WO2023167049A1 - Epoxy resin composition, reinforcing fiber-containing epoxy resin composition, prepreg, fiber reinforced plastic employing same, and thermoplastic epoxy resin - Google Patents

Epoxy resin composition, reinforcing fiber-containing epoxy resin composition, prepreg, fiber reinforced plastic employing same, and thermoplastic epoxy resin Download PDF

Info

Publication number
WO2023167049A1
WO2023167049A1 PCT/JP2023/006130 JP2023006130W WO2023167049A1 WO 2023167049 A1 WO2023167049 A1 WO 2023167049A1 JP 2023006130 W JP2023006130 W JP 2023006130W WO 2023167049 A1 WO2023167049 A1 WO 2023167049A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
compound
group
epoxy
Prior art date
Application number
PCT/JP2023/006130
Other languages
French (fr)
Japanese (ja)
Inventor
亮 山田
哲也 中西
徳之 切替
修一郎 長谷
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2023167049A1 publication Critical patent/WO2023167049A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to epoxy resin compositions, reinforcing fiber-containing epoxy resin compositions, prepregs, and fiber-reinforced plastics and thermoplastic epoxy resins using these.
  • Fiber reinforced plastic exhibits excellent physical properties such as light weight and high strength, and is used in many fields. Among them, those using carbon fiber as a reinforcing fiber (CFRP) are known to be particularly excellent in mechanical strength.
  • Epoxy resins are mainly used as base material resins for FRP because of their excellent balance between price and physical properties.
  • a method of polymerizing by polyaddition reaction using a polymerization catalyst and a reaction retardant to form a fiber-reinforced thermoplastic resin discloses a polyaddition reaction between a bifunctional epoxy compound and a bifunctional compound having a functional group selected from the group consisting of a phenolic hydroxyl group, an amino group, a carboxyl group, a mercapto group, an isocyanate group and a cyanate ester group. is also proposed.
  • thermoplastic epoxy resins are also called on-site polymerization type thermoplastic epoxy resins, and FRPs using them are expected to be excellent in mass productivity, moldability, and recyclability.
  • In-situ polymerizable thermoplastic epoxy resins have good impregnation properties because they are impregnated into fibers in a low viscosity state before polymerization. Excellent for
  • One of the required properties of FRP is the improvement of heat resistance.
  • Heat resistance of 120° C. or more is useful because it expands the range of applicable members.
  • Techniques for improving the heat resistance of epoxy resins include increasing the crosslink density and applying a skeleton with a rigid molecular structure.
  • the increase in crosslink density is unsuitable for in-situ thermoplastic epoxy resins, which are thermoplastic resins.
  • a change to a rigid skeleton results in an increase in resin viscosity and deterioration in compatibility of reaction components. This makes it difficult to apply the resin film or impregnate the fibers, and the reactivity in the fibers also decreases.
  • Adding a solvent or raising the handling temperature of the resin can be mentioned as a method of making the viscosity of the resin with a rigid skeleton molecular structure low and facilitating the process of coating the resin film and impregnating the resin. Addition of a solvent deteriorates physical properties of the final product by remaining in the polymer. An increase in handling temperature increases the reaction rate of the resin, shortening the pot life and making handling difficult.
  • Patent Document 3 uses a phosphine-based polymerization catalyst and show an in-situ polymerization type thermoplastic epoxy resin whose Tg is raised to 139°C. If the solvent remains in the polymer, there is concern that it may adversely affect physical properties.
  • Patent Document 4 an amine-based catalyst is studied as a polymerization catalyst, but there is no description regarding the pot life.
  • An object of the present invention is to obtain a thermoplastic epoxy resin by reacting a bifunctional epoxy resin with a compound having two phenolic hydroxyl groups and/or active ester groups as functional groups in one molecule.
  • An object of the present invention is to provide an epoxy resin composition that has a sufficiently long working time and allows a polymerization reaction to proceed sufficiently, a reinforcing fiber-containing epoxy resin composition containing the same, a prepreg, and a fiber-reinforced plastic using these.
  • the inventors of the present invention have made intensive studies to solve the above problems, and found that a bifunctional epoxy resin and a compound having two phenolic hydroxyl groups and/or active ester groups as functional groups in one molecule were used as raw materials and heat-treated.
  • the inventors have found that the above problems can be solved by using a specific N-substituted aminopyridine compound as a polymerization catalyst in obtaining a plastic epoxy resin, and have completed the invention.
  • the present invention provides an epoxy compound (A) having two epoxy groups in one molecule and a compound (B) having two phenolic hydroxyl groups and/or active ester groups (acyloxy groups) as functional groups in one molecule. and an epoxy resin composition containing a polymerization catalyst (C) as an essential component and becoming a thermoplastic epoxy resin by a polymerization reaction, wherein the polymerization catalyst (C) is an N-substituted aminopyridine represented by the following formula (1): It is a system compound.
  • R1 and R2 are independently a hydrocarbon group having 1 to 12 carbon atoms, and R1 and R>2 may be combined to form a heterocyclic ring, and , -NH-, or -NR4-.
  • R4 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R3 is independently a hydrocarbon group having 1-12 carbon atoms and k is an integer of 0-4.
  • Polymerization catalyst (C) from 4-(dimethylamino)pyridine, 4-pyrrolidinopyridine, 4-piperidinopyridine, 4-(4-methylpiperidino)pyridine, 4-morpholinopyridine, and 4-piperazinopyridine is preferably selected from the group consisting of
  • Part or all of the epoxy compound (A) and/or compound (B) may be a phosphorus-containing compound, in which case the phosphorus content of the resulting thermoplastic epoxy resin should be 1 to 6% by weight. is preferred.
  • the epoxy equivalent of the obtained thermoplastic epoxy resin is 4,000 to 200,000 g/eq. is preferably
  • the epoxy resin composition does not contain an organic solvent, or when it contains an organic solvent, the content of the organic solvent is 0.01% by weight or more and 10% by weight or less of the epoxy resin composition, and heated to 85 ° C. It is preferable that the epoxy resin composition has a viscosity of 100 Pa ⁇ s or less when measured.
  • the present invention also provides a reinforcing fiber-containing epoxy resin composition characterized by containing the above epoxy resin composition and reinforcing fibers, and a prepreg made of the above reinforcing fiber-containing epoxy resin composition.
  • the reinforcing fibers are preferably carbon fibers and preferably contained in a proportion of 50 to 80% by weight.
  • the present invention also provides a fiber-reinforced plastic using the epoxy resin composition containing reinforcing fibers, and a fiber-reinforced plastic using the prepreg.
  • the present invention also provides a thermoplastic epoxy resin obtained from the above epoxy resin composition, which has a weight average molecular weight of 30,000 or more and 200,000 or less, and an impact strength of 12 kJ/ It is a thermoplastic epoxy resin with m 2 or more.
  • the epoxy resin composition of the present invention can reduce the amount of catalyst added, and can exhibit good reactivity while maintaining a relatively long pot life. Therefore, it is useful as an in-situ polymerizable resin composition, and can provide a thermoplastic fiber reinforced plastic (FRP) having a low void content and excellent heat resistance and impact resistance.
  • FRP thermoplastic fiber reinforced plastic
  • the epoxy resin composition of the present invention has an epoxy compound (A) having two epoxy groups in one molecule and two phenolic hydroxyl groups and/or active ester groups (acyloxy groups) in one molecule as functional groups.
  • the composition contains the compound (B) and the N-substituted aminopyridine compound represented by the above formula (1) as essential components as a polymerization catalyst (C), and is polymerized by heating to form a thermoplastic epoxy resin.
  • the composition may contain additives such as organic solvents, fillers and flame retardants.
  • an epoxy compound (A) having two epoxy groups in one molecule may be referred to as “epoxy compound (A)” or "bifunctional epoxy compound (A)".
  • a compound (B) having two phenolic hydroxyl groups and/or active ester groups (acyloxy groups) as functional groups in one molecule is sometimes referred to as “compound (B)” or “bifunctional compound (B)”.
  • Thermoplastic epoxy resins are sometimes referred to as "thermoplastic resins”.
  • the epoxy compound (A) used in the epoxy resin composition of the present invention may be an epoxy compound having two epoxy groups in one molecule.
  • the purity of the epoxy compound (A) is preferably 95% or more. If the epoxy compound (A) contains monofunctional impurities, the molecular weight after polymerization will not increase, and the resulting thermoplastic resin product may have poor mechanical properties. Therefore, the content of monofunctional impurities is preferably 2% by weight or less relative to the epoxy compound (A). If tri- or higher-functional impurities are contained, a crosslinked structure is likely to be formed starting from the impurities, which may increase the dispersion of the polymer and may cause gelation to impair thermoplasticity.
  • trifunctional or more functional impurities are preferably 1% by weight or less relative to the epoxy compound (A). If the purity as the epoxy compound (A) is high, positional isomers and oligomers may be included. Moreover, these epoxy compounds (A) may be used alone or in combination of two or more.
  • Examples of the epoxy compound (A) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol Z type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, bisphenol acetophenone type epoxy resin.
  • Resin bisphenol trimethylcyclohexane type epoxy resin, bisphenol fluorene type epoxy resin (for example, ZX-1201 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), etc.), biscresol fluorene type epoxy resin (for example, OGSOL CG-500 (Osaka Gas Chemical Co., Ltd.), tetramethylbisphenol A type epoxy resin, tetramethylbisphenol F type epoxy resin (e.g., YSLV-80XY (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), etc.), tetra-t-butylbisphenol A type epoxy Resin, bisphenol type epoxy resin such as tetramethylbisphenol S type epoxy resin, dihydroxy
  • the bifunctional epoxy compound (A) further includes a bifunctional epoxy compound obtained by adding hydrogen to the aromatic ring of the bifunctional epoxy compound, adipic acid, succinic acid, phthalic acid, tetrahydrophthalic acid, methylhexahydrophthalic acid, Glycidyl ester type epoxy resins produced from various dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, biphenyldicarboxylic acid, dimer acid, and epihalohydrin, and glycidyl produced from an amine compound such as aniline and epihalohydrin Amine type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, polytetramethylene glycol diglycidyl ether, 1, 5-pentanedio
  • dihydroxynaphthalene-type epoxy resins dihydroxynaphthalene-type epoxy resins, bisphenolfluorene-type epoxy resins, bis-cresol-fluorene-type epoxy resins, and bis-naphthol-fluorene-type epoxy resins are preferable.
  • Bifunctional epoxy compounds having a fluorene ring structure such as fluorene type epoxy resins and bisnaphtholfluorene type epoxy resins, are more preferred.
  • Tetrabromobisphenol A-type epoxy resins and phosphorus-containing bifunctional epoxy resins are preferred for imparting flame retardancy, and phosphorus-containing bifunctional epoxy resins are more preferred.
  • an epoxy compound (a) represented by the following formula (2).
  • the content in the epoxy compound (A) is preferably 50% by weight or more, more preferably 66% by weight or more, still more preferably 75% by weight or more, and particularly preferably 80% by weight or more.
  • Epoxy compound (a) constitutes a part of epoxy compound (A).
  • n is the number of repetitions, and its average value is 0-5, preferably 0-1.
  • the epoxy equivalent of the epoxy compound (a) is 150 to 350 g/eq. is preferred.
  • the purity of the epoxy compound (a) is preferably 95% or higher.
  • A is a divalent group represented by formula (2a) below.
  • X is a single bond, a hydrocarbon group having 1 to 13 carbon atoms, -O-, -CO-, -COO-, -S- or -SO 2 -.
  • the hydrocarbon group having 1 to 13 carbon atoms is preferably an alkylene group having 1 to 9 carbon atoms or an arylene group having 6 to 13 carbon atoms, such as —CH 2 —, —CH(CH 3 )—, —C( CH 3 ) 2 —, —C(CF 3 ) 2 —, —CHPh—, —C(CH 3 )Ph—, 1,1-cyclopropylene group, 1,1-cyclobutylene group, 1,1-cyclopentyl rene group, 1,1-cyclohexylene group, 4-methyl-1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1,1-cyclooctylene group, 1, 1-cyclononylene
  • Ph represents a phenyl group.
  • X is a single bond, -O-, -CO-, -COO-, -S-, -SO 2 -, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2- , -CHPh-, -C(CH 3 )Ph-, 1,1-cyclohexylene group, 4-methyl-1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1,4-cyclohexylene group, 1,4-phenylene group and 1,1-fluorene group are preferred, single bond, -O-, -CO-, -COO-, -S-, -SO 2 -, —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 —, —C(CH 3 )Ph—, 1,1-cyclohex
  • Y1 is independently either an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • alkyl groups having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, iso-butyl group and t-butyl group. mentioned.
  • the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, ethylphenyl group, xylyl group, n-propylphenyl group, isopropylphenyl group, mesityl group, naphthyl group and the like.
  • methyl group, ethyl group, n-propyl group, n-butyl group, t-butyl group, phenyl group, tolyl group, xylyl group or naphthyl group are preferred, and methyl group, ethyl group and n-propyl group.
  • n-butyl group, t-butyl group, phenyl group, or tolyl group are more preferred.
  • Y2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms, and is preferably a group other than a hydrogen atom. Examples of the alkyl group and aryl group are the same as those exemplified for Y1 above. Preferred Y2 is the same as Y1.
  • Y3 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group and aryl group are the same as those exemplified for Y1.
  • Preferred Y3 is a hydrogen atom or the same as Y1.
  • Examples of the epoxy compound (a) include tetramethylbisphenol F-type epoxy resin, tetramethylbiphenol-type epoxy resin, bisphenolfluorene-type epoxy resin, biscresolfluorene-type epoxy resin, and the like.
  • the bifunctional compound (B) used in the epoxy resin composition of the present invention includes a diphenol compound (B1) having two hydroxyl groups bonded to an aromatic ring, and a diester compound having two acyloxy groups bonded to an aromatic ring. (B2) or a monoester compound (B3) having one hydroxyl group and one acyloxy group bonded to an aromatic ring.
  • the diester compound (B2) and the monoester compound (B3) are sometimes referred to as "ester compounds" without distinction.
  • the purity of the bifunctional compound (B) is preferably 95% by weight or more. When monofunctional impurities are contained, the molecular weight after polymerization does not increase, so that the produced thermoplastic resin may have poor mechanical properties.
  • the content of monofunctional impurities is preferably 2% by weight or less relative to the bifunctional compound (B). If tri- or higher-functional impurities are contained, a crosslinked structure is likely to be formed starting from the impurities, which may increase the dispersion of the polymer and may cause gelation to impair thermoplasticity. Therefore, trifunctional or higher functional impurities are preferably 1% by weight or less relative to the bifunctional compound (B). If the purity of the bifunctional compound (B) is high, positional isomers may be contained. Moreover, these bifunctional compounds (B) may be used alone or in combination of two or more.
  • the acyloxy group is represented by R--CO--O--, where R is a hydrocarbon group having 1 to 19 carbon atoms.
  • the hydrocarbon group having 1 to 19 carbon atoms is preferably an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 13 carbon atoms.
  • the alkyl group having 1 to 12 carbon atoms may be linear, branched or cyclic, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecy
  • aryl group having 6 to 12 carbon atoms examples include phenyl group, tolyl group, ethylphenyl group, xylyl group, n-propylphenyl group, isopropylphenyl group, mesityl group, naphthyl group, methylnaphthyl group and the like.
  • the aralkyl group having 7 to 13 carbon atoms includes, for example, benzyl group, methylbenzyl group, dimethylbenzyl group, trimethylbenzyl group, phenethyl group, 2-phenylisopropyl group, naphthylmethyl group and the like.
  • an acyloxy group having a hydrocarbon group having 1 to 7 carbon atoms is preferable, and an acetyloxy group, a propanoyloxy group, a butanoyloxy group, a benzoyloxy group and a methylbenzoyloxy group are more preferable, and an acetyloxy group, A benzoyloxy group is more preferred, and an acetyloxy group is particularly preferred.
  • diphenol compound (B1) examples include bisphenol A, bisphenol F, bisphenol E, bisphenol Z, bisphenol S, bisphenol AD, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol G, bisphenol M, bisphenol P, Bisphenol PH, bisphenolacetophenone, bisphenoltrimethylcyclohexane, bisphenolfluorene, biscresolfluorene, tetramethylbisphenol A, tetramethylbisphenol F, tetra-t-butylbisphenol A, tetramethylbisphenol S, dihydroxydiphenyl ether, dihydroxydiphenylmethane, bis(hydroxyphenoxy ) Biphenol compounds such as benzene, thiodiphenol, and dihydroxystilbene; biphenol compounds such as biphenol, tetramethylbiphenol, dimethylbiphenol, and tetra-t-butylbiphenol; Benzenediol compounds, dihydroxyanthracene, dihydroxynaphthalene, dihydroxy
  • Dihydroxynaphthalene, bisphenol fluorene, and bis-cresol fluorene are preferred, and bisphenol fluorene and bis-cresol fluorene are more preferred for improving the heat resistance of thermoplastic epoxy resins.
  • a bisphenol compound or a biphenyl compound is particularly preferred when used in a reinforcing fiber-containing epoxy resin composition.
  • a phosphorus-containing phenol compound may also be used for the purpose of imparting flame retardancy.
  • Examples of the diester compound (B2) and monoester compound (B3) include compounds in which two or one hydroxyl groups of the diphenol compound (B1) are substituted with acyloxy groups (active esters).
  • the diester compound (B2) is obtained by acylating the diphenol compound (B1) with an acid anhydride of an organic acid, a halide of an organic acid, or an acylating agent such as an organic acid through a condensation reaction.
  • the monoester compound (B3) is also obtained by adjusting the molar ratio of the acylating agent during the acylation of the diphenol compound (B1), the monoester compound (B3), the diester compound (B2), and the diphenol. It is obtained by isolation from a mixture of compound (B1).
  • Acid components used for the above acylation include, for example, acetic acid, propionic acid, butyric acid, isobutyric acid, pentanoic acid, octanoic acid, caprylic acid, lauric acid, stearic acid, oleic acid, benzoic acid, t-butylbenzoic acid, Organic acids such as hexahydrobenzoic acid, phenoxyacetic acid, acrylic acid and methacrylic acid, acid anhydrides of organic acids, halides of organic acids, esters of organic acids, and the like can be used.
  • Acid anhydrides of organic acids include, for example, acetic anhydride, benzoic anhydride, and phenoxyacetic anhydride.
  • esterified organic acids include methyl acetate, ethyl acetate, butyl acetate, methyl benzoate, and ethyl benzoate.
  • Halides of organic acids include, for example, acetic acid chloride, benzoic acid chloride, phenoxyacetic acid chloride and the like.
  • these acylating agents include halides of organic acids such as acetic acid chloride, benzoic acid chloride and phenoxyacetic acid chloride; acid halides such as acetic anhydride, benzoic acid anhydride and phenoxyacetic acid anhydride; and acid anhydrides of organic acids.
  • Acid anhydrides such as acetic anhydride and benzoic anhydride are more preferable, and acetic anhydride is even more preferable, in the sense that washing with water after esterification is unnecessary and contamination of halogen, which is disliked in electronic materials, is avoided.
  • the ratio of compound (B) is 0.90 to 1.10 mol, preferably 0.95 to 0.99, per 1.00 mol of epoxy compound (A). mol, more preferably 0.97 to 0.98 mol.
  • the epoxy compound (A) and the compound (B) react successively to form a straight chain structure, thereby exhibiting thermoplasticity.
  • the epoxy compound (A) is in excess, it becomes an epoxy group terminal, and when the compound (B) is excessive, it becomes a phenol group terminal or an acyloxy group terminal, and the reaction is completed.
  • the proportion of the compound (B) exceeds 0.99 mol, the polymer will end up with a phenol group terminal or an acyloxy group terminal, and the reaction will end, which may make it difficult to increase the molecular weight.
  • the proportion of the compound (B) is less than 0.95 mol, excess epoxy groups may cause a side reaction, resulting in gelation of the polymer and loss of thermoplasticity.
  • the compound (B) is present in the epoxy compound (A) in a crystalline state, the molar ratio deviates from the design when viewed microscopically. If the reaction is started in this state, the polymerization may not progress sufficiently. In order to allow the polymerization to proceed sufficiently, an epoxy resin composition in which the compound (B) and the epoxy compound (A) are uniformly compatible with each other is preferred. In addition, it is desirable that the epoxy resin composition is completely dissolved or in a uniform liquid state before the reinforcing fibers are blended.
  • the haze value in the thickness direction is measured by adding the molten mixture, if the haze value in the thickness direction is less than 30%, it is determined that the mixture has dissolved or become a uniform liquid to a level that does not affect the polymerization reaction.
  • the haze value is more preferably less than 20%, still more preferably less than 10%.
  • the method for measuring the haze value follows the conditions described in Examples.
  • Examples of the diester compound (B2) include compounds represented by the following formula (3).
  • X, Y1, Y2 and Y3 are synonymous with X, Y1, Y2 and Y3 in formula (2a) above.
  • the diester compound (B2) may be a phosphorus-containing compound, and examples of the phosphorus-containing compound include a diacetylated compound of a cyclic phosphorus compound (HCA-HQ) represented by the following formula (4).
  • the phosphorus content is preferably 1% by weight or more and 6% by weight or less, and 1.5% by weight or more and 5% by weight or less, based on the total amount of the epoxy compound (A) and the compound (B). is more preferable, and 2% by weight or more and 4% by weight is even more preferable.
  • the content of impurities is preferably 2% by weight or less with respect to both the bifunctional epoxy compound (A) and the bifunctional compound (B).
  • the epoxy resin composition of the present invention contains, as a polymerization catalyst (C), at least one N-substituted aminopyridine compound represented by the following formula (1) as an essential component.
  • the N-substituted aminopyridine compound acts as a catalyst for the reaction between the bifunctional epoxy compound (A) and the bifunctional compound (B).
  • R1 and R2 are independently a hydrocarbon group having 1 to 12 carbon atoms, and R1 and R2 may be bonded to each other to form a heterocyclic ring. -, -NH-, or -NR4- may be present.
  • R4 is a hydrocarbon group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms.
  • R1 and R2 are preferably alkyl groups having 1 to 3 carbon atoms, or groups having a cyclopentane ring or cyclohexane ring formed by mutual bonding.
  • R3 is independently a hydrocarbon group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms.
  • the hydrocarbon group having 1 to 12 carbon atoms is the same as the non-bonded case exemplified for R1 and R2.
  • k represents the number of substituents R3 and is an integer of 0 to 4, preferably 0 or 1, more preferably 0.
  • substitution position of the N-substituted amino group may be the 2-, 3- or 4-position of pyridine, preferably the 4-position, and more preferably the compound represented by the following formula (5).
  • R1 and R2 are synonymous with R1 and R2 of formula (1).
  • polymerization catalyst (C) examples include 2-dimethylaminopyridine, 2-pyrrolidinopyridine, 2-(dimethylamino)-6-methylpyridine, 2-methylethylaminopyridine, 2-methylbutylaminopyridine, 2- diethylaminopyridine, 2-methylpropylaminopyridine, 2-pyrrolidino-4-methylpyridine, 2-pyrrolidino-5-methylpyridine, 2-pyrrolidino-6-methylpyridine, 2-morpholinopyridine, 3-dimethylaminopyridine, N, N-diethyl-3-pyridinamine, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-dipropylaminopyridine, 4-dibutylaminopyridine, 4-dibenzylaminopyridine, 4-dihexylaminopyridine, 4-dihexylamino pyridine, 4-dioctylaminopyridine, 4-dinonylaminopyridine,
  • the blending amount of the polymerization catalyst (C) is desirably 0.01% by weight or more and 10% by weight or less with respect to the total amount of the epoxy compound (A) and the compound (B). If it is less than 0.01% by weight, the polymerization reaction takes a long time, which may reduce the productivity, and may cause deactivation for some reason before the target molecular weight is reached. On the other hand, when it exceeds 10% by weight, while the polymerization reaction proceeds rapidly, the storage stability may be impaired, which may cause problems in process suitability. Therefore, there is a possibility that the physical properties after polymerization may be impaired, and it is simply expensive, which is economically disadvantageous. More preferably 0.03 to 5.0% by weight, still more preferably 0.05 to 1.0% by weight.
  • other catalysts may be used together with the N-substituted aminopyridine compound.
  • Other catalysts are not particularly limited as long as they are catalysts used in the so-called "two-step method" for producing epoxy resins. Examples thereof include alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, imidazole compounds and the like. These other catalysts may be used alone or in combination of two or more. When used in a reinforcing fiber-containing epoxy resin composition, it is preferable not to contain other catalysts.
  • the epoxy resin composition of the present invention desirably does not contain an organic solvent, but may contain an organic solvent as a solvent for the polymerization catalyst or for viscosity adjustment, if necessary.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction between the epoxy compound (A) and the compound (B). is preferred. Specific examples include toluene, xylene, acetone, methyl ethyl ketone, isobutyl ketone, cyclopentanone, cyclohexanone, diethylene glycol dimethyl ether and the like. However, if a large amount of organic solvent is present during the reaction, the polymerization reaction may be inhibited.
  • the organic solvent remains in the polymer, the mechanical properties and heat resistance are deteriorated. Therefore, when an organic solvent is blended, its proportion in the epoxy resin composition is 10% by weight or less, preferably 5% by weight or less, more preferably 2% by weight or less, and particularly 1.5% by weight or less. desirable.
  • the progress of the polymerization of the epoxy resin composition of the present invention is preferably judged by the transition of the weight average molecular weight of the polymer (thermoplastic epoxy resin). If the heating is performed for less than 1 hour, the weight average molecular weight tends to increase, and the polymerization may not proceed sufficiently. After heating for 1 hour or more, the epoxy equivalent did not substantially increase from the value at the time of 1 hour, and it can be judged that the polymerization proceeded sufficiently.
  • standard polymerization conditions for obtaining a polymer from an epoxy resin composition that allow the polymerization reaction to proceed sufficiently without overheating due to runaway or gelling due to side reactions are, for example, 130 to 130.
  • a heating condition of 250° C. for 1 hour or more is preferable.
  • the physical property values of the polymers in the examples are the measured values of those polymerized under heating conditions of 160° C. for 1 hour.
  • the weight average molecular weight (Mw) of the polymer obtained by polymerizing the epoxy resin composition of the present invention is 30,000 or more and 200,000 or less. If the weight-average molecular weight of the polymer is less than the lower limit of the range, the polymer may contain a large amount of compounds whose polymerization has not progressed sufficiently, resulting in deterioration in mechanical strength. On the other hand, when the weight average molecular weight of the polymer exceeds the upper limit of the range, the cross-linking reaction may proceed and the thermoplasticity may be impaired.
  • Mw is preferably 40,000 or more and 150,000 or less, more preferably 50,000 or more and 100,000 or less.
  • the epoxy equivalent of the polymer is 4,000 g/eq. 200,000 g/eq. It is desirable that: Epoxy equivalent is 4,000 g/eq. If it is less than that, the polymerization may not proceed sufficiently. Epoxy equivalent weight of 200,000 g/eq. If it exceeds , the number of epoxy groups may be too small, which may adversely affect the adhesion to fibers.
  • the epoxy equivalent is preferably 10,000 g/eq. 150,000 g/eq. Below, more preferably 20,000 g/eq. 100,000 g/eq. It is below.
  • the glass transition temperature (Tg) of the polymer is preferably 120°C or higher, more preferably 130°C or higher.
  • the phosphorus content of the polymer is preferably 1.0 to 6.0 wt%, more preferably 1.5 to 5.0 wt%, still more preferably 2.0 to 4.0% by weight.
  • the impact strength of the polymer is evaluated by a notched Izod impact test (specifically, the measuring method described in Examples), and the impact strength is desirably 12 kJ/m 2 or more.
  • the epoxy resin composition of the present invention can contain additives.
  • additives include fillers such as fumed silica, flame retardants such as aluminum hydroxide and red phosphorus, modifiers such as core-shell rubber, and viscosity modifiers such as xylene resin. From the viewpoint of stabilizing the polymerization reaction, it is desirable to add an additive different from the resin phase, but a plasticizer and a compatible flame retardant may be included as long as they do not affect the reaction.
  • the epoxy resin composition of the present invention becomes a thermoplastic epoxy resin by polymerizing.
  • This thermoplastic epoxy resin is excellent as a resin component for fiber-reinforced plastics.
  • the reinforcing fiber-containing epoxy resin composition of the present invention is obtained by mixing or impregnating the above epoxy resin composition and reinforcing fibers.
  • the prepreg can be obtained as follows.
  • An epoxy resin composition film can be obtained by applying the epoxy resin composition of the present invention to a release-treated paper or plastic film and, if necessary, providing a release-treated cover film.
  • a release paper, release plastic film, and cover film known ones can be used, and they are not particularly limited.
  • the thickness of the epoxy resin composition film is determined by the design thickness of the prepreg and the resin ratio, but the normal thickness is 1 ⁇ m or more and 300 ⁇ m or less. When the thickness is less than 1 ⁇ m, there is a problem that the opening of the fibers becomes conspicuous unless the reinforcing fibers are defibrated cleanly. It is preferably 5 ⁇ m or more and 150 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the viscosity for coating the epoxy resin composition of the present invention is preferably 0.1 Pa s or more and 100 Pa s or less, more preferably 0.5 Pa s or more and 70 Pa s or less, still more preferably It is 1 Pa ⁇ s or more and 50 Pa ⁇ s or less.
  • the coating viscosity is less than 0.1 Pa ⁇ s, repeated coating is required to obtain the desired resin film thickness.
  • the coating viscosity exceeds 100 Pa ⁇ s, it becomes difficult to uniformly coat the desired resin film thickness.
  • the measuring method complies with the conditions described in Examples.
  • the temperature for applying the epoxy resin composition of the present invention is preferably 120° C. or lower, more preferably 100° C. or lower, and still more preferably 85° C. or lower.
  • a rigid skeleton compound is used to improve the Tg of the polymer, it is necessary to raise the coating temperature in order to adjust the resin viscosity suitable for coating without adding a solvent. If the coating temperature exceeds 120° C., the viscosity of the resin will increase significantly due to the polymerization reaction, making stable coating difficult.
  • 85° C. was used as a standard condition as a temperature at which an epoxy resin composition having a thermoplastic epoxy resin Tg of 120° C. or higher has a viscosity suitable for coating.
  • the viscosity doubling time of the epoxy resin composition of the present invention at 85°C is preferably 20 minutes or longer, more preferably 30 minutes or longer, and still more preferably 60 minutes or longer. There is no upper limit to the preferred viscosity doubling time. If the viscosity doubling time is less than 20 minutes, the viscosity increases significantly during the coating process, making it difficult to achieve a stable coating thickness.
  • the reinforcing fibers used in the present invention are for reinforcing plastics such as carbon fibers, aramid fibers, and cellulose fibers, and are not particularly limited.
  • the form of the fibers is not particularly limited and includes UD sheets, woven fabrics, tows, chopped fibers, non-woven fabrics, papermaking, and the like.
  • the thickness of each fiber bundle is 1 mm or less, preferably 0.5 mm or less, more preferably 0.2 mm or less.
  • carbon fiber may be either PAN-based or pitch-based, but PAN-based is particularly preferable.
  • the reinforcing fiber-containing epoxy resin composition or prepreg of the present invention is obtained from the above epoxy resin composition and/or epoxy resin composition film and reinforcing fibers.
  • the weight ratio of the reinforcing fiber to the epoxy resin composition is preferably 5:5 to 8:2.
  • the ratio of the reinforcing fibers if the reinforcing fibers are too small, the strength required of the fiber-reinforced material may not be sufficiently satisfied, and if the reinforcing fibers are too large, defects such as voids may occur.
  • the epoxy resin composition of the present invention has excellent storage stability. Therefore, it can be applied to fields such as carbon fiber reinforced resins.
  • Parts means parts by weight and “%” means % by weight unless otherwise specified.
  • Raw materials, catalysts, solvents, and reinforcing fibers used in the examples are as follows.
  • A2 Bisphenol fluorene type epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., ESF300, epoxy equivalent 250)
  • A3 Bisphenol A type liquid epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., YD-128, epoxy equivalent 188)
  • B1 Bisphenol A (manufactured by Nippon Steel Chemical & Materials Co., Ltd., hydroxyl equivalent 114)
  • B2 4,4'-bis(3,3,5-trimethylcyclohexylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-HTG, hydroxyl equivalent 155)
  • B3 4,4'-(1-phenylethylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-AP, hydroxyl equivalent 145)
  • B4 4,4'-cyclododecane-1-ylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-CDE, hydroxyl equivalent 176)
  • B5 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., hydroxyl equivalent 11
  • haze value Whether or not the phenol compound and the ester compound were uniformly melted in the epoxy resin was judged by the haze value.
  • the epoxy resin composition was placed in a colorless and transparent glass Petri dish so as to have a thickness of 2 mm, and the haze value was adjusted to "less than 5% ( ⁇ 5)" with reference to a haze standard plate manufactured by Murakami Color Research Laboratory. "5% to less than 10% ( ⁇ 10)""10% to less than 20% ( ⁇ 20)""20% to less than 30% ( ⁇ 30)"”30% or more (30 ⁇ )" evaluated. If the haze value is less than 30%, it can be determined that the phenol compound and the ester compound are uniformly dissolved in the epoxy resin.
  • Viscosity and viscosity doubling time were measured according to JIS K6870 and JIS K5600-2-3 standards. Measured with MCR 102 manufactured by Anton Paar. The viscosity was measured when heated to 85° C. under the conditions of a measurement frequency of 3 Hz, a load strain of 1%, a flat plate of 20 mm diameter, and a gap between the plates of 0.5 mm. Further, when the temperature was maintained at 85° C., the time until the viscosity doubled from the initially measured viscosity was measured, and this was taken as the viscosity doubling time. If the viscosity is less than twice the initial viscosity even after being kept warm for 60 minutes or more, it can be judged that there is sufficient latency, so the measurement time is set to 60 minutes, and "60 ⁇ " is indicated in that case.
  • Epoxy equivalent weight The measurement was performed according to the JIS K7236 standard, and the unit was expressed as "g/eq.” Specifically, a potentiometric titrator was used, chloroform was used as a solvent, a tetraethylammonium bromide acetic acid solution was added, and a 0.1 mol/L perchloric acid-acetic acid solution was used.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by GPC measurement. Specifically, a column (TSKgel SuperH-H, SuperH2000, SuperHM-H, SuperHM-H, manufactured by Tosoh Corporation) is used in series with the main body HLC8320GPC (manufactured by Tosoh Corporation), and the column temperature is The temperature was brought to 40°C. Tetrahydrofuran (THF) was used as an eluent at a flow rate of 0.3 mL/min, and a differential refractive index detector was used as a detector.
  • THF Tetrahydrofuran
  • a measurement sample was obtained by dissolving 0.1 g of solid content in 10 mL of THF, filtering through a 0.45 ⁇ m membrane filter, and using an injection amount of 20 ⁇ L.
  • Mw and Mn were obtained by converting from a calibration curve obtained from standard polystyrene (manufactured by Tosoh Corporation, PStQuick A, PStQuick B, PStQuick C).
  • GPC8020 model II version 6.00 manufactured by Tosoh Corporation was used.
  • Glass transition temperature (Tg) According to JIS K7121 standard, DSC Tmg (glass state and rubber state) when measured with a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., EXSTAR6000 DSC6200) at a temperature increase of 10 ° C./min. It was expressed as the temperature at the midpoint of the mutation curve relative to the tangent line.
  • Solvent solubility 1 g of the sample and 50 mL of tetrahydrofuran were added to a 100 mL vial, subjected to ultrasonic diffusion at room temperature for 1 hour, and then allowed to stand at room temperature for 23 hours or more to dissolve. Solvent solubility was evaluated as ⁇ when the polymer dissolved in the solvent and no solid matter was observed. When a gel state was observed due to undissolved portions, the sample was evaluated as ⁇ . When the polymer did not dissolve in the solvent, it was marked as x.
  • Impact strength The measurement was performed according to the JIS K7110 standard notched Izod impact test.
  • a digital impact tester DG-UB type manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the lifting angle was set to 150°.
  • a hammer having a nominal pendulum energy of 0.5J, 1J, or 3J was selected and used.
  • the sample had a thickness of 4 mm, a length of 80 mm, and a width of 10 mm, and was notched to form an A notch. (Notch width: 8.0 mm, radius: 0.25 mm).
  • a hammer was shaken off the sample, and the impact strength was calculated from the swing-up angle of the hammer after measurement.
  • Flexural strength and modulus It was measured at 90 degrees in a three-point bending test (method A) according to JIS K7074.
  • a test machine Autograph AGS-X manufactured by Shimadzu Science
  • the sample had a thickness of 2 mm, a length of 100 mm, a width of 15 mm, a bending span of 70 mm, and a test speed of 1 mm/min. .
  • precursor mixture 722 parts of A1, 971 parts of A2, 500 parts of B1, and 500 parts of B2 were each weighed and pulverized and mixed using a Henschel mixer. Subsequently, melt mixing is performed using an S1KRC kneader (manufactured by Kurimoto, Ltd.) preheated to a barrel temperature of 190°C, the entire amount is collected in a metal can, and cooled to 85°C while stirring to obtain an epoxy resin composition. to obtain a precursor mixture (F1).
  • S1KRC kneader manufactured by Kurimoto, Ltd.
  • the blending amounts (parts) of the formulation in Table 1 were blended, and the precursor mixtures (F2 to F7) of the epoxy resin composition were obtained in the same procedure.
  • the "molar ratio" in the table represents the equivalent ratio of the functional groups of the phenol compound and the ester compound to the epoxy groups of the epoxy resin.
  • the epoxy resin is liquid, it is pre-mixed using a planetary mixer and three rolls instead of a Henschel mixer, and then put into a kneader, preheating the barrel temperature of the kneader to 120 ° C. to perform melt mixing. The entire amount was collected in a metal can and cooled to 85° C. while stirring to obtain a precursor mixture (F7) of an epoxy resin composition.
  • Example 1 A polymerization catalyst solution was obtained by previously dissolving 0.1 part of C1 (polymerization catalyst) in 0.2 parts of D1 (organic solvent). 100 parts of the precursor mixture (F1) was placed in a planetary mixer set at 85° C., and the previous polymerization catalyst solution was added and mixed. After mixing, the mixture was quickly extracted and immediately cooled to 40° C. or less to obtain an epoxy resin composition (G1).
  • the haze value (compatibility) of the epoxy resin composition (G1) was measured, it was found to be 5% or more and less than 10% ( ⁇ 10), and it was determined to be uniformly dissolved.
  • the viscosity at 85° C. was measured to be 7.5 Pa ⁇ s, and the viscosity doubling time was 55 minutes.
  • the obtained epoxy resin composition G1 was heated to 85° C. with stirring, poured into an iron chromium-plated mold container with a clearance of 4 mm in advance, and thermally polymerized at 160° C. for 60 minutes in a hot air circulating oven.
  • a polymer (H1) which is a thermoplastic resin, was obtained.
  • the resulting polymer had an Mw of 63,000, an Mn of 16,000, and a solvent solubility of ⁇ .
  • Epoxy equivalent weight, glass transition temperature (Tg) and impact strength were measured and the results are also shown in Table 2.
  • Epoxy resin compositions and polymers (G2 to G16, H2 to H16) were obtained in the same manner as in Example 1 by blending in the amounts (parts) of the formulation shown in Table 2.
  • G10 to G16 and H10 to H16 are comparative examples.
  • the physical properties of the obtained epoxy resin compositions and polymers (G2 to G16, H2 to H16) were measured in the same manner as in Example 1, and the evaluation results are shown in Table 2.
  • Example 10 A release paper that has been subjected to a release treatment is fixed on a hot plate preheated to 85°C so that the release surface faces upward, and 100 parts by weight of the epoxy resin composition (G1) obtained in Example 1 is removed. After being placed on the pattern paper, it was coated using a bar coater preheated to 85° C. so that the area weight of the resin was 79 g/m 2 . Immediately after coating, the sheet was removed from the hot plate and air-cooled to obtain an epoxy resin composition sheet. Subsequently, the carbon fibers (E) are laminated on the obtained epoxy resin composition sheet so that the area weight of the fibers is 153 g / m 2 , and the surface pressure is 0 using a hot press preheated to 90 ° C. A pressure of 0.5 MPa was applied, and after 1 minute, it was taken out and air-cooled to obtain a prepreg (I1) having an Rc of 34%.
  • release films were attached to the upper and lower surfaces and sandwiched between 3 mm thick aluminum plates.
  • the coupler and the vacuum pump were connected to deaerate the air in the bag film.
  • the bag was left still in a hot air circulating oven preheated to 160° C., and hardened while being vacuumed to mold a unidirectional fiber reinforced plastic (J1) having a thickness of 2 mm.
  • the curing conditions were 160° C. and 240 minutes.
  • the resulting unidirectionally reinforced fiber plastic (J1) was cut into pieces of 10 mm wide and 100 mm long, left to stand in a hot air circulating oven preheated to 200°C for 10 minutes, and then hand-bent to confirm secondary workability. By the way, it was confirmed that bending can be easily performed.
  • Comparative example 8 An epoxy resin composition (G17) was obtained by adding 20 parts of an organic solvent (D) to 100 parts of the epoxy resin composition (G13) obtained in Comparative Example 1 while preheating to 85°C and mixing. Ta. When the viscosity of the epoxy resin composition was measured at 65° C., it was 9.5 Pa ⁇ s, and the viscosity doubling time was 50 minutes.
  • An epoxy resin composition sheet, prepreg (I2), and unidirectional fiber reinforced plastic (J2) were obtained by the same procedure as in Example 10, except that the hot plate and bar coater were preheated to 65°C. The same evaluation as in Example 10 was performed. Table 3 shows the results.
  • the epoxy resin composition of the present invention is useful as an in-situ polymerizable resin composition, and can provide a thermoplastic fiber reinforced plastic (FRP) having a low void content and excellent heat resistance and impact resistance.
  • FRP thermoplastic fiber reinforced plastic

Abstract

The present invention addresses the problem of providing an epoxy resin composition that contains a bifunctional epoxy resin, a bifunctional compound, and a polymerization catalyst, that has sufficiently long pre-reaction working life, that is capable of sufficiently promoting a polymerization reaction, and that is converted to a thermoplastic epoxy resin as a result of said reaction. The present invention also addresses the problem of providing a reinforcing fiber-containing epoxy resin composition and a prepreg that contain said epoxy resin composition and a fiber reinforced plastic employing said materials. The present invention provides an epoxy resin composition that contains a bifunctional epoxy compound, a bifunctional compound, and a polymerization catalyst as essential components and that is converted to a thermoplastic epoxy resin by a polymerization reaction, wherein the polymerization catalyst is an N-substituted aminopyridine compound represented by formula (1). In the formula, each of R1 and R2 independently represents a hydrocarbon group having 1-12 carbon atoms, additionally, R1 and R2 may form a heterocycle bonding with each other, and an atomic bonding thereof may include -O-, -NH-, or -NR4-. R4 is a hydrocarbon group having 1-12 carbon atoms. R3 is independently a hydrocarbon group having 1-12 carbon atoms, and k is an integer of 0-4.

Description

エポキシ樹脂組成物、強化繊維含有エポキシ樹脂組成物、プリプレグ及びこれらを用いた繊維強化プラスチック、及び熱可塑性エポキシ樹脂Epoxy resin composition, reinforcing fiber-containing epoxy resin composition, prepreg and fiber-reinforced plastic using these, and thermoplastic epoxy resin
 本発明は、エポキシ樹脂組成物、強化繊維含有エポキシ樹脂組成物、プリプレグ及びこれらを用いた繊維強化プラスチックや熱可塑性エポキシ樹脂に関する。 The present invention relates to epoxy resin compositions, reinforcing fiber-containing epoxy resin compositions, prepregs, and fiber-reinforced plastics and thermoplastic epoxy resins using these.
 繊維強化プラスチック(FRP)は軽量、高強度等の優れた物性を示し、多くの分野で利用されている。その中でも、炭素繊維を強化繊維として用いたもの(CFRP)は、特に機械的強度に優れることで知られている。 Fiber reinforced plastic (FRP) exhibits excellent physical properties such as light weight and high strength, and is used in many fields. Among them, those using carbon fiber as a reinforcing fiber (CFRP) are known to be particularly excellent in mechanical strength.
 FRPの母材樹脂として、価格、物性のバランスに優れるため、エポキシ樹脂が主に使用されており、その中でも、特許文献1は、エポキシ化合物とフェノール性水酸基含有化合物とを予め強化繊維と混合し、重合触媒及び反応遅延剤を使用して重付加反応により重合させ、繊維強化熱可塑性樹脂を成形する方法を提案している。特許文献2は、2官能エポキシ化合物と、フェノール性水酸基、アミノ基、カルボキシル基、メルカプト基、イソシアネート基及びシアネートエステル基からなる群より選ばれる官能基を有する2官能化合物とを重付加反応させることも提案している。こうしたエポキシ樹脂は、現場重合型熱可塑性エポキシ樹脂とも言われ、これを使用したFRPは量産性、成型性、リサイクル性に優れると期待されている。現場重合型熱可塑性エポキシ樹脂は、重合前の低粘度状態で繊維へ含浸させるため含浸性が良く、強化繊維の割合を高めることができ、汎用的な熱硬化エポキシ樹脂に比べ、衝撃強度や靭性に優れる。 Epoxy resins are mainly used as base material resins for FRP because of their excellent balance between price and physical properties. , a method of polymerizing by polyaddition reaction using a polymerization catalyst and a reaction retardant to form a fiber-reinforced thermoplastic resin. Patent Document 2 discloses a polyaddition reaction between a bifunctional epoxy compound and a bifunctional compound having a functional group selected from the group consisting of a phenolic hydroxyl group, an amino group, a carboxyl group, a mercapto group, an isocyanate group and a cyanate ester group. is also proposed. Such epoxy resins are also called on-site polymerization type thermoplastic epoxy resins, and FRPs using them are expected to be excellent in mass productivity, moldability, and recyclability. In-situ polymerizable thermoplastic epoxy resins have good impregnation properties because they are impregnated into fibers in a low viscosity state before polymerization. Excellent for
 FRPの要求特性の一つに耐熱性の向上がある。120℃以上の耐熱性があると適用可能な部材が拡大するため有用である。エポキシ樹脂の耐熱性向上の手法としては、架橋密度の増加、剛直な分子構造の骨格の適用が挙げられる。架橋密度の増加は、熱可塑性樹脂である現場重合型熱可塑性エポキシ樹脂には不適である。剛直な骨格への変更は、樹脂粘度の増加や反応成分の相溶性の悪化をもたらす。これにより、樹脂フィルムの塗工や繊維への含浸工程が困難になり、繊維内での反応性も低下する。 One of the required properties of FRP is the improvement of heat resistance. Heat resistance of 120° C. or more is useful because it expands the range of applicable members. Techniques for improving the heat resistance of epoxy resins include increasing the crosslink density and applying a skeleton with a rigid molecular structure. The increase in crosslink density is unsuitable for in-situ thermoplastic epoxy resins, which are thermoplastic resins. A change to a rigid skeleton results in an increase in resin viscosity and deterioration in compatibility of reaction components. This makes it difficult to apply the resin film or impregnate the fibers, and the reactivity in the fibers also decreases.
 剛直な骨格の分子構造を有する樹脂を低粘度化させ、樹脂フィルムの塗工や樹脂への含浸工程を容易にする手法として、溶剤の添加又は樹脂のハンドリング温度の上昇が挙げられる。溶剤の添加は、重合物中に残留することで最終製品の物性を低下させる。ハンドリング温度の上昇は、樹脂の反応速度が増加するため可使時間が短くなり、ハンドリングを困難とする。 Adding a solvent or raising the handling temperature of the resin can be mentioned as a method of making the viscosity of the resin with a rigid skeleton molecular structure low and facilitating the process of coating the resin film and impregnating the resin. Addition of a solvent deteriorates physical properties of the final product by remaining in the polymer. An increase in handling temperature increases the reaction rate of the resin, shortening the pot life and making handling difficult.
 重合触媒の添加量を低減することで、樹脂の可使時間を延ばすことはできるが、反応性が悪くなり、現場重合において時間がかかってしまうために生産性が低下する恐れがあるほか、目標の分子量に到達するまでに副反応等の理由で失活する恐れがある。 By reducing the amount of polymerization catalyst added, it is possible to extend the pot life of the resin. may be deactivated due to side reactions or the like before reaching the molecular weight of .
 特許文献3の実施例では、ホスフィン系の重合触媒を使用し、Tgを139℃まで向上させた現場重合型熱可塑性エポキシ樹脂について示されているが、樹脂組成物中に溶剤を30重量部以上含んでおり、重合物中に溶剤が残留した場合、物性に悪影響を及ぼすことが懸念される。特許文献4では、重合触媒としてアミン系触媒が検討されているが、可使時間に関する記載は一切ない。 Examples of Patent Document 3 use a phosphine-based polymerization catalyst and show an in-situ polymerization type thermoplastic epoxy resin whose Tg is raised to 139°C. If the solvent remains in the polymer, there is concern that it may adversely affect physical properties. In Patent Document 4, an amine-based catalyst is studied as a polymerization catalyst, but there is no description regarding the pot life.
特開2006-321897号公報JP 2006-321897 A 国際公開第2004/060981号WO2004/060981 国際公開第2006/123577号WO2006/123577 国際公開第2010/079832号WO2010/079832
 本発明の課題は、2官能エポキシ樹脂と1分子中にフェノール性水酸基及び/又は活性エステル基を官能基として2つ有する化合物とを反応させて熱可塑性エポキシ樹脂が得る際に、反応前の可使時間が十分長く、かつ重合反応が十分に進行できるエポキシ樹脂組成物を提供すること、それを含む強化繊維含有エポキシ樹脂組成物、プリプレグ及びこれらを用いた繊維強化プラスチックを提供することにある。 An object of the present invention is to obtain a thermoplastic epoxy resin by reacting a bifunctional epoxy resin with a compound having two phenolic hydroxyl groups and/or active ester groups as functional groups in one molecule. An object of the present invention is to provide an epoxy resin composition that has a sufficiently long working time and allows a polymerization reaction to proceed sufficiently, a reinforcing fiber-containing epoxy resin composition containing the same, a prepreg, and a fiber-reinforced plastic using these.
 本発明者らは上記課題を解決するために鋭意検討した結果、2官能エポキシ樹脂と1分子中にフェノール性水酸基及び/又は活性エステル基を官能基として2つ有する化合物とを原料として用いて熱可塑性エポキシ樹脂を得る際に、特定のN-置換アミノピリジン系化合物を重合触媒として使用することにより、上記課題を解決し得ることを見出し、発明の完成に至った。 The inventors of the present invention have made intensive studies to solve the above problems, and found that a bifunctional epoxy resin and a compound having two phenolic hydroxyl groups and/or active ester groups as functional groups in one molecule were used as raw materials and heat-treated. The inventors have found that the above problems can be solved by using a specific N-substituted aminopyridine compound as a polymerization catalyst in obtaining a plastic epoxy resin, and have completed the invention.
 すなわち本発明は、1分子中にエポキシ基を2つ有するエポキシ化合物(A)と、1分子中にフェノール性水酸基及び/又は活性エステル基(アシルオキシ基)を官能基として2つ有する化合物(B)と、重合触媒(C)を必須成分として含み、重合反応によって熱可塑性エポキシ樹脂となるエポキシ樹脂組成物であって、重合触媒(C)は下記式(1)で表されるN-置換アミノピリジン系化合物である。
Figure JPOXMLDOC01-appb-C000002
 式中、R1及びR2は独立に、炭素数1~12の炭化水素基であり、更にR1とR>2が相互に結合して複素環を形成してもよく、結合手として、-O-、-NH-、又は-NR4-があってもよい。但し、R4は炭素数1~12の炭化水素基である。R3は独立に、炭素数1~12の炭化水素基であり、kは0~4の整数である。
That is, the present invention provides an epoxy compound (A) having two epoxy groups in one molecule and a compound (B) having two phenolic hydroxyl groups and/or active ester groups (acyloxy groups) as functional groups in one molecule. and an epoxy resin composition containing a polymerization catalyst (C) as an essential component and becoming a thermoplastic epoxy resin by a polymerization reaction, wherein the polymerization catalyst (C) is an N-substituted aminopyridine represented by the following formula (1): It is a system compound.
Figure JPOXMLDOC01-appb-C000002
In the formula, R1 and R2 are independently a hydrocarbon group having 1 to 12 carbon atoms, and R1 and R>2 may be combined to form a heterocyclic ring, and , -NH-, or -NR4-. However, R4 is a hydrocarbon group having 1 to 12 carbon atoms. R3 is independently a hydrocarbon group having 1-12 carbon atoms and k is an integer of 0-4.
 上記エポキシ化合物(A)1モルに対して、上記化合物(B)を0.90~1.10モル配合することが好ましく、重合触媒(C)の使用量は、エポキシ化合物(A)及び化合物(B)の総量100重量部に対して、0.01~10重量部であることが好ましい。 It is preferable to blend 0.90 to 1.10 mol of the compound (B) with respect to 1 mol of the epoxy compound (A), and the amount of the polymerization catalyst (C) used is the epoxy compound (A) and the compound ( It is preferably 0.01 to 10 parts by weight per 100 parts by weight of B).
 重合触媒(C)は、4-(ジメチルアミノ)ピリジン、4-ピロリジノピリジン、4-ピペリジノピリジン、4-(4-メチルピペリジノ)ピリジン、4-モルホリノピリジン、及び4-ピペラジノピリジンからなる群から選択されることが好ましい。 Polymerization catalyst (C) from 4-(dimethylamino)pyridine, 4-pyrrolidinopyridine, 4-piperidinopyridine, 4-(4-methylpiperidino)pyridine, 4-morpholinopyridine, and 4-piperazinopyridine is preferably selected from the group consisting of
 エポキシ化合物(A)及び/又は化合物(B)の一部又は全部が、リン含有化合物であってもよく、その場合に得られる熱可塑性エポキシ樹脂のリン含有率は1~6重量%であることが好ましい。 Part or all of the epoxy compound (A) and/or compound (B) may be a phosphorus-containing compound, in which case the phosphorus content of the resulting thermoplastic epoxy resin should be 1 to 6% by weight. is preferred.
 得られる熱可塑性エポキシ樹脂のエポキシ当量は、4,000~200,000g/eq.であることが好ましい。 The epoxy equivalent of the obtained thermoplastic epoxy resin is 4,000 to 200,000 g/eq. is preferably
 上記エポキシ樹脂組成物は、有機溶剤を含まないか、又は有機溶剤を含む場合、有機溶剤の含有量がエポキシ樹脂組成物の0.01重量%以上10重量%以下であり、85℃に加温した際に測定されるエポキシ樹脂組成物の粘度が100Pa・s以下であることが好ましい。 The epoxy resin composition does not contain an organic solvent, or when it contains an organic solvent, the content of the organic solvent is 0.01% by weight or more and 10% by weight or less of the epoxy resin composition, and heated to 85 ° C. It is preferable that the epoxy resin composition has a viscosity of 100 Pa·s or less when measured.
 また本発明は、上記エポキシ樹脂組成物と強化繊維を含むことを特徴とする強化繊維含有エポキシ樹脂組成物であり、上記強化繊維含有エポキシ樹脂組成物からなるプリプレグである。そして強化繊維は炭素繊維が好ましく、50~80重量%の割合で含有することが好ましい。 The present invention also provides a reinforcing fiber-containing epoxy resin composition characterized by containing the above epoxy resin composition and reinforcing fibers, and a prepreg made of the above reinforcing fiber-containing epoxy resin composition. The reinforcing fibers are preferably carbon fibers and preferably contained in a proportion of 50 to 80% by weight.
 また本発明は、上記強化繊維含有エポキシ樹脂組成物を用いた繊維強化プラスチックであり、上記プリプレグを用いた繊維強化プラスチックである。 The present invention also provides a fiber-reinforced plastic using the epoxy resin composition containing reinforcing fibers, and a fiber-reinforced plastic using the prepreg.
 また本発明は、上記エポキシ樹脂組成物から得られる熱可塑性エポキシ樹脂であって、重量平均分子量が30,000以上200,000以下であり、ノッチありアイゾット衝撃試験により測定される衝撃強度が12kJ/m以上である熱可塑性エポキシ樹脂である。 The present invention also provides a thermoplastic epoxy resin obtained from the above epoxy resin composition, which has a weight average molecular weight of 30,000 or more and 200,000 or less, and an impact strength of 12 kJ/ It is a thermoplastic epoxy resin with m 2 or more.
 本発明のエポキシ樹脂組成物は、触媒の添加量を低減する事が可能であり、可使時間を比較的長く維持できながら、良好な反応性を発現できる。そのため現場重合型樹脂組成物として有用であり、ボイド含有率が低く、耐熱性、耐衝撃性に優れた熱可塑性繊維強化プラスチック(FRP)を提供することができる。 The epoxy resin composition of the present invention can reduce the amount of catalyst added, and can exhibit good reactivity while maintaining a relatively long pot life. Therefore, it is useful as an in-situ polymerizable resin composition, and can provide a thermoplastic fiber reinforced plastic (FRP) having a low void content and excellent heat resistance and impact resistance.
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 本発明のエポキシ樹脂組成物は、1分子中にエポキシ基を2つ有するエポキシ化合物(A)と、1分子中にフェノール性水酸基及び/又は活性エステル基(アシルオキシ基)を官能基として2つ有する化合物(B)と、上記式(1)で表されるN-置換アミノピリジン系化合物を重合触媒(C)として必須成分として含み、加熱により重合し、熱可塑性エポキシ樹脂となる組成物である。この組成物には、有機溶剤や、充填剤、難燃剤等の添加剤が含まれていてもよい。
 なお、本明細書において、1分子中にエポキシ基を2つ有するエポキシ化合物(A)を「エポキシ化合物(A)」や「2官能エポキシ化合物(A)」と称することがある。1分子中にフェノール性水酸基及び/又は活性エステル基(アシルオキシ基)を官能基として2つ有する化合物(B)を「化合物(B)」や「2官能化合物(B)」と称することがある。熱可塑性エポキシ樹脂を「熱可塑性樹脂」と称することがある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail with reference to its preferred embodiments.
The epoxy resin composition of the present invention has an epoxy compound (A) having two epoxy groups in one molecule and two phenolic hydroxyl groups and/or active ester groups (acyloxy groups) in one molecule as functional groups. The composition contains the compound (B) and the N-substituted aminopyridine compound represented by the above formula (1) as essential components as a polymerization catalyst (C), and is polymerized by heating to form a thermoplastic epoxy resin. The composition may contain additives such as organic solvents, fillers and flame retardants.
In this specification, an epoxy compound (A) having two epoxy groups in one molecule may be referred to as "epoxy compound (A)" or "bifunctional epoxy compound (A)". A compound (B) having two phenolic hydroxyl groups and/or active ester groups (acyloxy groups) as functional groups in one molecule is sometimes referred to as "compound (B)" or "bifunctional compound (B)". Thermoplastic epoxy resins are sometimes referred to as "thermoplastic resins".
 本発明のエポキシ樹脂組成物で使用するエポキシ化合物(A)は、1分子中にエポキシ基を2つ有するエポキシ化合物であればよい。エポキシ化合物(A)の純度は95%以上であることが好ましい。エポキシ化合物(A)中に1官能の不純物が含まれている場合には重合後の分子量が上がらなくなるため、得られた熱可塑性樹脂製品の機械物性が悪くなる恐れがある。そのため、1官能の不純物はエポキシ化合物(A)に対して2重量%以下であることが好ましい。3官能以上の不純物が含まれている場合には、その不純物を起点に架橋構造を形成しやすくなるため、重合物の分散が大きくなるほか、ゲル化して熱可塑性を損なう恐れがある。そのため、3官能以上の不純物についてはエポキシ化合物(A)に対して1重量%以下であることが好ましい。エポキシ化合物(A)としての純度が高ければ、位置異性体やオリゴマーが含まれてもよい。また、これらのエポキシ化合物(A)は1種のみでも複数種を組み合わせて使用してもよい。 The epoxy compound (A) used in the epoxy resin composition of the present invention may be an epoxy compound having two epoxy groups in one molecule. The purity of the epoxy compound (A) is preferably 95% or more. If the epoxy compound (A) contains monofunctional impurities, the molecular weight after polymerization will not increase, and the resulting thermoplastic resin product may have poor mechanical properties. Therefore, the content of monofunctional impurities is preferably 2% by weight or less relative to the epoxy compound (A). If tri- or higher-functional impurities are contained, a crosslinked structure is likely to be formed starting from the impurities, which may increase the dispersion of the polymer and may cause gelation to impair thermoplasticity. Therefore, trifunctional or more functional impurities are preferably 1% by weight or less relative to the epoxy compound (A). If the purity as the epoxy compound (A) is high, positional isomers and oligomers may be included. Moreover, these epoxy compounds (A) may be used alone or in combination of two or more.
 エポキシ化合物(A)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールアセトフェノン型エポキシ樹脂、ビスフェノールトリメチルシクロヘキサン型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂(例えば、ZX-1201(日鉄ケミカル&マテリアル株式会社製)等)、ビスクレゾールフルオレン型エポキシ樹脂(例えば、OGSOL CG-500(大阪ガスケミカル株式会社製)等)、テトラメチルビスフェノールA型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂(例えば、YSLV-80XY(日鉄ケミカル&マテリアル株式会社製)等)、テトラ-t-ブチルビスフェノールA型エポキシ樹脂、テトラメチルビスフェノールS型エポキシ樹脂、ジヒドロキシジフェニルエーテル型エポキシ樹脂、チオジフェノール型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂等のビスフェノール型エポキシ樹脂や、ビフェノール型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂(例えば、YX-4000(三菱ケミカル株式会社製)等)、ジメチルビフェノール型エポキシ樹脂、テトラ-t-ブチルビフェノール型エポキシ樹脂等のビフェノール型エポキシ樹脂や、ハイドロキノン型エポキシ樹脂、メチルハイドロキノン型エポキシ樹脂、ジブチルハイドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、メチルレゾルシン型エポキシ樹脂等のベンゼンジオール型エポキシ樹脂や、ジヒドロキシアントラセン型エポキシ樹脂、ヒドロアントラハイドロキノン型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビスナフトールフルオレン型エポキシ樹脂、ジフェニルジシクロペンタジエン型エポキシ樹脂等が挙げられる。 Examples of the epoxy compound (A) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol Z type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, bisphenol acetophenone type epoxy resin. Resin, bisphenol trimethylcyclohexane type epoxy resin, bisphenol fluorene type epoxy resin (for example, ZX-1201 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), etc.), biscresol fluorene type epoxy resin (for example, OGSOL CG-500 (Osaka Gas Chemical Co., Ltd.), tetramethylbisphenol A type epoxy resin, tetramethylbisphenol F type epoxy resin (e.g., YSLV-80XY (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), etc.), tetra-t-butylbisphenol A type epoxy Resin, bisphenol type epoxy resin such as tetramethylbisphenol S type epoxy resin, dihydroxydiphenyl ether type epoxy resin, thiodiphenol type epoxy resin, tetrabromobisphenol A type epoxy resin, biphenol type epoxy resin, tetramethylbiphenol type epoxy resin ( For example, YX-4000 (manufactured by Mitsubishi Chemical Corporation), etc.), dimethylbiphenol type epoxy resin, biphenol type epoxy resin such as tetra-t-butylbiphenol type epoxy resin, hydroquinone type epoxy resin, methylhydroquinone type epoxy resin, dibutyl Hydroquinone type epoxy resin, resorcinol type epoxy resin, benzenediol type epoxy resin such as methylresorcin type epoxy resin, dihydroxyanthracene type epoxy resin, hydroanthrahydroquinone type epoxy resin, dihydroxynaphthalene type epoxy resin, bisnaphtholfluorene type epoxy resin, A diphenyldicyclopentadiene type epoxy resin and the like are included.
 2官能エポキシ化合物(A)としては、更に、上記2官能エポキシ化合物の芳香環に水素を添加した2官能エポキシ化合物や、アジピン酸、コハク酸、フタル酸、テトラヒドロフタル酸、メチルヘキサヒドロフタル酸、テレフタル酸、イソフタル酸、オルソフタル酸、ビフェニルジカルボン酸、ダイマー酸等の種々のジカルボン酸類と、エピハロヒドリンとから製造されるグリシジルエステル型エポキシ樹脂や、アニリン等のアミン化合物と、エピハロヒドリンとから製造されるグリシジルアミン型エポキシ樹脂や、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、1,5-ペンタンジオールジグリシジルエーテル、ポリペンタメチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリヘキサメチレングリコールジグリシジルエーテル、1,7-ヘプタンジオールジグリシジルエーテル、ポリヘプタメチレングリコールジグリシジルエーテル、1,8-オクタンジオールジグリシジルエーテル、1,10-デカンジオールジグリシジルエーテル、2,2-ジメチル-1,3-プロパンジオールジグリシジルエーテル等の鎖状構造のみからなる(ポリ)アルキレングリコール型エポキシ樹脂や、1,4-シクロヘキサンジメタノールジグリシジルエーテル等の環状構造を有するアルキレングリコール型エポキシ樹脂や、脂肪族環状エポキシ樹脂や、リン含有2官能エポキシ樹脂(例えば、FX-305(日鉄ケミカル&マテリアル株式会社製)、ジフェニルホスフィニルハイドロキノンジグリシジルエーテル等)等も挙げられる。 The bifunctional epoxy compound (A) further includes a bifunctional epoxy compound obtained by adding hydrogen to the aromatic ring of the bifunctional epoxy compound, adipic acid, succinic acid, phthalic acid, tetrahydrophthalic acid, methylhexahydrophthalic acid, Glycidyl ester type epoxy resins produced from various dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, biphenyldicarboxylic acid, dimer acid, and epihalohydrin, and glycidyl produced from an amine compound such as aniline and epihalohydrin Amine type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, polytetramethylene glycol diglycidyl ether, 1, 5-pentanediol diglycidyl ether, polypentamethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyhexamethylene glycol diglycidyl ether, 1,7-heptanediol diglycidyl ether, polyheptamethylene glycol diglycidyl (Poly)alkylene glycol consisting only of a chain structure such as ether, 1,8-octanediol diglycidyl ether, 1,10-decanediol diglycidyl ether, 2,2-dimethyl-1,3-propanediol diglycidyl ether type epoxy resins, alkylene glycol type epoxy resins having a cyclic structure such as 1,4-cyclohexanedimethanol diglycidyl ether, aliphatic cyclic epoxy resins, and phosphorus-containing bifunctional epoxy resins (for example, FX-305 (Nippon Steel Chemical & Material Co., Ltd.), diphenylphosphinylhydroquinone diglycidyl ether, etc.).
 熱可塑性エポキシ樹脂の耐熱性の向上のためには、ジヒドロキシナフタレン型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型エポキシ樹脂、ビスナフトールフルオレン型エポキシ樹脂が好ましく、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型エポキシ樹脂、ビスナフトールフルオレン型エポキシ樹脂等のフルオレン環構造を有する2官能エポキシ化合物がより好ましい。難燃性付与のためには、テトラブロムビスフェノールA型エポキシ樹脂、リン含有2官能エポキシ樹脂が好ましく、リン含有2官能エポキシ樹脂がより好ましい。 In order to improve the heat resistance of thermoplastic epoxy resins, dihydroxynaphthalene-type epoxy resins, bisphenolfluorene-type epoxy resins, bis-cresol-fluorene-type epoxy resins, and bis-naphthol-fluorene-type epoxy resins are preferable. Bifunctional epoxy compounds having a fluorene ring structure, such as fluorene type epoxy resins and bisnaphtholfluorene type epoxy resins, are more preferred. Tetrabromobisphenol A-type epoxy resins and phosphorus-containing bifunctional epoxy resins are preferred for imparting flame retardancy, and phosphorus-containing bifunctional epoxy resins are more preferred.
 特に、強化繊維含有エポキシ樹脂組成物に使用する場合は、下記式(2)で表されるエポキシ化合物(a)を含むことが好ましい。その場合、エポキシ化合物(A)中に50重量%以上含むことが好ましく、より好ましくは66重量%以上であり、更に好ましくは75重量%以上であり、特に好ましくは80重量%以上である。エポキシ化合物(a)はエポキシ化合物(A)の一部を構成する。
Figure JPOXMLDOC01-appb-C000003
 nは繰り返し数でその平均値は0~5であり、好ましくは0~1である。また、エポキシ化合物(a)のエポキシ当量は、150~350g/eq.が好ましい。エポキシ化合物(a)の純度は95%以上であることが好ましい。
In particular, when used in a reinforcing fiber-containing epoxy resin composition, it preferably contains an epoxy compound (a) represented by the following formula (2). In that case, the content in the epoxy compound (A) is preferably 50% by weight or more, more preferably 66% by weight or more, still more preferably 75% by weight or more, and particularly preferably 80% by weight or more. Epoxy compound (a) constitutes a part of epoxy compound (A).
Figure JPOXMLDOC01-appb-C000003
n is the number of repetitions, and its average value is 0-5, preferably 0-1. Moreover, the epoxy equivalent of the epoxy compound (a) is 150 to 350 g/eq. is preferred. The purity of the epoxy compound (a) is preferably 95% or higher.
 式(2)において、Aは下記式(2a)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000004
In formula (2), A is a divalent group represented by formula (2a) below.
Figure JPOXMLDOC01-appb-C000004
 式(2a)において、Xは単結合、炭素数1~13の炭化水素基、-O-、-CO-、-COO-、-S-、-SO-のいずれかである。
 炭素数1~13の炭化水素基としては、炭素数1~9のアルキレン基又は炭素数6~13のアリーレン基が好ましく、例えば、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-CHPh-、-C(CH)Ph-、1,1-シクロプロピレン基、1,1-シクロブチレン基、1,1-シクロペンチレン基、1,1-シクロヘキシレン基、4-メチル-1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,1-シクロオクチレン基、1,1-シクロノニレン基、1,2-エチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロヘキシレン基、1,2-フェニレン基、1,3-プロピレン基、1,3-シクロブチレン基、1,3-シクロペンチレン基、1,3-シクロヘキシレン基、1,3-フェニレン基、1,4-ブチレン基、1,4-シクロヘキシレン基、1,4-フェニレン基、1,1-フルオレン基、1,2-キシリレン基、1,4-キシリレン基、テトラヒドロジシクロペンタジエニレン基、テトラヒドロトリシクロペンタジエニレン基等が挙げられる。なお、Phはフェニル基を表す。
 これらの内、Xは、単結合、-O-、-CO-、-COO-、-S-、-SO-、-CH-、-CH(CH)-、-C(CH-、-CHPh-、-C(CH)Ph-、1,1-シクロヘキシレン基、4-メチル-1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,4-シクロヘキシレン基、1,4-フェニレン基、1,1-フルオレン基が好ましく、単結合、-O-、-CO-、-COO-、-S-、-SO-、-CH-、-CH(CH)-、-C(CH-、-C(CH)Ph-、1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,1-フルオレン基がより好ましい。なお、Phはフェニル基を表す。アルキレン基はアルキリデン基を含む意味である。
In formula (2a), X is a single bond, a hydrocarbon group having 1 to 13 carbon atoms, -O-, -CO-, -COO-, -S- or -SO 2 -.
The hydrocarbon group having 1 to 13 carbon atoms is preferably an alkylene group having 1 to 9 carbon atoms or an arylene group having 6 to 13 carbon atoms, such as —CH 2 —, —CH(CH 3 )—, —C( CH 3 ) 2 —, —C(CF 3 ) 2 —, —CHPh—, —C(CH 3 )Ph—, 1,1-cyclopropylene group, 1,1-cyclobutylene group, 1,1-cyclopentyl rene group, 1,1-cyclohexylene group, 4-methyl-1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1,1-cyclooctylene group, 1, 1-cyclononylene group, 1,2-ethylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-phenylene group, 1,3-propylene group, 1,3-cyclobutylene group, 1,3-cyclopentylene group, 1,3-cyclohexylene group, 1,3-phenylene group, 1,4-butylene group, 1, 4-cyclohexylene group, 1,4-phenylene group, 1,1-fluorene group, 1,2-xylylene group, 1,4-xylylene group, tetrahydrodicyclopentadienylene group, tetrahydrotricyclopentadienylene group, etc. is mentioned. In addition, Ph represents a phenyl group.
Among these, X is a single bond, -O-, -CO-, -COO-, -S-, -SO 2 -, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2- , -CHPh-, -C(CH 3 )Ph-, 1,1-cyclohexylene group, 4-methyl-1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1,4-cyclohexylene group, 1,4-phenylene group and 1,1-fluorene group are preferred, single bond, -O-, -CO-, -COO-, -S-, -SO 2 -, —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 —, —C(CH 3 )Ph—, 1,1-cyclohexylene group, 3,3,5-trimethyl-1,1 -cyclohexylene group and 1,1-fluorene group are more preferred. In addition, Ph represents a phenyl group. An alkylene group is meant to include an alkylidene group.
 Y1は独立に、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかである。
 炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、iso-ブチル基、t-ブチル基等が挙げられる。
 炭素数6~10のアリール基としては、例えば、フェニル基、トリル基、エチルフェニル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、ナフチル基等が挙げられる。
 これらの内、メチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、フェニル基、トリル基、キシリル基、又はナフチル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、フェニル基、又はトリル基がより好ましい。
Y1 is independently either an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms.
Examples of alkyl groups having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, iso-butyl group and t-butyl group. mentioned.
Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, ethylphenyl group, xylyl group, n-propylphenyl group, isopropylphenyl group, mesityl group, naphthyl group and the like.
Among these, methyl group, ethyl group, n-propyl group, n-butyl group, t-butyl group, phenyl group, tolyl group, xylyl group or naphthyl group are preferred, and methyl group, ethyl group and n-propyl group. , n-butyl group, t-butyl group, phenyl group, or tolyl group are more preferred.
 Y2は独立に、水素原子、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかであり、水素原子以外の基が好ましい。アルキル基、アリール基の例としては、上記Y1で例示した基と同様である。好ましいY2はY1と同様である。
 Y3は独立に、水素原子、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかである。アルキル基、アリール基の例としては、Y1で例示した基と同様である。好ましいY3は水素原子又はY1と同様である。
Y2 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms, and is preferably a group other than a hydrogen atom. Examples of the alkyl group and aryl group are the same as those exemplified for Y1 above. Preferred Y2 is the same as Y1.
Y3 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group and aryl group are the same as those exemplified for Y1. Preferred Y3 is a hydrogen atom or the same as Y1.
 エポキシ化合物(a)としては、例えば、テトラメチルビスフェノールF型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型エポキシ樹脂等が挙げられる。 Examples of the epoxy compound (a) include tetramethylbisphenol F-type epoxy resin, tetramethylbiphenol-type epoxy resin, bisphenolfluorene-type epoxy resin, biscresolfluorene-type epoxy resin, and the like.
 本発明のエポキシ樹脂組成物に使用する2官能化合物(B)としては、芳香環に結合した水酸基を2個有するジフェノール化合物(B1)、芳香環に結合したアシルオキシ基を2つ有するジエステル系化合物(B2)、又は芳香環に結合した水酸基とアシルオキシ基を1個ずつ有するモノエステル系化合物(B3)のいずれかであればよい。なお、ジエステル系化合物(B2)とモノエステル系化合物(B3)を区別せずに、「エステル系化合物」と称することがある。
 2官能化合物(B)の純度は95重量%以上であることが好ましい。1官能の不純物が含まれている場合には重合後の分子量が上がらなくなるために製造された熱可塑性樹脂の機械物性が悪くなる恐れがある。そのため、1官能の不純物は、2官能化合物(B)に対して2重量%以下であることが好ましい。3官能以上の不純物が含まれている場合には、その不純物を起点に架橋構造を形成しやすくなるため、重合物の分散が大きくなるほか、ゲル化して熱可塑性を損なう恐れがある。そのため、3官能以上の不純物は、2官能化合物(B)に対して1重量%以下であることが好ましい。2官能化合物(B)としての純度が高ければ、位置異性体については含まれていてもよい。また、これらの2官能化合物(B)は1種のみでも複数種を組み合わせて使用してもよい。なお、アシルオキシ基はR-CO-O-で表され、Rは炭素数1~19の炭化水素基である。炭素数1~19の炭化水素基としては、炭素数1~12のアルキル基、炭素数6~12のアリール基、又は炭素数7~13のアラルキル基が好ましい。
The bifunctional compound (B) used in the epoxy resin composition of the present invention includes a diphenol compound (B1) having two hydroxyl groups bonded to an aromatic ring, and a diester compound having two acyloxy groups bonded to an aromatic ring. (B2) or a monoester compound (B3) having one hydroxyl group and one acyloxy group bonded to an aromatic ring. The diester compound (B2) and the monoester compound (B3) are sometimes referred to as "ester compounds" without distinction.
The purity of the bifunctional compound (B) is preferably 95% by weight or more. When monofunctional impurities are contained, the molecular weight after polymerization does not increase, so that the produced thermoplastic resin may have poor mechanical properties. Therefore, the content of monofunctional impurities is preferably 2% by weight or less relative to the bifunctional compound (B). If tri- or higher-functional impurities are contained, a crosslinked structure is likely to be formed starting from the impurities, which may increase the dispersion of the polymer and may cause gelation to impair thermoplasticity. Therefore, trifunctional or higher functional impurities are preferably 1% by weight or less relative to the bifunctional compound (B). If the purity of the bifunctional compound (B) is high, positional isomers may be contained. Moreover, these bifunctional compounds (B) may be used alone or in combination of two or more. The acyloxy group is represented by R--CO--O--, where R is a hydrocarbon group having 1 to 19 carbon atoms. The hydrocarbon group having 1 to 19 carbon atoms is preferably an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 13 carbon atoms.
 炭素数1~12のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基等が挙げられる。
 炭素数6~12のアリール基としては、例えば、フェニル基、トリル基、エチルフェニル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、ナフチル基、メチルナフチル基等が挙げられる。
 炭素数7~13のアラルキル基としては、例えば、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、フェネチル基、2-フェニルイソプロピル基、ナフチルメチル基等が挙げられる。
 これらの中でも、炭素数1~7の炭化水素基を有するアシルオキシ基が好ましく、アセチルオキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ベンゾイルオキシ基、メチルベンゾイルオキシ基がより好ましく、アセチルオキシ基、ベンゾイルオキシ基が更に好ましく、アセチルオキシ基が特に好ましい。
The alkyl group having 1 to 12 carbon atoms may be linear, branched or cyclic, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group and the like.
Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, ethylphenyl group, xylyl group, n-propylphenyl group, isopropylphenyl group, mesityl group, naphthyl group, methylnaphthyl group and the like.
The aralkyl group having 7 to 13 carbon atoms includes, for example, benzyl group, methylbenzyl group, dimethylbenzyl group, trimethylbenzyl group, phenethyl group, 2-phenylisopropyl group, naphthylmethyl group and the like.
Among these, an acyloxy group having a hydrocarbon group having 1 to 7 carbon atoms is preferable, and an acetyloxy group, a propanoyloxy group, a butanoyloxy group, a benzoyloxy group and a methylbenzoyloxy group are more preferable, and an acetyloxy group, A benzoyloxy group is more preferred, and an acetyloxy group is particularly preferred.
 ジフェノール化合物(B1)としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールE、ビスフェノールZ、ビスフェノールS、ビスフェノールAD、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールG、ビスフェノールM、ビスフェノールP、ビスフェノールPH、ビスフェノールアセトフェノン、ビスフェノールトリメチルシクロヘキサン、ビスフェノールフルオレン、ビスクレゾールフルオレン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラ-t-ブチルビスフェノールA、テトラメチルビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルメタン、ビス(ヒドロキシフェノキシ)ベンゼン、チオジフェノール、ジヒドロキシスチルベン等のビスフェノール化合物や、ビフェノール、テトラメチルビフェノール、ジメチルビフェノール、テトラ-t-ブチルビフェノール等のビフェノール化合物や、ハイドロキノン、メチルハイドロキノン、ジブチルハイドロキノン、レゾルシン、メチルレゾルシン等のベンゼンジオール化合物や、ジヒドロキシアントラセン、ジヒドロキシナフタレン、ジヒドロアントラハイドロキノン等や、10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(DOPO-HQ)、10-(2,7-ジヒドロキシナフチル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(DOPO-NQ)、10-(1,4-ジヒドロキシ-2-ナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロキシフェニル)-8-ベンジル-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロキシ-1-ナフチル)-8-ベンジル-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィニルヒドロキノン、ジフェニルホスフィニル-1,4-ジオキシナフタリン、1,4-シクロオクチレンホスフィニル-1,4-フェニルジオール、1,5-シクロオクチレンホスフィニル-1,4-フェニルジオール等のリン含有フェノール化合物等が挙げられる。
 熱可塑性エポキシ樹脂の耐熱性向上のためには、ジヒドロキシナフタレン、ビスフェノールフルオレン、ビスクレゾールフルオレンが好ましく、ビスフェノールフルオレン、ビスクレゾールフルオレンがより好ましい。特に、強化繊維含有エポキシ樹脂組成物に使用する場合は、ビスフェノール化合物又はビフェニル化合物が好ましい。また難燃性を付与する目的で、リン含有フェノール化合物を用いてもよい。
Examples of the diphenol compound (B1) include bisphenol A, bisphenol F, bisphenol E, bisphenol Z, bisphenol S, bisphenol AD, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol G, bisphenol M, bisphenol P, Bisphenol PH, bisphenolacetophenone, bisphenoltrimethylcyclohexane, bisphenolfluorene, biscresolfluorene, tetramethylbisphenol A, tetramethylbisphenol F, tetra-t-butylbisphenol A, tetramethylbisphenol S, dihydroxydiphenyl ether, dihydroxydiphenylmethane, bis(hydroxyphenoxy ) Biphenol compounds such as benzene, thiodiphenol, and dihydroxystilbene; biphenol compounds such as biphenol, tetramethylbiphenol, dimethylbiphenol, and tetra-t-butylbiphenol; Benzenediol compounds, dihydroxyanthracene, dihydroxynaphthalene, dihydroanthrahydroquinone, etc., 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO- HQ), 10-(2,7-dihydroxynaphthyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-NQ), 10-(1,4-dihydroxy-2- naphthyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2,5-dihydroxyphenyl)-8-benzyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide, 10-(2,7-dihydroxy-1-naphthyl)-8-benzyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphinylhydroquinone, diphenylphosph Phosphorus-containing compounds such as finyl-1,4-dioxynaphthalene, 1,4-cyclooctylenephosphinyl-1,4-phenyldiol, and 1,5-cyclooctylenephosphinyl-1,4-phenyldiol A phenol compound etc. are mentioned.
Dihydroxynaphthalene, bisphenol fluorene, and bis-cresol fluorene are preferred, and bisphenol fluorene and bis-cresol fluorene are more preferred for improving the heat resistance of thermoplastic epoxy resins. A bisphenol compound or a biphenyl compound is particularly preferred when used in a reinforcing fiber-containing epoxy resin composition. A phosphorus-containing phenol compound may also be used for the purpose of imparting flame retardancy.
 ジエステル系化合物(B2)及びモノエステル系化合物(B3)としては、上記ジフェノール化合物(B1)の水酸基がアシルオキシ基(活性エステル)に2個又は1個置換された化合物が挙げられる。ジエステル系化合物(B2)はジフェノール化合物(B1)を有機酸の酸無水物、有機酸のハロゲン化物、又は有機酸等のアシル化剤との縮合反応でアシル化して得られる。モノエステル系化合物(B3)もジフェノール化合物(B1)のアシル化時のアシル化剤のモル比調整することで得られる、モノエステル系化合物(B3)、ジエステル系化合物(B2)、及びジフェノール化合物(B1)の混合物から単離することで得られる。 Examples of the diester compound (B2) and monoester compound (B3) include compounds in which two or one hydroxyl groups of the diphenol compound (B1) are substituted with acyloxy groups (active esters). The diester compound (B2) is obtained by acylating the diphenol compound (B1) with an acid anhydride of an organic acid, a halide of an organic acid, or an acylating agent such as an organic acid through a condensation reaction. The monoester compound (B3) is also obtained by adjusting the molar ratio of the acylating agent during the acylation of the diphenol compound (B1), the monoester compound (B3), the diester compound (B2), and the diphenol. It is obtained by isolation from a mixture of compound (B1).
 上記アシル化に使用する酸成分としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸、ペンタン酸、オクタン酸、カプリル酸、ラウリン酸、ステアリン酸、オレイン酸、安息香酸、t-ブチル安息香酸、ヘキサヒドロ安息香酸、フェノキシ酢酸、アクリル酸、メタクリル酸等の有機酸や、有機酸の酸無水物や、有機酸のハロゲン化物や、有機酸のエステル化物等を使用することができる。
 有機酸の酸無水物としては、例えば、無水酢酸、安息香酸無水物、フェノキシ酢酸無水物等が挙げられる。
 有機酸のエステル化物としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、安息香酸メチル、安息香酸エチル等が挙げられる。有機酸のハロゲン化物としては、例えば、酢酸クロリド、安息香酸クロリド、フェノキシ酢酸クロリド等が挙げられる。
 これらのアシル化剤としては、酢酸クロリド、安息香酸クロリド、フェノキシ酢酸クロリド等の有機酸のハロゲン化物や無水酢酸、安息香酸無水物、フェノキシ酢酸無水物等の酸ハロゲン化物や有機酸の酸無水物が好ましく、エステル化の後水洗が不要で、電材用途で嫌われるハロゲンの混入を避ける意味で、無水酢酸や安息香酸無水物等の酸無水物がより好ましく、無水酢酸が更に好ましい。
Acid components used for the above acylation include, for example, acetic acid, propionic acid, butyric acid, isobutyric acid, pentanoic acid, octanoic acid, caprylic acid, lauric acid, stearic acid, oleic acid, benzoic acid, t-butylbenzoic acid, Organic acids such as hexahydrobenzoic acid, phenoxyacetic acid, acrylic acid and methacrylic acid, acid anhydrides of organic acids, halides of organic acids, esters of organic acids, and the like can be used.
Acid anhydrides of organic acids include, for example, acetic anhydride, benzoic anhydride, and phenoxyacetic anhydride.
Examples of esterified organic acids include methyl acetate, ethyl acetate, butyl acetate, methyl benzoate, and ethyl benzoate. Halides of organic acids include, for example, acetic acid chloride, benzoic acid chloride, phenoxyacetic acid chloride and the like.
Examples of these acylating agents include halides of organic acids such as acetic acid chloride, benzoic acid chloride and phenoxyacetic acid chloride; acid halides such as acetic anhydride, benzoic acid anhydride and phenoxyacetic acid anhydride; and acid anhydrides of organic acids. Acid anhydrides such as acetic anhydride and benzoic anhydride are more preferable, and acetic anhydride is even more preferable, in the sense that washing with water after esterification is unnecessary and contamination of halogen, which is disliked in electronic materials, is avoided.
 本発明のエポキシ樹脂組成物において、化合物(B)の割合は、エポキシ化合物(A)1.00モルに対して、0.90~1.10モルであり、好ましくは0.95~0.99モル、より好ましくは0.97~0.98モルである。
 本発明のエポキシ樹脂組成物では、エポキシ化合物(A)と化合物(B)が逐次的に反応し、直鎖構造をとることで熱可塑性を発現する。エポキシ化合物(A)が過剰であるとエポキシ基末端となり、化合物(B)が過剰であるとフェノール基末端又はアシルオキシ基末端となり反応が終了する。
 化合物(B)の割合が0.99モル超の場合、重合物がフェノール基末端又はアシルオキシ基末端となって反応が終了するため、高分子量化しにくい恐れがある。一方、化合物(B)の割合が0.95モル未満の場合、過剰なエポキシ基が副反応を起こすことにより、重合物がゲル化し熱可塑性が損なわれる恐れがある。
In the epoxy resin composition of the present invention, the ratio of compound (B) is 0.90 to 1.10 mol, preferably 0.95 to 0.99, per 1.00 mol of epoxy compound (A). mol, more preferably 0.97 to 0.98 mol.
In the epoxy resin composition of the present invention, the epoxy compound (A) and the compound (B) react successively to form a straight chain structure, thereby exhibiting thermoplasticity. When the epoxy compound (A) is in excess, it becomes an epoxy group terminal, and when the compound (B) is excessive, it becomes a phenol group terminal or an acyloxy group terminal, and the reaction is completed.
If the proportion of the compound (B) exceeds 0.99 mol, the polymer will end up with a phenol group terminal or an acyloxy group terminal, and the reaction will end, which may make it difficult to increase the molecular weight. On the other hand, if the proportion of the compound (B) is less than 0.95 mol, excess epoxy groups may cause a side reaction, resulting in gelation of the polymer and loss of thermoplasticity.
 本発明のエポキシ樹脂組成物において、化合物(B)がエポキシ化合物(A)中に結晶状態で存在すると、ミクロで見た時にモル比が設計から外れる。この状態で反応を開始すると、重合が十分に進行しないことがある。重合を十分に進行させるためには、化合物(B)とエポキシ化合物(A)が相互に均一に相溶しているエポキシ樹脂組成物が好ましい。
 また、強化繊維等を配合する前のエポキシ樹脂組成物は完全に溶解又は均一な液状となっていることが望ましいが、例えば、気泡を含まない状態でガラス製シャーレに厚さ2mmになるように溶融混合物を入れて厚み方向のヘイズ値を測定した場合において、その厚み方向のヘイズ値が30%未満であれば、重合反応に影響しない水準まで溶解又は均一な液状となったものと判断する。ヘイズ値についてより好ましくは20%未満、更に好ましくは10%未満である。なお、ヘイズ値の測定方法は実施例に記載の条件に従う。
In the epoxy resin composition of the present invention, if the compound (B) is present in the epoxy compound (A) in a crystalline state, the molar ratio deviates from the design when viewed microscopically. If the reaction is started in this state, the polymerization may not progress sufficiently. In order to allow the polymerization to proceed sufficiently, an epoxy resin composition in which the compound (B) and the epoxy compound (A) are uniformly compatible with each other is preferred.
In addition, it is desirable that the epoxy resin composition is completely dissolved or in a uniform liquid state before the reinforcing fibers are blended. When the haze value in the thickness direction is measured by adding the molten mixture, if the haze value in the thickness direction is less than 30%, it is determined that the mixture has dissolved or become a uniform liquid to a level that does not affect the polymerization reaction. The haze value is more preferably less than 20%, still more preferably less than 10%. The method for measuring the haze value follows the conditions described in Examples.
 ジエステル系化合物(B2)としては、例えば、下記式(3)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 ここで、X、Y1、Y2及びY3は、上記式(2a)のX、Y1、Y2及びY3と同義である。
Examples of the diester compound (B2) include compounds represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000005
Here, X, Y1, Y2 and Y3 are synonymous with X, Y1, Y2 and Y3 in formula (2a) above.
 ジエステル系化合物(B2)は、リン含有化合物であってもよく、リン含有化合物としては、例えば、下記式(4)で示される環状リン化合物(HCA-HQ)のジアセチル化物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
The diester compound (B2) may be a phosphorus-containing compound, and examples of the phosphorus-containing compound include a diacetylated compound of a cyclic phosphorus compound (HCA-HQ) represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
 リンの含有率は難燃性付与の観点から、エポキシ化合物(A)と化合物(B)の総量に対して、1重量%以上6重量%以下が好ましく、1.5重量%以上5重量%以下がより好ましく、2重量%以上4重量%が更に好ましい。 From the viewpoint of imparting flame retardancy, the phosphorus content is preferably 1% by weight or more and 6% by weight or less, and 1.5% by weight or more and 5% by weight or less, based on the total amount of the epoxy compound (A) and the compound (B). is more preferable, and 2% by weight or more and 4% by weight is even more preferable.
 また、エポキシ化合物(A)、化合物(B)のいずれとも反応する活性基を持たず、単体では重合反応を阻害しない不純物成分についても、量が多くなると重合後の分子量が小さくなる恐れがある。そのため、不純物成分は、2官能エポキシ化合物(A)及び2官能化合物(B)のいずれに対しても2重量%以下であることが好ましい。 In addition, even for impurity components that do not have an active group that reacts with either the epoxy compound (A) or the compound (B) and that do not inhibit the polymerization reaction by themselves, there is a risk that the molecular weight after polymerization will decrease if the amount increases. Therefore, the content of impurities is preferably 2% by weight or less with respect to both the bifunctional epoxy compound (A) and the bifunctional compound (B).
 本発明のエポキシ樹脂組成物は、重合触媒(C)として、下記式(1)で表されるN-置換アミノピリジン系化合物を少なくとも1種を必須成分として含有する。N-置換アミノピリジン系化合物は、2官能エポキシ化合物(A)と2官能化合物(B)との反応の触媒として作用する。
Figure JPOXMLDOC01-appb-C000007
The epoxy resin composition of the present invention contains, as a polymerization catalyst (C), at least one N-substituted aminopyridine compound represented by the following formula (1) as an essential component. The N-substituted aminopyridine compound acts as a catalyst for the reaction between the bifunctional epoxy compound (A) and the bifunctional compound (B).
Figure JPOXMLDOC01-appb-C000007
 式(1)において、R1及びR2は独立に、炭素数1~12の炭化水素基であり、更にR1とR2が相互に結合して複素環を形成してもよく、結合手として、-O-、-NH-、又は-NR4-があってもよい。但し、R4は炭素数1~12の炭化水素基、好ましくは炭素数1~3のアルキル基である。
 R1、R2は、好ましくは炭素数1~3のアルキル基、又は相互に結合して形成されたシクロペンタン環やシクロヘキサン環を有する基である。
In formula (1), R1 and R2 are independently a hydrocarbon group having 1 to 12 carbon atoms, and R1 and R2 may be bonded to each other to form a heterocyclic ring. -, -NH-, or -NR4- may be present. However, R4 is a hydrocarbon group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms.
R1 and R2 are preferably alkyl groups having 1 to 3 carbon atoms, or groups having a cyclopentane ring or cyclohexane ring formed by mutual bonding.
 R3は独立に、炭素数1~12の炭化水素基、好ましくは炭素数1~3のアルキル基である。
 炭素数1~12の炭化水素基としては、R1及びR2で例示した、結合しない場合と同等である。
 kは置換基R3の数を表し、0~4の整数であり、0又は1が好ましく、0がより好ましい。
R3 is independently a hydrocarbon group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms.
The hydrocarbon group having 1 to 12 carbon atoms is the same as the non-bonded case exemplified for R1 and R2.
k represents the number of substituents R3 and is an integer of 0 to 4, preferably 0 or 1, more preferably 0.
 N-置換アミノ基の置換位置は、ピリジンの2位、3位、4位のいずれでもよいが、4位が好ましく、下記式(5)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000008
 式中、R1及びR2は、式(1)のR1及びR2と同義である。
The substitution position of the N-substituted amino group may be the 2-, 3- or 4-position of pyridine, preferably the 4-position, and more preferably the compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000008
In formula, R1 and R2 are synonymous with R1 and R2 of formula (1).
 重合触媒(C)としては、例えば、2-ジメチルアミノピリジン、2-ピロリジノピリジン、2-(ジメチルアミノ)-6-メチルピリジン、2-メチルエチルアミノピリジン、2-メチルブチルアミノピリジン、2-ジエチルアミノピリジン、2-メチルプロピルアミノピリジン、2-ピロリジノ-4-メチルピリジン、2-ピロリジノ-5-メチルピリジン、2-ピロリジノ-6-メチルピリジン、2-モルホリノピリジン、3-ジメチルアミノピリジン、N,N-ジエチル-3-ピリジンアミン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-ジプロピルアミノビリジン、4-ジブチルアミノピリジン、4-ジベンジルアミノビリジン、4-ジヘキシルアミノビリジン、4-ジヘキシルアミノビリジン、4-ジオクチルアミノピリジン、4-ジノニルアミノピリジン、4-ジデシルアミノビリジン、4-ウンデシルアミノピリジン、4-ドデシルアミノピリジン、4-ジベンジルアミノビリジン、4-ジフェニルアミノピリジン、4-ピロリジノピリジン、4-ピペリジノビリジン、4-(4-メチルピペリジノ)ピリジン、4-モルホリノピリジン、4-メチルエチルアミノピリジン、4-メチルプロピルアミノピリジン、4-メチルベンジルアミノピリジン、4-メチルフェニルアミノピリジン、2-メチル-4-(ジメチルアミノ)ピリジン、2-エチル-4-(ジメチルアミノ)ピリジン、2-フェニル-4-(ジメチルアミノ)ピリジン、3-メチル-4-(ジメチルアミノ)ピリジン、3-エチル-4-(ジメチルアミノ)ピリジン、3-フェニル-4-(ジメチルアミノ)ピリジン、3,5-ジメチル-4-(ジメチルアミノ)ピリジン、2,5-ジ-t-ブチル-4-(ジメチルアミノ)ピリジン、1-(ピリジン-4-イル)アゾカン等が挙げられ、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-ジプロピルアミノビリジン、4-ジブチルアミノピリジン、4-ジベンジルアミノビリジン、4-ジヘキシルアミノビリジン、4-ジヘキシルアミノビリジン、4-ジオクチルアミノピリジン、4-ジノニルアミノピリジン、4-ジデシルアミノビリジン、4-ウンデシルアミノピリジン、4-ドデシルアミノピリジン、4-ジベンジルアミノビリジン、4-ジフェニルアミノピリジン、4-ピロリジノピリジン、4-ピペリジノビリジン、4-(4-メチルピペリジノ)ピリジン、4-モルホリノピリジン、4-メチルエチルアミノピリジン、4-メチルプロピルアミノピリジン、4-メチルベンジルアミノピリジン、4-メチルフェニルアミノピリジンが好ましく、4-(ジメチルアミノ)ピリジン(下記式(5a))、4-ピロリジノピリジン(下記式(5b))、4-ピペリジノピリジン(下記式(5c))、4-(4-メチルピペリジノ)ピリジン(下記式(5d))、4-モルホリノピリジン(下記式(5e))、4-ピペラジノピリジン(下記式(5f))がより好ましく、4-(ジメチルアミノ)ピリジン、4-ピロリジノピリジン、4-ピペラジノピリジンが更に好ましい。これらのN-置換アミノピリジン系化合物は、1種のみでも複数種を組み合わせて使用してもよい。 Examples of the polymerization catalyst (C) include 2-dimethylaminopyridine, 2-pyrrolidinopyridine, 2-(dimethylamino)-6-methylpyridine, 2-methylethylaminopyridine, 2-methylbutylaminopyridine, 2- diethylaminopyridine, 2-methylpropylaminopyridine, 2-pyrrolidino-4-methylpyridine, 2-pyrrolidino-5-methylpyridine, 2-pyrrolidino-6-methylpyridine, 2-morpholinopyridine, 3-dimethylaminopyridine, N, N-diethyl-3-pyridinamine, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-dipropylaminopyridine, 4-dibutylaminopyridine, 4-dibenzylaminopyridine, 4-dihexylaminopyridine, 4-dihexylamino pyridine, 4-dioctylaminopyridine, 4-dinonylaminopyridine, 4-didecylaminopyridine, 4-undecylaminopyridine, 4-dodecylaminopyridine, 4-dibenzylaminopyridine, 4-diphenylaminopyridine, 4- pyrrolidinopyridine, 4-piperidinopyridine, 4-(4-methylpiperidino)pyridine, 4-morpholinopyridine, 4-methylethylaminopyridine, 4-methylpropylaminopyridine, 4-methylbenzylaminopyridine, 4-methylphenyl Aminopyridine, 2-methyl-4-(dimethylamino)pyridine, 2-ethyl-4-(dimethylamino)pyridine, 2-phenyl-4-(dimethylamino)pyridine, 3-methyl-4-(dimethylamino)pyridine , 3-ethyl-4-(dimethylamino)pyridine, 3-phenyl-4-(dimethylamino)pyridine, 3,5-dimethyl-4-(dimethylamino)pyridine, 2,5-di-t-butyl-4 -(dimethylamino) pyridine, 1-(pyridin-4-yl) azocane and the like, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-dipropylaminopyridine, 4-dibutylaminopyridine, 4-dibenzyl Aminopyridine, 4-dihexylaminopyridine, 4-dihexylaminopyridine, 4-dioctylaminopyridine, 4-dinonylaminopyridine, 4-didecylaminopyridine, 4-undecylaminopyridine, 4-dodecylaminopyridine, 4- Dibenzylaminopyridine, 4-diphenylaminopyridine, 4-pyrrolidinopyridine, 4-piperidinopyridine, 4-(4-methylpiperidino)pyridine, 4-morpholinopyridine, 4-methylethylaminopyridine, 4-methylpropylamino Pyridine, 4-methylbenzylaminopyridine, 4-methylphenylaminopyridine are preferred, 4-(dimethylamino)pyridine (formula (5a) below), 4-pyrrolidinopyridine (formula (5b) below), 4-piperidine nopyridine (the following formula (5c)), 4-(4-methylpiperidino)pyridine (the following formula (5d)), 4-morpholinopyridine (the following formula (5e)), 4-piperazinopyridine (the following formula (5f) ) is more preferred, and 4-(dimethylamino)pyridine, 4-pyrrolidinopyridine, and 4-piperazinopyridine are even more preferred. These N-substituted aminopyridine compounds may be used singly or in combination.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 重合触媒(C)の配合量は、エポキシ化合物(A)と化合物(B)の総量に対して、0.01重量%以上10重量%以下であることが望ましい。0.01重量%未満である場合は、重合反応に時間がかかってしまうために生産性が低下する恐れがあるほか、目標の分子量に到達するまでに何らかの理由で失活する恐れがある。一方、10重量%を超える場合は、重合反応が速やかに進行する一方で貯蔵安定性を損なってプロセス適合性に問題が発生する恐れがあり、反応に関与するが骨格には取り込まれない成分であるため、重合後の物性を損なう恐れがあるほか、単純に高価であるため、経済的にも不利益である。より好ましくは0.03~5.0重量%、更に好ましくは0.05~1.0重量%である。 The blending amount of the polymerization catalyst (C) is desirably 0.01% by weight or more and 10% by weight or less with respect to the total amount of the epoxy compound (A) and the compound (B). If it is less than 0.01% by weight, the polymerization reaction takes a long time, which may reduce the productivity, and may cause deactivation for some reason before the target molecular weight is reached. On the other hand, when it exceeds 10% by weight, while the polymerization reaction proceeds rapidly, the storage stability may be impaired, which may cause problems in process suitability. Therefore, there is a possibility that the physical properties after polymerization may be impaired, and it is simply expensive, which is economically disadvantageous. More preferably 0.03 to 5.0% by weight, still more preferably 0.05 to 1.0% by weight.
 本発明のエポキシ樹脂組成物においては、上記N-置換アミノピリジン系化合物と共に、その他の触媒を併用してもよい。その他の触媒としては、「二段法」といわれるエポキシ樹脂の製造方法で使用される触媒であれば特に制限されない。例えば、アルカリ金属化合物、有機リン化合物、第3級アミン類、第4級アンモニウム塩、環状アミン類、イミダゾール系化合物等が挙げられる。これらその他の触媒は、1種のみでも2種以上を組み合わせて用いてもよい。なお、強化繊維含有エポキシ樹脂組成物に使用する場合は、その他の触媒を含まないことが好ましい。 In the epoxy resin composition of the present invention, other catalysts may be used together with the N-substituted aminopyridine compound. Other catalysts are not particularly limited as long as they are catalysts used in the so-called "two-step method" for producing epoxy resins. Examples thereof include alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, imidazole compounds and the like. These other catalysts may be used alone or in combination of two or more. When used in a reinforcing fiber-containing epoxy resin composition, it is preferable not to contain other catalysts.
 本発明のエポキシ樹脂組成物は、有機溶剤を含有しないことが望ましいが、必要に応じて、重合触媒の溶媒として又は粘度調整のために、有機溶剤を含有してもよい。有機溶剤としては、エポキシ化合物(A)と化合物(B)との反応を阻害しないものであれば特に限定されるものではないが、入手のし易さから、炭化水素系、ケトン系、エーテル系が好ましい。具体的には、トルエン、キシレン、アセトン、メチルエチルケトン、イソブチルケトン、シクロペンタノン、シクロヘキサノン、ジエチレングリコールジメチルエーテル等が挙げられる。ただし、反応中に有機溶剤が多量に存在すると重合反応を阻害する恐れがある。また、重合物中に有機溶剤が残存すると機械物性や耐熱性を悪化させる。このため、有機溶剤を配合する場合、その割合は、エポキシ樹脂組成物中の10重量%以下であり、5重量%以下が好ましく、2重量%以下が更に好ましく、1.5重量%以下が特に望ましい。 The epoxy resin composition of the present invention desirably does not contain an organic solvent, but may contain an organic solvent as a solvent for the polymerization catalyst or for viscosity adjustment, if necessary. The organic solvent is not particularly limited as long as it does not inhibit the reaction between the epoxy compound (A) and the compound (B). is preferred. Specific examples include toluene, xylene, acetone, methyl ethyl ketone, isobutyl ketone, cyclopentanone, cyclohexanone, diethylene glycol dimethyl ether and the like. However, if a large amount of organic solvent is present during the reaction, the polymerization reaction may be inhibited. Further, if the organic solvent remains in the polymer, the mechanical properties and heat resistance are deteriorated. Therefore, when an organic solvent is blended, its proportion in the epoxy resin composition is 10% by weight or less, preferably 5% by weight or less, more preferably 2% by weight or less, and particularly 1.5% by weight or less. desirable.
 本発明のエポキシ樹脂組成物の重合の進行状況は、重合物(熱可塑性エポキシ樹脂)の重量平均分子量の推移で判断することがよい。1時間未満の加熱だと重量平均分子量は増加傾向にあり、十分に重合が進行していない可能性がある。1時間以上の加熱では、エポキシ当量は1時間時点の値からほぼ増加せず十分に重合が進行していると判断できる。これにより、暴走による過加熱や副反応によるゲル化の進行が発生せず、十分に重合反応を進展させる標準的な、エポキシ樹脂組成物から重合物を得るための重合条件は、例えば、130~250℃で1時間以上の加熱条件であることが好ましい。ここで、実施例における重合物の物性値は、160℃で1時間の加熱条件で重合したものの測定値である。 The progress of the polymerization of the epoxy resin composition of the present invention is preferably judged by the transition of the weight average molecular weight of the polymer (thermoplastic epoxy resin). If the heating is performed for less than 1 hour, the weight average molecular weight tends to increase, and the polymerization may not proceed sufficiently. After heating for 1 hour or more, the epoxy equivalent did not substantially increase from the value at the time of 1 hour, and it can be judged that the polymerization proceeded sufficiently. As a result, standard polymerization conditions for obtaining a polymer from an epoxy resin composition that allow the polymerization reaction to proceed sufficiently without overheating due to runaway or gelling due to side reactions are, for example, 130 to 130. A heating condition of 250° C. for 1 hour or more is preferable. Here, the physical property values of the polymers in the examples are the measured values of those polymerized under heating conditions of 160° C. for 1 hour.
 繊維強化エポキシ樹脂複合材又はプリプレグ等、繊維を含有した樹脂の重合反応は繊維の存在により反応が阻害されるため、樹脂単体の場合と同等に重合を進めるには2~4倍程度の重合時間が必要となる。そのため、繊維強化エポキシ樹脂複合材又はプリプレグ等の重合条件は160℃で4時間の加熱を標準条件とした。 The presence of fibers hinders the polymerization reaction of resins containing fibers, such as fiber-reinforced epoxy resin composites or prepregs. Is required. Therefore, the standard condition for polymerizing the fiber-reinforced epoxy resin composite or prepreg was heating at 160° C. for 4 hours.
 本発明のエポキシ樹脂組成物を重合することで得られる重合物の重量平均分子量(Mw)は30,000以上200,000以下である。重合物の重量平均分子量が範囲下限未満の場合、十分に重合が進行していない化合物を多く含むこととなり、機械的強度が悪化する恐れがある。一方、重合物の重量平均分子量が範囲上限超の場合、架橋反応が進行しており、熱可塑性が損なわれている恐れがある。好ましくMwは、40,000以上150,000以下、より好ましくは50,000以上100,000以下である。 The weight average molecular weight (Mw) of the polymer obtained by polymerizing the epoxy resin composition of the present invention is 30,000 or more and 200,000 or less. If the weight-average molecular weight of the polymer is less than the lower limit of the range, the polymer may contain a large amount of compounds whose polymerization has not progressed sufficiently, resulting in deterioration in mechanical strength. On the other hand, when the weight average molecular weight of the polymer exceeds the upper limit of the range, the cross-linking reaction may proceed and the thermoplasticity may be impaired. Mw is preferably 40,000 or more and 150,000 or less, more preferably 50,000 or more and 100,000 or less.
 重合物のエポキシ当量は4,000g/eq.以上200,000g/eq.以下であることが望ましい。エポキシ当量が4,000g/eq.未満であると、十分に重合が進行していない恐れがある。エポキシ当量が200,000g/eq.を超える場合は、エポキシ基が過少となり繊維との接着性等に悪影響を及ぼす恐れがある。エポキシ当量は好ましくは10,000g/eq.以上150,000g/eq.以下、より好ましくは20,000g/eq.以上100,000g/eq.以下である。
 重合物のガラス転移温度(Tg)は120℃以上が好ましく、130℃以上がより好ましい。
The epoxy equivalent of the polymer is 4,000 g/eq. 200,000 g/eq. It is desirable that: Epoxy equivalent is 4,000 g/eq. If it is less than that, the polymerization may not proceed sufficiently. Epoxy equivalent weight of 200,000 g/eq. If it exceeds , the number of epoxy groups may be too small, which may adversely affect the adhesion to fibers. The epoxy equivalent is preferably 10,000 g/eq. 150,000 g/eq. Below, more preferably 20,000 g/eq. 100,000 g/eq. It is below.
The glass transition temperature (Tg) of the polymer is preferably 120°C or higher, more preferably 130°C or higher.
 原料としてリン含有化合物を使用した場合、重合物のリン含有率は、好ましくは1.0~6.0重量%、より好ましくは1.5~5.0重量%、更に好ましくは2.0~4.0重量%である。  When a phosphorus-containing compound is used as a raw material, the phosphorus content of the polymer is preferably 1.0 to 6.0 wt%, more preferably 1.5 to 5.0 wt%, still more preferably 2.0 to 4.0% by weight. 
 重合物の衝撃強度は、ノッチありアイゾット衝撃試験で評価(具体的には、実施例に記載の測定方法)を行い、衝撃強度が12kJ/m以上であることが望ましい。 The impact strength of the polymer is evaluated by a notched Izod impact test (specifically, the measuring method described in Examples), and the impact strength is desirably 12 kJ/m 2 or more.
 本発明のエポキシ樹脂組成物は添加剤を含むことができる。添加剤としては、例えば、ヒュームドシリカ等の充填剤、水酸化アルミニウムや赤燐等の難燃剤、コアシェルゴム等の改質剤、キシレン樹脂等の粘度調整剤等が挙げられる。重合反応を安定させる観点から、添加剤は樹脂相とは異なるものが配合されることが望ましいが、反応に影響しない範囲において、可塑剤、相溶型の難燃剤が含まれていてもよい。 The epoxy resin composition of the present invention can contain additives. Examples of additives include fillers such as fumed silica, flame retardants such as aluminum hydroxide and red phosphorus, modifiers such as core-shell rubber, and viscosity modifiers such as xylene resin. From the viewpoint of stabilizing the polymerization reaction, it is desirable to add an additive different from the resin phase, but a plasticizer and a compatible flame retardant may be included as long as they do not affect the reaction.
 本発明のエポキシ樹脂組成物は、重合させることにより、熱可塑性エポキシ樹脂となる。この熱可塑性エポキシ樹脂は繊維強化プラスチックの樹脂成分として優れる。
 本発明の強化繊維含有エポキシ樹脂組成物は、上記エポキシ樹脂組成物と強化繊維を混合又は含浸することにより得られる。
The epoxy resin composition of the present invention becomes a thermoplastic epoxy resin by polymerizing. This thermoplastic epoxy resin is excellent as a resin component for fiber-reinforced plastics.
The reinforcing fiber-containing epoxy resin composition of the present invention is obtained by mixing or impregnating the above epoxy resin composition and reinforcing fibers.
 本発明のエポキシ樹脂組成物を炭素繊維に含浸、成型させる方法としては、引抜き成型、フィラメントワインディング、RTM法、VaRTM法、ハンドレイアップ法、PIF法等のFRPの一般的な成型方法を用いる事ができる。また、プリプレグは下記のようにして得ることができる。 As a method for impregnating carbon fiber with the epoxy resin composition of the present invention and molding it, general FRP molding methods such as pultrusion molding, filament winding, RTM method, VaRTM method, hand lay-up method, PIF method, etc. can be used. can be done. Also, the prepreg can be obtained as follows.
 本発明のエポキシ樹脂組成物を、離型処理された紙又はプラスチックフィルムに塗工し、必要に応じて、離型処理されたカバーフィルムを付与することで、エポキシ樹脂組成物フィルムを得ることができる。離型紙や離形プラスチックフィルム、カバーフィルムに関しては公知のものを用いることができ、特に限定されるものではない。エポキシ樹脂組成物フィルムの厚さはプリプレグの設計厚さと樹脂比率によって定められるが、通常の厚さは1μm以上300μm以下である。1μm未満の場合、強化繊維をきれいに解繊しなければ繊維の目開きが目立ってしまう問題があり、300μmを超える場合は強化繊維に均一に含浸しにくくなる。好ましくは5μm以上150μm以下であり、より好ましくは10μm以上100μm以下である。 An epoxy resin composition film can be obtained by applying the epoxy resin composition of the present invention to a release-treated paper or plastic film and, if necessary, providing a release-treated cover film. can. As for the release paper, release plastic film, and cover film, known ones can be used, and they are not particularly limited. The thickness of the epoxy resin composition film is determined by the design thickness of the prepreg and the resin ratio, but the normal thickness is 1 μm or more and 300 μm or less. When the thickness is less than 1 μm, there is a problem that the opening of the fibers becomes conspicuous unless the reinforcing fibers are defibrated cleanly. It is preferably 5 μm or more and 150 μm or less, more preferably 10 μm or more and 100 μm or less.
 本発明のエポキシ樹脂組成物を塗工するための粘度は、0.1Pa・s以上100Pa・s以下であることが好ましく、より好ましくは0.5Pa・s以上70Pa・s以下、更に好ましくは、1Pa・s以上50Pa・s以下である。塗工粘度が0.1Pa・s未満である場合は、所望の樹脂フィルム厚みを得るために繰り返し塗工する必要がある。塗工粘度が100Pa・sを超える場合は、所望の樹脂フィルム厚みに均一に塗工する事が困難となる。なお、測定方法は実施例に記載の条件に従う。 The viscosity for coating the epoxy resin composition of the present invention is preferably 0.1 Pa s or more and 100 Pa s or less, more preferably 0.5 Pa s or more and 70 Pa s or less, still more preferably It is 1 Pa·s or more and 50 Pa·s or less. When the coating viscosity is less than 0.1 Pa·s, repeated coating is required to obtain the desired resin film thickness. When the coating viscosity exceeds 100 Pa·s, it becomes difficult to uniformly coat the desired resin film thickness. In addition, the measuring method complies with the conditions described in Examples.
 本発明のエポキシ樹脂組成物を塗工するための温度は、120℃以下であることが好ましく、より好ましくは100℃以下であり、更に好ましくは85℃以下である。塗工可能な粘度となるのであれば、塗工温度に下限はない。
 重合物のTgを向上させるために剛直骨格な化合物を使用する場合、塗工に適した樹脂粘度に溶剤を加えることなく調整するためには、塗工温度を高くする必要がある。塗工温度が120℃を超える場合、重合反応により樹脂の増粘が顕著となり、安定的に塗工する事が困難となる。
 本発明では、熱可塑性エポキシ樹脂のTgが120℃以上となるエポキシ樹脂組成物が、塗工に好適な粘度になる温度として、85℃を標準条件とした。
The temperature for applying the epoxy resin composition of the present invention is preferably 120° C. or lower, more preferably 100° C. or lower, and still more preferably 85° C. or lower. There is no lower limit to the coating temperature as long as the viscosity is such that it can be applied.
When a rigid skeleton compound is used to improve the Tg of the polymer, it is necessary to raise the coating temperature in order to adjust the resin viscosity suitable for coating without adding a solvent. If the coating temperature exceeds 120° C., the viscosity of the resin will increase significantly due to the polymerization reaction, making stable coating difficult.
In the present invention, 85° C. was used as a standard condition as a temperature at which an epoxy resin composition having a thermoplastic epoxy resin Tg of 120° C. or higher has a viscosity suitable for coating.
 本発明のエポキシ樹脂組成物の85℃での粘度倍加時間は、20分以上が好ましく、より好ましくは30分以上であり、更に好ましくは60分以上である。好ましい粘度倍加時間に上限はない。粘度倍加時間が20分未満である場合、塗工工程中の増粘が顕著となるため、安定した膜厚で塗工する事が困難となる。 The viscosity doubling time of the epoxy resin composition of the present invention at 85°C is preferably 20 minutes or longer, more preferably 30 minutes or longer, and still more preferably 60 minutes or longer. There is no upper limit to the preferred viscosity doubling time. If the viscosity doubling time is less than 20 minutes, the viscosity increases significantly during the coating process, making it difficult to achieve a stable coating thickness.
 本発明で使用する強化繊維は、炭素繊維、アラミド繊維、セルロース繊維等のプラスチックを強化するためのものであり、特に限定されるものではない。また、繊維の形態についても繊維を引きそろえたUDシート、織物、トウ、チョップドファイバー、不織布、抄紙等が挙げられ、特に限定されるものではない。ただし、含浸性の観点から、それぞれの繊維束の厚みは1mm以下、好ましくは0.5mm以下、より好ましくは0.2mm以下である。
 強化繊維として炭素繊維を用いると、強度、剛性がバランスよく高い複合材料が得られるため、好ましい。炭素繊維としては、PAN系、ピッチ系のいずれでもよいが、PAN系が特に好ましい。
The reinforcing fibers used in the present invention are for reinforcing plastics such as carbon fibers, aramid fibers, and cellulose fibers, and are not particularly limited. Also, the form of the fibers is not particularly limited and includes UD sheets, woven fabrics, tows, chopped fibers, non-woven fabrics, papermaking, and the like. However, from the viewpoint of impregnation, the thickness of each fiber bundle is 1 mm or less, preferably 0.5 mm or less, more preferably 0.2 mm or less.
It is preferable to use carbon fiber as the reinforcing fiber because a composite material having high strength and rigidity in a well-balanced manner can be obtained. The carbon fiber may be either PAN-based or pitch-based, but PAN-based is particularly preferable.
 本発明の強化繊維含有エポキシ樹脂組成物、又はプリプレグは、上記エポキシ樹脂組成物及び/又はエポキシ樹脂組成物フィルムと強化繊維から得られる。強化繊維とエポキシ樹脂組成物の比率は重量比で、好ましくは5:5~8:2である。強化繊維の比率について、強化繊維が少なすぎると繊維強化材料に求められる強度を十分に満足できない恐れがあり、強化繊維が多すぎるとボイド等の欠陥が生じる恐れがある。 The reinforcing fiber-containing epoxy resin composition or prepreg of the present invention is obtained from the above epoxy resin composition and/or epoxy resin composition film and reinforcing fibers. The weight ratio of the reinforcing fiber to the epoxy resin composition is preferably 5:5 to 8:2. Regarding the ratio of the reinforcing fibers, if the reinforcing fibers are too small, the strength required of the fiber-reinforced material may not be sufficiently satisfied, and if the reinforcing fibers are too large, defects such as voids may occur.
 本発明のエポキシ樹脂組成物は、貯蔵安定性に優れる。そのため炭素繊維強化樹脂等の分野に適用可能である。 The epoxy resin composition of the present invention has excellent storage stability. Therefore, it can be applied to fields such as carbon fiber reinforced resins.
 以下、本発明を実施例に基づいてより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。特に断りがない限り「部」は重量部を表し、「%」は重量%を表す。 The present invention will be described in more detail below based on examples, but the present invention is not limited to the following examples. "Parts" means parts by weight and "%" means % by weight unless otherwise specified.
 実施例において用いた原料、触媒、溶媒、強化繊維は以下のとおりである。
[エポキシ樹脂]
A1:テトラメチルビフェノール型エポキシ樹脂(三菱ケミカル株式会社製、YX-4000、エポキシ当量186)
A2:ビスフェノールフルオレン型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、ESF300、エポキシ当量250)
A3:ビスフェノールA型液状エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-128、エポキシ当量188)
Raw materials, catalysts, solvents, and reinforcing fibers used in the examples are as follows.
[Epoxy resin]
A1: Tetramethylbiphenol type epoxy resin (Mitsubishi Chemical Corporation, YX-4000, epoxy equivalent 186)
A2: Bisphenol fluorene type epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., ESF300, epoxy equivalent 250)
A3: Bisphenol A type liquid epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., YD-128, epoxy equivalent 188)
[フェノール化合物及びエステル系化合物]
B1:ビスフェノールA(日鉄ケミカル&マテリアル株式会社製、水酸基当量114)
B2:4,4’-ビス(3,3,5-トリメチルシクロヘキシリデン)ビスフェノール(本州化学工業株式会社製、BisP-HTG、水酸基当量155)
B3:4,4’-(1-フェニルエチリデン)ビスフェノール(本州化学工業株式会社製、BisP-AP、水酸基当量145)
B4:4,4’-シクロドデカン-1-イリデン)ビスフェノール(本州化学工業株式会社製、BisP-CDE、水酸基当量176)
B5:10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(三光株式会社製、HCA-HQ、水酸基当量162)
B6:合成例1で得られた2官能アセチル化化合物(10-(2,5-ジアセトキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、式(4)で表されるリン化合物、リン含有率7.6%、アセチル基当量204)
[Phenol compounds and ester compounds]
B1: Bisphenol A (manufactured by Nippon Steel Chemical & Materials Co., Ltd., hydroxyl equivalent 114)
B2: 4,4'-bis(3,3,5-trimethylcyclohexylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-HTG, hydroxyl equivalent 155)
B3: 4,4'-(1-phenylethylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-AP, hydroxyl equivalent 145)
B4: 4,4'-cyclododecane-1-ylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-CDE, hydroxyl equivalent 176)
B5: 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., HCA-HQ, hydroxyl equivalent 162)
B6: Bifunctional acetylated compound obtained in Synthesis Example 1 (10-(2,5-diacetoxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, formula (4 ), phosphorus content 7.6%, acetyl group equivalent 204)
[重合触媒]
C1:4-ジメチルアミノピリジン(東京化成工業株式会社製、DMAP、式(5a))
Figure JPOXMLDOC01-appb-C000010
C2:4-ピロリジノピリジン(東京化成工業株式会社製、式(5b))
Figure JPOXMLDOC01-appb-C000011
C3:1-(4-ピリジル)ピペラジン(東京化成工業株式会社製、式(5f)) 
Figure JPOXMLDOC01-appb-C000012
C4:2,3-ジヒドロ-1H-ピロロ-[1,2-a]ベンゾイミダゾール(四国化成工業株式会社製、TBZ)
Figure JPOXMLDOC01-appb-C000013
C5:トリス(パラメトキシフェニル)ホスフィン(北興化学工業株式会社製、TPAP)
Figure JPOXMLDOC01-appb-C000014
C6:トリス-o-トリルホスフィン(北興化学工業株式会社製、TOTP)
Figure JPOXMLDOC01-appb-C000015
[Polymerization catalyst]
C1: 4-dimethylaminopyridine (manufactured by Tokyo Chemical Industry Co., Ltd., DMAP, formula (5a))
Figure JPOXMLDOC01-appb-C000010
C2: 4-pyrrolidinopyridine (manufactured by Tokyo Chemical Industry Co., Ltd., formula (5b))
Figure JPOXMLDOC01-appb-C000011
C3: 1-(4-pyridyl)piperazine (manufactured by Tokyo Chemical Industry Co., Ltd., formula (5f))
Figure JPOXMLDOC01-appb-C000012
C4: 2,3-dihydro-1H-pyrrolo-[1,2-a]benzimidazole (manufactured by Shikoku Kasei Co., Ltd., TBZ)
Figure JPOXMLDOC01-appb-C000013
C5: Tris (para-methoxyphenyl) phosphine (manufactured by Hokko Chemical Industry Co., Ltd., TPAP)
Figure JPOXMLDOC01-appb-C000014
C6: Tris-o-tolylphosphine (manufactured by Hokko Chemical Industry Co., Ltd., TOTP)
Figure JPOXMLDOC01-appb-C000015
[その他]
D:シクロヘキサノン(試薬一級、富士フィルム和光純薬株式会社製)
E:PAN系炭素繊維(東レ株式会社製、T700-12K-60E)
[others]
D: Cyclohexanone (reagent first grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
E: PAN-based carbon fiber (manufactured by Toray Industries, Inc., T700-12K-60E)
 実施例における評価方法は以下のとおりである。 The evaluation methods in the examples are as follows.
相溶性:
 フェノール化合物及びエステル系化合物がエポキシ樹脂中に均一に溶融しているかどうかはヘイズ値により判断した。具体的には、エポキシ樹脂組成物を無色透明のガラス製シャーレに厚み2mmになるように入れ、村上色彩技術研究所製のヘイズ標準板を参考に、ヘイズ値を「5%未満(<5)」「5%以上10%未満(<10)」「10%以上20%未満(<20)」「20%以上30%未満(<30)」「30%以上(30<)」の5段階で評価した。ヘイズ値が30%未満であれば、フェノール化合物及びエステル系化合物がエポキシ樹脂中に均一に溶解していると判断できる。
Compatibility:
Whether or not the phenol compound and the ester compound were uniformly melted in the epoxy resin was judged by the haze value. Specifically, the epoxy resin composition was placed in a colorless and transparent glass Petri dish so as to have a thickness of 2 mm, and the haze value was adjusted to "less than 5% (<5)" with reference to a haze standard plate manufactured by Murakami Color Research Laboratory. "5% to less than 10% (<10)""10% to less than 20% (<20)""20% to less than 30% (<30)""30% or more (30<)" evaluated. If the haze value is less than 30%, it can be determined that the phenol compound and the ester compound are uniformly dissolved in the epoxy resin.
粘度及び粘度倍加時間:
 JIS K6870規格及びJIS K5600-2-3規格に準拠して、85℃での粘度及び粘度倍加時間を測定した。アントンパール社製のMCR 102により測定した。測定周波数3Hz、負荷歪1% 20mm直径の平プレート、プレート間ギャップは0.5mmの条件で、85℃に加温した際の粘度を測定した。また、85℃に保温した際、初期に測定した粘度の2倍になるまでの時間を計測し、粘度倍加時間とした。60分以上保温しても初期粘度の2倍未満である場合は、十分な潜在性があると判断できるため、測定時間は60分までとし、その場合は「60<」と表記した。
Viscosity and viscosity doubling time:
Viscosity and viscosity doubling time at 85° C. were measured according to JIS K6870 and JIS K5600-2-3 standards. Measured with MCR 102 manufactured by Anton Paar. The viscosity was measured when heated to 85° C. under the conditions of a measurement frequency of 3 Hz, a load strain of 1%, a flat plate of 20 mm diameter, and a gap between the plates of 0.5 mm. Further, when the temperature was maintained at 85° C., the time until the viscosity doubled from the initially measured viscosity was measured, and this was taken as the viscosity doubling time. If the viscosity is less than twice the initial viscosity even after being kept warm for 60 minutes or more, it can be judged that there is sufficient latency, so the measurement time is set to 60 minutes, and "60<" is indicated in that case.
エポキシ当量:
 JIS K7236規格に準拠して測定を行い、単位は「g/eq.」で表した。具体的には、電位差滴定装置を用い、溶媒としてクロロホルムを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸-酢酸溶液を用いた。
Epoxy equivalent weight:
The measurement was performed according to the JIS K7236 standard, and the unit was expressed as "g/eq.". Specifically, a potentiometric titrator was used, chloroform was used as a solvent, a tetraethylammonium bromide acetic acid solution was added, and a 0.1 mol/L perchloric acid-acetic acid solution was used.
分子量:
 重量平均分子量(Mw)及び数平均分子量(Mn)をGPC測定により求めた。具体的には、本体HLC8320GPC(東ソー株式会社製)にカラム(TSKgel SuperH-H、SuperH2000、SuperHM-H、SuperHM-H、以上東ソー株式会社製)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液はテトラヒドロフラン(THF)を使用し、0.3mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料は固形分で0.1gを10mLのTHFに溶解し、0.45μmのメンブレンフィルターでろ過したものを使用し、注入量は20μLとした。標準ポリスチレン(東ソー株式会社製、PStQuick A、PStQuick B、PStQuick C)より求めた検量線より換算して、Mw、Mnを求めた。なお、データ処理は東ソー株式会社製GPC8020モデルIIバージョン6.00を使用した。
Molecular weight:
Weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by GPC measurement. Specifically, a column (TSKgel SuperH-H, SuperH2000, SuperHM-H, SuperHM-H, manufactured by Tosoh Corporation) is used in series with the main body HLC8320GPC (manufactured by Tosoh Corporation), and the column temperature is The temperature was brought to 40°C. Tetrahydrofuran (THF) was used as an eluent at a flow rate of 0.3 mL/min, and a differential refractive index detector was used as a detector. A measurement sample was obtained by dissolving 0.1 g of solid content in 10 mL of THF, filtering through a 0.45 μm membrane filter, and using an injection amount of 20 μL. Mw and Mn were obtained by converting from a calibration curve obtained from standard polystyrene (manufactured by Tosoh Corporation, PStQuick A, PStQuick B, PStQuick C). For data processing, GPC8020 model II version 6.00 manufactured by Tosoh Corporation was used.
ガラス転移温度(Tg):
 JIS K7121規格に準じて、示差走査熱量測定装置(株式会社日立ハイテクサイエンス製、EXSTAR6000 DSC6200)にて10℃/分の昇温条件で測定を行った時のDSC・Tmg(ガラス状態とゴム状態の接線に対して変異曲線の中間温度)の温度で表した。
Glass transition temperature (Tg):
According to JIS K7121 standard, DSC Tmg (glass state and rubber state) when measured with a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., EXSTAR6000 DSC6200) at a temperature increase of 10 ° C./min. It was expressed as the temperature at the midpoint of the mutation curve relative to the tangent line.
溶剤溶解性:
 100mLのバイアル瓶に試料1gと、50mLのテトラヒドロフランを加え、室温で超音波拡散を1時間行った後、23時間以上室温で静置して溶解した。重合物が溶剤に溶解し、固形物が観察されない場合は溶剤溶解性を〇と評価した。一部溶け残りが生じ、ゲル状態として観察される場合は△とした。重合物が溶剤に溶解しない場合は×とした。
Solvent solubility:
1 g of the sample and 50 mL of tetrahydrofuran were added to a 100 mL vial, subjected to ultrasonic diffusion at room temperature for 1 hour, and then allowed to stand at room temperature for 23 hours or more to dissolve. Solvent solubility was evaluated as ◯ when the polymer dissolved in the solvent and no solid matter was observed. When a gel state was observed due to undissolved portions, the sample was evaluated as Δ. When the polymer did not dissolve in the solvent, it was marked as x.
衝撃強度:
 JIS K7110規格のノッチありアイゾット衝撃試験に従って測定を行った。試験機はデジタル衝撃試験機DG-UB型(株式会社東洋精機製作所製)を使用し、持ち上げ角を150°とした。ハンマーについては、公称振り子エネルギーが0.5J、1J、3Jのものから適したものを選び使用した。サンプルの寸法は厚さ4mm、長さ80mm、幅10mmとし、ノッチ加工はAノッチとなるように加工した。(ノッチ部の幅:8.0mm、半径:0.25mm)。サンプルにハンマーを振り落とし、測定後のハンマーの振り上がり角から衝撃強度を算出した。
Impact strength:
The measurement was performed according to the JIS K7110 standard notched Izod impact test. As a tester, a digital impact tester DG-UB type (manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used, and the lifting angle was set to 150°. A hammer having a nominal pendulum energy of 0.5J, 1J, or 3J was selected and used. The sample had a thickness of 4 mm, a length of 80 mm, and a width of 10 mm, and was notched to form an A notch. (Notch width: 8.0 mm, radius: 0.25 mm). A hammer was shaken off the sample, and the impact strength was calculated from the swing-up angle of the hammer after measurement.
曲げ強度及び曲げ弾性率:
 JIS K7074規格に従って3点曲げ試験(A法)にて、90度方向で測定した。試験機は(島津サイエンス製オートグラフAGS-X)を使用し、サンプルの寸法は厚さ2mm、長さ100mm、幅15mmとし、曲げスパンは70mmとし、試験速度1mm/minにて試験を実施した。
Flexural strength and modulus:
It was measured at 90 degrees in a three-point bending test (method A) according to JIS K7074. A test machine (Autograph AGS-X manufactured by Shimadzu Science) was used, and the sample had a thickness of 2 mm, a length of 100 mm, a width of 15 mm, a bending span of 70 mm, and a test speed of 1 mm/min. .
合成例1(エステル系化合物)
 撹拌装置、温度計、窒素ガス導入装置、冷却管、及び滴下装置を備えたガラス製反応容器に、室温下で、2官能フェノール化合物B5を162部、無水酢酸を105部、ピリジンを79部仕込み、窒素ガスを流し撹拌しながら60℃まで昇温し、2時間反応を行った。その後、150℃、1.3kPa(10torr)の条件で2時間減圧乾燥を行い、上記式(4)で表されるリン含有化合物B6を203部得た。
Synthesis Example 1 (ester compound)
162 parts of bifunctional phenol compound B5, 105 parts of acetic anhydride, and 79 parts of pyridine are charged at room temperature into a glass reaction vessel equipped with a stirrer, thermometer, nitrogen gas introduction device, cooling tube, and dropping device. The temperature was raised to 60° C. while nitrogen gas was flowed and the mixture was stirred, and the reaction was carried out for 2 hours. Then, it was dried under reduced pressure for 2 hours at 150° C. and 1.3 kPa (10 torr) to obtain 203 parts of the phosphorus-containing compound B6 represented by the above formula (4).
(前駆体混合物)
 A1を722部、A2を971部、B1を500部、B2を500部、それぞれはかりとり、ヘンシェルミキサーを用いて粉砕混合した。続いてバレル温度を190℃に予熱したS1KRCニーダー(株式会社栗本鐵工所製)を用いて溶融混合を行い、金属缶に全量回収し、撹拌しながら85℃まで冷却して、エポキシ樹脂組成物の前駆体混合物(F1)を得た。
(precursor mixture)
722 parts of A1, 971 parts of A2, 500 parts of B1, and 500 parts of B2 were each weighed and pulverized and mixed using a Henschel mixer. Subsequently, melt mixing is performed using an S1KRC kneader (manufactured by Kurimoto, Ltd.) preheated to a barrel temperature of 190°C, the entire amount is collected in a metal can, and cooled to 85°C while stirring to obtain an epoxy resin composition. to obtain a precursor mixture (F1).
 表1の処方の配合量(部)で配合し、同様の手順にて、エポキシ樹脂組成物の前駆体混合物(F2~F7)を得た。なお、表中の「モル比」は、エポキシ樹脂のエポキシ基に対するフェノール化合物及びエステル系化合物の官能基の当量比を表す。 The blending amounts (parts) of the formulation in Table 1 were blended, and the precursor mixtures (F2 to F7) of the epoxy resin composition were obtained in the same procedure. The "molar ratio" in the table represents the equivalent ratio of the functional groups of the phenol compound and the ester compound to the epoxy groups of the epoxy resin.
 F7に関しては、エポキシ樹脂が液状であるため、ヘンシェルミキサーではなく、プラネタリーミキサー及び三本ロールを用いて事前混合したものをニーダーに投入し、ニーダーのバレル温度を120℃に予熱し溶融混合を行い、金属缶に全量回収し、撹拌しながら85℃まで冷却して、エポキシ樹脂組成物の前駆体混合物(F7)を得た。 Regarding F7, since the epoxy resin is liquid, it is pre-mixed using a planetary mixer and three rolls instead of a Henschel mixer, and then put into a kneader, preheating the barrel temperature of the kneader to 120 ° C. to perform melt mixing. The entire amount was collected in a metal can and cooled to 85° C. while stirring to obtain a precursor mixture (F7) of an epoxy resin composition.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
実施例1
 予めC1(重合触媒)0.1部をD1(有機溶剤)0.2部に溶解して重合触媒溶液を得た。85℃に設定したプラネタリーミキサーに前駆体混合物(F1)を100部入れ、先の重合触媒溶液を加えて混合した。混合後は速やかに抜き出して、直ちに40℃以下に冷却して、エポキシ樹脂組成物(G1)を得た。
Example 1
A polymerization catalyst solution was obtained by previously dissolving 0.1 part of C1 (polymerization catalyst) in 0.2 parts of D1 (organic solvent). 100 parts of the precursor mixture (F1) was placed in a planetary mixer set at 85° C., and the previous polymerization catalyst solution was added and mixed. After mixing, the mixture was quickly extracted and immediately cooled to 40° C. or less to obtain an epoxy resin composition (G1).
 エポキシ樹脂組成物(G1)について、ヘイズ値(相溶性)を測定したところ、5%以上10%未満(<10)であり、均一に溶解していると判断した。85℃での粘度を測定したところ、7.5Pa・sであり、粘度倍加時間は55分であった。 When the haze value (compatibility) of the epoxy resin composition (G1) was measured, it was found to be 5% or more and less than 10% (<10), and it was determined to be uniformly dissolved. The viscosity at 85° C. was measured to be 7.5 Pa·s, and the viscosity doubling time was 55 minutes.
 得られたエポキシ樹脂組成物G1を85℃に加温撹拌して、あらかじめクリアランスを4mmにセットした鉄製クロムメッキ金型容器に流し込み、熱風循環式オーブン内で160℃、60分間熱重合を行い、熱可塑性樹脂である重合物(H1)を得た。
 得られた重合物のMwは63,000であり、Mnは16,000であり、溶剤溶解性は〇であった。エポキシ当量、ガラス転移温度(Tg)及び衝撃強度を測定し、その結果も表2に示す。
The obtained epoxy resin composition G1 was heated to 85° C. with stirring, poured into an iron chromium-plated mold container with a clearance of 4 mm in advance, and thermally polymerized at 160° C. for 60 minutes in a hot air circulating oven. A polymer (H1), which is a thermoplastic resin, was obtained.
The resulting polymer had an Mw of 63,000, an Mn of 16,000, and a solvent solubility of ◯. Epoxy equivalent weight, glass transition temperature (Tg) and impact strength were measured and the results are also shown in Table 2.
実施例2~9、比較例1~7
 表2の処方の配合量(部)で配合し、実施例1と同様の操作で、エポキシ樹脂組成物及び重合物(G2~G16、H2~H16)を得た。なお、G10~G16、H10~H16は比較例である。
 得られたエポキシ樹脂組成物及び重合物(G2~G16、H2~H16)について、実施例1と同様に、各物性の測定を行い、その評価結果を表2に示した。
Examples 2-9, Comparative Examples 1-7
Epoxy resin compositions and polymers (G2 to G16, H2 to H16) were obtained in the same manner as in Example 1 by blending in the amounts (parts) of the formulation shown in Table 2. G10 to G16 and H10 to H16 are comparative examples.
The physical properties of the obtained epoxy resin compositions and polymers (G2 to G16, H2 to H16) were measured in the same manner as in Example 1, and the evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
実施例10
 85℃に予熱したホットプレートの上に離型処理された離型紙を、離型面が上になるように固定し、実施例1で得られたエポキシ樹脂組成物(G1)100重量部を離型紙上に乗せてから、85℃に予熱したバーコーターを用いて樹脂の面積重量が79g/mになるように塗工した。塗工後直ちにホットプレート上から取り外し空冷して、エポキシ樹脂組成物シートを得た。
 続いて、得られたエポキシ樹脂組成物シート上に、繊維の面積重量が153g/mとなるように炭素繊維(E)を貼り合わせ、90℃に予熱したホットプレスを用いて面圧が0.5MPaになるように圧力を加え、1分後に取り出して空冷して、Rc=34%のプリプレグ(I1)を得た。
Example 10
A release paper that has been subjected to a release treatment is fixed on a hot plate preheated to 85°C so that the release surface faces upward, and 100 parts by weight of the epoxy resin composition (G1) obtained in Example 1 is removed. After being placed on the pattern paper, it was coated using a bar coater preheated to 85° C. so that the area weight of the resin was 79 g/m 2 . Immediately after coating, the sheet was removed from the hot plate and air-cooled to obtain an epoxy resin composition sheet.
Subsequently, the carbon fibers (E) are laminated on the obtained epoxy resin composition sheet so that the area weight of the fibers is 153 g / m 2 , and the surface pressure is 0 using a hot press preheated to 90 ° C. A pressure of 0.5 MPa was applied, and after 1 minute, it was taken out and air-cooled to obtain a prepreg (I1) having an Rc of 34%.
 プリプレグ(I1)を繊維の配向方向を同一にして13枚積層した後、離型フィルムを上下面に貼り付け、厚さ3mmのアルミ板で挟み込んだ。プリプレグを挟み込んだアルミ板とカプラーをバグフィルムで包み込んだのち、カプラーと真空ポンプを接続し、バグフィルム内の空気を脱気した。あらかじめ160℃に予熱している熱風循環式オーブンにバグを静置し、真空引きを維持したまま硬化を実施し、厚さ2mmの一方向繊維強化プラスチック(J1)を成型した。なお、硬化の条件は160℃、240分とした。 After laminating 13 sheets of prepreg (I1) with the same fiber orientation direction, release films were attached to the upper and lower surfaces and sandwiched between 3 mm thick aluminum plates. After wrapping the coupler and the aluminum plate with the prepreg sandwiched between them in a bag film, the coupler and the vacuum pump were connected to deaerate the air in the bag film. The bag was left still in a hot air circulating oven preheated to 160° C., and hardened while being vacuumed to mold a unidirectional fiber reinforced plastic (J1) having a thickness of 2 mm. The curing conditions were 160° C. and 240 minutes.
 得られた一方向強化繊維プラスチック(J1)の樹脂成分について分子量を測定した結果、Mwは71,000、Mnは17,000であった。一方向強化繊維プラスチックのガラス転移温度(Tg)を測定した結果、147℃であった。曲げ強度及び曲げ弾性率を測定した結果、76MPa、6.1GPaであった。 As a result of measuring the molecular weight of the resin component of the obtained unidirectionally reinforced fiber plastic (J1), Mw was 71,000 and Mn was 17,000. As a result of measuring the glass transition temperature (Tg) of the unidirectionally reinforced fiber plastic, it was 147°C. As a result of measuring the bending strength and bending elastic modulus, they were 76 MPa and 6.1 GPa.
 得られた一方向強化繊維プラスチック(J1)について、10mm幅×100mm長さに切断し、200℃に予熱した熱風循環式オーブンに10分間静置した後、手曲げにより2次加工性を確認したところ、容易に曲げ加工ができることを確認した。 The resulting unidirectionally reinforced fiber plastic (J1) was cut into pieces of 10 mm wide and 100 mm long, left to stand in a hot air circulating oven preheated to 200°C for 10 minutes, and then hand-bent to confirm secondary workability. By the way, it was confirmed that bending can be easily performed.
比較例8
 比較例1で得られたエポキシ樹脂組成物(G13)100部に対して、85℃に予熱した状態で有機溶剤(D)20部を添加、混合することでエポキシ樹脂組成物(G17)を得た。エポキシ樹脂組成物の65℃での粘度を測定したところ、9.5Pa・sであり、粘度倍加時間は50分であった。
Comparative example 8
An epoxy resin composition (G17) was obtained by adding 20 parts of an organic solvent (D) to 100 parts of the epoxy resin composition (G13) obtained in Comparative Example 1 while preheating to 85°C and mixing. Ta. When the viscosity of the epoxy resin composition was measured at 65° C., it was 9.5 Pa·s, and the viscosity doubling time was 50 minutes.
 ホットプレート及びバーコーターの予熱温度を65℃にする以外は実施例10と同様の手順により、エポキシ樹脂組成物シート、プリプレグ(I2)、一方向繊維強化プラスチック(J2)を得た。実施例10と同様の評価を行った。結果を表3に示す。 An epoxy resin composition sheet, prepreg (I2), and unidirectional fiber reinforced plastic (J2) were obtained by the same procedure as in Example 10, except that the hot plate and bar coater were preheated to 65°C. The same evaluation as in Example 10 was performed. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表3より、塗工粘度、粘度倍加時間の調整のため、樹脂組成物に有機溶剤を添加すると重合性、耐熱性、及び機械強度が悪化することが確認できる。
 本発明のエポキシ樹脂組成物を用いることで、現場重合でも十分に重合反応が進み、耐熱性が高く、高い繊維含有率を有する熱可塑性CFRPを得ることができる。
From Table 3, it can be confirmed that the polymerizability, heat resistance and mechanical strength deteriorate when an organic solvent is added to the resin composition in order to adjust the coating viscosity and viscosity doubling time.
By using the epoxy resin composition of the present invention, the polymerization reaction proceeds sufficiently even in situ polymerization, and a thermoplastic CFRP having high heat resistance and a high fiber content can be obtained.
 本発明のエポキシ樹脂組成物は、現場重合型樹脂組成物として有用であり、ボイド含有率が低く、耐熱性、耐衝撃性に優れた熱可塑性繊維強化プラスチック(FRP)を提供することができる。
 
 
INDUSTRIAL APPLICABILITY The epoxy resin composition of the present invention is useful as an in-situ polymerizable resin composition, and can provide a thermoplastic fiber reinforced plastic (FRP) having a low void content and excellent heat resistance and impact resistance.

Claims (15)

  1.  1分子中にエポキシ基を2つ有するエポキシ化合物(A)、1分子中にフェノール性水酸基及び/又は活性エステル基を官能基として2つ有する化合物(B)、並びに、重合触媒(C)を必須成分として含み、重合反応によって熱可塑性エポキシ樹脂となるエポキシ樹脂組成物であって、重合触媒(C)として下記式(1)で表されるN-置換アミノピリジン系化合物の少なくとも1種を含有することを特徴とするエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、R1及びR2は独立に、炭素数1~12の炭化水素基であり、更にR1とR2が相互に結合して複素環を形成してもよく、結合手として、-O-、-NH-、又は-NR4-があってもよい。但し、R4は炭素数1~12の炭化水素基である。R3は独立に、炭素数1~12の炭化水素基であり、kは0~4の整数である。
    An epoxy compound (A) having two epoxy groups in one molecule, a compound (B) having two phenolic hydroxyl groups and/or active ester groups as functional groups in one molecule, and a polymerization catalyst (C) are essential. As a component, an epoxy resin composition that becomes a thermoplastic epoxy resin by a polymerization reaction, and contains at least one N-substituted aminopyridine compound represented by the following formula (1) as a polymerization catalyst (C). An epoxy resin composition characterized by:
    Figure JPOXMLDOC01-appb-C000001
    In the formula, R1 and R2 are each independently a hydrocarbon group having 1 to 12 carbon atoms, and further R1 and R2 may be bonded together to form a heterocyclic ring, and the bonds are -O-, - NH- or -NR4- may be present. However, R4 is a hydrocarbon group having 1 to 12 carbon atoms. R3 is independently a hydrocarbon group having 1-12 carbon atoms and k is an integer of 0-4.
  2.  エポキシ化合物(A)と化合物(B)との配合量は、エポキシ化合物(A)1モルに対して化合物(B)0.90~1.10モルである請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the compounding amount of the epoxy compound (A) and the compound (B) is 0.90 to 1.10 mol of the compound (B) per 1 mol of the epoxy compound (A). .
  3.  重合触媒(C)を、エポキシ化合物(A)と化合物(B)の総量100重量部に対して0.01~10重量部使用する請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the polymerization catalyst (C) is used in an amount of 0.01 to 10 parts by weight per 100 parts by weight of the total amount of the epoxy compound (A) and the compound (B).
  4.  重合触媒(C)が、4-(ジメチルアミノ)ピリジン、4-ピロリジノピリジン、4-ピペリジノピリジン、4-(4-メチルピペリジノ)ピリジン、4-モルホリノピリジン、及び4-ピペラジノピリジンからなる群から選択される少なくとも1種の化合物である請求項1に記載のエポキシ樹脂組成物。 Polymerization catalyst (C) from 4-(dimethylamino)pyridine, 4-pyrrolidinopyridine, 4-piperidinopyridine, 4-(4-methylpiperidino)pyridine, 4-morpholinopyridine, and 4-piperazinopyridine The epoxy resin composition according to claim 1, which is at least one compound selected from the group consisting of:
  5.  エポキシ化合物(A)及び/又は化合物(B)の一部又は全部が、リン含有化合物である請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein part or all of the epoxy compound (A) and/or compound (B) is a phosphorus-containing compound.
  6.  得られる熱可塑性エポキシ樹脂のリン含有率が1~6重量%である請求項5に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 5, wherein the thermoplastic epoxy resin obtained has a phosphorus content of 1 to 6% by weight.
  7.  有機溶剤を含まないか、又は有機溶剤を含む場合、有機溶剤の含有量がエポキシ樹脂組成物の0.01重量%以上10重量%以下であり、85℃に加温した際の粘度が0.1 Pa・s以上100Pa・s以下である請求項1に記載のエポキシ樹脂組成物。 If it does not contain an organic solvent, or if it contains an organic solvent, the content of the organic solvent is 0.01% by weight or more and 10% by weight or less of the epoxy resin composition, and the viscosity when heated to 85° C. is 0.00%. The epoxy resin composition according to claim 1, wherein the viscosity is 1 Pa·s or more and 100 Pa·s or less.
  8.  得られる熱可塑性エポキシ樹脂のエポキシ当量が4,000~200,000g/eq.である請求項1に記載のエポキシ樹脂組成物。 The epoxy equivalent of the obtained thermoplastic epoxy resin is 4,000 to 200,000 g/eq. The epoxy resin composition according to claim 1.
  9.  請求項1~8のいずれか1項に記載のエポキシ樹脂組成物と強化繊維を含むことを特徴とする強化繊維含有エポキシ樹脂組成物。 A reinforcing fiber-containing epoxy resin composition comprising the epoxy resin composition according to any one of claims 1 to 8 and reinforcing fibers.
  10.  強化繊維として炭素繊維を50~80重量%の割合で含む請求項9に記載の強化繊維含有エポキシ樹脂組成物。 The reinforcing fiber-containing epoxy resin composition according to claim 9, which contains 50 to 80% by weight of carbon fiber as the reinforcing fiber.
  11.  請求項1~8のいずれか1項に記載のエポキシ樹脂組成物と強化繊維を含む混合物からなることを特徴とするプリプレグ。 A prepreg characterized by comprising a mixture containing the epoxy resin composition according to any one of claims 1 to 8 and reinforcing fibers.
  12.  強化繊維として炭素繊維を、50~80重量%の割合で含む請求項11に記載のプリプレグ。 The prepreg according to claim 11, which contains 50 to 80% by weight of carbon fibers as reinforcing fibers.
  13.  請求項9に記載の強化繊維含有エポキシ樹脂組成物を用いた繊維強化プラスチック。 A fiber-reinforced plastic using the reinforcing fiber-containing epoxy resin composition according to claim 9.
  14.  請求項11に記載のプリプレグを用いた繊維強化プラスチック。 A fiber-reinforced plastic using the prepreg according to claim 11.
  15.  請求項1~8のいずれか1項に記載のエポキシ樹脂組成物から得られる熱可塑性エポキシ樹脂であって、重量平均分子量が30,000~200,000であり、ノッチありアイゾット衝撃試験により測定される衝撃強度が12kJ/m以上であることを特徴とする熱可塑性エポキシ樹脂。 A thermoplastic epoxy resin obtained from the epoxy resin composition according to any one of claims 1 to 8, having a weight average molecular weight of 30,000 to 200,000 and measured by a notched Izod impact test. A thermoplastic epoxy resin having an impact strength of 12 kJ/m 2 or more.
PCT/JP2023/006130 2022-03-03 2023-02-21 Epoxy resin composition, reinforcing fiber-containing epoxy resin composition, prepreg, fiber reinforced plastic employing same, and thermoplastic epoxy resin WO2023167049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-032674 2022-03-03
JP2022032674 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023167049A1 true WO2023167049A1 (en) 2023-09-07

Family

ID=87883556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006130 WO2023167049A1 (en) 2022-03-03 2023-02-21 Epoxy resin composition, reinforcing fiber-containing epoxy resin composition, prepreg, fiber reinforced plastic employing same, and thermoplastic epoxy resin

Country Status (2)

Country Link
TW (1) TW202344544A (en)
WO (1) WO2023167049A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181371A (en) * 1999-12-27 2001-07-03 Toshiba Chem Corp Build-up type multilayer printed circuit board, resin composition therefor, and resin film
JP2002171074A (en) * 2000-12-04 2002-06-14 Toshiba Chem Corp Built-up multi-layered printed wiring board, and resin composition and resin film used for the same
JP2004359867A (en) * 2003-06-05 2004-12-24 Hitachi Chem Co Ltd Insulation resin composition, prepreg produced by using the same, conductor foil with resin, conductor-clad laminated board and method for producing multilayer circuit board
JP2005238758A (en) * 2004-02-27 2005-09-08 Nitto Boseki Co Ltd Forming method of fiber reinforced resin and covering sheet formed by it
WO2010079832A1 (en) * 2009-01-09 2010-07-15 ナガセケムテックス株式会社 Process for production of thermoplastic cured epoxy resin with transparency to visible light, and thermoplastic epoxy resin composition
WO2017094633A1 (en) * 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 In situ polymerization type thermoplastic prepreg, thermoplastic composite and method for producing same
JP2019157027A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and method for producing the same
JP2020032673A (en) * 2018-08-31 2020-03-05 宇部エクシモ株式会社 Manufacturing method of fiber-reinforced thermoplastic resin prepreg, prepreg obtained by the manufacturing method, and manufacturing method of fiber-reinforced thermoplastic resin
JP2020063200A (en) * 2018-10-16 2020-04-23 旭化成株式会社 N-alkyl substituted aminopyridine phthalate and epoxy resin composition comprising the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181371A (en) * 1999-12-27 2001-07-03 Toshiba Chem Corp Build-up type multilayer printed circuit board, resin composition therefor, and resin film
JP2002171074A (en) * 2000-12-04 2002-06-14 Toshiba Chem Corp Built-up multi-layered printed wiring board, and resin composition and resin film used for the same
JP2004359867A (en) * 2003-06-05 2004-12-24 Hitachi Chem Co Ltd Insulation resin composition, prepreg produced by using the same, conductor foil with resin, conductor-clad laminated board and method for producing multilayer circuit board
JP2005238758A (en) * 2004-02-27 2005-09-08 Nitto Boseki Co Ltd Forming method of fiber reinforced resin and covering sheet formed by it
WO2010079832A1 (en) * 2009-01-09 2010-07-15 ナガセケムテックス株式会社 Process for production of thermoplastic cured epoxy resin with transparency to visible light, and thermoplastic epoxy resin composition
WO2017094633A1 (en) * 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 In situ polymerization type thermoplastic prepreg, thermoplastic composite and method for producing same
JP2019157027A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and method for producing the same
JP2020032673A (en) * 2018-08-31 2020-03-05 宇部エクシモ株式会社 Manufacturing method of fiber-reinforced thermoplastic resin prepreg, prepreg obtained by the manufacturing method, and manufacturing method of fiber-reinforced thermoplastic resin
JP2020063200A (en) * 2018-10-16 2020-04-23 旭化成株式会社 N-alkyl substituted aminopyridine phthalate and epoxy resin composition comprising the same

Also Published As

Publication number Publication date
TW202344544A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP3729821B2 (en) Non-halogen resin composition
JP5720118B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
US9834671B2 (en) Curable epoxy composition and a composite made therefrom
TWI749020B (en) Epoxy resin composition, cured product and composite material
JP5633743B2 (en) Method for producing cured thermoplastic epoxy resin having transparency to visible light and thermoplastic epoxy resin composition
EP2531539B1 (en) Resin composition comprising isosorbide containing saturated polymer
WO2020003824A1 (en) Epoxy resin composition and cured product thereof
JPWO2006046534A1 (en) Heat resistant composite material
JP6769540B2 (en) Epoxy resin composition, curable resin composition and fiber reinforced composite material
JP6923090B2 (en) Curable composition, cured product, fiber reinforced composite material, molded product and its manufacturing method
JPH0359067A (en) Optically anisotropic polyester resin composition
WO2023167049A1 (en) Epoxy resin composition, reinforcing fiber-containing epoxy resin composition, prepreg, fiber reinforced plastic employing same, and thermoplastic epoxy resin
CN114729105A (en) Matrix resins with high transparency, low yellowing and high glass transition temperature for laminates
JP3353478B2 (en) Resin composition and method for producing the same
JP2024005422A (en) Epoxy resin composition, prepreg and fiber-reinforced plastic including the same
JP2023049343A (en) Epoxy resin composition and fiber-reinforced plastic
WO2022209715A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced plastic obtained using these
WO2017033632A1 (en) Epoxy resin composition and fiber-reinforced composite material
JP2023048465A (en) Epoxy resin composition, reinforcing fiber-containing epoxy resin composition, prepreg, fiber-reinforced plastic using these, and thermoplastic plastic
JPWO2020110528A1 (en) Two-component curable epoxy resin composition, cured product, fiber-reinforced composite material and molded product
JP2001139774A (en) Epoxy resin composition
WO2022201985A1 (en) Modified epoxy resin, manufacturing method therefor, curable resin composition, cured product thereof, coating material, and adhesive agent
JP2581242B2 (en) Copolyester and composition thereof
CN116096793A (en) Precursor mixture for in-situ polymerization type thermoplastic epoxy resin, epoxy resin composition sheet, prepreg, and in-situ polymerization type thermoplastic fiber-reinforced plastic using the same
JP2023180708A (en) Curable resin composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763308

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2024504630

Country of ref document: JP