CN109439874B - 一种用于钠冷快堆中间换热器的无缝换热管的制备工艺 - Google Patents

一种用于钠冷快堆中间换热器的无缝换热管的制备工艺 Download PDF

Info

Publication number
CN109439874B
CN109439874B CN201811299593.0A CN201811299593A CN109439874B CN 109439874 B CN109439874 B CN 109439874B CN 201811299593 A CN201811299593 A CN 201811299593A CN 109439874 B CN109439874 B CN 109439874B
Authority
CN
China
Prior art keywords
cold rolling
exchange tube
heat exchange
sodium
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811299593.0A
Other languages
English (en)
Other versions
CN109439874A (zh
Inventor
宋广懂
李鑫
龚雪婷
杨红义
申凤阳
余华金
张振兴
彭康玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201811299593.0A priority Critical patent/CN109439874B/zh
Publication of CN109439874A publication Critical patent/CN109439874A/zh
Application granted granted Critical
Publication of CN109439874B publication Critical patent/CN109439874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明属于快中子反应堆技术领域,公开了一种用于钠冷快堆中间换热器的无缝换热管的制备工艺。该工艺包括以下步骤:熔炼、热挤压及冷轧与热处理三个步骤,其中熔炼按照工艺步骤的先后顺序可分为真空感应冶炼及电渣重熔两道工序。该工艺步骤具有五害元素(Pb、As、Sn、Sb、Bi)含量低于0.001%,杂质元素P≤0.010%、S≤0.002%,气体夹杂元素O≤25ppm、H≤5ppm,晶粒度范围为4~6级,铁素体含量小于1%,屈服强度、抗拉强度、持久强度与疲劳强度能满足钠冷快堆中间热交换器无缝换热管技术要求的有益效果。

Description

一种用于钠冷快堆中间换热器的无缝换热管的制备工艺
技术领域
本发明属于快中子反应堆技术领域,具体涉及一种用于钠冷快堆中间换热器的无缝换热管(直管)的制备工艺。
背景技术
钠冷快堆中间热交换器为壳管式换热器,设备固定于反应堆容器内,设计温度为550℃,设计寿命为40年。换热器上下管板间的空间弯管为316H无缝换热管(直管)弯制而成,换热管内外分别为一回路钠(带有放射性)与二回路钠。换热管在高温下长周期运行,需要保证材料具有较高的室温与高温强度、较高的疲劳强度、较高的持久强度和良好的长期时效组织稳定性。
传统的316H无缝换热管(直管)的制造工艺包括:冶炼工艺、热加工工艺、冷加工工艺、热处理工艺等。其中,冶炼工艺由于原料纯度控制不严、冶炼方法选择不当,会造成五害元素(Pb、As、Sn、Sb、Bi)及杂质元素P、S、H、O、B、Cu、Ti等含量过高,引起换热管蠕变性能、疲劳性能、韧性明显下降等问题;热加工工艺国内主要采用热穿管工艺,该工艺产生的单向拉应力会造成换热管长期使用的持久强度、耐疲劳性能无法保证,而国外主要采用热挤压工艺,但是热挤压工艺参数如挤压速度、挤压温度、挤压坯规格、挤压流程等未公开,且国内传统热挤压工艺成材率较低。冷加工工艺由于冷拔钢管为轴向拉应力状态,影响持久与疲劳性能,因而多采用壁厚精度与表面质量较高的冷轧工艺,但针对具体的钢管尺寸如何设计冷轧道次、如何分配与设计变形量,是换热管冷加工工艺的主要难点;热处理工艺是改善换热管组织与应力状态,提升换热管性能的关键步骤,需要给出精确的热处理温度范围与热处理时间。因此,目前急需一种能满足钠冷快堆高温长时服役强度、热稳定性、耐疲劳性、高韧度、高尺寸精度与直线度、高表面质量的无缝换热管的制备工艺。
发明内容
(一)发明目的
根据现有技术所存在的问题,本发明提供了一种五害元素(Pb、As、Sn、Sb、Bi)含量低于0.001%,杂质元素P≤0.010%、S≤0.002%,气体夹杂元素O≤25ppm、H≤5ppm,晶粒度范围为4~6级,铁素体含量小于1%,屈服强度、抗拉强度、持久强度与疲劳强度能满足钠冷快堆中间热交换器无缝换热管技术要求,同时能够满足表面粗糙度要求及直线度要求的制备工艺。
(二)技术方案
为了解决现有技术所存在的问题,本发明是通过以下技术方案实现的:
一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,该工艺包括以下步骤:
(1)熔炼
熔炼按照工艺步骤的先后顺序可分为真空感应冶炼(VOD)及电渣重熔(ESR)两道工序;
所述真空感应冶炼是在真空感应熔炼炉中进行,真空感应冶炼过程中冶炼的温度为1520℃~1560℃,真空度为≤0.1Pa;选取杂质元素P≤0.007%、S≤0.003%的纯铁作为冶炼原料,选取电解镍、金属铬、金属锰、微碳铬铁作为合金添加剂,合金添加剂中五害元素Pb、Sn、As、Sb、Bi的含量均在0.001%以下;采用碳作为脱氧剂,高真空环境下利用C-O反应脱氧;合金化过程中先加入Al进行深脱氧,然后向真空感应炉中加入Ce进行脱氧、脱硫;
所述电渣重熔步骤是将真空感应冶炼后得到的产物置于重熔结晶设备中,采用的四元预熔渣渣系为20%CaO—5%MgO—20%Al2O3—55%CaF2,其中20%、5%、55%均为占预熔渣渣系的质量分数;该渣系熔点为1290~1310℃,该四元预熔渣渣系可为电渣重熔过程中提供良好的电阻率和粘度;在起弧前,先向重熔结晶设备内导入氩气以排除空气中氧及水蒸汽对合金熔池的污染,降低重熔钢锭中的氧化物夹杂和氢含量;起弧并进入稳态后,对熔速、电流、电压进行自动控制,其中熔速控制在5.2~5.6kg/min,电流8000A~9000A,电压38V-40V;电渣重熔步骤可得到硫含量在0.002%以下,H含量在5ppm,O含量在25ppm以下的电渣锭,该电渣锭的直径根据工程需要及冶炼原料投料量确定;
(2)热挤压
将步骤(1)得到的电渣锭进行热挤压之前先进行锻造工艺,以改善冶炼坯的性能,缩减冶炼锭尺寸;锻造过程是将步骤(1)得到的电渣锭进行加热锻造,开锻温度≥950℃,停锻温度≥750℃,冷却方式为水冷,最终得到锻造比大于5的锻制棒材;
锻制棒材在热挤压前,需要进行加热穿孔工艺,即对锻制棒材表面去除氧化层后,中心处加工贯穿的圆孔,并在挤压母坯一端利用镗孔和车削将圆孔以锥度为1:1~1:2进行扩孔得到挤压坯;扩孔后挤压坯进入环形炉预热,预热温度达到350℃后进入一次感应加热炉,加热至650~700℃后出炉进入扩孔机扩至所需直径的通孔;随后,挤压坯进入二次感应加热炉加热至出炉温度大于1230℃后进入热挤压机,挤压温度范围为1190~1230℃,热挤压温度偏差不大于±10℃,挤压速度控制范围为100~300mm/s,最终得到所需尺寸的挤压荒管规格;
(3)冷轧与热处理
冷轧分为第一道冷轧、第二道冷轧及成品冷轧;其中第一道冷轧设计变形量为61%;第二道冷轧设计变形量为68%~76%;成品冷轧参数选择送进量为1.5~2.5mm/次,轧制速度为100~140次/min,成品冷轧设计变形量为61%~70%;在第一道冷轧前要进行矫直、平头、酸洗及检验步骤;在第一道冷轧和第二道冷轧结束后要进行去油、中间热处理过程、矫直、酸洗及检验步骤后进入后续冷轧操作;在成品冷轧结束后进行去油、光亮热处理、矫直操作,最终得到所需尺寸的换热管。
优选地,所述步骤(1)中在真空感应冶炼前对真空感应熔炼炉内的坩埚进行200~300℃、12~20h的烘烤,保证坩埚内氢含量低于2ppm。
优选地,所述步骤(1)中,真空感应冶炼过程中炉内通入6000Pa以上的氩气作为保护气氛,以抑制锰元素的挥发。
优选地,步骤(1)中所述合金添加剂还包括微碳钼铁、微碳硅铁、碳粉。
优选地,步骤(1)中加入的Al含量为相对于纯铁质量0.05%。
优选地,步骤(1)中加入的Ce含量为相对于纯铁质量0.04~0.05%。
优选地,步骤(2)中所述挤压母坯去除氧化层是通过车削去除的。
优选地,步骤(2)中所述锻造之前有一个锻坯加热过程;该过程是先将冶炼得到的电渣锭感应加热至800℃并保温1小时,然后在1小时将其一次匀速升温至850℃±10℃并保温2小时,再在2.5小时将其二次匀速升温至1200±10℃并保温3.5小时,出炉后进行锻造并保证开锻温度≥950℃。
优选地,步骤(3)中所述冷轧的模具为两辊轧机孔型,且采用环形孔型轧制,该两辊轧机孔型使得外径偏差达到±0.07mm,壁厚偏差达到在0.12mm且无负偏差。
优选地,所述第一道冷轧结束后中间热处理过程为固溶退火温度1120~1180℃,保温时间10~15min;所述第二道冷轧结束后中间热处理过程为固溶退火温度1120~1180℃,保温时间6~9min。
优选地,所述平头是利用平头机对换热管端部进行头尾去除或平整;所述酸洗是利用HCl水溶液进行换热管中间冷轧过程氧化层的酸洗;所述检验是利用目视或尺寸检查手段检验换热管表面质量与尺寸精度,其作用是保证材料每一道次冷轧前的表面质量与尺寸精度符合要求;所述去油将管子浸泡在30~50℃的HNO3、HF稀释混合溶液中去油,去油时间为2h。
优选地,所述成品冷轧结束后的光亮热处理过程,是指采用惰性气体保护或者是真空状态对工件进行热处理,避免或减少工件表面与氧气接触而发生氧化,从而达到工件表面的光亮或相对光亮;光亮热处理后进行光亮退火,采用光亮热处理温度范围1140~1160℃、0.5m/min退火速度、保温时间8~15min;使得材料表面粗糙度满足平均值Ra≤1.0μm,最大值Ra≤1.5μm。
(三)有益效果
本发明提供的工艺具有的有益效果为:五害元素(Pb、As、Sn、Sb、Bi)含量低于0.001%,杂质元素P≤0.010%、S≤0.002%,气体夹杂元素O≤25ppm、H≤5ppm,晶粒度范围为4~6级,铁素体含量小于1%,屈服强度、抗拉强度、持久强度与疲劳强度能满足钠冷快堆中间热交换器无缝换热管技术要求,同时能够满足表面粗糙度要求及直线度要求。
附图说明
图1是无缝换热管制备工艺流程示意图。
具体实施方式
实施例1
下面将结合说明书附图和具体实施例对本发明作进一步阐述。
一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,以快堆中某一换热管为例,该工艺包括以下步骤,步骤流程图如图1所示意:
(1)熔炼
熔炼按照工艺步骤的先后顺序可分为真空感应冶炼(VOD)及电渣重熔(ESR)两道工序;
所述真空感应冶炼是在真空感应熔炼炉中进行,在真空感应冶炼前对真空感应熔炼炉内的坩埚进行200℃、20h的烘烤,保证坩埚内氢含量低于2ppm。
真空感应冶炼过程中冶炼的温度为1520℃,真空度为≤0.1Pa;选取杂质元素P≤0.007%、S≤0.003%的纯铁作为冶炼原料,选取电解镍、金属铬、金属锰、微碳铬铁作为合金添加剂,合金添加剂中五害元素Pb、Sn、As、Sb、Bi的含量均在0.001%以下;采用碳作为脱氧剂,高真空环境下利用C-O反应脱氧;合金化过程中先加入Al进行深脱氧,然后向真空感应炉中加入Ce进行脱氧、脱硫;真空感应冶炼过程中炉内通入6000Pa以上的氩气作为保护气氛,以抑制锰元素的挥发。
所述电渣重熔步骤是将真空感应冶炼后得到的产物置于重熔结晶设备中,采用四元预熔渣渣系为20%CaO—5%MgO—20%Al2O3—55%CaF2,其中20%、5%、55%均为占预熔渣渣系的质量分数;该渣系熔点为1290~1310℃,该四元预熔渣渣系可为电渣重熔过程中提供良好的电阻率和粘度;在起弧前,先向重熔结晶设备内导入氩气以排除空气中氧及水蒸汽对合金熔池的污染,降低重熔钢锭中的氧化物夹杂和氢含量;起弧并进入稳态后,对熔速、电流、电压进行自动控制,其中熔速控制在5.2kg/min,电流8000A,电压38V;电渣重熔步骤可得到硫含量在0.002%以下,H含量在5ppm,O含量在25ppm以下的电渣锭,该电渣锭的直径根据工程需要及冶炼原料投料量确定。
(2)热挤压
将步骤(1)得到的电渣锭进行热挤压之前先进行锻造工艺,以改善冶炼坯的性能,缩减冶炼锭尺寸。锻造过程是将步骤(1)得到的电渣锭进行加热锻造,所述锻造之前有一个锻造预处理过程;该过程是先将电渣锭感应加热至800℃并保温1小时,然后在1小时内将其一次匀速升温至850℃±10℃并保温2小时,再在2.5小时内将其二次匀速升温至1200±10℃并保温3.5小时,出炉后进行锻造并保证开锻温度≥950℃。停锻温度≥750℃,冷却方式为水冷,最终得到φ204mm~φ206mm,锻造比为大于5的锻制棒材;
锻制棒材在热挤压前,需要进行加热穿孔工艺,即对锻制棒材表面去除氧化层后,中心处加工贯穿的φ30的圆孔,并在挤压母坯一端利用镗孔和车削将圆孔扩充至84mm、锥度为1:2的挤压坯。挤压坯扩孔后进入环形炉预热,预热温度达到350℃后进入一次感应加热炉,加热至650~700℃后出炉进入扩孔机扩至所需直径的通孔即φ84mm;随后,挤压坯进入二次感应加热炉加热至出炉温度大于1230℃后进入热挤压机,挤压温度为1190℃,热挤压温度偏差不大于±10℃,挤压速度控制范围为100~300mm/s,最终得到所需尺寸的挤压荒管规格φ78×7mm;
(3)冷轧与热处理
冷轧分为第一道冷轧、第二道冷轧及成品冷轧,前两道冷轧得到的管材均为中间品,成品冷轧得到的管材为中间热交换器φ16×1.2mm规格的成品管。其中第一道冷轧设计变形量为61%,由φ8×7mm轧至φ57×3.5mm;第二道冷轧设计变形量为76%,冷轧至φ32×1.5mm;成品冷轧参数选择送进量为2.0mm/次,轧制速度为120次/min,成品冷轧设计变形量为61%,最终冷轧至φ16×1.2mm。
在第一道冷轧前要进行矫直、平头、酸洗及检验步骤,所述平头是利用平头机对换热管端部进行头尾去除或平整;所述酸洗是利用HCl水溶液进行换热管中间冷轧过程氧化层的酸洗;所述检验是利用目视或尺寸检查手段检验换热管表面质量与尺寸精度,其作用是保证材料每一道次冷轧前的表面质量与尺寸精度符合要求;
在第一道冷轧和第二道冷轧结束后要进行去油、中间热处理过程、矫直、酸洗及检验步骤后进入后续冷轧操作;在成品冷轧结束后进行去油、光亮热处理、矫直操作,最终得到所需尺寸的管件。所述去油将管子浸泡在30~50℃的HNO3、HF稀释混合溶液中去油,去油时间为2h。所述第一道冷轧结束后中间热处理过程为固溶退火温度1120~1180℃,保温时间10~15min;所述第二道冷轧结束后中间热处理过程为固溶退火温度1120~1180℃,保温时间6~9min。所述成品冷轧结束后的光亮热处理过程,是指在热处理过程中,采用惰性气体保护或者是真空状态,避免或减少工件表面与氧气接触而发生氧化,从而达到工件表面的光亮或相对光亮;光亮热处理后进行光亮退火,采用光亮热处理温度范围1140~1160℃、0.5m/min退火速度、保温时间8~15min;使得材料表面粗糙度满足平均值Ra≤1.0μm,最大值Ra≤1.5μm。
冷轧的模具为两辊轧机孔型,且采用环形孔型轧制,该两辊轧机孔型使得外径偏差达到±0.07mm,壁厚偏差达到在0.12mm且无负偏差。
实施例2
与实施例1不同的是,在真空感应冶炼前对真空感应熔炼炉内的坩埚进行250℃、16h的烘烤;真空感应冶炼过程中冶炼的温度为1540℃,所述合金添加剂还包括微碳钼铁、微碳硅铁、碳粉。电渣重熔时熔速控制在5.4kg/min,电流8500A,电压39V;热挤压过程中,挤压温度为1210℃,热挤压温度偏差不大于±10℃,挤压速度控制范围为100~300mm/s。第一道冷轧设计变形量为61%,由φ78×7mm轧至φ57×3.5mm;第二道冷轧设计变形量为68%,冷轧至φ32×2mm;成品冷轧参数选择送进量为1.5mm/次,轧制速度为100次/min,成品冷轧设计变形量为70%,最终冷轧至φ16×1.2mm。
实施例3
与实施例1不同的是,在真空感应冶炼前对真空感应熔炼炉内的坩埚进行300℃、12h的烘烤;真空感应冶炼过程中冶炼的温度为1560℃,电渣重熔时熔速控制在5.6kg/min,电流9000A,电压40V;热挤压过程中,挤压温度为1220℃,热挤压温度偏差不大于±10℃。第一道冷轧设计变形量为61%,由φ78×7mm轧至φ57×3.5mm;第二道冷轧设计变形量为68%,冷轧至φ32×2mm;成品冷轧参数选择送进量为2.5mm/次,轧制速度为140次/min,成品冷轧设计变形量为70%,最终冷轧至φ16×1.2mm。

Claims (11)

1.一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,该工艺包括以下步骤:
(1)熔炼
熔炼按照工艺步骤的先后顺序可分为真空感应冶炼及电渣重熔两道工序;
所述真空感应冶炼是在真空感应熔炼炉中进行,真空感应冶炼过程中冶炼的温度为1520℃~1560℃,真空度为≤0.1Pa;选取杂质元素P≤0.007%、S≤0.003%的纯铁作为冶炼原料,选取电解镍、金属铬、金属锰、微碳铬铁作为合金添加剂,合金添加剂中五害元素Pb、Sn、As、Sb、Bi的含量均在0.001%以下;采用碳作为脱氧剂,高真空环境下利用C-O反应脱氧;合金化过程中先加入Al进行深脱氧,然后向真空感应炉中加入Ce进行脱氧、脱硫;
所述电渣重熔步骤是将真空感应冶炼后得到的产物置于重熔结晶设备中,采用的四元预熔渣渣系为20%CaO—5%MgO—20%Al2O3—55%CaF2,其中20%、5%、55%均为占预熔渣渣系的质量分数;该渣系熔点为1290~1310℃;在起弧前,先向重熔结晶设备内导入氩气以排除空气中氧及水蒸汽对合金熔池的污染,降低重熔钢锭中的氧化物夹杂和氢含量;起弧并进入稳态后,对熔速、电流、电压进行自动控制,其中熔速控制在5.2~5.6kg/min,电流8000A~9000A,电压38V-40V;电渣重熔步骤可得到硫含量在0.002%以下,H含量在5ppm,O含量在25ppm以下的电渣锭,该电渣锭的直径根据工程需要及冶炼原料投料量确定;
所述合金添加剂还包括微碳钼铁、微碳硅铁、碳粉;
(2)热挤压
将步骤(1)得到的电渣锭进行热挤压之前先进行锻造工艺,锻造过程是将步骤(1)得到的电渣锭进行加热锻造,开锻温度≥950℃,停锻温度≥750℃,冷却方式为水冷,最终得到锻造比大于5的锻制棒材;
锻制棒材在热挤压前,需要进行加热穿孔工艺,即对锻制棒材表面去除氧化层后,中心处加工贯穿的圆孔,并在挤压母坯一端利用镗孔和车削将圆孔以锥度为1:1~1:2进行扩孔得到挤压坯;扩孔后挤压坯进入环形炉预热,预热温度达到350℃后进入一次感应加热炉,加热至650~700℃后出炉进入扩孔机扩至所需直径的通孔;随后,挤压坯进入二次感应加热炉加热至出炉温度大于1230℃后进入热挤压机,挤压温度范围为1190~1230℃,热挤压温度偏差不大于±10℃,挤压速度控制范围为100~300mm/s,最终得到所需尺寸的挤压荒管规格;
(3)冷轧与热处理
冷轧分为第一道冷轧、第二道冷轧及成品冷轧;其中第一道冷轧设计变形量为61%;第二道冷轧设计变形量为68%~76%;成品冷轧参数选择送进量为1.5~2.5mm/次,轧制速度为100~140次/min,成品冷轧设计变形量为61%~70%;在第一道冷轧前要进行矫直、平头、酸洗及检验步骤;在第一道冷轧和第二道冷轧结束后要进行去油、中间热处理过程、矫直、酸洗及检验步骤后进入后续冷轧操作;在成品冷轧结束后进行去油、光亮热处理、矫直操作,最终得到所需尺寸的换热管。
2.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,所述步骤(1)中在真空感应冶炼前对真空感应熔炼炉内的坩埚进行200~300℃、12~20h的烘烤,保证坩埚内氢含量低于2ppm。
3.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,所述步骤(1)中,真空感应冶炼过程中炉内通入6000Pa以上的氩气作为保护气氛,以抑制锰元素的挥发。
4.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,步骤(1)中加入的Al含量为相对于纯铁质量0.05%。
5.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,步骤(1)中加入的Ce含量为相对于纯铁质量0.04~0.05%。
6.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,步骤(2)中所述挤压母坯去除氧化层是通过车削去除的。
7.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,步骤(2)中所述锻造之前有一个锻坯加热过程;该过程是先将冶炼得到的电渣锭感应加热至800℃并保温1小时,然后在1小时将其一次匀速升温至850℃±10℃并保温2小时,再在2.5小时将其二次匀速升温至1200±10℃并保温3.5小时,出炉后进行锻造并保证开锻温度≥950℃。
8.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,步骤(3)中所述冷轧的模具为两辊轧机孔型,且采用环形孔型轧制,该两辊轧机孔型使得外径偏差达到±0.07mm,壁厚偏差达到在0.12mm且无负偏差。
9.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,所述第一道冷轧结束后中间热处理过程为固溶退火温度1120~1180℃,保温时间10~15min;所述第二道冷轧结束后中间热处理过程为固溶退火温度1120~1180℃,保温时间6~9min。
10.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,所述平头是利用平头机对换热管端部进行头尾去除或平整;所述酸洗是利用HCl水溶液进行换热管中间冷轧过程氧化层的酸洗;所述检验是利用目视或尺寸检查手段检验换热管表面质量与尺寸精度,其作用是保证材料每一道次冷轧前的表面质量与尺寸精度符合要求;所述去油将管子浸泡在30~50℃的HNO3、HF稀释混合溶液中去油,去油时间为2h。
11.根据权利要求1所述的一种用于钠冷快堆中间换热器的无缝换热管的制备工艺,其特征在于,所述成品冷轧结束后的光亮热处理过程,是指采用惰性气体保护或者是真空状态对工件进行热处理,光亮热处理后进行光亮退火,采用光亮热处理温度范围1140~1160℃、0.5m/min退火速度、保温时间8~15min;使得材料表面粗糙度满足平均值Ra≤1.0μm,最大值Ra≤1.5μm。
CN201811299593.0A 2018-11-02 2018-11-02 一种用于钠冷快堆中间换热器的无缝换热管的制备工艺 Active CN109439874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811299593.0A CN109439874B (zh) 2018-11-02 2018-11-02 一种用于钠冷快堆中间换热器的无缝换热管的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811299593.0A CN109439874B (zh) 2018-11-02 2018-11-02 一种用于钠冷快堆中间换热器的无缝换热管的制备工艺

Publications (2)

Publication Number Publication Date
CN109439874A CN109439874A (zh) 2019-03-08
CN109439874B true CN109439874B (zh) 2020-10-09

Family

ID=65549524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811299593.0A Active CN109439874B (zh) 2018-11-02 2018-11-02 一种用于钠冷快堆中间换热器的无缝换热管的制备工艺

Country Status (1)

Country Link
CN (1) CN109439874B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825675B (zh) * 2019-04-04 2021-03-09 中国原子能科学研究院 用于快堆蒸汽发生器的换热管及其制备方法
CN110586654B (zh) * 2019-09-06 2021-01-12 山西太钢不锈钢股份有限公司 高镍合金n08810大口径无缝钢管的冷加工制造方法
CN112813337A (zh) * 2021-01-28 2021-05-18 苏州金立鑫特材科技有限公司 一种控冷试验用管坯处理方法
CN113245857B (zh) * 2021-05-06 2023-03-14 张家港保税区恒隆钢管有限公司 一种海水淡化蒸发器用换热管的制造工艺
CN114632837B (zh) * 2022-03-07 2022-10-11 江苏银环精密钢管有限公司 一种高温气冷堆蒸汽发生器螺旋换热管制备方法
CN115044774A (zh) * 2022-06-08 2022-09-13 山东工业职业学院 一种铬合金的制备方法
CN116145018A (zh) * 2023-01-31 2023-05-23 四川六合特种金属材料股份有限公司 一种快堆用高性能316h不锈钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812624A (zh) * 2010-04-21 2010-08-25 中国科学院金属研究所 核反应堆控制棒驱动机构控制杆1Cr13厚壁管材的制备
CN105112811A (zh) * 2015-09-07 2015-12-02 中国科学院合肥物质科学研究院 一种铅铋快堆用奥氏体不锈钢包壳管及其制备方法
CN105483323A (zh) * 2015-12-03 2016-04-13 抚顺特殊钢股份有限公司 核电站反应堆控制棒驱动机构12Cr13管坯的制造方法
CN107639129A (zh) * 2017-08-31 2018-01-30 宝丰钢业集团有限公司 耐腐蚀不锈钢无缝钢管的加工工艺
CN108467973A (zh) * 2018-06-11 2018-08-31 江苏银环精密钢管有限公司 700℃超超临界锅炉用镍铬钨系高温合金无缝管及制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812624A (zh) * 2010-04-21 2010-08-25 中国科学院金属研究所 核反应堆控制棒驱动机构控制杆1Cr13厚壁管材的制备
CN105112811A (zh) * 2015-09-07 2015-12-02 中国科学院合肥物质科学研究院 一种铅铋快堆用奥氏体不锈钢包壳管及其制备方法
CN105483323A (zh) * 2015-12-03 2016-04-13 抚顺特殊钢股份有限公司 核电站反应堆控制棒驱动机构12Cr13管坯的制造方法
CN107639129A (zh) * 2017-08-31 2018-01-30 宝丰钢业集团有限公司 耐腐蚀不锈钢无缝钢管的加工工艺
CN108467973A (zh) * 2018-06-11 2018-08-31 江苏银环精密钢管有限公司 700℃超超临界锅炉用镍铬钨系高温合金无缝管及制造方法

Also Published As

Publication number Publication date
CN109439874A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109439874B (zh) 一种用于钠冷快堆中间换热器的无缝换热管的制备工艺
CN103949805B (zh) 一种制备镍基合金焊丝的方法
CN103350173B (zh) 一种奥氏体不锈钢异形整体大锻件的生产方法
CN103949798B (zh) 一种镍基合金焊丝的制备方法
CN103949806B (zh) 一种焊丝的制备方法
CN112935010B (zh) 一种大口径高强钛合金管材及其制备方法
CN102000954A (zh) 一种连轧管机限动芯棒的制造方法
CN113881859B (zh) 一种中小规格钛及钛合金薄壁管材的制备方法
CN114160604A (zh) 一种不锈钢无缝管及其制备方法和应用
CN105441713A (zh) 一种钛合金无缝管及其制备方法
CN101177761A (zh) 起重机臂架用管及制造方法
CN109825675B (zh) 用于快堆蒸汽发生器的换热管及其制备方法
CN109825769B (zh) 一种含钼不锈钢焊条钢及其制备方法
CN111647721A (zh) 一种解决高合金结构钢调质后低温冲击功偏低的方法
CN113953430A (zh) 一种提高球墨铸铁管模使用寿命的工艺方法
US9468959B2 (en) Production method of seamless tube using round bar made of high Cr-high Ni alloy
CN108044315A (zh) 一种大口径双金属复合耐蚀无缝管材的制造方法
CN103949800B (zh) 一种由Cr28Ni48W5镍基合金制成的焊丝
CN114000027B (zh) Uns n08120锻环及其制造方法
CN114561592A (zh) 一种异型槽钢的配料方法
CN111299906B (zh) 一种裂解炉用NiCrNb-Zr焊丝及其制备方法
CN111155027B (zh) 一种含稀土q390结构用低合金高强度无缝钢管及其制备方法
CN103949801B (zh) 一种焊丝
CN103962756B (zh) 将Cr28Ni48W5镍基合金制成焊丝的方法
CN103949807B (zh) 一种镍基合金焊丝的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant