WO2023168884A1 - 一种高温气冷堆蒸汽发生器螺旋换热管制备方法 - Google Patents

一种高温气冷堆蒸汽发生器螺旋换热管制备方法 Download PDF

Info

Publication number
WO2023168884A1
WO2023168884A1 PCT/CN2022/107059 CN2022107059W WO2023168884A1 WO 2023168884 A1 WO2023168884 A1 WO 2023168884A1 CN 2022107059 W CN2022107059 W CN 2022107059W WO 2023168884 A1 WO2023168884 A1 WO 2023168884A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
inspection
heat treatment
spiral
pipe
Prior art date
Application number
PCT/CN2022/107059
Other languages
English (en)
French (fr)
Inventor
庄建新
韩敏
许文军
韦刚
唐洁
Original Assignee
江苏银环精密钢管有限公司
宝银特种钢管有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏银环精密钢管有限公司, 宝银特种钢管有限公司 filed Critical 江苏银环精密钢管有限公司
Publication of WO2023168884A1 publication Critical patent/WO2023168884A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/30Finishing tubes, e.g. sizing, burnishing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Definitions

  • the invention relates to the technical field of manufacturing ultra-long alloy steel seamless pipes and multi-head spiral tubes, and in particular to a method for preparing ultra-long multi-head spiral alloy steel heat exchange tubes for high-temperature gas-cooled reactor once-through steam generators.
  • nuclear power As a safe, clean, low-carbon and efficient energy source, nuclear power has always received great attention. Especially since the Fukushima nuclear accident in Japan in March 2011, the safety of nuclear power has once again become the most important issue in nuclear power countries.
  • nuclear power plants under construction around the world have gradually transitioned to third-generation nuclear power technology, and safer fourth-generation nuclear energy systems have become a key research topic for nuclear energy researchers in the coming years.
  • high-temperature gas-cooled reactors are inherently safe and do not require off-site emergency safety. Reactors with inherent safety will not melt down or cause a large amount of radioactivity in any accident. freed. Known as the core that never melts down.
  • the evaporator is the core component of the high-temperature gas-cooled reactor demonstration power station. It is composed of 19 spiral tube bundle components. Each component has five layers and a total of 35 multi-head spiral tubes. Among them, the length of a single ASME SA-213T22 heat exchange tube is 60 meters. It is in the shape of a multi-head spiral, requires high precision, and is extremely difficult to manufacture. It is the first of its kind in the world.
  • the object of the present invention is to provide a method for preparing spiral heat exchange tubes for high-temperature gas-cooled reactor steam generators with good microstructure and mechanical properties, excellent spiral forming and dimensional accuracy and surface quality in view of the design requirements of high-temperature gas-cooled reactors. .
  • a method for preparing spiral heat exchange tubes for high-temperature gas-cooled reactor steam generators which is characterized by including the following steps:
  • the T22 material round steel pipe blank is heated and perforated to form a seamless raw pipe; then the raw pipe is annealed and heat treated;
  • step (2) Pickle the waste pipe formed in step (1) to remove the surface oxide scale, then rinse it with clean water and blow dry; at the same time, conduct a surface quality inspection on the waste pipe;
  • the waste pipes that pass the inspection in step (2) are subjected to multi-pass cold rolling, diameter reduction and annealing heat treatment;
  • the intermediate tube in step (3) is cold drawn into a finished tube. After cold drawing, the oil is removed and the finished product is subjected to normalizing heat treatment + tempering heat treatment in a protective atmosphere to form a finished heat exchange tube;
  • step (4) Straighten the finished pipe in step (4), and then conduct ultrasonic inspection, eddy current inspection, physical and chemical property inspection, hydraulic pressure test, surface visual inspection and dimensional inspection respectively;
  • the finished straight pipe that has passed the inspection is spirally formed, and the straight pipes at both ends of the spiral pipe are bent, and then bent circumferentially onto the spiral pipe surface;
  • the formed spiral tube After the formed spiral tube is fixed, it is placed in a vacuum heat treatment furnace for stress relief heat treatment; the heat-treated spiral tube is cleaned, and the preparation of the spiral heat exchange tube is completed after passing the geometric size and surface quality inspection.
  • step (3) two passes of cold rolling and heat treatment are used for the intermediate pipe; the qualified waste pipe is subjected to one pass of cold rolling and diameter reduction, and the deformation is controlled at 60% to 70%, and the cold rolling Q value is is 1.2 ⁇ 0.2; after cold rolling, degreasing and annealing heat treatment are carried out, and then straightening, pickling, inspection, grinding and chamfering are carried out;
  • the cold-rolled intermediate tube is then subjected to a second pass of cold rolling to reduce the diameter.
  • the deformation is controlled at 75% to 85%, and the Q value is 1.2 ⁇ 0.2; then it is annealed in a protective atmosphere and heat treated, and then straightened, inspected, and ground. , chamfering treatment.
  • Q (lnSu-lnS0)/((ln(Du-Su)-ln(D0-S0)), Among them, D0 - outer diameter before cold rolling, Du - outer diameter after cold rolling, S0 - wall thickness before cold rolling, Su - wall thickness after cold rolling.
  • the Q value reflects the degree of reduction in the outer diameter of the pipe and the wall thickness.
  • the ratio of the degree of reduction must ensure that the Q value is within a reasonable range, so that the diameter and wall reduction of the pipe can be uniform, and the metal rheology can be more uniform, so that the quality of the internal and external surfaces of the pipe (especially the smoothness) can reach the best state.
  • the Q value is controlled within the range of 1.2 ⁇ 0.2, and the deformation in the first pass is controlled at 60% to 70%. Since the length of the finished pipe is 60 meters, the first two passes use cold rolling with larger deformation, among which the The variable of the two passes reaches about 80%, and the rolling elongation reaches 5 times, which solves the problem that the pipe is too long and easy to become unstable before rolling, causing the surface quality to decrease and the dimensional accuracy to be poor.
  • the finished product adopts coreless cold drawing to make the outer surface of the finished pipe
  • the consistent diameter accuracy is guaranteed, which provides favorable conditions for the subsequent high-precision forming of multi-head spiral pipes, and avoids the problem of cleaning the inner wall of ultra-long pipes.
  • Each pass of alloy steel pipe must be inspected on the inner and outer walls of one end before cold rolling.
  • Chamfering treatment is used to reduce stress concentration when the alloy steel pipe is subjected to large deformation cold rolling, and to prevent cracking of the head and affecting product quality.
  • the annealing protective atmosphere after the second pass cold rolling is nitrogen and hydrogen. Nitrogen and hydrogen are used for heat treatment to ensure that there is no oxide scale on the surface of the intermediate tube after heat treatment, thus avoiding the difficulty of pickling small-diameter tubes.
  • the length of the sizing area of the cold rolling mandrel is 100 ⁇ 10mm.
  • the length of the mandrel sizing area is appropriately reduced, and the rolling deformation area of the pipe is increased, thereby reducing the diameter reduction per unit length and preventing the pipe from biting into the pipe in the early stages of cold rolling.
  • the inner wall becomes unstable and wrinkles, causing defects such as "rolling and folding".
  • the heating temperature of the round steel tube blank is 1150 ⁇ 1230°C
  • the annealing temperature of the raw tube is 760 ⁇ 15°C
  • the heat preservation is performed for 85 ⁇ 95 minutes and then air-cooled
  • the first pass annealing temperature is 760 ⁇ 15°C, and the heat preservation is followed by air cooling for 60 to 70 minutes;
  • the second pass annealing temperature is 760 ⁇ 15°C, and the heat preservation is followed by air cooling for 50 to 60 minutes;
  • the normalizing heat treatment temperature is 940 ⁇ 5°C, and the holding time is 20 to 25 minutes.
  • the tempering heat treatment temperature is 760 ⁇ 5°C, and the holding time is 40 to 45 minutes. Cool to less than 50°C and take out.
  • Nitrogen + hydrogen protection is used for normalizing and tempering heat treatment of the finished pipe, and the ratio of nitrogen and hydrogen is adjusted to form a precise high-temperature oxide film on the surface of the alloy steel to ensure that it is not easy to rust during the subsequent manufacturing process and meets the surface quality requirements.
  • the annealing heat treatment and insulation temperature of the raw tube and the intermediate tube is close to the critical point of alloy steel, and a reasonable temperature is designed according to the wall thickness. Holding time and cooling method.
  • step (4) the finished pipe does not rotate and moves forward in a straight line, and the straightening machine roller moves circumferentially around the pipe with the finished pipe as the center to avoid damage to the surface of the ultra-long straight pipe during straightening.
  • the tube is filled with heated nitrogen and dried.
  • the spiral forming uses a multi-head spiral tube forming machine to form multiple spiral tubes simultaneously.
  • the invention uses T22 alloy steel to prevent cracks and other defects caused by the melting of low-melting-point elements during hot processing and deformation, and to reduce the plastic toughness, high-temperature endurance strength and fatigue performance of the alloy steel, thereby ensuring the quality of the finished product.
  • Coreless cold drawing with large deformation is used to control the Q value during cold drawing to make the diameter and wall reduction of the pipe uniform, making the metal rheology more uniform and ensuring the surface quality and dimensional accuracy of the finished product.
  • Atmosphere protection is used during the heat treatment of finished pipes to prevent corrosion.
  • the stress relief treatment adopts vacuum heat treatment to avoid oxidation on the surface of the spiral tube during the heat treatment process, and the fixing frame fixes the end position, spiral diameter, and pitch of each spiral tube.
  • the dimensional accuracy of the spiral tube after stress relief heat treatment is further improved.
  • the spiral heat exchange tube prepared by the method of the present invention has long length, high dimensional accuracy and surface quality, and good mechanical properties, and can meet the use needs of high-temperature gas-cooled reactor steam generators.
  • Figure 1 is a schematic diagram of the process flow of the present invention.
  • a method for preparing multi-head spiral heat exchange tubes for high-temperature gas-cooled reactor steam generators specifically includes:
  • the 90mm diameter T22 alloy steel tube blank (round steel) purchased as required is heated to 1150 ⁇ 1230°C and perforated to form a ⁇ 92 ⁇ 12mm seamless tube (barren tube), and then the barren tube is annealed and heat treated at a heat treatment temperature of 760 ⁇ 15 °C, keep warm for 85 to 95 minutes and then air cool.
  • step (1) Soak the waste pipe formed in step (1) in 15% sulfuric acid at a temperature of 30-50°C to wash away the oxide scale formed by the perforations on the surface of the waste pipe, then rinse it with clean water, soak it in hot water and blow dry. At the same time, the surface quality inspection of waste pipes was carried out.
  • Step (2) Cold-roll the waste pipes that have passed the inspection in step (2) into intermediate pipes with a specification of ⁇ 60 ⁇ 7mm and a length of about 8m. After cold-rolling, remove the oil and perform annealing heat treatment. The heat treatment temperature is 760 ⁇ 15°C, and the air is maintained after 60 to 70 minutes. Cool, then carry out straightening, pickling, internal and external surface inspection, grinding, chamfering, etc.
  • the cold rolling deformation of the intermediate tube is controlled to be 60% to 65%, and the Q value is 1.2 ⁇ 0.2.
  • the intermediate tube after step (3) is again cold-rolled into an intermediate tube with a specification of ⁇ 28 ⁇ 3mm and a length of about 40m.
  • the oil is removed and heat treatment is carried out in a protective atmosphere.
  • the heat treatment temperature is 760 ⁇ 15°C and the holding time is 50 ⁇
  • the furnace is cooled to less than 50°C and released, and then straightening, internal and external surface inspection, grinding, etc. are carried out.
  • the cold rolling deformation of the intermediate tube is controlled to be 78% to 82%, and the Q value is 1.2 ⁇ 0.2.
  • the intermediate tube after step (4) is cold drawn into a finished tube with a specification of ⁇ 19 ⁇ 3mm and a length of about 60m.
  • the heat treatment of the finished product is divided into normalizing heat treatment + tempering heat treatment.
  • the normalizing heat treatment temperature is 940 ⁇ 5°C.
  • the furnace is quickly cooled to less than 50°C and is released from the furnace.
  • tempering heat treatment is performed.
  • the tempering heat treatment temperature is 760 ⁇ 5°C
  • the heat preservation time is 40 ⁇ 45min, and then the furnace is cooled to less than 50°C and released. Control the cold drawing deformation of the finished tube to 32% to 37%.
  • the seven-roller inclined roller straightening machine adopts a straight forward movement of the pipe without rotating.
  • the straightening machine roller is centered on the pipe. Move circumferentially around the pipe to avoid straightening damage to the surface of over-long straight pipes. Control straightness ⁇ 1.0mm/m.
  • step (8) Take samples from the finished pipes that have passed the inspection in step (8) and conduct physical and chemical inspections, including finished product analysis, room temperature tensile test, 550°C tensile test, Brinell hardness test, non-metallic inclusion test, grain size test, metal Phase structure inspection.
  • Each finished pipe that has passed the inspection in step (8) shall be subjected to a water pressure test with a test pressure of 35 to 40MPa, and a pressure holding time of not less than 10 seconds. After the hydrostatic test, the tube needs to be filled with heated nitrogen for drying.
  • Each finished product that has passed the inspection in step (10) will be subjected to surface visual inspection. No defects or oxide scale are allowed on the surface, and slight discoloration is allowed on the inner surface. Inspect surface roughness, outer diameter, inner diameter, wall thickness, straightness and other indicators.
  • the finished straight pipes that have passed the inspection in steps (8) and (10) are subjected to spiral pipe forming.
  • a special extra-long spiral pipe forming machine is used for spiral pipe forming. Mechanical scratches are not allowed on the surface.
  • the spiral tube in step (12) is bent into a straight tube at both ends and a transition section of the spiral tube.
  • Fix the spiral tube in step (13) first, using a special fixing frame to ensure that the geometric size and shape of the spiral tube are consistent with the requirements of the drawing. After the fixation is completed, put the spiral tube and the fixing frame into a vacuum heat treatment furnace for stress relief heat treatment. After insulation, the furnace is cooled to no more than 200°C and air-cooled. The fixing frame is removed, and the spiral tube is cleaned with acetone.
  • the spiral in step (14) is inspected for geometric dimensions and surface quality.
  • step (3) the cold rolling deformation of the intermediate tube is controlled to 60% to 65%, the Q value is 1.0 ⁇ 0.2, the feed amount is 3 to 5mm, and the rolling speed is 50 to 60 times/min.
  • step (4) controls the cold rolling deformation of the intermediate tube to 78% to 82%, the Q value to 1.0 ⁇ 0.2, the feed amount to 2 to 3mm, and the rolling speed to 40 to 50 times/min.
  • step (5) the cold drawing deformation amount of the finished tube is controlled to 32% to 37%, and the drawing speed is 5 to 8m/min.
  • step (6) the finished pipe after heat treatment is straightened by a seven-roller inclined roller straightening machine to control the straightness to ⁇ 1.0mm/m.

Abstract

一种高温气冷堆蒸汽发生器螺旋换热管制备方法,包括穿孔及荒管退火;荒管酸洗、检验;多道次中间管冷轧及热处理;成品冷拔及成品热处理;矫直及检验;螺旋管成形;消应力热处理及检验等步骤。采用本方法制备的螺旋换热管具有长度长,尺寸精度和表面质量高,同时具有良好力学性能,能够满足高温气冷堆蒸汽发生器的使用需要。

Description

一种高温气冷堆蒸汽发生器螺旋换热管制备方法 技术领域
本发明涉及合金钢超长无缝管及多头螺旋管制造技术领域,特别是涉及一种高温气冷堆直流式蒸汽发生器用超长多头螺旋合金钢换热管制备方法。
背景技术
核电作为一种安全、清洁、低碳和高效的能源,一直以来受到高度重视,特别是2011年3月日本福岛核事故发生以来,核电的安全性再度成为核电国家最为重要的问题。目前,全球在建核电站已逐步过渡到第三代核电技术,更为安全的第四代核能系统已成为核能研究人员在未来多年内重点研究的课题。第四代核电技术中高温气冷堆因其具有固有安全性,不需要场外应急安全等,具有固有安全性的反应堆在任何的事故情况下,反应堆都不会熔化,也不会造成大量放射性释放。被称为永不熔毁的堆芯。
自上世纪八十年代中以来清华大学开展了10MW高温气冷实验堆(HTR-10)的研究与开发。蒸发器是高温气冷堆示范电站的核心部件,由19个螺旋管束组件组成,每个组件有五层共35支多头螺旋管构成,其中ASME SA-213T22单支换热管长度达60米,且呈多头螺旋状,精度要求高,制造难度极大,属世界首创。2007年随着清华大学对高温气冷堆蒸汽发生器设计方案的优化,蒸汽发生器用传热管的长度及尺寸精度等做了大幅度的调整,其中传热管的单支长度从原35米增加至60米,尺寸要求也从原来仅对内径、壁厚的要求增加到内径、壁厚、外径三个要素同时控制,且技术指标由参照火电站用高压锅炉管提高到具有国际先进水平。
发明内容
本发明目的在于针对高温气冷堆的设计要求,提供一种具有良好的组织及力学性能、优良的螺旋成形和尺寸精度和表面质量的用于高温气冷堆蒸汽发生器螺旋换热管制备方法。
本发明为实现上述目的,采用如下技术方案:
一种高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于包括下述步骤:
(1)穿孔及荒管退火:
将T22材质圆钢管坯加热穿孔形成无缝荒管;再对荒管进行退火热处理;
荒管酸洗、检验:
(2)将步骤(1)形成的荒管进行酸洗去除表面氧化皮,然后清水冲洗净,并吹干;同时对 荒管进行表面质量检验;
(3)多道次中间管冷轧及热处理:
将步骤(2)检验合格的荒管进行多道次冷轧缩径和退火热处理;
(4)成品冷拔及成品热处理:
将步骤(3)的中间管进行冷拔成成品管,冷拔后进行去油并进行保护气氛成品正火热处理+回火热处理,形成成品换热管;
(5)矫直及检验:
对步骤(4)中的成品管进行矫直,然后分别进行超声波检验、涡流检验、理化性能检验、水压实验、表面目视及尺寸检验;
(6)螺旋管成形:
将检验合格的成品直管进行螺旋成形,将螺旋管两端的直管进行弯管,然后再周向弯到螺旋管面上;
(7)消应力热处理及检验:
将成形的螺旋管固定后,放入真空热处理炉进行消应力热处理;将热处理后的螺旋管进行清洁,再经几何尺寸和表面质量检验合格后完成螺旋换热管的制备。
其进一步特征在于:所述步骤(3)中采用两道次中间管冷轧及热处理;检验合格的荒管进行一道次冷轧缩径,变形量控制在60%~70%,冷轧Q值为1.2±0.2;冷轧后进行去油、退火热处理,然后进行矫直、酸洗、检验、修磨、倒角处理;
再对冷轧后的中间管进行二道次冷轧缩径,变形量控制在75%~85%,Q值为1.2±0.2;然后进行保护气氛退火热处理,再进行矫直、检验、修磨、倒角处理。
在中间管的冷轧过程中采用2个道次冷轧变形,引入冷轧过程Q值概念,Q=(lnSu-lnS0)/((ln(Du-Su)-ln(D0-S0)),其中D0——冷轧前外径,Du——冷轧后外径,S0——冷轧前壁厚,Su——冷轧后壁厚。Q值反应了管材外径减小程度与壁厚减小程度的比例,必须保证Q值在合理范围内,才能使管材减径和减壁均匀,使金属流变也更均匀,从而管材内外表面质量(特别是光洁度)达到最佳状态,在此,将Q值控制在1.2±0.2范围内,第一道次变形量控制在60%~70%,由于成品管长度达60米,前2个道次采用变形量较大的冷轧,其中第二个道次变量达80%左右,轧制延伸率达5倍,解决了轧制前管子过长容易失稳造成表面质量下降和尺寸精度差的问题。成品采用无芯冷拔使成品管外径精度的一致得到保证,为后续多头螺旋管成型尺寸高精度提供了有利条件,且避免了超长管内壁清洁的难题。每个道次合金钢管在冷轧前必须对其一端内、外壁进行倒角处理,以使合金钢管在 进行大变形冷轧时减小应力集中现象,防止头部发生开裂,影响产品质量。
进一步的:所述二道次冷轧缩径后的退火保护气氛为氮气和氢气。热处理采用氮气和氢气保护,使得热处理后的中间管表面无氧化皮,避免小口径管酸洗难的问题。
进一步的:两个道次的冷轧过程中,冷轧芯棒定径区域长度为100±10mm。为确保成品管尺寸精度和表面光洁度,适当减小芯棒定径区域的长度,而增加管材轧制变形区,从而使单位长度内的减径减小,防止管材在冷轧初期咬入段管材内壁失稳起皱而形成“轧折”等缺陷。
优选的:所述步骤(1)中圆钢管坯加热温度为1150~1230℃,荒管退火温度为760±15℃,保温85~95min后空气冷却;
所述步骤(3)中第一道次退火温度为760±15℃,保温60~70min后空气冷却;第二道次退火温度为760±15℃,保温50~60min后空气冷却;
所述步骤(4)中正火热处理温度为940±5℃,保温时间20~25min后炉内快速冷却至小于50℃出炉;回火热处理温度为760±5℃,保温时间40~45min后炉内冷却至小于50℃出炉。
成品管的正火和回火热处理均采用氮气+氢气保护,并调整氮气和氢气的比例,使合金钢表面形成一层精密的高温氧化膜,确保后续制造过程中不易锈蚀,满足表面质量要求。为保证荒管和中间管低强度和优良的塑性,便于后续冷轧或冷拔加工,荒管和中间管退火热处理保温温度均采用了在接近合金钢临界点,并根据壁厚设计了合理的保温时间和冷却方式。
优选的:所述步骤(4)矫直过程中,成品管不旋转直线前进,矫直机辊子以成品管子为中心绕着管子周向运动,避免矫直对超长直管表面的损伤。
优选的:所述步骤(5)中水压测试后对管内充加热的氮气进行干燥。
优选的:所述步骤(6)中螺旋成形采用多头螺旋管成型机多根螺旋管同时成形。
本发明采用T22合金钢防止合金钢在热加工变形过程中因低熔点元素融化而产生裂纹等缺陷以及降低合金钢的塑韧性、高温持久强度及疲劳性能,保证成品的质量。采用大变形量的无芯冷拔,控制冷拔时的Q值使管材减径和减壁均匀,使金属流变也更均匀,保证成品的表面质量和尺寸精度。在成品管热处理中采用气氛保护,防止锈蚀。消应力处理采用真空热处理,避免热处理过程中螺旋管表面产生氧化现象,且固定架对每支螺旋管进行端部位置、螺旋直径、螺距进行固定,经消应力热处理后的螺旋管尺寸精度进一步提高。采用本发明方法制备的螺旋换热管具有长度长,尺寸精度和表面质量高,同时具有良好力学性能,能够满足高温气冷堆蒸汽发生器的使用需要。
附图说明
图1为本发明工艺流程示意图。
具体实施方式
如图1所示,一种高温气冷堆蒸汽发生器用多头螺旋换热管的制备方法,具体包括:
(1)穿孔及荒管退火:
将按要求采购的直径90mmT22合金钢材质的管坯(圆钢)通过加热至1150~1230℃穿孔形成Ф92×12mm无缝管(荒管),然后对荒管进行退火热处理,热处理温度760±15℃,保温85~95min后空气冷却。
(2)荒管酸洗、检验:
将步骤(1)形成的荒管浸泡于温度为30~50℃的15%硫酸中洗去荒管表面穿孔形成的氧化皮,然后清水冲洗净,并热水中浸泡后吹干。同时,对荒管进行表面质量检验。
(3)中间管冷轧1及热处理:
将步骤(2)检验合格的荒管冷轧成规格为Ф60×7mm的长度约8m中间管,冷轧后进行去油并进行退火热处理,热处理温度为760±15℃,保温60~70min后空气冷却,然后进行矫直、酸洗、内外表面检验、修磨、倒角处理等。控制中间管冷轧变形量为60%~65%,Q值为1.2±0.2。
(4)中间管冷轧2及热处理:
将步骤(3)后的中间管再次冷轧成规格为Ф28×3mm的长度约40m中间管,冷轧后进行去油并进行保护气氛退火热处理,热处理温度为760±15℃,保温时间50~60min后炉内冷却至小于50℃出炉,然后进行矫直、内外表面检验、修磨等。控制中间管冷轧变形量为78%~82%,Q值为1.2±0.2。
(5)成品冷拔及成品热处理:
将步骤(4)后的中间管进行冷拔成规格为Ф19×3mm的长度约60m成品管,冷拔后进行去油并进行保护气氛成品热处理。成品热处理分为正火热处理+回火热处理,正火热处理温度为940±5℃,保温时间20~25min后炉内快速冷却至小于50℃出炉,然后再进行回火热处理,回火热处理温度为760±5℃,保温时间40~45min后炉内冷却至小于50℃出炉。控制成品管冷拔变形量为32%~37%。
(6)成品管矫直:
将步骤(5)后规格为Ф19×3mm长度60米成品管进行矫直,通过七辊斜辊矫直机对于60 米超长管采用了管子不旋转直线前进,矫直机辊子以管子为中心绕着管子周向运动,避免矫直对超长直管表面的损伤。控制直线度≤1.0mm/m。
(7)超声波检验:
将步骤(1)~(6)完成后的成品管每支进行超声波检验。
(8)涡流检验:
将步骤(7)检验合格后的每支成品管进行涡流检验。
(9)理化性能检验:
将步骤(8)检验合格后的成品管上取样,进行理化检验,包括成品分析、室温拉伸试验、550℃拉伸试验、布氏硬度检测、非金属夹杂物检测、晶粒度检测、金相组织检验。
(10)水压试验:
将步骤(8)检验合格后的每支成品管进行试验压力为35~40MPa水压试验,保压时间不小于10秒。水压试验结束后需对管内充加热的氮气进行干躁。
(11)表面目视及尺寸检验:
将步骤(10)检验合格后的每支成品进行表面目视检验,表面不允许缺陷、无氧化皮、内表面允许轻微变色。检验表面粗糙度、外径、内径、壁厚、直度等指标。
(12)螺旋管成形:
将步骤(8)和(10)检验合格后的成品直管进行螺旋管成形,螺旋成型采用专用超长螺旋管成型机进行多头螺旋管成形,表面不允许存在机械划伤。
(13)螺旋管与直管段过渡弯管:
将步骤(12)的螺旋管分别进行二端直管与螺旋管过渡段的弯管。
(14)消应力热处理:
将步骤(13)的螺旋管先进行固定,固定采用专用固定架,确保螺旋管几何尺寸和形状与图纸要求一致。固定完成后将螺旋管与固定架放入真空热处理炉进行消应力热处理,保温后炉冷至不大于200℃出炉空冷,拆除固定架,对螺旋管采用丙酮清洁。
(15)螺旋管检验:
将步骤(14)螺旋进行几何尺寸和表面质量检验。
上述步骤(3)中,控制中间管冷轧变形量为60%~65%,Q值为1.0±0.2,送进量3~5mm,轧制速度50~60次/min。步骤(4)控制中间管冷轧变形量为78%~82%,Q值为1.0±0.2,送进量2~3mm,轧制速度40~50次/min。
上述步骤(5)中,控制成品管冷拔变形量为32%~37%,拔制速度5~8m/min。
上述步骤(6)中,通过七辊斜辊矫直机对经过成品热处理后的成品管进行矫直,控制直线度≤1.0mm/m。

Claims (9)

  1. 一种高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于包括下述步骤:
    (1)穿孔及荒管退火:
    将T22材质圆钢管坯加热穿孔形成无缝荒管;再对荒管进行退火热处理;
    (2)荒管酸洗、检验:
    将步骤(1)形成的荒管进行酸洗去除表面氧化皮,然后清水冲洗净,并吹干;同时对荒管进行表面质量检验;
    (3)多道次中间管冷轧及热处理:
    将步骤(2)检验合格的荒管进行多道次冷轧缩径和退火热处理;
    (4)成品冷拔及成品热处理:
    将步骤(3)的中间管进行冷拔成成品管,冷拔后进行去油并进行保护气氛成品正火热处理+回火热处理,形成成品换热管;
    (5)矫直及检验:
    对步骤(4)中的成品管进行矫直,然后分别进行超声波检验、涡流检验、理化性能检验、水压实验、表面目视及尺寸检验;
    (6)螺旋管成形:
    将检验合格的成品直管进行螺旋成形,将螺旋管两端的直管进行弯管,然后再周向弯到螺旋管面上;
    (7)消应力热处理及检验:
    将成形的螺旋管固定后,放入真空热处理炉进行消应力热处理;将热处理后的螺旋管进行清洁,再经几何尺寸和表面质量检验合格后完成螺旋换热管的制备。
  2. 如权利要求1所述的高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于:所述步骤(3)中采用两道次中间管冷轧及热处理;检验合格的荒管进行一道次冷轧缩径,变形量控制在60%~70%,冷轧Q值为1.2±0.2;冷轧后进行去油、退火热处理,然后进行矫直、酸洗、检验、修磨、倒角处理;
    再对冷轧后的中间管进行二道次冷轧缩径,变形量控制在75%~85%,Q值为1.2±0.2;然后进行保护气氛退火热处理,再进行矫直、检验、修磨、倒角处理。
  3. 如权利要求2所述的高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于:所述二道次冷轧缩径后的退火保护气氛为氮气和氢气。
  4. 如权利要求2所述的高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在 于:两个道次的冷轧过程中,冷轧芯棒定径区域长度为100±10mm。
  5. 如权利要求2所述的高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于:所述步骤(4)中成品管冷拔变形量为32%~37%。
  6. 如权利要求2所述的高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于:所述步骤(1)中圆钢管坯加热温度为1150~1230℃,荒管退火温度为760±15℃,保温85~95min后空气冷却;
    所述步骤(3)中第一道次退火温度为760±15℃,保温60~70min后空气冷却;
    第二道次退火温度为760±15℃,保温50~60min后空气冷却;
    所述步骤(4)中正火热处理温度为940±5℃,保温时间20~25min后炉内快速冷却至小于50℃出炉;回火热处理温度为760±5℃,保温时间40~45min后炉内冷却至小于50℃出炉。
  7. 如权利要求1-6任一项所述的高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于:所述步骤(5)矫直过程中,成品管不旋转直线前进,矫直机辊子以成品管子为中心绕着管子周向运动。
  8. 如权利要求1-6任一项所述的高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于:所述步骤(5)中水压测试后对管内充加热的氮气进行干燥。
  9. 如权利要求1-6任一项所述的高温气冷堆蒸汽发生器螺旋换热管制备方法,其特征在于:所述步骤(6)中螺旋成形采用多头螺旋管成型机多根螺旋管同时成形。
PCT/CN2022/107059 2022-03-07 2022-07-21 一种高温气冷堆蒸汽发生器螺旋换热管制备方法 WO2023168884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210221587.3A CN114632837B (zh) 2022-03-07 2022-03-07 一种高温气冷堆蒸汽发生器螺旋换热管制备方法
CN202210221587.3 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023168884A1 true WO2023168884A1 (zh) 2023-09-14

Family

ID=81947999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107059 WO2023168884A1 (zh) 2022-03-07 2022-07-21 一种高温气冷堆蒸汽发生器螺旋换热管制备方法

Country Status (2)

Country Link
CN (1) CN114632837B (zh)
WO (1) WO2023168884A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114632837B (zh) * 2022-03-07 2022-10-11 江苏银环精密钢管有限公司 一种高温气冷堆蒸汽发生器螺旋换热管制备方法
CN115323153B (zh) * 2022-08-11 2023-12-05 江苏大学 一种高温合金无缝管的热处理方法、高温合金热处理无缝管及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085877A (ja) * 1996-09-16 1998-04-07 Denso Corp 偏平チューブのロール成形方法及び装置
US20180187277A1 (en) * 2014-06-25 2018-07-05 Baoshan Iron & Steel Co.,Ltd. High-toughness seamless steel tube for automobile safety airbag and manufacturing method therefor
CN108746243A (zh) * 2018-06-12 2018-11-06 江苏银环精密钢管有限公司 一种同钢种双层复合无缝管的制造方法
CN110394375A (zh) * 2019-08-12 2019-11-01 浙江久立特材科技股份有限公司 一种椭圆形无缝钢管制造方法
CN111636013A (zh) * 2020-06-12 2020-09-08 江苏银环精密钢管有限公司 一种新型电站用镍铬钴钼高温合金无缝管及制造方法
CN113245857A (zh) * 2021-05-06 2021-08-13 张家港保税区恒隆钢管有限公司 一种海水淡化蒸发器用换热管的制造工艺
CN114632837A (zh) * 2022-03-07 2022-06-17 江苏银环精密钢管有限公司 一种高温气冷堆蒸汽发生器螺旋换热管制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153882B1 (ko) * 2009-08-19 2012-06-18 (주)디케이티 폐열 회수 보일러용 핀 튜브 제작과정에 있어서의 핀 튜브 제조방법
CN101690958B (zh) * 2009-09-28 2011-05-11 江苏银环精密钢管股份有限公司 多头超长螺旋管成型机
CN105986144A (zh) * 2015-02-12 2016-10-05 张忠世 一种钛合金ta18无缝管及其制备方法
JP2020050940A (ja) * 2018-09-28 2020-04-02 国立研究開発法人日本原子力研究開発機構 オーステナイト系微細粒ステンレス鋼の製造方法
CN109439874B (zh) * 2018-11-02 2020-10-09 中国原子能科学研究院 一种用于钠冷快堆中间换热器的无缝换热管的制备工艺
CN109825675B (zh) * 2019-04-04 2021-03-09 中国原子能科学研究院 用于快堆蒸汽发生器的换热管及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085877A (ja) * 1996-09-16 1998-04-07 Denso Corp 偏平チューブのロール成形方法及び装置
US20180187277A1 (en) * 2014-06-25 2018-07-05 Baoshan Iron & Steel Co.,Ltd. High-toughness seamless steel tube for automobile safety airbag and manufacturing method therefor
CN108746243A (zh) * 2018-06-12 2018-11-06 江苏银环精密钢管有限公司 一种同钢种双层复合无缝管的制造方法
CN110394375A (zh) * 2019-08-12 2019-11-01 浙江久立特材科技股份有限公司 一种椭圆形无缝钢管制造方法
CN111636013A (zh) * 2020-06-12 2020-09-08 江苏银环精密钢管有限公司 一种新型电站用镍铬钴钼高温合金无缝管及制造方法
CN113245857A (zh) * 2021-05-06 2021-08-13 张家港保税区恒隆钢管有限公司 一种海水淡化蒸发器用换热管的制造工艺
CN114632837A (zh) * 2022-03-07 2022-06-17 江苏银环精密钢管有限公司 一种高温气冷堆蒸汽发生器螺旋换热管制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO PEI: "Production of T22 Spiral Coil Tube for Steam Generator of HTGR", IRON AND STEEL, vol. 48, no. 2, 15 April 2019 (2019-04-15), pages 40 - 44, XP093090070 *

Also Published As

Publication number Publication date
CN114632837A (zh) 2022-06-17
CN114632837B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2023168884A1 (zh) 一种高温气冷堆蒸汽发生器螺旋换热管制备方法
CN105112811B (zh) 一种铅铋快堆用奥氏体不锈钢包壳管及其制备方法
CN101623719B (zh) 核电热交换器用不锈钢传热管的制造方法
CN112453104B (zh) 一种大口径薄壁Ti35钛合金无缝管材及其制备方法
CN107553074A (zh) 高温加热炉用unsn08810铁镍基合金大口径无缝管材的制造方法
CN104894485A (zh) 耐高温抗脆断Φ508mm以上核电站用无缝钢管的生产方法
CN110877186A (zh) 一种大规格锆合金薄壁管材的制造方法及大规格锆合金薄壁管材
CN110899335A (zh) 一种小口径海洋用钛合金无缝管的短流程制造方法
CN115228964B (zh) 核反应堆压力容器密封圈用镍基合金小口径管的制造方法
CN112708790B (zh) 一种锆或锆合金挤压轧制薄壁型材的制备方法
CN112756909A (zh) 一种大口径Ti35钛合金管材的制备方法
CN113802041B (zh) 一种可应用于先进超超临界机组的铁镍基合金无缝管材的制造方法
CN103981422B (zh) 825合金管材大变形加工工艺
CN109513766A (zh) 一种高同心度马氏体不锈钢无缝管材的制造方法
CN115074504A (zh) 630℃超超临界机组g115大口径厚壁无缝钢管制造方法
CN108145386A (zh) 一种lf2航空用导管的优化制备方法
CN111389952A (zh) 一种无缝高强度不锈钢管材的加工工艺
JP3379345B2 (ja) 酸化層を有する13Cr系ステンレス鋼管の製造方法
CN103464458A (zh) 一种l型钛合金型材生产方法
CN115519061A (zh) 一种近α钛合金大规格扇形薄壁锻件的制备方法
CN105755414B (zh) 一种提高α+β型钛合金强度的形变热处理方法
CN210172215U (zh) 实现铜管连续生产的设备
CN110369546B (zh) 一种生产大口径钛合金热轧无缝管的方法
WO2021026716A1 (zh) 一种椭圆形无缝钢管制造方法
CN109848242A (zh) 一种核电站汽水分离再热器用tp439无缝翅片管制造工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930513

Country of ref document: EP

Kind code of ref document: A1