硝化-厌氧氨氧化耦合反硝化实现城市生活污水深度脱氮的装置与方法
CN111661924A (zh) * 2020-07-14 2020-09-15 北京城市排水集团有限责任公司 一种硫自养短程反硝化耦合厌氧氨氧化脱氮的系统及方法
CN112250180A (zh) * 2020-09-24 2021-01-22 北京工业大学 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108217950B (zh) * 2018-03-13 2021-08-13 北京工业大学 Fna强化污泥发酵及实现污水短程脱氮除磷的装置和方法
CN110950428B (zh) * 2019-11-22 2022-03-29 重庆大学 一种具有同步硫自养反硝化和厌氧氨氧化功能污泥的培养方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923853A (zh) * 2012-11-06 2013-02-13 沈阳建筑大学 硫自养反硝化-厌氧氨氧化耦合除硫脱氮的废水处理方法
CN107162184A (zh) * 2017-06-07 2017-09-15 南京大学 一种利用厌氧氨氧化‑硫自养反硝化耦合脱氮的ubf反应器及其系统和脱氮方法
KR20190037078A (ko) * 2017-09-27 2019-04-05 (주)전테크 하·폐수에 함유된 질소 제거 시스템
CN110563271A (zh) * 2019-09-19 2019-12-13 北京工业大学 短程硝化-厌氧氨氧化耦合反硝化实现城市生活污水深度脱氮的装置与方法
CN111661924A (zh) * 2020-07-14 2020-09-15 北京城市排水集团有限责任公司 一种硫自养短程反硝化耦合厌氧氨氧化脱氮的系统及方法
CN112250180A (zh) * 2020-09-24 2021-01-22 北京工业大学 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114684918A (zh) * 2022-03-28 2022-07-01 北京工业大学 一种通过先控制超短好氧时间淘洗硝化菌再富集aob以快速恢复短程硝化的方法
CN115043488A (zh) * 2022-06-07 2022-09-13 广东轻工职业技术学院 一种调控单级自养脱氮性能的方法
CN115043488B (zh) * 2022-06-07 2024-02-06 广东轻工职业技术学院 一种调控单级自养脱氮性能的方法
CN114956333A (zh) * 2022-06-12 2022-08-30 北京工业大学 一种快速实现部分短程硝化污泥颗粒化的系统与方法
CN114940539B (zh) * 2022-06-17 2024-02-06 北京工业大学 一种基于deamox技术强化a2n工艺生物脱氮除磷的装置与方法
CN114940539A (zh) * 2022-06-17 2022-08-26 北京工业大学 一种基于deamox技术强化a2n工艺生物脱氮除磷的装置与方法
CN114988577A (zh) * 2022-06-24 2022-09-02 北京工业大学 一种通过硅藻土的投加快速启动短程反硝化耦合厌氧氨氧化生物脱氮的装置和方法
CN114988577B (zh) * 2022-06-24 2023-07-28 北京工业大学 一种通过硅藻土的投加快速启动短程反硝化耦合厌氧氨氧化生物脱氮的装置和方法
CN115259386A (zh) * 2022-08-19 2022-11-01 济南大学 一种微动力菌藻全程自养生物膜废水处理系统及方法
CN115432806A (zh) * 2022-09-15 2022-12-06 北京工业大学 一种短程硝化同步生物除磷接厌氧氨氧化耦合反硝化联合处理垃圾渗滤液和市政污水的工艺
CN115594287A (zh) * 2022-09-19 2023-01-13 北京工业大学(Cn) 投加羟胺启动Anammox菌原位富集的PNA一体化MBBR深度脱氮的方法
CN115571981A (zh) * 2022-09-29 2023-01-06 吉林建筑科技学院 改进型a2nsbr双泥反硝化除磷工艺方法
CN115571981B (zh) * 2022-09-29 2024-05-10 吉林建筑科技学院 改进型a2nsbr双泥反硝化除磷工艺方法
CN115745165A (zh) * 2022-10-06 2023-03-07 北京工业大学 硝化/反硝化耦合硫自养反硝化/厌氧氨氧化强化生活污水深度脱氮的装置与方法
CN115571984A (zh) * 2022-11-01 2023-01-06 北京工业大学 从生活污水中回收羟基磷灰石颗粒及自养脱氮的装置与方法
CN115650523A (zh) * 2022-11-15 2023-01-31 北京工业大学 紫外-过氧化氢预处理耦合硝化-短程反硝化-厌氧氨氧化处理含氮石化废水的装置及方法
CN115745144B (zh) * 2022-11-24 2024-05-24 北京工业大学 一种pd/a混养同步脱氮除磷方法及装置
CN115745144A (zh) * 2022-11-24 2023-03-07 北京工业大学 一种pd/a混养同步脱氮除磷方法及装置
CN115925184A (zh) * 2022-12-30 2023-04-07 桂润环境科技股份有限公司 一种酱香型白酒酿造工业废水处理工艺
CN116062883A (zh) * 2023-01-04 2023-05-05 北京工业大学 分步式厌氧氨氧化强化养殖废水碳源利用同步脱氮回收磷的装置与方法
CN116143277A (zh) * 2023-01-08 2023-05-23 北京工业大学 一种利用沸石填料维持高氨氮废水稳定短程硝化-厌氧氨氧化的装置与方法
CN116040792A (zh) * 2023-01-08 2023-05-02 北京工业大学 一种利用悬浮沸石填料实现一体化短程硝化-厌氧氨氧化高效脱氮的装置与方法
CN116002858A (zh) * 2023-01-09 2023-04-25 北京工业大学 一种利用塑料际富集厌氧氨氧化菌并快速启动厌氧氨氧化过程的方法
CN116002858B (zh) * 2023-01-09 2024-06-04 北京工业大学 一种利用塑料际富集厌氧氨氧化菌并快速启动厌氧氨氧化过程的方法
CN116218640A (zh) * 2023-02-28 2023-06-06 乐山师范学院 一种将浓缩污泥驯化为Feammox菌群的装置
CN116081813A (zh) * 2023-02-28 2023-05-09 大连理工大学 一种以脱硫废液为电子供体的废水自养反硝化方法
CN116874077A (zh) * 2023-08-25 2023-10-13 广东清研环境科技有限公司 一体化短程硝化-厌氧氨氧化反应系统及反应工艺
CN116874077B (zh) * 2023-08-25 2024-03-22 广东清研环境科技有限公司 一体化短程硝化-厌氧氨氧化反应系统及反应工艺

Also Published As

Publication number Publication date
CN112250180B (zh) 2022-03-15
CN112250180A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022062615A1 (zh) 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法
CN102633359B (zh) 一种适用于含氮化工废水总氮的处理方法
CN110563271B (zh) 短程硝化-厌氧氨氧化耦合反硝化实现城市生活污水深度脱氮的装置与方法
Su et al. Rapid enrichment of anammox bacteria and transformation to partial denitrification/anammox with nitrification/denitrification sludge
WO2022242040A1 (zh) 一种内源反硝化联合自养脱氮工艺处理中晚期垃圾渗滤液的装置及方法
WO2012000162A1 (zh) 一步去除废水中碳氮污染物的方法
CN108046518B (zh) 一种低碳源污水的强化脱氮除磷的装置和方法
CN112250175B (zh) 一体化短程硝化-厌氧氨氧化耦合内源短程反硝化实现城市污水深度脱氮的装置和方法
CN108658229B (zh) 一种自养/异养深度脱氮过程控制的装置与方法
WO2012155790A1 (zh) 一种利用微生物处理煤化工废水总氮的方法
CN113943056B (zh) 一种连续流平衡聚糖菌与聚磷菌实现同步氮磷去除的方法
CN113023872B (zh) 同步短程硝化反硝化-厌氧氨氧化耦合反硝化实现生活污水脱氮的装置与方法
CN113233593B (zh) 污水处理工艺及污水处理装置
WO2022170787A1 (zh) 分段进水短程硝化-厌氧氨氧化组合同步处理污水与污泥的装置与方法
CN112479362A (zh) 一种污泥发酵组合短程反硝化厌氧氨氧化处理城市污水的装置和方法
CN108101310B (zh) 一种火电厂脱硫脱硝废水的处理装置和方法
CN107840550B (zh) 一种垃圾渗沥液的处理方法
CN114229995B (zh) 一种养猪废水同步脱氮除碳的系统及工艺
CN108503022A (zh) 一种基于厌氧硫酸盐还原氨氧化作用的黑臭河道修复方法
CN113716689B (zh) 一种基于硫还原与硫自养反硝化的混合营养型脱氮方法
CN113023871B (zh) 短程硝化-厌氧氨氧化耦合反硝化工艺同步处理生活污水和晚期垃圾渗滤液的装置与方法
CN112093890B (zh) 一种短程硝化处理污水的方法
CN107986443B (zh) 一种适用于cod/n波动大的污水的全程自养脱氮方法
CN113292159B (zh) 应用于含高氨氮假发废水处理的增强型cfbr工艺
CN212127697U (zh) 污水处理厂原位污水和臭气处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21870993

Country of ref document: EP

Kind code of ref document: A1