WO2023167377A1 - 보론 화합물 및 이를 포함하는 유기발광소자 - Google Patents

보론 화합물 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
WO2023167377A1
WO2023167377A1 PCT/KR2022/010791 KR2022010791W WO2023167377A1 WO 2023167377 A1 WO2023167377 A1 WO 2023167377A1 KR 2022010791 W KR2022010791 W KR 2022010791W WO 2023167377 A1 WO2023167377 A1 WO 2023167377A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
compound
light emitting
Prior art date
Application number
PCT/KR2022/010791
Other languages
English (en)
French (fr)
Inventor
권장혁
나빈 켄케라라야파
이현아
양혜인
전채연
이현승
조상민
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of WO2023167377A1 publication Critical patent/WO2023167377A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a boron compound having a narrow half-width characteristic, realizing a deep blue wavelength, and having the characteristics of a thermally activated delayed fluorescence (TADF) compound, and an organic light emitting device having improved color purity characteristics using the same. will be.
  • TADF thermally activated delayed fluorescence
  • Organic luminescence refers to a phenomenon in which electrical energy is converted into light energy using organic materials.
  • the organic light emitting device is a device that emits light when electrical energy is applied by configuring an organic material in multiple layers between an anode and a cathode.
  • the organic light emitting diode is composed of multiple organic layers for efficiency and stability, and may basically include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Materials used as organic layers can be divided into light emitting materials and charge transport materials according to their functions, and the light emitting materials are fluorescent materials using only fluorescence derived from a singlet excited state of electrons according to a light emitting mechanism, and a fluorescent material using only fluorescence derived from a triplet excited state. It can be classified as a phosphorescent material from which it is derived.
  • the light emitting material may be divided into blue, green, and red light emitting materials according to the light emitting color, and phosphorescent materials are applied and used in the industry for the remaining colors except for blue.
  • a blue light emitting material In the case of a blue light emitting material, only a fluorescent material with low efficiency is used because only a single term is used due to limitations in lifespan and color characteristics. Therefore, as a blue light emitting material, a phosphorescent material using a triplet using a heavy metal such as iridium or platinum and a delayed fluorescent material using a triplet only as a pure organic material by making the energy difference between a singlet and a triplet small are being developed.
  • delayed fluorescence is designed to reduce the energy difference between singlet and triplet, and converts triplet to singlet with only room temperature thermal energy.
  • RISC reverse intersystem crossing
  • the characteristics of the organic light emitting device may depend on the dopant material of the light emitting layer, and the delayed fluorescence dopant is HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) to minimize the energy difference between singlet and triplet. should have less overlap.
  • a donor-acceptor structure is mainly used, and in the case of the structure, intra-molecular charge transfer (Intra charge transfer) is possible.
  • a conventional donor-acceptor structure compound is applied as a delayed fluorescent material, there are disadvantages in that the emission wavelength shifts to a long wavelength region and the emission spectrum is wide and the color purity is inferior.
  • 'DABNA-1' a delayed fluorescence (MR-TADF) material showing a conventional multi-resonance effect, has been reported.
  • MR-TADF delayed fluorescence
  • MR-TADF separates the overlap of HOMO and LUMO in units of atoms in a solid molecule, and in addition, the molecule can generate light or electricity. When excited by the back, there was almost no distortion of the molecule, and a narrow half-width characteristic was obtained.
  • the DABNA-1 has a disadvantage in that delayed fluorescence characteristics are not good because the overlap of HOMO and LUMO is large and the singlet-triplet energy value is large compared to the conventional donor-acceptor structured delayed fluorescence material.
  • ⁇ -DABNA a diboron form in which two DABNA-1 forms are connected, has a narrow half-width characteristic due to stronger multiple resonance characteristics and a small singlet-triplet energy value. Accordingly, the delayed fluorescence properties are improved compared to the DABNA-1 form, but the delayed fluorescence properties are still not excellent due to the long delayed fluorescence exciton lifetime and low delayed fluorescence ratio compared to the existing electron donor-acceptor form, and due to the extended core structure. There is a problem that the emission wavelength shifts to a longer wavelength by about 10 nm compared to the existing DABNA-1.
  • an object of the present invention is to provide a boron compound having excellent color purity and delayed fluorescence characteristics by increasing intra-molecular charge transfer (ICT) intensity while maintaining multiple resonance effect characteristics.
  • ICT intra-molecular charge transfer
  • Another object of the present invention is to provide a boron compound that emits darker blue than conventional compounds by increasing the band gap of the compound.
  • Another object of the present invention is to provide a boron compound having excellent delayed fluorescence characteristics capable of realizing a narrow half-width characteristic of a dark blue light emission wavelength and an organic light emitting device to which the same is applied.
  • a boron compound according to an embodiment of the present invention is characterized in that it is represented by Formula 1 below.
  • X 1 to X 4 are each independently NR 5 , oxygen, or sulfur; at least one of X 1 to X 4 is oxygen or sulfur; R 1 to R 4 are each independently hydrogen, heavy hydrogen, a nitrile group, a halogen group, a substituted or unsubstituted C 1 ⁇ C 10 alkyl group, a substituted or unsubstituted C 3 ⁇ C 10 cycloalkyl group, a substituted or unsubstituted C 1 ⁇ C 10 alkoxy group, substituted or unsubstituted C 1 ⁇ C 10 silyl group, amine group, substituted or unsubstituted C 6 ⁇ C 20 aryl group, substituted or unsubstituted C 2 ⁇ C 20 heteroaryl group, a substituted or unsubstituted C 12 ⁇ C 20 diarylamino group, a substituted or unsubstituted C 4 ⁇ C 20 diheteroarylamino group, or a substituted
  • Formula 1 may be specifically represented by Formula 2 below.
  • X 1 to X 2 are each independently oxygen or sulfur;
  • R 1 to R 4 are each independently hydrogen, deuterium, nitrile, halogen, substituted or unsubstituted C 1 ⁇ C 10 alkyl, substituted or unsubstituted C 3 ⁇ C 10 cycloalkyl, substituted or unsubstituted C 1 ⁇ C 10 alkoxy group, substituted or unsubstituted C 1 ⁇ C 10 silyl group, amine group, substituted or unsubstituted C 6 ⁇ C 20 aryl group, substituted or unsubstituted C 2 ⁇ C 20 heteroaryl group, a substituted or unsubstituted C 12 ⁇ C 20 diarylamino group, a substituted or unsubstituted C 4 ⁇ C 20 diheteroarylamino group, or a substituted or unsubstituted C 2 ⁇ C 20 arylheteroarylamino group;
  • Y 1 to Y 2 are
  • Z 1 to Z 3 may combine with each other to form a carbon ring, or each independently hydrogen, heavy hydrogen, a nitrile group, a halogen group, a substituted or unsubstituted C 1 ⁇ C 10 alkyl group, a substituted or unsubstituted C 3 ⁇ C 10 Cycloalkyl group, substituted or unsubstituted C 1 ⁇ C 10 alkoxy group, substituted or unsubstituted C 1 ⁇ C 10 silyl group, amine group, substituted or unsubstituted C 6 ⁇ C 20 aryl group, substituted or unsubstituted C 2 ⁇ C 20 heteroaryl group, substituted or unsubstituted C 12 ⁇ C 20 diarylamino group, substituted or unsubstituted C 4 ⁇ C 20 diheteroarylamino group, or substituted or unsubstituted C 2 ⁇ C 20 diarylamino group, substituted or unsubstituted C 4 ⁇ C 20
  • the boron compound may be represented by, for example, one of Chemical Formulas 3 to 112 below.
  • An organic light emitting device includes a first electrode; It includes a second electrode provided to face the first electrode and an organic material layer positioned between the first electrode and the second electrode, wherein the organic material layer includes the boron compound.
  • the organic material layer may include an electron injection layer (EIL), an electron transport layer (ETL), an emission layer (EML), a hole transport layer (HTL), and a hole injection layer (HIL).
  • EIL electron injection layer
  • ETL electron transport layer
  • EML emission layer
  • HTL hole transport layer
  • HIL hole injection layer
  • the light emitting layer may include an anthracene derivative represented by Chemical Formula 113 as a host compound.
  • R 5 to R 14 are each independently hydrogen, heavy hydrogen, a nitrile group, a halogen group, a substituted or unsubstituted C 1 ⁇ C 10 alkyl group, a substituted or unsubstituted C 3 ⁇ C 10 cycloalkyl group, or a substituted Or an unsubstituted C 1 ⁇ C 10 alkoxy group, a substituted or unsubstituted C 1 ⁇ C 10 silyl group, an amine group, a substituted or unsubstituted C 6 ⁇ C 20 aryl group, a substituted or unsubstituted C 2 ⁇ C 20 heteroaryl group, a substituted or unsubstituted C 12 ⁇ C 20 diarylamino group, a substituted or unsubstituted C 4 ⁇ C 20 diheteroarylamino group, or a substituted or unsubstituted C 2 ⁇ C 20 arylheteroarylamino group;
  • the light emitting layer may include a host compound, a photosensitive compound, and a final light emitting compound. At least one of the final light emitting compound and the photosensitive compound may include the boron compound.
  • the photosensitive compound of the emission layer may include a delayed fluorescent compound (TD) or a phosphorescent compound (PD).
  • the full width at half maximum of the final light-emitting compound may be narrower than the full width at half maximum of the photosensitive compound.
  • the host compound and the photosensitive compound may each have higher singlet energy and triplet energy than the final light emitting compound.
  • the delayed fluorescent compound is a material having an electron withdrawer-electron acceptor structure
  • the material having the electron withdrawer-electron acceptor structure includes at least one of a boron compound, pyridine, pyrimidine, triazine, cyano group, and sulfone group as a development acceptor. and at least one of a carbazole derivative and an acridan derivative is used as an electron donor, and the phosphorescent compound may include at least one heavy metal selected from Ir, Pt, and Pd.
  • the host compound is mCP (1,3-Bis (N-carbazolyl) benzene), mCBP (3,3-bis (9H-carbazol-9-yl) biphenyl), mCBP-CN (3', 5-di (9H) -carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile), 2CzPy(9,9'-(4-(pyridin-2-yl)-1,3-phenylene)bis(9H- carbazole)), DBFPO (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan), DPEPO(Bis[2-(diphenylphosphino)phenyl]ether oxide), DDBFT(2,4-bis(dibenzo [b,d]furan-2-yl)-6-phenyl-1,3,5-triazine) and pSiTrz(2-phenyl-4,6-bis(4-(
  • the host compound may include a first host compound and a second host compound different from the first host compound.
  • the first and second host compounds are each independently mCP (1,3-Bis (N-carbazolyl) benzene), mCBP (3,3-bis (9H-carbazol-9-yl) biphenyl), mCBP-CN (3',5-di(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile), 2CzPy(9,9'-(4-(pyridin-2-yl)-1 ,3-phenylene)bis(9H-carbazole)), DBFPO(2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan), DPEPO(Bis[2-(diphenylphosphino)phenyl]ether oxide), DDBFT (2,4-bis(dibenzo[b,d]furan-2-yl
  • a display device is characterized in that it includes the organic light emitting device.
  • a lighting device is characterized in that it includes the organic light emitting device.
  • one or more nitrogen atoms in the multi-resonance delayed fluorescence structure including diboron are substituted with oxygen or sulfur, compared to the conventional case in which the nitrogen atom is not changed to oxygen or sulfur.
  • Intra charge transfer (ICT) intensity is high, and delayed fluorescence characteristics are excellent.
  • the conjugation length is shortened to move a short wavelength, thereby increasing the band gap of molecular orbitals, It is possible to realize a dark blue wavelength with a narrow half-width characteristic.
  • FIG. 1a is a chemical structure of DABNA-1 (Comparative Example 1), a multi-resonance delayed fluorescent material
  • FIG. 1b is a HOMO of DABNA-1
  • FIG. 1c is a LUMO of DABNA-1.
  • FIG. 2a is the chemical structure of TMCz-BO (Comparative Example 2), which is a delayed fluorescent material having an electron donor-acceptor structure
  • FIG. 2b is the HOMO of TMCz-BO
  • FIG. 2c is the LUMO of TMCz-BO.
  • FIG. 3a is a chemical structure of compound 21, which is an embodiment of the present invention
  • FIG. 3b is a HOMO of compound 21
  • FIG. 3c is a LUMO of compound 21.
  • Figure 4a is a UV-Vis, PL spectrum of Example 1 (Compound 21) of the present invention
  • Figure 4b shows the TRPL spectrum of Example 1 (Compound 21).
  • Figure 5a is a UV-Vis, PL spectrum of Example 2 (Compound 28) of the present invention
  • Figure 5b shows the TRPL spectrum of Example 2 (Compound 28).
  • 6A is a graph of external light emitting efficiency according to luminance, as a result of evaluating delayed fluorescent devices of Examples 1 to 2 (Compounds 21 and 28) of the present invention.
  • FIG. 6B is a graph of normalized electroluminescence spectra according to the spectrum as a result of evaluating delayed fluorescent devices of Examples 1 to 2 (Compounds 21 and 28) of the present invention.
  • FIG. 7A shows the evaluation results of the fluorescent devices of Examples 1 to 2 (Compounds 21 and 28) of the present invention, and the maximum external quantum efficiency according to luminance.
  • FIG. 7B is a graph of normalized electroluminescence spectra according to spectra as a result of evaluating the fluorescent elements of Examples 1 to 2 (Compounds 21 and 28) of the present invention.
  • FIG. 8 shows that a boron compound according to an embodiment of the present invention can be applied to a photosensitive compound and/or a final light emitting body.
  • a boron compound according to an aspect of the present invention is characterized in that it is represented by Formula 1 below.
  • X 1 to X 4 are each independently NR 5 , oxygen, or sulfur;
  • R 5 is a substituted or unsubstituted C 1 ⁇ C 60 alkyl group, a substituted or unsubstituted C 3 ⁇ C 10 cycloalkyl group, a substituted or unsubstituted C 6 ⁇ C 60 aryl group, or a substituted or unsubstituted C 6 ⁇ C 60 aryl group. It is an unsubstituted C 6 ⁇ C 60 heteroaryl group.
  • the boron compound represented by Formula 1 is a structure in which at least one oxygen or sulfur atom is located at X 1 to X 4 positions where only nitrogen is located in conventional compounds among delayed fluorescence structures of a multi-resonance form including diboron, and through such substitution It is a chemical structure with improved delayed fluorescence characteristics by increasing intra-molecular charge transfer (ICT) intensity.
  • Oxygen or sulfur may act as an electron attractor due to its greater electronegativity than nitrogen, and oxygen or sulfur positioned at X 1 to X 4 around the boron may enhance the electron withdrawing strength.
  • X 1 to X 2 are each independently oxygen or sulfur, and R 1 to R 4 are each independently hydrogen, deuterium, a nitrile group, a halogen group, or a substituted or unsubstituted C 1 to C 10 alkyl group.
  • a substituted or unsubstituted C 3 ⁇ C 10 cycloalkyl group a substituted or unsubstituted C 1 ⁇ C 10 alkoxy group, a substituted or unsubstituted C 1 ⁇ C 10 silyl group, an amine group, a substituted or unsubstituted C 6 ⁇ C 20 aryl group, substituted or unsubstituted C 2 ⁇ C 20 heteroaryl group, substituted or unsubstituted C 12 ⁇ C 20 diarylamino group, substituted or unsubstituted C 4 ⁇ C 20 diheteroarylamino group, or A substituted or unsubstituted C 2 ⁇ C 20 arylheteroarylamino group.
  • Y 1 to Y 2 are each independently hydrogen, deuterium, a substituted or unsubstituted C 1 ⁇ C 60 alkyl group, a substituted or unsubstituted C 3 ⁇ C 10 cycloalkyl group, a substituted or unsubstituted C 6 ⁇ C 60 An aryl group, or a substituted or unsubstituted C 6 ⁇ C 60 heteroaryl group.
  • Z 1 to Z 3 are bonded to each other to form a carbon ring, or each independently hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted C 1 ⁇ C 10 alkyl group, substituted or unsubstituted C 3 ⁇ C 10 Cycloalkyl group, substituted or unsubstituted C 1 ⁇ C 10 alkoxy group, substituted or unsubstituted C 1 ⁇ C 10 silyl group, amine group, substituted or unsubstituted C 6 ⁇ C 20 aryl group, substituted or Unsubstituted C 2 ⁇ C 20 heteroaryl group, substituted or unsubstituted C 12 ⁇ C 20 diarylamino group, substituted or unsubstituted C 4 ⁇ C 20 diheteroarylamino group, or substituted or unsubstituted C 2 ⁇ It is a C 20 arylheteroarylamino group.
  • the boron compound represented by Chemical Formula 1 may be represented by one of Chemical Formulas 3 to 112 below.
  • An organic light emitting device includes a first electrode; It includes a second electrode provided to face the first electrode and an organic material layer positioned between the first electrode and the second electrode, wherein the organic material layer includes the boron compound according to the present invention.
  • the organic material layer may have a single-layer structure, but may preferably have a multi-layer structure, and specifically, the organic material layer may include an electron injection layer (EIL), an electron transport layer (ETL), a light emitting layer (EML), a hole transport layer (HTL), and a hole injection layer ( HIL), and preferably, the boron compound may be a light emitting material of the light emitting layer (EML), and may specifically be a blue light emitting material.
  • EIL electron injection layer
  • ETL electron transport layer
  • EML light emitting layer
  • HTL hole transport layer
  • HIL hole injection layer
  • the boron compound may be a light emitting material of the light emitting layer (EML), and may specifically be a blue light emitting material.
  • the light emitting layer may include a host compound and a dopant compound which is a light emitting material.
  • the host compound may include an anthracene derivative represented by Chemical Formula 113 below.
  • R 5 to R 14 are each independently hydrogen, heavy hydrogen, a nitrile group, a halogen group, a substituted or unsubstituted C 1 ⁇ C 10 alkyl group, a substituted or unsubstituted C 3 ⁇ C 10 cycloalkyl group, or a substituted Or an unsubstituted C 1 ⁇ C 10 alkoxy group, a substituted or unsubstituted C 1 ⁇ C 10 silyl group, an amine group, a substituted or unsubstituted C 6 ⁇ C 20 aryl group, a substituted or unsubstituted C 2 ⁇ C 20 heteroaryl group, a substituted or unsubstituted C 12 ⁇ C 20 diarylamino group, a substituted or unsubstituted C 4 ⁇ C 20 diheteroarylamino group, or a substituted or unsubstituted C 2 ⁇ C 20 arylheteroarylamino group;
  • the light emitting layer of the organic material layer may include a host compound, a photosensitive compound, and a final light emitting body (FD) compound.
  • FD final light emitting body
  • the host compound and the photosensitive compound may preferably have higher singlet energy and triplet energy than those of the final FD compound.
  • the photosensitive compound receives energy from the host compound and serves to transfer energy to the final luminous body (FD) compound, and the energy of the photosensitive compound is transferred to the final luminous body (FD) compound by the triplet and singlet energy relationship of each dopant compound.
  • the ratio of the final luminous body (FD) compound that receives energy is lower than that of the photosensitive compound that delivers energy, the luminous efficiency of the FD compound, which is the final luminous body, can be increased.
  • the half height width of the final luminous body (FD) compound is narrower than the half height width of the photosensitive compound.
  • the photosensitive compound may be a delayed fluorescent material (TD) or a phosphorescent material (PD), and the final light emitting body (FD) compound may be a boron compound according to the present invention.
  • TD delayed fluorescent material
  • PD phosphorescent material
  • FD final light emitting body
  • the photosensitive compound may be the boron compound
  • the final luminous body (FD) compound may include a compound having a longer wavelength than the boron compound and having a narrower half-width characteristic.
  • the final light emitting body (FD) compound may include a material having a structure centered on boron or nitrogen having a multiple resonance effect, or a pyrene- or anthracene-based compound.
  • the host compound that transfers energy to the second dopant compound may use a host material generally used in an emission layer of an organic light emitting device, and as a specific example, mCP (1,3-Bis (N -carbazolyl)benzene), mCBP(3,3-bis(9H-carbazol-9-yl)biphenyl),mCBP-CN(3',5-di(9H-carbazol-9-yl)-[1,1' Host compounds containing carbazole such as -biphenyl] -3-carbonitrile), 2CzPy (9,9'-(4-(pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole)), Compounds containing phosphine oxides such as DBFPO (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan), DPEPO (Bis[2-(diphenylphosphino)phenyl]
  • the host compound may contribute to improving device characteristics such as efficiency and lifetime characteristics when two or more different host compounds are used rather than using only one material. For example, when an electron-type host that moves electrons well and a host that moves holes well are used together, holes and electrons meet in a balanced manner in the light emitting layer, and high efficiency and lifespan characteristics can be expected.
  • the driving voltage is lowered due to a small energy difference between the light emitting layer and the adjacent layer, and more energy is generated through a reverse system transition process between the host materials, while at the same time, the light emitting layer is widely spread inside the light emitting layer. As excitons are formed, the efficiency and lifetime characteristics of the device can be improved.
  • the organic light emitting device of the present invention has high color purity and excellent efficiency, and can be applied as a light emitting device of various display devices, for example, it can be applied to display devices such as TVs, smart phones, computers, and automobiles.
  • the organic light emitting device of the present invention can be applied to a lighting device due to its high efficiency.
  • the physical properties of Compound 21 and Compound 28 prepared according to Examples 1 and 2 were evaluated.
  • the measured physical properties were a UV-Vis absorption spectrum and a room temperature photoluminescence spectrum, and the UV-Vis absorption spectrum was measured by diluting to a concentration of 10 -5 M in a toluene solvent using JASCO V-750.
  • Room temperature photoluminescence spectrum in a solution state was measured using a JASCO-FP 8500 device under conditions of a concentration of 10 -4 M in a toluene solvent.
  • TRPL Time-Resolved Photoluminescence
  • FIG. 1a is a chemical structure of DABNA-1 (Comparative Example 1), a multi-resonance delayed fluorescent material
  • FIG. 1b is a HOMO of DABNA-1
  • FIG. 1c is a LUMO of DABNA-1. Referring to FIGS. 1A to 1C , it can be seen that the HOMO and LUMO of DABNA-1, a conventional multi-resonance delayed fluorescent material, are divided into atomic units.
  • FIG. 2a is the chemical structure of TMCz-BO (Comparative Example 2), which is a delayed fluorescent material having an electron donor-acceptor structure
  • FIG. 2b is the HOMO of TMCz-BO
  • FIG. 2c is the LUMO of TMCz-BO.
  • TMCz-BO which is a conventional electron donor-acceptor structured delayed fluorescent material
  • HOMO is distributed in TMCz
  • LUMO is distributed in DOBNA, so that molecular orbitals are separated and distributed as a unit.
  • FIG. 3a is a chemical structure of compound 21, which is an embodiment of the present invention
  • FIG. 3b is a HOMO of compound 21
  • FIG. 3c is a LUMO of compound 21.
  • HOMO and LUMO are split atomically like DABNA-1 in FIG. 1, and HOMO is mainly composed of boron and nitrogen, and LUMO is boron and It can be seen that it is distributed on the side composed of oxygen and distributed like an electron donor-acceptor structure. That is, it was confirmed that Compound 21 according to an embodiment of the present invention has both the delayed fluorescence characteristics of the molecular orbital multi-resonance structure and the electron donor-acceptor structure through molecular simulation calculations.
  • the ITO glass substrate was cut into 50mm x 50mm x 0.7mm size, washed with acetone, isopropyl alcohol, and distilled water for 10 minutes each, irradiated with ultraviolet rays for 10 minutes, exposed to ozone, and cleaned, and then placed in a vacuum deposition device.
  • the ITO glass substrate was mounted.
  • HATCN (7 nm) / TAPC (50 nm) / DCDPA (10 nm) / DBFPO Host: 30% TMCz-BO and mCBP-CN Host: 3% DABNA-1, Compound 21, or Compound 28 on the ITO glass substrate (25 nm) / DBFPO (10 nm) / TPBi (15 nm) / LiF (1.5 nm) / Al (100 nm) were laminated in this order to prepare organic light emitting devices, respectively. Device specific results are shown in Table 2 below.
  • Figure 4a is a UV-Vis, PL spectrum of Example 1 (Compound 21) of the present invention
  • Figure 4b shows the TRPL spectrum of Example 1 (Compound 21).
  • Figure 5a is a UV-Vis, PL spectrum of Example 2 (Compound 28) of the present invention
  • Figure 5b shows the TRPL spectrum of Example 2 (Compound 28).
  • Example 1 Example 2 compound DABNA-1 TMCz-BO compound 21 compound 28 Max EQE (%) 13.5% 20.7% 30.7% 32.5% Full width at half maximum (nm) 30 nm 59 nm 29 nm 29 nm Maximum electroluminescence wavelength (nm) 460 nm 471 nm 455 nm 460 nm CIE Coordinates (0.13, 0.10) (0.14, 0.18) (0.14, 0.06) (0.14, 0.07)
  • FIG. 6A is a graph of external light emitting efficiency according to luminance, as a result of evaluating delayed fluorescent devices of Examples 1 to 2 (Compounds 21 and 28) of the present invention.
  • FIG. 6B is a graph of normalized electroluminescence spectra according to the spectrum as a result of evaluating delayed fluorescent devices of Examples 1 to 2 (Compounds 21 and 28) of the present invention.
  • the delayed fluorescence characteristics were improved due to the enhanced internal charge transfer characteristics, and all of Examples 1 and 2 showed high color purity characteristics similar to those of Comparative Example 1, and the maximum external quantum efficiency was 13.5%. It can be seen that the improvement more than doubled to more than 30% in .
  • the ITO glass substrate was cut into 50mm x 50mm x 0.7mm size, washed with acetone, isopropyl alcohol, and distilled water for 10 minutes each, irradiated with ultraviolet rays for 10 minutes, exposed to ozone, and cleaned, and then placed in a vacuum deposition device.
  • the ITO glass substrate was mounted.
  • HATCN (7 nm) / NPB (68 nm) / anthracene BH: 3% compound 21 or 28 / ETL (30 nm) / LiF (1.5 nm) / Al (100 nm) were stacked in the order of organic light emission on the ITO glass substrate. Each device was manufactured. Device specific results are shown in Table 3 below.
  • Example 2 compound compound 21 compound 28 Max EQE (%) 5.8 6.3 Full width at half maximum (nm) 450 455 Maximum electroluminescence wavelength (nm) 26 26 CIE Coordinates (0.14, 0.05) (0.14, 0.06)
  • FIG. 7A shows the evaluation results of the fluorescent devices of Examples 1 to 2 (Compounds 21 and 28) of the present invention, and the maximum external quantum efficiency according to luminance.
  • FIG. 7B is a graph of normalized electroluminescence spectra according to spectra as a result of evaluating the fluorescent elements of Examples 1 to 2 (Compounds 21 and 28) of the present invention.
  • the maximum external quantum efficiency (EQE) measuring the amount of light emitted to the outside. ) is at a high level of 5.8% or more, and it can be inferred that the color purity characteristics are excellent through the CIE coordinate result values.
  • FIG. 8 shows that a boron compound according to an embodiment of the present invention can be applied to a photosensitive compound and/or a final luminous body.
  • the boron compound according to an embodiment of the present invention can be applied to a photosensitive compound and/or a final light emitting body.
  • one embodiment of the present invention provides a boron compound with excellent color purity and delayed fluorescence characteristics by increasing intra-molecular charge transfer (ICT) intensity while maintaining multiple resonance effect characteristics.
  • ICT intra-molecular charge transfer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명의 일 실시예는 특정 질소가 산소 또는 황으로 치환된 보론 화합물 및 이를 포함하는 유기발광소자에 관한 것으로서, 보다 상세하게는 다이 보론을 포함하는 다중 공명 형태의 지연 형광 구조에서 질소보다 전기 음성도가 큰 산소 또는 황을 보론 주변에 위치시킨 화학구조를 통하여, 짧아진 컨쥬게이션 길이로 인해 단파장을 이동시키며 좁은 반치폭 특성과 함께 지연 형광 특성이 개선된 진청색 파장 구현이 가능한 보론 화합물 및 이를 포함하는 유기발광소자에 관한 것이다.

Description

보론 화합물 및 이를 포함하는 유기발광소자
본 발명은 좁은 반치폭 특성을 가지며 진청색 파장 구현이 가능하고, 열 활성 지연 형광 화합물(Thermally activated delayed fluorescence; TADF)의 특성을 가질 수 있는 보론 화합물 및 이를 이용하여 색순도 특성이 개선된 유기발광소자에 관한 것이다.
유기발광이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 변환시키는 현상을 말한다. 이때 유기발광소자란 애노드와 캐소드 사이에 유기물질을 다층으로 구성하여 전기 에너지를 가하면 빛을 발광하는 소자이다. 유기발광소자는 효율과 안정성을 위해 다층의 유기층으로 구성되며, 기본적으로 정공주입층, 정공수송층, 발광층, 전자수송층, 및 전자주입층 등으로 이루어질 수 있다.
유기층으로 사용되는 물질은 기능에 따라 발광 물질 및 전하 수송물질로 나누어질 수 있으며, 상기 발광 물질은 발광 메커니즘에 따라 전자의 단일항 여기상태로 유래되는 형광만 이용하는 형광 물질과, 삼중항 여기상태로부터 유래되는 인광 물질로 분류될 수 있다. 또한, 발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질로 나누어질 수 있으며, 청색을 제외한 나머지 색은 인광 물질이 산업계에 적용되어 사용 중이다.
청색 발광 물질의 경우 수명 및 색 특성의 한계로 인해 단일항만 사용하여 효율이 떨어지는 형광 물질만 사용된다. 따라서 청색 발광 물질로서, 이리듐 혹은 백금과 같은 중금속을 이용해 삼중항을 이용하는 인광 물질 및 단일항과 삼중항의 에너지 차이를 작게 만들어 순수 유기재료로만 삼중항을 이용하는 지연 형광 물질이 개발 중이다.
하지만, 상기 인광 물질을 사용하는 경우, 높은 효율을 달성할 수 있지만, 인광을 구현하기 위한 중금속의 경우 가격이 높고, 채굴 시 여러 사회적 문제를 야기할 수 있다.
단일항의 에너지만을 사용하여 75%에 해당하는 삼중항의 에너지가 손실되는 종래의 형광과 달리, 지연 형광은 단일항과 삼중항 간의 에너지 차이가 작아지도록 분자를 설계하여 상온의 열 에너지만으로도 삼중항에서 단일항으로 역계간전이(Reverse intersystem crossing, RISC) 현상이 발생하도록 유도함으로써 삼중항과 단일항 전부의 에너지를 활용할 수 있다. 따라서 인광 물질과 같이 중금속 물질 없이도 삼중항을 이용할 수 있어 물질의 발광 효율이 형광 물질에 비해 높고, 삼중항을 경유하여 형광 발광이 구현되기 때문에 지연 형광이라 명명된다.
유기 발광 소자의 특성은 발광층의 도펀트(dopant) 재료에 좌우될 수 있으며, 지연 형광 도펀트는 단일항과 삼중항 간의 에너지 차이를 최소화하기 위해 HOMO (Highest Occupied Molecular Orbital)와 LUMO(Lowest Unoccupied Molecular Orbital)의 겹침(overlap)이 적어야 한다. 이를 위해 주개-받개(Donor-acceptor) 구조를 주로 사용하며, 상기 구조의 경우 분자 내의 전하 이동(Intra charge transfer)이 가능한 특징을 가진다. 그러나, 종래의 주개-받개 구조의 화합물을 지연 형광 물질로 적용하면 발광 파장이 장파장 영역으로 이동하며, 발광 스펙트럼이 넓어 색순도가 열등하다는 단점이 있다.
이를 극복하기 위해 종래 다중 공명 효과(Multi-Resonance effect)를 보이는 지연 형광(MR-TADF) 물질인 'DABNA-1'이 보고되었다. 'DABNA-1'의 구조는 하기 화학식 a와 같다.
[화학식 a]
Figure PCTKR2022010791-appb-img-000001
종래의 주개-받개 구조의 지연 형광 물질은 주개와 받개 단위체 단위로 HOMO와 LUMO 겹침을 줄였다면, MR-TADF는 견고한 분자 내 원자 단위로 HOMO와 LUMO의 겹침을 분리하였고, 더불어 분자가 빛이나 전기 등에 의해 들떴을 때 분자의 뒤틀림 정도가 거의 없어 좁은 반치폭 특성을 획득할 수 있었다. 하지만, 상기 DABNA-1는 종래의 주개-받개 구조의 지연 형광 물질에 비해 HOMO와 LUMO의 겹침이 크고, 단일항-삼중항 에너지 값이 크기 때문에 지연 형광 특성은 좋지 않다는 단점이 있다.
DABNA-1 형태를 2개 연결한 다이 보론 형태의 ν-DABNA는 더 강한 다중 공명 특성으로 인한 좁은 반치폭 특성과 작은 단일항-삼중항 에너지 값을 갖는다. 이에, 지연 형광 특성은 DABNA-1 형태에 비해 개선되나, 기존의 전자 주개-받개 형태에 비해 여전히 지연 형광 엑시톤 수명이 길고 지연 형광 비율이 낮아 지연 형광 특성이 우수하지 않고, 확장된 코어 구조로 인해 발광 파장이 기존의 DABNA-1에 비해 10 nm 정도 장파장 이동하는 문제가 존재한다.
상기 문제를 해결하기 위하여 본 발명의 목적은 다중 공명 효과 특성을 유지하며 분자 내 전하 이동(Intra charge transfer, ICT) 세기를 증가시켜, 색순도와 지연 형광 특성이 우수한 보론 화합물을 제공하는 것이다.
본 발명의 또 다른 목적은 화합물의 밴드갭을 증가시켜 종래의 화합물보다 진청색으로 발광하는 보론 화합물을 제공하는 것이다.
본 발명의 또 다른 목적은 진청색 발광 파장의 좁은 반치폭 특성을 구현할 수 있는 우수한 지연 형광 특성을 갖는 보론 화합물과 이를 적용한 유기발광소자를 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명의 일 실시예에 따른 보론 화합물은 하기 화학식 1로 표시되는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2022010791-appb-img-000002
상기 화학식 1 에서, X1 내지 X4는 각각 독립적으로 N-R5, 산소, 또는 황이고; X1 내지 X4 중 적어도 하나는 산소 또는 황이며; R1 내지 R4는 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이고; Z1 내지 Z3은 서로 결합하여 탄소고리를 형성하거나, 각각 독립적으로, 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이며; R5는 치환 또는 비치환된 C1~C60 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C6~C60 아릴기, 또는 치환 또는 비치환된 C6~C60 헤테로아릴기이다.
상기 화학식 1은 구체적으로 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2022010791-appb-img-000003
상기 화학식 2에서, X1 내지 X2는 각각 독립적으로 산소, 또는 황이고; R1 내지 R4는 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이고; Y1 내지 Y2는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1~C60 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C6~C60 아릴기, 또는 치환 또는 비치환된 C6~C60 헤테로아릴기이고; Z1 내지 Z3은 서로 결합하여 탄소고리를 형성하거나, 각각 독립적으로, 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이다.
상기 보론 화합물은 예를 들어 하기 화학식 3 내지 112 중 하나로 표시될 수 있다.
Figure PCTKR2022010791-appb-img-000004
Figure PCTKR2022010791-appb-img-000005
Figure PCTKR2022010791-appb-img-000006
Figure PCTKR2022010791-appb-img-000007
Figure PCTKR2022010791-appb-img-000008
Figure PCTKR2022010791-appb-img-000009
Figure PCTKR2022010791-appb-img-000010
Figure PCTKR2022010791-appb-img-000011
본 발명의 다른 일 실시예에 따른 유기발광소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 위치한 유기물층을 포함하며, 상기 유기물층은 상기 보론 화합물을 포함하는 것을 특징으로 한다.
상기 유기물층은 전자주입층(EIL), 전자수송층(ETL), 발광층(EML), 정공 수송층(HTL) 및 정공주입층(HIL)을 포함할 수 있다.
상기 발광층은 하기 화학식 113으로 표시되는 안트라센 유도체를 호스트 화합물로 포함할 수 있다.
[화학식 113]
Figure PCTKR2022010791-appb-img-000012
상기 화학식 113에서, R5 내지 R14은 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이고, L1 내지 L2는 각각 독립적으로 단일 결합이거나, 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이며, k는 각각 독립적으로 1 내지 3의 정수이다.
또한 상기 발광층은 호스트 화합물, 감광성 화합물 및 최종 발광체 화합물을 포함할 수 있다. 상기 최종 발광체 화합물 및 상기 감광성 화합물 중 적어도 어느 하나는 상기 보론 화합물을 포함할 수 있다. 상기 발광층의 감광성 화합물은 지연 형광 화합물 (TD) 또는 인광 화합물(PD)을 포함할 수 있다.
본 발명의 또 다른 실시예에 따르면 상기 최종 발광체 화합물의 반치폭은 상기 감광성 화합물의 반치폭보다 좁을 수 있다. 상기 호스트 화합물 및 상기 감광성 화합물은 각각 상기 최종 발광체 화합물보다 높은 단일항 에너지 및 삼중항 에너지를 가질 수 있다.
상기 지연 형광 화합물은 전자 끌개-전자 받개 구조의 물질이며, 상기 전자 끌개-전자 받개 구조의 물질은 보론 화합물, 피리딘, 피리미딘, 트리아진, 사이아노기 및 설폰기 중 1종 이상을 전개 받개로 사용하고, 카바졸 유도체 및 아크리단 유도체 중 1종 이상을 전자 주개로 사용하며, 상기 인광 화합물은 Ir, Pt 및 Pd 중 1종 이상의 중금속을 포함할 수 있다.
상기 최종 발광체 화합물은 다중 공명 효과(multiple resonance effect)를 갖는 보론 또는 질소를 중심으로 한 구조의 물질이거나, 파이렌 또는 안트라센 기반의 화합물을 포함할 수 있다.
상기 호스트 화합물은 mCP(1,3-Bis(N-carbazolyl)benzene), mCBP(3,3-bis(9H-carbazol-9-yl)biphenyl), mCBP-CN(3',5-di(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile), 2CzPy(9,9'-(4-(pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole)), DBFPO(2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan), DPEPO(Bis[2-(diphenylphosphino)phenyl]ether oxide), DDBFT(2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine) 및 pSiTrz(2-phenyl-4,6-bis(4-(triphenylsilyl)phenyl)-1,3,5-triazine) 중 1종 이상을 포함할 수 있다. 본 발명의 또 다른 실시예에 따르면, 상기 호스트 화합물은 제1 호스트 화합물 및 상기 제1 호스트 화합물과 상이한 제2 호스트 화합물을 포함할 수 있다. 상기 제1 및 제2 호스트 화합물은 각각 독립적으로, mCP(1,3-Bis(N-carbazolyl)benzene), mCBP(3,3-bis(9H-carbazol-9-yl)biphenyl), mCBP-CN(3',5-di(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile), 2CzPy(9,9'-(4-(pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole)), DBFPO(2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan), DPEPO(Bis[2-(diphenylphosphino)phenyl]ether oxide), DDBFT(2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine) 및 pSiTrz(2-phenyl-4,6-bis(4-(triphenylsilyl)phenyl)-1,3,5-triazine)로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명의 또 다른 일 실시예에 따른 표시 장치는 상기 유기발광소자를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따른 조명 장치는 상기 유기발광소자를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 보론 화합물은 다이 보론을 포함하는 다중 공명 형태의 지연 형광 구조 중 하나 이상의 질소 원자가 산소 또는 황으로 치환되어, 종래 질소 원자가 산소 또는 황으로 변경되지 않은 경우에 비하여 분자 내 전하 이동(Intra charge transfer, ICT) 세기가 높으며, 지연 형광 특성이 우수한 효과가 있다.
또한, 본 발명의 일 실시예에 따른 보론 화합물은 하나 이상의 질소 원자가 산소 또는 황으로 치환됨으로 인해, 컨쥬게이션 길이가 짧아져 단파장을 이동시킬 수 있으며, 이를 통해 분자 오비탈의 밴드갭이 증가하게 되고, 좁은 반치폭 특성과 함께 진청색 파장을 구현할 수 있다.
도 1a는 다중 공명 지연 형광 물질인 DABNA-1(비교예 1)의 화학구조이고, 도 1b는 DABNA-1의 HOMO 이고, 도 1c는 DABNA-1의LUMO이다.
도 2a는 전자 주개-받개 구조의 지연 형광 물질인 TMCz-BO(비교예 2)의 화학구조이고, 도 2b는 TMCz-BO의 HOMO이고, 도 2c는 TMCz-BO의 LUMO이다.
도 3a는 본 발명의 일 실시예인 화합물 21의 화학구조이고, 도 3b는 화합물 21의 HOMO이고, 도 3c는 화합물 21의 LUMO이다.
도 4a는 본 발명의 실시예 1(화합물 21)의 UV-Vis, PL 스펙트럼이고, 도 4b는 실시예 1(화합물 21)의 TRPL 스펙트럼을 나타낸 것이다.
도 5a는 본 발명의 실시예 2(화합물 28)의 UV-Vis, PL 스펙트럼이고, 도 5b는 실시예 2(화합물 28)의 TRPL 스펙트럼을 나타낸 것이다.
도 6a는 본 발명의 실시예 1 내지 2(화합물 21, 28)의 지연 형광 소자 평가 결과로, 휘도에 따른 외부 발광 효율의 그래프이다.
도 6b는 본 발명의 실시예 1 내지 2(화합물 21, 28)의 지연 형광 소자 평가 결과로, 스펙트럼에 따른 정규화된 전계 발광 스펙트럼의 그래프이다.
도 7a는 본 발명의 실시예 1 내지 2(화합물 21, 28)의 형광 소자 평가 결과로, 휘도에 따른 최대 외부 양자 효율이다.
도 7b는 본 발명의 실시예 1 내지 2(화합물 21, 28)의 형광 소자 평가 결과로, 스펙트럼에 따른 정규화된 전계 발광 스펙트럼의 그래프이다.
도 8은 본 발명의 일 실시예에 따른 보론 화합물이 감광성 화합물 및/또는 최종 발광체에 적용될 수 있음을 나타낸 것이다.
이하, 도면을 참고하여 본 발명을 상세하게 설명한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 측면에 따른 보론 화합물은 하기 화학식 1로 표시되는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2022010791-appb-img-000013
상기 화학식 1에서, X1 내지 X4는 각각 독립적으로 N-R5, 산소, 또는 황이고,
X1 내지 X4 중 적어도 하나는 산소 또는 황이며, R1 내지 R4는 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이다. 또한 상기 화학식 1에서 Z1 내지 Z3은 서로 결합하여 탄소고리를 형성하거나, 각각 독립적으로, 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이다. 그리고, 상기 화학식 1에서 R5는 치환 또는 비치환된 C1~C60 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C6~C60 아릴기, 또는 치환 또는 비치환된 C6~C60 헤테로아릴기이다.
상기 화학식 1로 표시되는 보론 화합물은 다이 보론을 포함하는 다중 공명 형태의 지연 형광 구조 중 종래 화합물에서 질소만 위치한 X1 내지 X4 자리에 적어도 하나의 산소 또는 황 원자가 위치한 구조로서, 이러한 치환을 통하여 분자내 전하 이동(Intra charge transfer, ICT) 세기를 증가시켜 지연 형광 특성이 향상된 화학구조이다. 산소 또는 황은 질소보다 큰 전기 음성도로 인해 전자 끌개로 작용할 수 있으며, 상기 보론 주변의 X1 내지 X4에 위치한 산소 또는 황은 전자 끌개 세기를 강화시킬 수 있다. 이에 따라 상기 화학식 1에서 X1 내지 X4 중 산소 또는 황으로 치환된 부분은 분자 내에서 전자 끌개로, X1 내지 X4 중 질소인 부분은 전자 주개로 역할을 하여 기존 전자 주개-끌개 단위체로 이루어진 지연 형광처럼 작은 단일항-삼중항 에너지와 우수한 지연형광 특성을 획득할 수 있다. 동시에, X1 내지 X4의 질소 원자를 산소 원자 또는 황 원자로 치환하면 컨쥬게이션 길이가 짧아지기 때문에 단파장을 이동시킬 수 있다. 이때 해당되는 분자 오비탈 영역의 HOMO 에너지 차이가 LUMO 에너지 차이보다 크게 변하기 때문에, 전체적인 밴드갭이 증가한다. 또한, 분자 내 존재하는 다중 공명 특성은 다소 약화될 수 있으나, 대체로 유지되기 때문에 좁은 반치폭 특성을 유지하면서 진청색 파장을 구현할 수 있다.
상기 화학식 1에서 X3 및 X4가 하기 화학식 2와 같이 질소원자이고, X1과 X2가 산소원자 또는 황 원자일 때 분자 내 HOMO 영역과 LUMO 영역의 구분이 더욱 확실하여 상기 오비탈의 겹침이 작아져, 더욱 우수한 지연형광 특성을 획득할 수 있다. 상기 오비탈 영역의 HOMO 에너지 차이가 LUMO 에너지 차이보다 더욱 커질 수 있어, 분자의 넓은 밴드갭 측면에서 바람직하다.
[화학식 2]
Figure PCTKR2022010791-appb-img-000014
상기 화학식 2에서, X1 내지 X2는 각각 독립적으로 산소, 또는 황이고, R1 내지 R4는 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이다. 또한 상기 Y1 내지 Y2는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1~C60 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C6~C60 아릴기, 또는 치환 또는 비치환된 C6~C60 헤테로아릴기이다. 그리고, Z1 내지 Z3은 서로 결합하여 탄소고리를 형성하거나, 각각 독립적으로, 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이다.
상기 화학식 1로 표시되는 보론 화합물은 구체적인 예로, 하기 화학식 3 내지 112 중 하나로 표시될 수 있다.
Figure PCTKR2022010791-appb-img-000015
Figure PCTKR2022010791-appb-img-000016
Figure PCTKR2022010791-appb-img-000017
Figure PCTKR2022010791-appb-img-000018
Figure PCTKR2022010791-appb-img-000019
Figure PCTKR2022010791-appb-img-000020
Figure PCTKR2022010791-appb-img-000021
Figure PCTKR2022010791-appb-img-000022
본 발명의 다른 일 측면에 따른 유기발광소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 위치한 유기물층을 포함하며, 상기 유기물층은 상기 본 발명에 따른 보론 화합물을 포함하는 것을 특징으로 한다.
상기 유기물층은 단층 구조일 수 있으나, 바람직하게는 다층 구조일 수 있으며, 구체적으로 유기물층은 전자주입층(EIL), 전자수송층(ETL), 발광층(EML), 정공 수송층(HTL) 및 정공주입층(HIL)을 포함할 수 있으며, 바람직하게는 상기 보론 화합물이 상기 발광층(EML)의 발광체일 수 있으며, 구체적으로 청색광 발광체일 수 있다.
상기 발광층은 호스트 화합물과 발광체인 도펀트 화합물을 포함할 수 있으며, 이때 호스트 화합물은 하기 화학식 113으로 표시되는 안트라센 유도체를 포함할 수 있다.
[화학식 113]
Figure PCTKR2022010791-appb-img-000023
상기 화학식 113에서, R5 내지 R14은 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이고, L1 내지 L2는 각각 독립적으로 단일 결합이거나, 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이며, k는 각각 독립적으로 1 내지 3의 정수이다.
상기 유기물층의 발광층은 호스트 화합물, 감광성 화합물 및 최종 발광체 (FD) 화합물을 포함할 수 있다
상기 발광층에서 호스트 화합물 및 상기 감광성 화합물은 각각 상기 최종 발광체(FD) 화합물보다 높은 단일항 에너지 및 삼중항 에너지를 갖는 것이 바람직할 수 있다. 감광성 화합물은 호스트 화합물로부터 에너지를 받아 최종 발광체(FD) 화합물로 에너지를 전달하는 역할을 하며, 각 도펀트 화합물의 삼중항과 단일항의 에너지 관계에 의해 감광성 화합물의 에너지가 최종 발광체(FD) 화합물로 전달되며, 에너지를 전달받는 최종 발광체(FD) 화합물의 비율이 에너지를 전달하는 감광성 화합물에 비하여 낮을수록 최종 발광체인 FD 화합물의 발광효율이 높아질 수 있다. 이때 최종 발광체(FD) 화합물의 반치폭은 상기 감광성 화합물의 반치폭보다 좁은 것이 바람직하다. 반치폭이 좁을수록 색순도가 높아지며, 최종 발광체 화합물의 반치폭이 감광성 화합물의 반치폭보다 좁은 경우, 기존의 지연 형광 소자에 비해 고색순도의 소자 특성을 얻을 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 감광성 화합물은 지연형광물질(TD) 또는 인광 물질(PD)이고, 상기 최종 발광체(FD)화합물은 상기 본 발명에 따른 보론 화합물일 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 상기 감광성 화합물은 상기 보론 화합물일 수 있고, 상기 최종 발광체(FD) 화합물은 상기 보론 화합물보다 장파장에 위치하며 좁은 반치폭 특성을 갖는 화합물을 포함할 수 있다. 상기 최종 발광체(FD) 화합물은 다중 공명 효과(multiple resonance effect)를 갖는 보론 또는 질소를 중심으로 한 구조의 물질이거나, 파이렌 또는 안트라센 기반의 화합물을 포함할 수 있다.
제2 도펀트 화합물로 에너지를 전달하는 호스트 화합물은 유기발광소자의 발광층에서 일반적으로 사용되는 호스트 물질을 사용할 수 있으며, 구체적인 예로서, 2.9 eV 이상의 삼중항 에너지를 갖는 mCP(1,3-Bis(N-carbazolyl)benzene), mCBP(3,3-bis(9H-carbazol-9-yl)biphenyl),mCBP-CN(3',5-di(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile),2CzPy(9,9'-(4-(pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole)) 등의 카바졸을 포함하는 호스트 화합물, DBFPO(2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan), DPEPO(Bis[2-(diphenylphosphino)phenyl]ether oxide) 등의 포스핀 옥사이드를 포함하는 화합물, DDBFT(2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine), pSiTrz(2-phenyl-4,6-bis(4-(triphenylsilyl)phenyl)-1,3,5-triazine) 등의 트리아진을 포함하는 호스트 물질 등을 사용할 수 있으나, 상기 예시에 한정되는 것은 아니다.
이때 호스트 화합물은 1종의 물질만을 사용하는 것보다 2종 이상의 상이한 호스트 화합물을 사용하는 경우 효율 및 수명 특성 등의 소자 특성 개선에 기여할 수 있다. 예를 들어 전자를 잘 움직여주는 전자 타입의 호스트와 정공을 잘 움직여주는 호스트를 함께 사용하는 경우 발광층 내부에서 정공과 전자가 균형 있게 만나 높은 효율과 수명 특성을 기대할 수 있다. 더불어, 엑시플렉스 내지 일렉트로플렉스를 형성하는 호스트를 사용하면 발광층과 인접한 층의 에너지 차이가 적어 구동 전압이 낮아지고, 호스트 물질 사이의 역계간전이 과정을 통해 더 많은 에너지를 생성하는 동시에 발광층 내부에 넓게 엑시톤이 형성되어, 소자의 효율과 수명 특성이 개선될 수 있다.
본 발명의 유기발광소자는 높은 색순도와 효율이 우수하여, 각종 표시 장치의 발광소자로 적용될 수 있으며, 예를 들어 TV, 스마트폰, 컴퓨터, 자동차 등의 표시 장치에 적용될 수 있다.
또한 본 발명의 유기발광소자는 높은 효율로 인하여 조명 장치에 적용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 제조예 및 실시예에 한정되지 않는다.
[제조예 : 보론 화합물의 합성]
실시예 1 : 화학식 21로 표시되는 보론 화합물(화합물 21)의 합성
하기 반응식 1-1을 참고하면, 하기 화합물 21a (2 g, 4.47 mmol)와 소듐 터트-부톡사이드 (sodium tert-butoxide; 645 mg, 671 mmol), Sphos (Dicyclohexyl(2',6'-dimethoxy[1,1'-biphenyl]-2-yl)phosphane; 73.5 mg, 0.18 mmol)을 톨루엔 (30 mL)에 용해시키고 아닐린 (0.61 mL, 6.71 mmol)을 첨가하였다. 10 분간 질소로 치환한 후 Pd2(dba)3 (81.9 mg, 0.09 mmol)을 첨가하고 다시 10 분간 질소로 치환하였다. 3 시간 동안 120 ℃에서 교반한 후 상온으로 냉각하고 디클로로메탄으로 희석하였다. 실리카 겔로 여과하여 농축하고, 잔류물을 헥산으로 묽힌 후 상온에서 20분 동안 교반하고 여과하여 흰색의 고체 중간체 21a (2.05 g, 91%)을 얻었다.
[반응식 1-1]
Figure PCTKR2022010791-appb-img-000024
하기 반응식 1-2를 참고하면, 상기 중간체 21a (1 g, 1.98 mmol), 화합물 b (639 mg, 1.98 mmol) 그리고 소듐 터트-부톡사이드 (572.4 mg, 5.96 mmol), 트라이-터트-부틸포스틴 (Tri-tert-butylphosphine; 0.24 mL, 0.99 mmol)을 톨루엔 (20 mL)에 녹였다. 10 분간 질소로 치환한 후 Pd2(dba)3(909 mg, 0.99 mmol)을 첨가하고 10 분간 질소로 치환하였다. 3 시간 동안 120℃에서 교반한 후 상온으로 냉각하여 디클로로메탄으로 희석하였다. 실리카 겔로 여과하여 농축하고, 잔류물을 헥산으로 묽힌 후 상온에서 20분 동안 교반하고 여과하여 흰색의 고체 중간체 21b(658 mg, 43%)를 얻었다.
[반응식 1-2]
Figure PCTKR2022010791-appb-img-000025
하기 반응식 1-3을 참조하면, 상기 중간체 21b (600 mg, 0.77 mmol)를 오르소-디클로로벤젠 (15 mL)에 녹였다. 10 분간의 질소로 치환한 후 BBr3(0.10 mL, 1.16 mmol)를 첨가하였다. 20 시간 동안 190 ℃에서 교반하고 상온으로 냉각하였다. 용매를 제거한 후 반응물을 뜨거운 톨루엔에 녹이고 실리카겔로 여과하고 농축하였다. 잔류물을 헥산과 아세트나이트릴을 이용해 재결정하여 노란색의 고체 화합물 21 (278 mg, 46%)를 얻었다.
[반응식 1-3]
Figure PCTKR2022010791-appb-img-000026
실시예 2 : 화학식 28로 표시되는 보론 화합물(화합물 28)의 합성
하기 반응식 2-1을 참고하면, 하기 화합물 28a (10 g, 14.89 mmol)와 소듐 터트-부톡사이드 (2.15 g, 22.34 mmol), Sphos(Dicyclohexyl(2',6'-dimethoxy[1,1'-biphenyl]-2-yl)phosphane; 244.6 mg, 0.59 mmol)를 톨루엔 (120 mL)에 용해시키고 4-터트-부틸아닐린 (4-tert-Butylaniline; 3.56 ml, 22.34 mmol)을 첨가하였다. 10분간 질소로 치환한 후 Pd2(dba)3 (272.77 mg, 0.29 mmol)을 첨가하고 10분간 질소로 치환하였다. 3시간 동안 120 ℃에서 교반하고 실시예 1과 유사한 방법으로 흰색의 고체 중간체 28a(10.86 g, 93%)을 얻었다.
[반응식 2-1]
Figure PCTKR2022010791-appb-img-000027
하기 반응식 2-2를 참고하면, 상기 중간체 28a (561.7 mg, 0.71 mmol), 화합물 b (250 mg, 0.71 mmol) 그리고 소듐 터트-부톡사이드 (206.52 mg, 2.16 mmol), 트라이-터트-부틸포스핀 (0.08 mL, 0.35 mmol)을 톨루엔 (20 mL)에 녹였다. 10분간 질소로 치환한 후 Pd2(dba)3 (327.9 mg, 0.35 mmol)을 첨가하고 10분간 질소로 치환하였다. 3시간 동안 120 ℃에서 교반하고 실시예 1과 유사한 방법으로 녹색의 고체 중간체 28b (309 mg, 41%)를 얻었다.
[반응식 2-2]
Figure PCTKR2022010791-appb-img-000028
하기 반응식 2-3을 참조하면, 상기 중간체 28b (250 mg, 0.24 mmol)를 오르소-디클로로벤젠 (15 mL)에 녹였다. 10분간 질소로 치환한 후 BBr3 (0.06 ml, 0.71 mmol)를 첨가하였다. 20시간 동안 190 ℃에서 교반하고 상온으로 냉각하였다. 용매를 제거한 후 반응물을 뜨거운 톨루엔에 녹이고 실리카겔로 여과하고 농축하였다. 실시예 1과 유사한 방법으로 노란색의 고체 화합물 28 (76 mg, 30%)을 얻었다.
[반응식 2-3]
Figure PCTKR2022010791-appb-img-000029
[실험예 1: 보론 화합물의 물성 평가]
상기 실시예 1 내지 2에 따라 제조한 화합물 21 및 화합물 28에 대한 물성 평가를 진행하였다. 측정된 물성은 UV-Vis 흡수 스펙트럼과 상온 광발광 스펙트럼으로, UV-Vis 흡수 스펙트럼은 JASCO V-750을 이용하여 톨루엔 용매에 10-5 M의 농도로 희석하여 측정하였다. 용액 상태의 상온 광발광 스펙트럼의 경우 톨루엔 용매에 10-4 M의 농도의 조건으로, JASCO-FP 8500 장비를 이용해 측정하였다. TRPL (Time-Resolved Photoluminescence)은 Hamamatsu C11367 장비를 이용하여 용매에 10-4 M의 농도로 희석하여 측정하였다. 측정 결과를 하기 표 1 및 도면 1 내지 도면 2에 나타냈다.
구분 비교예 1 비교예 2 실시예 1 실시예 2
화합물 구조 DABNA-1 TMCz-BO 화학식 21 화학식 28
최대 흡수 스펙트럼 439 nm 377 nm 432 nm 436 nm
스토크스 이동 11 nm 69 nm 15 nm 15 nm
최대 발광 스펙트럼 (용액) 450 nm 446 nm 445 nm 451 nm
반치폭 (용액) 21 nm 55 nm 19 nm 19 nm
단일항-삼중항 에너지 0.20 eV 0.02 eV 0.12 eV 0.14 eV
삼중항 엑시톤 수명 93.7 μs 0.75 μs 3.14 μs 3.29 μs
지연 형광 면적 4 % 33 % 20.3 % 13.8 %
도 1a는 다중 공명 지연 형광 물질인 DABNA-1(비교예 1)의 화학구조이고, 도 1b는 DABNA-1의 HOMO 이고, 도 1c는 DABNA-1의LUMO이다. 도 1a 내지 도 1c를 참조하면, 종래 다중 공명 지연 형광 물질인 DABNA-1의 HOMO와 LUMO가 원자 단위로 나뉘는 것을 알 수 있다.
도 2a는 전자 주개-받개 구조의 지연 형광 물질인 TMCz-BO(비교예 2)의 화학구조이고, 도 2b는 TMCz-BO의 HOMO이고, 도 2c는 TMCz-BO의 LUMO이다. 도 2a 내지 2c를 참조하면, 종래 전자 주개-받개 구조의 지연 형광 물질인 TMCz-BO에서 HOMO는 TMCz에, LUMO는 DOBNA에 분포하여 단위체로 분자 오비탈이 분리되어 분포하는 것을 알 수 있다.
반면 도 3a는 본 발명의 일 실시예인 화합물 21의 화학구조이고, 도 3b는 화합물 21의 HOMO이고, 도 3c는 화합물 21의 LUMO이다. 도 3a 내지 3c를 참조하면, 화합물 21은 HOMO와 LUMO가 도 1의 DABNA-1처럼 원자 단위로 갈리는 동시에, 도 2의 TMCz-BO와 같이 HOMO는 주로 붕소와 질소가 이루어진 쪽에, LUMO는 붕소와 산소로 이루어진 쪽에 분포하여 전자 주개-받개 구조처럼 분포해 있는 것을 알 수 있다. 즉, 본 발명의 일 실시예에 따른 화합물 21은 분자 시뮬레이션 계산을 통해 분자 오비탈이 다중 공명 구조와 전자 주개-받개 구조의 지연 형광의 특징을 모두 갖고 있는 것으로 확인되었다.
[실험예 2: 보론 화합물을 포함하는 지연 형광 소자 평가]
ITO 유리 기판을 50mm x 50mm x 0.7mm 크기로 절단하고 아세톤, 이소프로필 알코올과 증류수를 이용하여 각 10분 동안 세정한 후, 10분 동안 자외선을 조사하고 오존에 노출시켜 세정한 후 진공증착장치에 상기 ITO 유리 기판을 장착하였다. 상기 ITO 유리 기판에 HATCN (7 nm) / TAPC (50 nm) / DCDPA (10 nm) / DBFPO 호스트: 30% TMCz-BO 및 mCBP-CN 호스트 : 3%의 DABNA-1, 화합물 21, 또는 화합물 28 (25 nm) / DBFPO (10 nm) / TPBi (15 nm) / LiF (1.5 nm) / Al (100 nm) 순으로 적층하여 유기 발광 소자를 각각 제조하였다. 소자 특정 결과를 하기 표 2에 나타내었다.
도 4a는 본 발명의 실시예 1(화합물 21)의 UV-Vis, PL 스펙트럼이고, 도 4b는 실시예 1(화합물 21)의 TRPL 스펙트럼을 나타낸 것이다. 도 5a는 본 발명의 실시예 2(화합물 28)의 UV-Vis, PL 스펙트럼이고, 도 5b는 실시예 2(화합물 28)의 TRPL 스펙트럼을 나타낸 것이다.
구분 비교예 1 비교예 2 실시예 1 실시예 2
화합물 DABNA-1 TMCz-BO 화합물 21 화합물 28
최대 EQE (%) 13.5% 20.7% 30.7% 32.5%
반치폭 (nm) 30 nm 59 nm 29 nm 29 nm
최대 전기 발광 파장 (nm) 460 nm 471 nm 455 nm 460 nm
CIE 좌표 (0.13, 0.10) (0.14, 0.18) (0.14, 0.06) (0.14, 0.07)
도 6a는 본 발명의 실시예 1 내지 2(화합물 21, 28)의 지연 형광 소자 평가 결과로, 휘도에 따른 외부 발광 효율의 그래프이다. 도 6b는 본 발명의 실시예 1 내지 2(화합물 21, 28)의 지연 형광 소자 평가 결과로, 스펙트럼에 따른 정규화된 전계 발광 스펙트럼의 그래프이다. 도 6a, 6b 및 상기 표 2를 참고하면, 강화된 내부 전하 이동 특성으로 인해 지연 형광 특성이 개선되었고, 실시예 1 내지 2 모두 비교예 1과 비슷한 고색순도 특성을 보이면서 최대 외부 양자 효율이 13.5%에서 30% 이상으로 2배 이상 개선된 것을 알 수 있다.
다중 공명 효과가 유지됨에 따라 기존 전자 주개-받개 구조 재료의 반치폭이 59 nm인 비교예 2에 비해 실시예 1 내지 2 모두 반치폭 특성이 29 nm로 고색순도 특성을 보이는 것을 알 수 있다.
따라서, 실시예 1 내지 2는 모두 다중 공명 효과를 유지하면서 개선된 내부 전하 이동 특성으로 인해 기존 다중 공명 구조의 재료의 한계인 낮은 지연 형광 특성 내지 전자 주개-받개 구조의 넓은 반치폭을 동시에 개선하였음을 알 수 있다.
[실험예 3: 안트라센 유도체 호스트를 적용한 보론 화합물 형광 소자 평가]
ITO 유리 기판을 50mm x 50mm x 0.7mm 크기로 절단하고 아세톤, 이소프로필 알코올과 증류수를 이용하여 각 10분 동안 세정한 후, 10분 동안 자외선을 조사하고 오존에 노출시켜 세정한 후 진공증착장치에 상기 ITO 유리 기판을 장착하였다. 상기 ITO 유리 기판에 HATCN (7 nm)/NPB (68 nm)/안트라센 BH: 3% 화합물 21 또는 28/ ETL(30 nm)/ LiF (1.5 nm)/ Al (100 nm) 순으로 적층하여 유기 발광 소자를 각각 제조하였다. 소자 특정 결과를 하기 표 3에 나타내었다.
구분 실시예 1 실시예 2
화합물 화합물 21 화합물 28
최대 EQE (%) 5.8 6.3
반치폭 (nm) 450 455
최대 전기 발광 파장 (nm) 26 26
CIE 좌표 (0.14, 0.05) (0.14, 0.06)
도 7a는 본 발명의 실시예 1 내지 2(화합물 21, 28)의 형광 소자 평가 결과로, 휘도에 따른 최대 외부 양자 효율이다. 도 7b는 본 발명의 실시예 1 내지 2(화합물 21, 28)의 형광 소자 평가 결과로, 스펙트럼에 따른 정규화된 전계 발광 스펙트럼의 그래프이다. 도 7a, 7b 및 상기 표 3을 참고하면, 실시예 1 및 2에 따른 보론 화합물을 포함하는 유기 발광 소자의 경우, 외부에 방출되는 빛의 양을 측정한 최대 외부 양자효율(external quantum efficiency; EQE)이 5.8% 이상으로 높은 수준임을 확인할 수 있고, CIE 좌표 결과 값을 통해 색 순도 특성이 우수함을 유추할 수 있다.
도 8은 본 발명의 일 실시예에 따른 보론 화합물이 감광성 화합물 및/또는 최종 발광체에 적용될 수 있음을 나타낸 것이다.
도 8을 참고하면, 본 발명의 일 실시예에 따른 보론 화합물이 감광성 화합물 및/또는 최종 발광체에 적용될 수 있음을 확인할 수 있다. 상기 실험결과들을 종합적으로 고려하면, 본 발명의 일 실시예는 다중 공명 효과 특성을 유지하며 분자 내 전하 이동(Intra charge transfer, ICT) 세기를 증가시켜, 색순도와 지연 형광 특성이 우수한 보론 화합물을 제공할 수 있을 뿐만 아니라, 진청색으로 발광하는 보론 화합물을 제공할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니며, 청구 범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (15)

  1. 하기 화학식 1로 표시되는 보론 화합물:
    [화학식 1]
    Figure PCTKR2022010791-appb-img-000030
    상기 화학식 1에서,
    X1 내지 X4는 각각 독립적으로 N-R5, 산소, 또는 황이고,
    X1 내지 X4 중 적어도 하나는 산소 또는 황이며,
    R1 내지 R4는 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이고,
    Z1 내지 Z3은 서로 결합하여 탄소고리를 형성하거나, 각각 독립적으로, 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이며,
    R5는 치환 또는 비치환된 C1~C60 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C6~C60 아릴기, 또는 치환 또는 비치환된 C6~C60 헤테로아릴기이다.
  2. 제1항에 있어서,
    하기 화학식 2로 표시되는 보론 화합물:
    [화학식 2]
    Figure PCTKR2022010791-appb-img-000031
    상기 화학식 2에서,
    X1 내지 X2는 각각 독립적으로 산소, 또는 황이고,
    R1 내지 R4는 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이고,
    Y1 내지 Y2는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1~C60 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C6~C60 아릴기, 또는 치환 또는 비치환된 C6~C60 헤테로아릴기이고,
    Z1 내지 Z3은 서로 결합하여 탄소고리를 형성하거나, 각각 독립적으로, 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 치환 또는 비치환된 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이다.
  3. 제1항에 있어서,
    하기 화학식 3 내지 112 중 하나로 표시되는 보론 화합물:
    Figure PCTKR2022010791-appb-img-000032
    Figure PCTKR2022010791-appb-img-000033
    Figure PCTKR2022010791-appb-img-000034
    Figure PCTKR2022010791-appb-img-000035
    Figure PCTKR2022010791-appb-img-000036
    Figure PCTKR2022010791-appb-img-000037
    Figure PCTKR2022010791-appb-img-000038
    Figure PCTKR2022010791-appb-img-000039
  4. 제1 전극
    상기 제1 전극과 대향하여 구비된 제2 전극 및
    상기 제1 전극과 상기 제2 전극 사이에 위치한 유기물층을 포함하며,
    상기 유기물층은 제1항 내지 제2항 중 어느 한 항에 따른 보론 화합물을 포함하는 유기발광소자.
  5. 제4항에 있어서,
    상기 유기물층은 전자주입층(EIL), 전자수송층(ETL), 발광층(EML), 정공 수송층(HTL) 및 정공주입층(HIL)을 포함하는 유기발광소자.
  6. 제5항에 있어서,
    상기 발광층은 하기 화학식 113으로 표시되는 안트라센 유도체를 호스트 화합물로 포함하는 유기발광소자:
    [화학식 113]
    Figure PCTKR2022010791-appb-img-000040
    상기 화학식 113에서,
    R5 내지 R14는 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 C1~C10 알킬기, 치환 또는 비치환된 C3~C10 시클로알킬기, 치환 또는 비치환된 C1~C10 알콕시기, 치환 또는 비치환된 C1~C10 실릴기, 아민기, 치환 또는 비치환된 C6~C20 아릴기, 치환 또는 비치환된 C2~C20 헤테로아릴기, 치환 또는 비치환된 C12~C20 디아릴아미노기, 치환 또는 비치환된 C4~C20 디헤테로아릴아미노기, 또는 치환 또는 비치환된 C2~C20 아릴헤테로아릴아미노기이고,
    L1 내지 L2는 각각 독립적으로 단일 결합이거나, 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이며,
    k는 각각 독립적으로 1 내지 3의 정수이다.
  7. 제5항에 있어서,
    상기 발광층은 호스트 화합물, 감광성 화합물 및 최종 발광체 화합물을 포함하며,
    상기 최종 발광체 화합물 및 상기 감광성 화합물 중 적어도 어느 하나는 제1항에 따른 보론 화합물을 포함하고
    상기 감광성 화합물은 지연 형광 화합물 또는 인광 화합물을 포함하는 유기발광소자.
  8. 제7항에 있어서,
    상기 최종 발광체 화합물의 반치폭은 상기 감광성 화합물의 반치폭보다 좁은 것인 유기발광소자.
  9. 제7항에 있어서,
    상기 호스트 화합물 및 상기 감광성 화합물은 각각 상기 최종 발광체 화합물보다 높은 단일항 에너지 및 삼중항 에너지를 갖는 유기발광소자.
  10. 제7항에 있어서,
    상기 지연 형광 화합물은 전자 끌개-전자 받개 구조의 물질이며,
    상기 전자 끌개-전자 받개 구조의 물질은,
    보론 화합물, 피리딘, 피리미딘, 트리아진, 사이아노기 및 설폰기 유도체 중 1종 이상을 전자 받개로 사용하고,
    카바졸 유도체 및 아크리단 유도체 중 1종 이상을 전자 주개로 사용하며,
    상기 인광 화합물은 Ir, Pt 및 Pd 중 1종 이상의 중금속을 포함하는 유기발광소자.
  11. 제7항에 있어서,
    상기 최종 발광체화합물은,
    다중 공명 효과(Multiple resonance effect)를 갖는 보론 또는 질소를 중심으로 한 구조의 물질이거나, 파이렌 또는 안트라센 기반의 화합물을 포함하는 유기발광소자.
  12. 제7항에 있어서,
    상기 호스트 화합물은 mCP(1,3-Bis(N-carbazolyl)benzene), mCBP(3,3-bis(9H-carbazol-9-yl)biphenyl), mCBP-CN(3',5-di(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile), 2CzPy(9,9'-(4-(pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole)), DBFPO(2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan), DPEPO(Bis[2-(diphenylphosphino)phenyl]ether oxide), DDBFT(2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine) 및 pSiTrz(2-phenyl-4,6-bis(4-(triphenylsilyl)phenyl)-1,3,5-triazine) 중 1종 이상을 포함하는 유기발광소자.
  13. 제12항에 있어서,
    상기 호스트 화합물은,
    제1 호스트 화합물 및 상기 제1 호스트 화합물과 상이한 제2 호스트 화합물을 포함하는 유기발광소자.
  14. 제4항의 유기발광소자를 포함하는 표시 장치.
  15. 제4항의 유기발광소자를 포함하는 조명 장치.
PCT/KR2022/010791 2022-03-03 2022-07-22 보론 화합물 및 이를 포함하는 유기발광소자 WO2023167377A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0027423 2022-03-03
KR1020220027423A KR20230130363A (ko) 2022-03-03 2022-03-03 보론 화합물 및 이를 포함하는 유기발광소자

Publications (1)

Publication Number Publication Date
WO2023167377A1 true WO2023167377A1 (ko) 2023-09-07

Family

ID=87883912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010791 WO2023167377A1 (ko) 2022-03-03 2022-07-22 보론 화합물 및 이를 포함하는 유기발광소자

Country Status (2)

Country Link
KR (1) KR20230130363A (ko)
WO (1) WO2023167377A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407858A (zh) * 2019-07-18 2019-11-05 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
US20200203652A1 (en) * 2018-08-31 2020-06-25 Kunshan Go-Visionox Opto-Electronics Co., Ltd Organic electroluminescence device, preparation method thereof and display apparatus
KR20210055589A (ko) * 2019-11-06 2021-05-17 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
JP2021080190A (ja) * 2019-11-18 2021-05-27 学校法人関西学院 多環芳香族化合物
KR20210154288A (ko) * 2020-06-11 2021-12-21 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200203652A1 (en) * 2018-08-31 2020-06-25 Kunshan Go-Visionox Opto-Electronics Co., Ltd Organic electroluminescence device, preparation method thereof and display apparatus
CN110407858A (zh) * 2019-07-18 2019-11-05 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
KR20210055589A (ko) * 2019-11-06 2021-05-17 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
JP2021080190A (ja) * 2019-11-18 2021-05-27 学校法人関西学院 多環芳香族化合物
KR20210154288A (ko) * 2020-06-11 2021-12-21 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물

Also Published As

Publication number Publication date
KR20230130363A (ko) 2023-09-12

Similar Documents

Publication Publication Date Title
CN112106215B (zh) 用于有机电气元件的化合物、使用所述化合物的有机电气元件及其电子设备
KR101926771B1 (ko) 열활성지연형광 특성을 갖는 인광 그린호스트 물질을 포함하는 유기발광소자
WO2011019173A2 (ko) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011126224A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011021803A2 (ko) 티안트렌 구조를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011136520A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011132866A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2011136484A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012067415A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011055911A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011126225A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2018131877A1 (ko) 지연형광 화합물 및 이를 이용한 유기전기소자 및 그 전자 장치
WO2012030145A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2023167377A1 (ko) 보론 화합물 및 이를 포함하는 유기발광소자
WO2019088447A1 (ko) 유기전계 소자용 화합물, 이를 이용한 유기전계소자 및 그 전자 장치
KR102225901B1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2022097968A1 (ko) 보론 화합물 및 이를 포함하는 유기 발광 소자
WO2022169184A1 (ko) 신규 화합물 및 이를 포함하는 유기발광소자
WO2011136483A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2021141370A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2011013959A2 (ko) 신규한 페난트렌계 화합물 및 이를 포함하는 유기발광소자
WO2023033381A1 (ko) 보론 화합물 및 이를 포함하는 유기발광소자
KR102526126B1 (ko) 지연 형광 화합물 및 이를 포함하는 유기 발광 소자
WO2020171480A1 (ko) 안트라센 유도체 및 그를 이용한 유기 전자 디바이스
WO2014042322A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930021

Country of ref document: EP

Kind code of ref document: A1