WO2022201985A1 - Modified epoxy resin, manufacturing method therefor, curable resin composition, cured product thereof, coating material, and adhesive agent - Google Patents

Modified epoxy resin, manufacturing method therefor, curable resin composition, cured product thereof, coating material, and adhesive agent Download PDF

Info

Publication number
WO2022201985A1
WO2022201985A1 PCT/JP2022/006176 JP2022006176W WO2022201985A1 WO 2022201985 A1 WO2022201985 A1 WO 2022201985A1 JP 2022006176 W JP2022006176 W JP 2022006176W WO 2022201985 A1 WO2022201985 A1 WO 2022201985A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
acid
formula
modified epoxy
group
Prior art date
Application number
PCT/JP2022/006176
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 杉山
隼人 小笠原
航 深山
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2023508781A priority Critical patent/JPWO2022201985A1/ja
Publication of WO2022201985A1 publication Critical patent/WO2022201985A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to a modified epoxy resin, a curable resin composition containing the same, a cured product, and a paint or adhesive containing the cured product.
  • Epoxy resins are used in many applications, mainly in the fields of paints, civil engineering, and electricity, due to their excellent electrical properties, adhesiveness, heat resistance, and the like. Epoxy resins used in these applications are generally used as adhesives or paints by curing with a curing agent. In recent years, in applications such as paints, electrical and electronic materials, adhesives, CFRP, etc., various advanced functions are progressing, and the cured products containing conventionally used epoxy resins are hard and brittle. It is becoming difficult to meet the performance required in applications. In order to improve this hard and brittle property, conventionally, flexible epoxy resins have been studied.
  • a modified epoxy resin obtained by reacting an acid-terminated polyester with a bifunctional epoxy resin is known. and then reacting the adduct with an acid-terminated polyester having a ring to obtain a flexible modified epoxy resin.
  • a modified epoxy equivalent having an epoxy equivalent in the range of 450 to 800 g/equivalent is obtained by reacting an acid-terminated polyester obtained from an aliphatic divalent carboxylic acid and an aliphatic dihydric alcohol with a bifunctional epoxy resin.
  • Epoxy resins are disclosed, and in Patent Document 3, a block copolymer composed of 5 to 95% by weight of a polyester having carboxyl groups at both ends and 5 to 95% by weight of an epoxy resin is mainly used as a raw material for a heat laminating adhesive for cans.
  • a modified epoxy resin is described as a component, and a modified epoxy resin obtained by reacting an acid-terminated polyester obtained from an aliphatic dicarboxylic acid and an aliphatic dihydric alcohol with a bifunctional aromatic epoxy resin is disclosed.
  • the modified epoxy resin described in Patent Document 1 cannot sufficiently control the purity of the acid terminal when producing the raw material acid-terminated polyester because it uses a diol component with a high boiling point.
  • the flexibility of the modified epoxy resin obtained was insufficient.
  • Patent Document 2 since a low-molecular-weight acid-terminated polyester is used, the ratio of the skeleton derived from the bifunctional epoxy resin component contained in the modified epoxy resin is increased, resulting in insufficient flexibility.
  • the high-molecular-weight resin described in Patent Document 3 has a high skeleton ratio derived from a bifunctional epoxy resin contained in the high-molecular-weight resin, and has insufficient flexibility.
  • the present invention provides a modified epoxy resin that has excellent flexibility and adhesiveness, has good reactivity with a curing agent, and can exhibit properties even when blended with other epoxy resins, including this modified epoxy resin.
  • An object of the present invention is to provide a curable resin composition and a cured product.
  • n is the average number of repetitions and is a positive number of 1 to 10.
  • X is a divalent group represented by the following formula (2)
  • Y is the following formula (3 ) is a divalent group represented by (In formula (2) above, R 1 is a hydrocarbon group having 2 to 40 carbon atoms and may have a heteroatom. p is a repeating number and is an integer of 0 to 10.)
  • R 2 is a hydrocarbon group having 2 to 40 carbon atoms, may have a heteroatom, and the proportion of the aliphatic hydrocarbon group in all of R 2 is 50 mol% or more.
  • R 3 is a hydrocarbon group having 2 to 30 carbon atoms and may have a heteroatom, q is a repeating number and is an integer of 1 to 50.)
  • [2] The modified epoxy resin according to [1], wherein the proportion of aliphatic hydrocarbon groups having 3 or less carbon atoms in the entirety of R 3 in formula (3) is 50 mol % or more.
  • [3] The modified epoxy resin according to [1] or [2], wherein R 1 contains a divalent group represented by the following formula (4) and/or the following formula (5).
  • R 4 is a single bond, or -CH 2 -, -C(CH 3 ) 2 -, -CH(CH 3 )-, -S-, -SO 2 -, -O- , and —CO—
  • R 5 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group; may be different.
  • R 6 is selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, each of which may be the same or different, and part of R 6 is , may form a ring condensed to this benzene ring.
  • [4] The modified epoxy resin according to any one of [1] to [3], wherein R 1 is a divalent group represented by the following formula (6).
  • R 7 in the above formula (6) is a hydrocarbon group having 1 to 10 carbon atoms. r is the number of repetitions and is an integer of 0 to 20.
  • Mw/Mn molecular weight distribution
  • a curable resin composition comprising the modified epoxy resin according to any one of [1] to [5] and a curing agent.
  • a paint comprising the cured product of [8].
  • An adhesive comprising the cured product of [8].
  • a modified epoxy resin that is excellent in flexibility and adhesiveness, has good reactivity with a curing agent, and can exhibit properties even when blended with other epoxy resins, and the modified epoxy resin.
  • a curable resin composition and a cured product thereof can be provided.
  • the modified epoxy resin, curable resin composition and cured product of the present invention can be applied and developed in fields such as electric/electronic materials, FRP (fiber reinforced resin), adhesives and paints.
  • the present invention is not limited to the following description, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
  • a numerical value or a physical property value is sandwiched before and after the " ⁇ "
  • it is used to include the values before and after it.
  • the term “bifunctional” and “divalent” of the compound means that it is substantially bifunctional, and trifunctional if it does not induce gelation during production of the modified epoxy resin, i.e., 5% by weight or less. It may contain the above compounds.
  • a modified epoxy resin (hereinafter sometimes simply referred to as a modified epoxy resin), which is one embodiment of the present invention, is represented by the formula (1), wherein a structural unit (X) derived from an epoxy resin and a structure derived from an acid-terminated polyester are A modified epoxy resin containing a unit (Y), having a weight average molecular weight of 3000 to 50000 and an epoxy equivalent of 500 to 10000 g / eq, and a structural unit derived from the acid-terminated polyester in formula (1) The proportion of (Y) is 50 to 90% by weight.
  • n is the average number of repetitions and is a positive number of 1-10.
  • X is a divalent group represented by the following formula (2)
  • Y is a divalent group represented by the following formula (3).
  • R 1 is a hydrocarbon group having 2 to 40 carbon atoms, preferably 2 to 38 carbon atoms, more preferably 2 to 35 carbon atoms, and may have a heteroatom.
  • the hydrocarbon group includes a hydrocarbon group containing an alicyclic skeleton, an aromatic hydrocarbon group, and a chain hydrocarbon group.
  • Hydrocarbon groups containing an alicyclic skeleton include cycloalkylene groups, alkylenebiscycloalkylene groups, alkyl-substituted cycloalkylene groups, alkylenebis(alkyl-substituted cycloalkylene) groups, and the like.
  • the aromatic hydrocarbon group may be any hydrocarbon group containing an aromatic ring, such as an alkylenebisphenylene group, a phenylene group, a bisphenylene group, an oxybisphenylene group, a sulfonylbisphenylene group, a carbonylbisphenylene group, and Alkyl-substituted groups and the like can be mentioned.
  • chain hydrocarbon group examples include an alkylene group and an alkylene group containing an oxygen atom. Among them, aromatic hydrocarbon groups and chain hydrocarbon groups are more preferable.
  • p is the number of repetitions and is an integer from 0 to 10;
  • R 2 is a hydrocarbon group having 2 to 40 carbon atoms, may have a heteroatom, and the proportion of aliphatic hydrocarbon groups in all of R 2 is 50 mol% or more.
  • R 3 is a hydrocarbon group having 2 to 30 carbon atoms and may have a heteroatom.
  • q is the number of repetitions and is an integer of 1-50.
  • the hydrocarbon group for R 2 is not particularly limited, but includes, for example, linear or branched aliphatic hydrocarbon groups, alicyclic hydrocarbon groups and aromatic hydrocarbon groups, aromatic hydrocarbon groups, Straight-chain aliphatic hydrocarbon groups are preferred.
  • the number of carbon atoms in the hydrocarbon group for R 2 is preferably 3-35, more preferably 3-25, even more preferably 5-20, and particularly preferably 6-15.
  • the proportion of the aliphatic hydrocarbon groups present in all R 2 is 50 mol % or more, preferably 60 mol % or more, and more preferably 80 mol % or more. As this value increases, the flexibility tends to improve when the modified epoxy resin of the present invention is cured together with the cured product.
  • the hydrocarbon group for R 3 is not particularly limited, but includes, for example, a linear or branched aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, an aromatic hydrocarbon group, Straight-chain aliphatic hydrocarbon groups are preferred.
  • the proportion of aliphatic hydrocarbon groups having 3 or less carbon atoms in all of R 3 is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 80 mol% or more, and particularly preferably 95 mol% or more. As this value increases, the flexibility tends to improve when the modified epoxy resin of the present invention is cured together with the cured product.
  • the modified epoxy resin of this embodiment has excellent adhesiveness, flexibility, and good reactivity with the curing agent. This effect is due to the presence of an ester bond in the molecule, the adjustment of the ratio of the structural unit Y in the modified epoxy resin to a specific amount, and the structural unit (X) and the structural unit ( It is expressed by adjusting Y) to a specific structure.
  • the epoxy equivalent of the modified epoxy resin is 500 to 10000 g/eq, preferably 800 g/eq or more, more preferably 1000 g/eq or more, still more preferably 1300 g/eq or more, and particularly preferably 1400 g/eq or more.
  • the larger the epoxy equivalent the better the flexibility, but if the epoxy equivalent is less than 500 g/eq, the distance between the cross-linking points of the cured product becomes short, and the three-dimensional network structure becomes excessively dense. It is not preferable because there is a possibility that it will become hard and brittle.
  • it is preferably 6000 g/eq or less, more preferably 5000 g/eq or less, and even more preferably 4000 g/eq or less.
  • the smaller the epoxy equivalent the better the adhesiveness, but if it exceeds 10,000 g/eq, the distance between the cross-linking points becomes long and a dense three-dimensional network structure cannot be formed, which may reduce the adhesive strength. I don't like it.
  • the weight average molecular weight (Mw) of the modified epoxy resin is 3000 to 50000, preferably 4000 or more, more preferably 5500 or more, and even more preferably 7000 or more. On the other hand, it is more preferably 40,000 or less, more preferably 25,000 or less, and particularly preferably 20,000 or less. If the weight-average molecular weight exceeds 50,000, the distance between cross-linking points becomes long and a dense three-dimensional network structure cannot be formed, which tends to reduce the adhesive strength, which is not preferable.
  • the upper limit is preferably 20.0 or less, more preferably 15.0 or less, even more preferably 10.0 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the epoxy resin can be measured by gel permeation chromatography (GPC method). More detailed method examples are described in the examples below.
  • the modified epoxy resin exhibits excellent effects when the proportion of the acid-terminated polyester-derived structural unit (Y) in the above formula (1) is within a specific range.
  • the ratio of structural units (Y) in the modified epoxy resin is represented by the following formula.
  • Proportion (% by weight) of structural unit (Y) (weight of structural unit (Y)) x 100)/weight of modified epoxy resin
  • the proportion of the structural unit (Y) is 50 to 90% by weight, preferably 88% by weight or less, more preferably 85% by weight or less, and even more preferably 83% by weight or less. If the ratio of the structural unit (Y) exceeds 90% by weight, the ratio of the epoxy compound (A) to the acid-terminated polyester (B) is small when producing the modified epoxy resin, so there is a risk that the reaction will not proceed uniformly. There is On the other hand, the proportion of the structural unit (Y) is preferably 55% by weight, more preferably 60% by weight, and even more preferably 70% by weight or more.
  • the ratio of the structural unit (Y) is less than 50% by weight, the properties derived from the flexible polyester skeleton exhibited by the modified epoxy resin are impaired, and the properties of the epoxy compound (A) tend to be greatly reflected. Elongation tends to deteriorate.
  • the modified epoxy resin has the structure of formula (1) above, where n is the average number of repetitions and is a positive number of 1 to 10, preferably a positive number of 1 to 8, more preferably It is a positive number from 1 to 5.
  • X is a structural unit derived from a bifunctional epoxy compound, specifically a divalent group represented by formula (2).
  • R 1 is a hydrocarbon group having 2 to 40 carbon atoms and may have a heteroatom.
  • p is the number of repetitions and is an integer of 0 to 10, preferably 1 to 8, more preferably 1 to 5.
  • R 1 preferably contains a divalent group represented by the following formula (4) and/or the following formula (5).
  • R 4 is a single bond, or —CH 2 —, —C(CH 3 ) 2 —, —CH(CH 3 )—, —S—, —SO 2 —, —O—, and It is a divalent group selected from the group consisting of groups represented by -CO-.
  • R 5 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group, each of which may be the same or different.
  • R 6 is selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, each of which may be the same or different, and part of R 6 is bonded to each other to A ring condensed to the benzene ring may be formed.
  • R 1 includes formula (4) and/or formula (5)
  • the total content of R 1 is preferably 50% by weight or more, more preferably 65% by weight or more, still more preferably 75% by weight or more, and particularly preferably is 85% by weight or more.
  • R 1 is also preferably a divalent group represented by formula (6).
  • R 7 is a hydrocarbon group having 1 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms.
  • the hydrocarbon group is preferably an alkylene group, a cycloalkylene group or an aromatic hydrocarbon group, more preferably an alkylene group.
  • the alkylene group is preferably an ethylene group, a propylene group, a trimethylene group, a butanediyl group, a pentanediyl group, a hexanediyl group, a heptanediyl group or an octanediyl group, more preferably an ethylene group, a propylene group, a butanediyl group, a pentanediyl group or a hexanediyl group.
  • An ethylene group and a propylene group are particularly preferred.
  • r is a repetition number and is an integer from 0 to 20;
  • the modified epoxy resin can also be produced by reacting the epoxy compound (A) represented by formula (7) with the acid-terminated polyester (B) represented by formula (8).
  • R 1 and p have the same meanings as in formula (2) above.
  • R 2 , R 3 and q have the same meanings as in formula (3) above.
  • Epoxy compound (A) The epoxy compound (A) represented by formula (7) is a compound having two epoxy groups in the molecule.
  • Examples of bifunctional epoxy compounds having two epoxy groups include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol E diglycidyl ether, bisphenol Z diglycidyl ether, bisphenol S diglycidyl ether, and bisphenol AD diglycidyl ether.
  • the epoxy compound (A) is not particularly limited, but from the viewpoint of being able to control adhesion, bisphenol-based diglycidyl ethers, benzenediol-based diglycidyl ethers, biphenol-based diglycidyl ethers, polyalkylene polyol-based diglycidyl ethers, Alkylene glycol diglycidyl ethers are preferably used, and polyalkylene polyol-based diglycidyl ethers and alkylene glycol diglycidyl ethers are particularly preferably used.
  • the epoxy equivalent of the epoxy compound (A) is not particularly limited, it is preferably 100 g/eq to 1200 g/eq. From the viewpoints of handling, improvement of flexibility and adhesiveness, it is more preferably 110 g/eq to 1000 g/eq, still more preferably 120 g/eq to 800 g/eq.
  • the properties of the epoxy compound (A) are not particularly limited, and may be solid, liquid, or semi-solid, preferably liquid or semi-solid.
  • the epoxy compounds (A) listed above can be used alone or in combination of multiple types.
  • a preferred combination is a combination selected from bisphenol-based diglycidyl ethers, benzenediol-based diglycidyl ethers, biphenol-based diglycidyl ethers, polyalkylenepolyol-based diglycidyl ethers, and alkylene glycol diglycidyl ethers.
  • the acid-terminated polyester (B) represented by formula (8) is a carboxylic acid-terminated polyester resin produced by polycondensation of a dihydric carboxylic acid and a dihydric alcohol.
  • R 2 in the above formula (3) corresponds to a repeating structural unit derived from a divalent carboxylic acid described later in the acid-terminated polyester (B)
  • R 3 is 2 in the acid-terminated polyester (B). It corresponds to a repeating unit derived from a functional alcohol, and in the above formula (3), R 2 and R 3 may also be referred to as compound units for compounds from which the respective repeating units are derived.
  • the divalent carboxylic acid is not particularly limited, it includes the following. Isomers of terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid (specifically 1,4-, 1,5-, 1,6-, 1,7-, 2,5-, 2,6-, 2,7 -, 2,8-), succinic acid, sebacic acid, isodecylsuccinic acid, dodecenylsuccinic acid, maleic acid, adipic acid, furandicarboxylic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanedioic acid , dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, thapsic acid, heptadecanedioic acid, dipropylmalonic acid, 3-ethyl-3-methylglutaric acid, 3,3-t
  • the divalent carboxylic acid it is preferable to use an aliphatic divalent carboxylic acid from the viewpoint of increasing flexibility.
  • the amount of the aliphatic dicarboxylic acid used is preferably 50 mol% or more, more preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and 90 mol% or more of the total divalent carboxylic acid component. It is particularly preferred for this reason.
  • the dihydric alcohol is not particularly limited, but includes the following. Ethylene glycol, polyethylene glycol, 1,2-propylene glycol, 1,3-propanediol, polypropylene glycol, 1,4-butanediol, polytetramethylene glycol, 1,5-pentanediol, polypentamethylene glycol, neopentyl glycol , 1,6-hexanediol, polyhexamethylene glycol, 1,7-heptanediol, polyheptamethylene glycol, 1,8-octanediol, 1,10-decanediol, 2,2-dimethyl-1,3-propane Diols consisting only of a chain structure such as diols, diols having a cyclic structure such as 1,4-cyclohexanedimethanol and isosorbide, bisphenols such as bisphenol A ethylene oxide adducts, bisphenol A propylene oxide
  • the dihydric alcohol it is preferable to use a dihydric alcohol having 3 or less carbon atoms, and it is more preferable to use ethylene glycol and 1,2-propylene glycol. Both ethylene glycol and 1,2-propylene glycol have a boiling point of 200° C. or less, and can be reacted while sufficiently distilling off unnecessary dihydric alcohol components during the reaction under reduced pressure in the production process of acid-terminated polyester.
  • the acid terminal purity of the polyester can be increased.
  • the acid terminal purity of the acid-terminated polyester is low, that is, when it is hydroxyl-terminated, it cannot participate in the copolymerization reaction with the epoxy resin, and the terminal epoxy group purity of the resulting modified epoxy resin is lowered. As a result, the three-dimensional network structure as designed cannot be constructed during curing, and flexibility and adhesiveness tend to decrease.
  • the amount of the dihydric alcohol having 3 or less carbon atoms used is preferably 50 mol% or more, more preferably 55 mol% or more, more preferably 60 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more of the total dihydric alcohol component.
  • 90 mol % or more is particularly preferable for the reason described above.
  • the method for producing the acid-terminated polyester (B) is not particularly limited, and it can be produced by a known method. For example, a monomer mixture containing a dihydric carboxylic acid component, a dihydric alcohol component, etc. is put into a reaction vessel, heated to raise the temperature, an esterification reaction or a transesterification reaction is performed, and the water or divalent Remove the alcohol component. After that, the polycondensation reaction is continued. At this time, the pressure inside the reactor is gradually reduced, and the polycondensation is carried out while distilling off the dihydric alcohol component under a vacuum of 150 mmHg (20 kPa) or less, preferably 15 mmHg (2 kPa) or less. I do.
  • Catalysts used for esterification reaction, transesterification reaction and polycondensation reaction include titanium-based catalysts, calcium acetate, calcium acetate hydrate, dibutyltin oxide, tin acetate, tin disulfide, tin oxide, 2-ethylhexanetin and the like.
  • titanium-based catalysts are preferred because of their good reactivity.
  • titanium-based catalysts examples include titanium alkoxide compounds having an alkoxy group, titanium carboxylate compounds, titanyl carboxylates, titanyl carboxylate salts, and titanium chelate compounds.
  • Titanium alkoxide compounds having an alkoxy group include, for example, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, tetrapentoxytitanium, tetraoctoxytitanium and the like.
  • titanium carboxylate compounds include titanium formate, titanium acetate, titanium propionate, titanium octanoate, titanium oxalate, titanium succinate, titanium maleate, titanium adipate, titanium sebacate, titanium hexanetricarboxylate, and isooctanetricarboxylic acid.
  • titanium-based catalysts tetrabutoxy titanium is preferred. Titanium-based catalysts may be used alone or in combination of two or more.
  • the reaction temperature for the esterification reaction, transesterification reaction, or polycondensation reaction is preferably 150 to 300°C. If the reaction temperature is 150°C or higher, productivity tends to be good, and if it is 300°C or lower, decomposition of the obtained acid-terminated polyester (B) can be suppressed.
  • the lower limit of the reaction temperature is more preferably 180°C or higher, and the upper limit is more preferably 280°C or lower.
  • the amount of catalyst used is preferably 10 ppm to 10000 ppm with respect to the total weight of the divalent carboxylic acid component and the dihydric alcohol component from the viewpoint of ensuring polymerization reactivity. If the amount of the catalyst used is less than 10 ppm or more than 10000 ppm, the time adjustment for polycondensation cannot cope with this, resulting in a decrease in polymerization reactivity.
  • the lower limit of the weight average molecular weight (Mw) of the acid-terminated polyester (B) is preferably 1,000 or more, more preferably 1,500 or more, and particularly preferably 2,000 or more.
  • the upper limit of the weight average molecular weight (Mw) is preferably 10,000 or less, more preferably 9,000 or less, and particularly preferably 8,000 or less.
  • the weight-average molecular weight (Mw) and number-average molecular weight (Mn) of the acid-terminated polyester (B) can be measured by gel permeation chromatography (GPC method), and polystyrene equivalent values are used. A specific measuring method is as described in the section of Examples below.
  • the properties of the acid-terminated polyester (B) at room temperature are not particularly limited, such as a vitreous solid, a crystalline solid, or a liquid, but a crystalline solid or liquid is preferable from the viewpoint of lowering the viscosity of the modified epoxy resin and increasing miscibility.
  • the hydroxyl value of the acid-terminated polyester (B) is not particularly limited. It is particularly preferable from the viewpoint of raw material availability. Further, the hydroxyl value of the acid-terminated polyester (B) is preferably 60 mgKOH/g or less, more preferably 50 mgKOH/g or less, more preferably 40 mgKOH/g or less, and 30 mgKOH/g or less. is particularly preferable from the viewpoint of improving adhesiveness and flexibility.
  • the acid value of the acid-terminated polyester (B) is not particularly limited, but the acid value is preferably 10 mgKOH/g or more, more preferably 20 mgKOH/g or more, and particularly preferably 30 mgKOH/g or more. Also, the acid value is preferably 100 mgKOH/g or less, more preferably 90 mgKOH/g or less, and even more preferably 80 mgKOH/g or less. By adjusting the content within the above range, the purity of the terminal epoxy group of the modified epoxy resin can be improved, and the adhesiveness and flexibility can be improved.
  • the acid-terminated polyester (B) may be used singly or in combination with a plurality of divalent carboxylic acids or dihydric alcohols having different types and physical properties.
  • the acid-terminated polyester (B) contains an aliphatic skeleton, this structural unit contained in the modified epoxy resin behaves as a soft segment. Therefore, by using an epoxy compound (A) having an aromatic skeleton that behaves as a hard segment, it is possible to control the physical properties of the modified epoxy resin as a whole. On the other hand, it is possible to further improve the flexibility of the modified epoxy resin by using the epoxy compound (A) having a polyalkylene polyol-based or alkylene glycol-based skeleton that behaves as a soft segment. By appropriately blending such a modified epoxy resin with other epoxy compounds, it is possible to exhibit excellent cured physical properties.
  • [Modified epoxy resin] [Batch ratio] The charge ratio of the epoxy compound (A) and the acid-terminated polyester (B) at the time of manufacturing the modified epoxy resin is calculated from the theoretical epoxy equivalent of the modified epoxy resin to be obtained, and the lower limit of the theoretical epoxy equivalent is It should be 500 g/eq or more, preferably 800 g/eq or more, more preferably 1000 g/eq or more, more preferably 1300 g/eq or more, still more preferably 1400 g/eq or more. The reason why it is preferable is as described in the section on the modified epoxy resin.
  • the upper limit of the theoretical epoxy equivalent must be 5000 g/eq or less, preferably 4500 g/eq or less, more preferably 4000 g/eq or less.
  • the reason why it is preferable is as described in the section on the modified epoxy resin.
  • the modified epoxy resin is produced by reacting the epoxy compound (A) represented by the formula (7) and the acid-terminated polyester (B) represented by the formula (8) in the presence of a catalyst at a suitable feed ratio. can get.
  • a catalyst (E) may be used in the reaction step for producing the modified epoxy resin.
  • the catalyst (E) is not particularly limited as long as it is usually used as a catalyst for the advance method in the production of epoxy resins.
  • Examples of the catalyst (E) include alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, imidazoles and the like.
  • alkali metal compounds include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide; alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium chloride, lithium chloride and potassium chloride; alkali metal alkoxides such as methoxide and sodium ethoxide; alkali metal hydrides such as alkali metal phenoxide, sodium hydride and lithium hydride; alkali metal salts of organic acids such as sodium acetate and sodium stearate;
  • organic phosphorus compounds include triphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tri-2,4-xylylphosphine, tri-2,5- xylylphosphine, tri-3,5-xylylphosphine, tris(p-tert-butylphenyl)phosphine, tris(p-methoxyphenyl)phosphine, tris(p-tert-butoxyphenyl)phosphine, tri(pn) -octylphenyl)phosphine, tri(pn-nonylphenyl)phosphine, triallylphosphine, tributylphosphine, trimethylphosphine, tribenzylphosphine, triisobutylphosphine, tri-tert-butylphosphine, tri-n-o
  • tertiary amines include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, N,N-dimethylbenzylamine, and the like.
  • quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium hydroxide, triethylmethylammonium chloride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrapropylammonium bromide, tetrapropylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium hydroxide, benzyltributylammonium chloride, phenyltrimethylammonium chloride, etc. be done.
  • cyclic amines include 1,8-diazabicyclo(5,4,0)-7-undecene and 1,5-diazabicyclo(4,3,0)-5-nonene.
  • imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole and the like.
  • the catalysts (E) listed above may be used alone or in combination of two or more.
  • a tertiary amine having a boiling point higher than the reaction temperature it is preferable to use a tertiary amine having a boiling point higher than the reaction temperature, in order to allow the polymerization reaction to proceed smoothly.
  • the amount used is usually 10000 ppm by weight or less, for example 10 to 5000 ppm by weight, relative to the amount of the epoxy compound (A) used.
  • the amount of the catalyst used exceeds 10000 ppm by weight, the catalyst remaining in the modified epoxy resin induces anionic polymerization of epoxy groups, resulting in a marked decrease in storage stability.
  • reaction solvent (F) A reaction solvent (F) may be used in the reaction step for producing the modified epoxy resin.
  • any solvent can be used as long as it dissolves the raw materials, but it is usually an organic solvent.
  • organic solvents examples include aromatic solvents, ketone solvents, amide solvents, glycol ether solvents, and the like.
  • aromatic solvents include benzene, toluene, and xylene.
  • ketone solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclopentanone, cyclohexanone and acetylacetone.
  • amide solvents include formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, 2-pyrrolidone, N-methylpyrrolidone and the like.
  • glycol ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol.
  • reaction solvents (F) listed above may be used alone or in combination of two or more.
  • the reaction solvent (F) can be further added to continue the reaction.
  • the reaction between the epoxy compound (A) and the acid-terminated polyester (B) can be carried out under normal pressure, increased pressure, or reduced pressure.
  • the reaction temperature is generally 60-240°C, preferably 80-220°C, more preferably 100-200°C. It is preferable that the reaction temperature is equal to or higher than the above lower limit because the reaction can easily proceed. Further, when the reaction temperature is equal to or lower than the above upper limit, the side reaction hardly progresses, which is preferable from the viewpoint of obtaining a highly pure modified epoxy resin.
  • reaction time is not particularly limited, it is usually 0.5 to 24 hours, preferably 1 to 22 hours, more preferably 1.5 to 20 hours.
  • reaction time is equal to or less than the above upper limit, it is preferable from the viewpoint of improving production efficiency, and when it is equal to or more than the above lower limit, it is preferable from the point of being able to reduce unreacted components.
  • the modified epoxy resin may be mixed with a diluent solvent (G) after completion of the reaction to adjust the solid content concentration.
  • a diluent solvent G
  • any solvent can be used as long as it dissolves the epoxy resin, but it is usually an organic solvent.
  • the organic solvent the same ones as those mentioned above as the reaction solvent (F) can be used.
  • solvent and “solvent” are used to refer to those used during the reaction as “solvent” and those used after completion of the reaction as “solvent”. Different species may be used.
  • a curable resin composition which is one embodiment of the present invention, contains at least the above-described modified epoxy resin and a curing agent.
  • a curing agent e.g., ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, terethacrylate, terethacrylate, terethacrylate, terethacrylate, acrylate, acrylate, acrylate, acrylate, tere-diol dimethacrylate, acrylate, acrylate, terpolymer graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft copolymer, graft cop
  • a curing agent is a substance that contributes to cross-linking and/or chain extension reactions between epoxy groups of an epoxy resin.
  • a substance is usually called a "curing accelerator"
  • it is regarded as a curing agent if it is a substance that contributes to the cross-linking reaction and/or chain extension reaction between the epoxy groups of the epoxy resin. do.
  • the content of the curing agent in the curable resin composition is preferably 0.1 to 1000 parts by weight, more preferably 100 parts by weight or less, and still more preferably 80 parts by weight with respect to 100 parts by weight of the modified epoxy resin. or less, particularly preferably 60 parts by weight or less.
  • the content of the curing agent is preferably 0.1 to 1000 parts by weight with respect to 100 parts by weight of the total epoxy component as a solid content, It is more preferably 100 parts by weight or less, still more preferably 80 parts by weight or less, and particularly preferably 60 parts by weight or less.
  • a more preferred amount of curing agent is as described below, depending on the type of curing agent.
  • solid content means components excluding solvent, and includes not only solid epoxy resins or epoxy compounds, but also semi-solid and viscous liquid substances. Further, “total epoxy component” means the sum of the modified epoxy resin and other epoxy compounds described later.
  • Curing agents include polyfunctional phenols, polyisocyanate compounds, amine compounds, acid anhydride compounds and acid-terminated polyester resins, imidazole compounds, amide compounds, cationic polymerization initiators, and organic phosphines. It is preferable to use at least one of
  • polyfunctional phenols include bisphenols such as bisphenol A, bisphenol F, bisphenol S, bisphenol B, bisphenol AD, bisphenol Z, tetrabromobisphenol A, 4,4'-biphenol, 3,3',5, Biphenols such as 5'-tetramethyl-4,4'-biphenol; catechol, resorcinol, hydroquinone, dihydroxynaphthalenes; and hydrogen atoms bonded to aromatic rings of these compounds are halogen groups, alkyl groups, aryl groups, ethers and those substituted with non-interfering substituents such as organic substituents containing heteroatoms such as group, ester group, sulfur, phosphorus, silicon and the like. Furthermore, these phenols, phenol, cresol, polycondensation products of monofunctional phenols such as alkylphenols and aldehydes, novolacs and resols, etc., can also be used.
  • polyisocyanate compounds include tolylene diisocyanate, methylcyclohexane diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, dimer acid diisocyanate, trimethylhexamethylene diisocyanate, Examples include polyisocyanate compounds such as lysine triisocyanate.
  • a compound having at least two active hydrogen atoms such as an amino group, a hydroxyl group, a carboxyl group and water, or 3 to 5 amounts of the above polyisocyanate compound.
  • the body and the like can be mentioned.
  • amine compounds include aliphatic primary, secondary and tertiary amines, aromatic primary, secondary and tertiary amines, cyclic amines, guanidines, urea derivatives and the like.
  • Ethylenetetramine, diaminodiphenylmethane, diaminodiphenyl ether, metaxylenediamine, dicyandiamide, 1,8-diazabicyclo(5,4,0)-7-undecene, 1,5-diazabicyclo(4,3,0)-5-nonene, dimethyl Urea, guanyl urea and the like can be mentioned.
  • acid anhydride compounds include phthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride, and condensates of maleic anhydride and unsaturated compounds.
  • acid-terminated polyester resins include polycondensates obtained by reacting dihydric carboxylic acids and dihydric alcohols listed in the section of acid-terminated polyester (B).
  • imidazole compounds include 1-isobutyl-2-methylimidazole, 2-methylimidazole, 1-benzyl-2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, benzimidazole and the like. be done. Although the imidazole compound also functions as a curing accelerator, which will be described later, it is classified as a curing agent in the present invention.
  • amide compounds include dicyandiamide and derivatives thereof, and polyamide resins.
  • Cationic polymerization initiators generate cations upon exposure to heat or active energy rays, and include aromatic onium salts and the like.
  • aromatic onium salts and the like anionic components such as SbF 6 -, BF 4 -, AsF 6 -, PF 6 -, CF 3 SO 32 -, B(C 6 F 5 ) 4 - and iodine, sulfur, nitrogen, phosphorus, etc.
  • a compound consisting of an aromatic cation component containing atoms and the like can be mentioned.
  • Diaryliodonium salts and triarylsulfonium salts are particularly preferred.
  • organic phosphines include tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine.
  • Phosphonium salts include tetraphenylphosphonium/tetraphenylborate, tetraphenylphosphonium/ethyltriphenylborate, tetra Examples include butylphosphonium/tetrabutylborate and the like, and tetraphenylboron salts include 2-ethyl-4-methylimidazole/tetraphenylborate and N-methylmorpholine/tetraphenylborate.
  • the functional groups in the curing agent for all epoxy groups in the curable resin composition (hydroxyl groups of the polyfunctional phenol , the amino group of the amine-based compound or the acid anhydride group of the acid anhydride-based compound) is preferably used so that the equivalent ratio is in the range of 0.8 to 1.5.
  • the number of isocyanate groups in the polyisocyanate-based compound to the number of hydroxyl groups in the curable resin composition is in the range of 1:0.01 to 1:1.5 in terms of equivalent ratio. preferable.
  • an imidazole compound When used, it is preferably used in the range of 0.5 to 10 parts by weight with respect to 100 parts by weight of all epoxy components as solid content in the curable resin composition.
  • an amide compound When an amide compound is used, it is preferably used in the range of 0.1 to 20% by weight with respect to the total amount of all epoxy components and the amide compound as solid content in the curable resin composition.
  • a cationic polymerization initiator it is preferably used in the range of 0.01 to 15 parts by weight with respect to 100 parts by weight of all epoxy components as solid content in the curable resin composition.
  • organic phosphines When organic phosphines are used, they are preferably used in a range of 0.1 to 20% by weight based on the total amount of all epoxy components and organic phosphines as solid content in the curable resin composition.
  • curing agents for example, mercaptan compounds, organic acid dihydrazides, halogenated boron amine complexes, and the like can also be used as curing agents. These curing agents may be used alone or in combination of two or more.
  • Epoxy compounds other than the above modified epoxy resin can be used in the curable resin composition.
  • Other epoxy compounds include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin.
  • Tetrabromobisphenol A type epoxy resin Tetrabromobisphenol A type epoxy resin
  • glycidyl ether type epoxy resin such as other polyfunctional phenol type epoxy resin
  • epoxy resin obtained by hydrogenating the aromatic ring of the above aromatic epoxy resin glycidyl ester type epoxy resin
  • glycidyl amine type epoxy Epoxy compounds such as resins, linear aliphatic epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins can be mentioned.
  • the other epoxy compounds listed above may be used alone or in combination of two or more.
  • the proportion of the other epoxy compound in the total epoxy component as a solid content in the epoxy resin-containing composition is preferably 1 weight. % or more, more preferably 5 wt % or more, and preferably 99 wt % or less, more preferably 95 wt % or less.
  • the proportion of the other epoxy compound is at least the above lower limit, it is possible to sufficiently obtain the effect of improving physical properties by blending the other epoxy compound.
  • the ratio of the other epoxy compound is equal to or less than the above upper limit, the effect of improving the flexibility of the modified epoxy resin can be obtained.
  • the curable resin composition may be mixed with and diluted with a solvent in order to appropriately adjust the viscosity of the epoxy resin-containing composition during handling such as coating film formation.
  • the solvent is used to ensure handleability and workability in molding the curable resin composition, and there is no particular limitation on the amount used.
  • the terms "solvent” and “solvent” are used separately depending on the mode of use, but the same type or different types may be used independently.
  • the solvent that the modified epoxy resin may contain, one or more of the organic solvents exemplified as the reaction solvent (F) used in the production of the modified epoxy resin can be used.
  • the curable resin composition may contain other components in addition to the components listed above.
  • Other components include, for example, curing accelerators (excluding those corresponding to the above curing agents), coupling agents, flame retardants, antioxidants, light stabilizers, plasticizers, reactive diluents, pigments, Examples include inorganic fillers and organic fillers.
  • the other components listed above can be used in appropriate combination depending on the desired physical properties of the epoxy resin-containing composition. The fact that the above compound is blended in the curable resin composition can be confirmed by SEC-MALS, elemental analysis, and functional group analysis after separation and purification of the epoxy resin composition.
  • a cured product can be obtained by curing the curable resin composition.
  • the term "curing" as used herein means intentionally curing the epoxy resin with heat and/or light, and the degree of curing may be controlled according to desired physical properties and applications.
  • the curing method for curing the curable resin composition to obtain a cured product varies depending on the ingredients and amounts in the curable resin composition and the shape of the compound, but is usually 50 to 200 ° C. for 5 seconds. Heating conditions of ⁇ 180 minutes can be mentioned. This heating should be carried out in two stages: primary heating at 50 to 160°C for 5 seconds to 30 minutes, and secondary heating at 90 to 200°C, which is 40 to 120°C higher than the primary heating temperature, for 1 minute to 150 minutes. is preferable from the viewpoint of reducing poor curing.
  • the curing reaction of the curable resin composition may be allowed to proceed by heating or the like to such an extent that the shape can be maintained.
  • the curable resin composition contains a solvent, most of the solvent is removed by heating, depressurization, air drying, etc., but 5% by weight or less of the solvent may remain in the semi-cured product. .
  • the presence of the modified epoxy resin in the cured product can be confirmed by identifying the modified epoxy resin from the cured product by infrared spectroscopy of the cured product.
  • the present invention relates to a modified epoxy resin excellent in flexibility and adhesiveness, a curable resin composition containing this modified epoxy resin, and a cured product.
  • the above-mentioned modified epoxy, curable resin composition, and cured product are excellent in electrical properties, adhesiveness, flexibility, heat resistance, etc., and are mainly used in many applications in the fields of coatings, adhesives, civil engineering, and electrical fields. It can be used particularly preferably in the field of paints and adhesive applications.
  • Epoxy compound (A) The epoxy resins, acid-terminated polyesters, and evaluation methods used in the following examples and comparative examples are as follows.
  • A-1 to A-7 were used as the epoxy compound (A).
  • A-1 1,6-hexanediol diglycidyl ether (manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 116 g/eq, liquid)
  • A-2 Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation jER (registered trademark) 828US, epoxy equivalent: 186 g / eq, liquid)
  • A-3 Bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation jER (registered trademark) 806H, epoxy equivalent: 169 g / eq, liquid)
  • A-4 Polyoxypropylene glycol diglycidyl ether (manufactured by Sanyo Chemical Co., Ltd.
  • A-5 Resorcinol-type epoxy resin (Denacol EX-201 manufactured by Nagase ChemteX Corporation, epoxy equivalent: 113 g/eq, liquid)
  • A-6 Ultra-flexible epoxy resin (YX7110 manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 1000 g / eq, semi-solid)
  • A-7 Dimer acid type epoxy resin (manufactured by Mitsubishi Chemical Corporation jER (registered trademark) 871, epoxy equivalent: 415 g / eq, liquid)
  • Acid-terminated polyester (B)] B-1 to B-5 shown in Table 1 were used as the acid-terminated polyester (B). All of them are obtained by reacting dihydric carboxylic acids and dihydric alcohols shown in Table-1.
  • production methods, acid values, carboxylic acid equivalents, hydroxyl values, glass transition temperatures, acid terminal purities, weight average molecular weights and number average molecular weights of B-1 to B-5 are shown in order.
  • B-1 to B-5 Synthesis of B-1 to B-5 was carried out as follows. First, 1000 ppm of tetrabutoxytitanium with respect to the total weight of the dihydric carboxylic acid component and the dihydric alcohol component shown in Table 1 was put into a reaction vessel equipped with a distillation column. Next, while stirring, the temperature was started to rise, and the temperature in the reaction system was heated to 265°C, and this temperature was maintained. After the esterification reaction is completed and no more water is distilled out from the reaction system, the pressure in the reaction system is reduced while maintaining the temperature in the reaction system at 265° C. to distill off the dihydric alcohol component from the reaction system. Condensation reaction was carried out while letting out.
  • the viscosity of the reaction system increases with the reaction, and when the torque of the stirring blade reaches a predetermined torque, the stirring is stopped, the reaction system is returned to normal pressure, and pressurized with nitrogen to take out the reactant, and B-1 to B-5 was produced.
  • the acid value of the acid-terminated polyester (B) was measured by the following procedure. About 0.2 g of acid-terminated polyester (B) was precisely weighed in a side-armed Erlenmeyer flask (A (g)), 10 mL of benzyl alcohol was added, and the mixture was heated under a nitrogen atmosphere with a heater at 230°C for 15 minutes to dissolve completely. did.
  • ⁇ Measurement of hydroxyl value> The hydroxyl value of the acid-terminated polyester (B) was measured by the following procedure.
  • Solution 1 About 5 g of acid-terminated polyester (B) was precisely weighed into a side-armed Erlenmeyer flask (A (g)), and 50 mL of THF was added to dissolve completely.
  • Solution 2 30 mL of dimethylaminopyridine THF solution prepared by dissolving 5 g of N,N-dimethylaminopyridine in 500 mL of THF was added to "Solution 1".
  • Tg glass transition temperature
  • Acid terminal purity number average molecular weight/carboxylic acid equivalent (g/eq)
  • Acid terminal purity number average molecular weight/carboxylic acid equivalent (g/eq)
  • the weight average molecular weight and number average molecular weight of the acid-terminated polyester (B) were measured by gel permeation chromatography (GPC).
  • the apparatus and measurement conditions used for GPC measurement are as follows.
  • GPC Model HLC-8020GPC (manufactured by Tosoh)
  • Column Three TSKgelGMHXL (column size: 7.8 mm (ID) ⁇ 30.0 cm (L)) connected in series (manufactured by Tosoh)
  • Detector RI (manufactured by Tosoh)
  • Eluent THF (1 mL/min, 40°C)
  • Sample 0.04% tetrahydrofuran solution (100 ⁇ injection)
  • Calibration curve standard polystyrene (manufactured by Tosoh)
  • GPC Model HLC-8120GPC (manufactured by Tosoh)
  • Column TSKGEL HM-H + H4000 + H4000 + H3000 + H2000 (manufactured by Tosoh)
  • Detector UV-8020 (manufactured by Tosoh), 254 nm
  • Eluent THF (0.5 mL/min, 40°C)
  • Sample 1% tetrahydrofuran solution (10 ⁇ L injection)
  • Calibration curve standard polystyrene (manufactured by Tosoh)
  • Glass transition temperature (Tg) The glass transition point (Tg) in the examples and comparative examples was measured using a differential scanning calorimeter "DSC7020" manufactured by SII Nanotechnology Co., Ltd. by heating from -50 to 200°C at a rate of 10°C/min. rice field. It was obtained as the temperature at the intersection of the base line on the low temperature side of the chart measured at a heating rate of 10°C/min and the tangent line of the endothermic curve in the vicinity of the glass transition temperature.
  • DSC7020 differential scanning calorimeter
  • miscibility Two items of miscibility and reactivity with the curing agent were evaluated for handleability. The miscibility was evaluated as follows to determine whether or not each component was easily mixed uniformly at the time of blending, and was used as an index. If the miscibility rating was C or lower, no further evaluation was performed. ⁇ Evaluation Criteria ⁇ A: Easy to mix. B1: The formulation is highly viscous and requires heating, but can be easily mixed. B2: The formulation is crystalline and requires warming, but is easily miscible. C: It is difficult to mix uniformly because the viscosity of the formulation is remarkably high.
  • the reactivity with the curing agent was obtained by preheating the composition at 80° C. for 1 hour and then heating it at 130° C. for 1.5 hours to cure the cured product.
  • the evaluation of reactivity with the curing agent was x, subsequent evaluation was not performed.
  • ⁇ Glass transition temperature (Tg)> A portion of the tensile test piece was used and measured in the same manner as in the section [Glass transition temperature (Tg) and melting point].
  • the extrapolated glass transition start temperature (Tig) is the intersection of a straight line extending the base line on the low temperature side to the high temperature side and a tangent line drawn at a point where the gradient of the stepwise change portion of the glass transition curve is maximized. was the temperature of The midpoint glass transition temperature (Tmg) was taken as the temperature at the point where a straight line equidistant from the extended straight line of each base line intersects the curve of the stepwise change portion of the glass transition.
  • ⁇ Tensile test> After preheating the formulation at 80° C. for 1 hour, it was cured by heating at 130° C. for 1.5 hours to prepare a cured plate having a thickness of 3 mm. This cured product was processed into a dumbbell shape to obtain a test piece. The tensile strain at break of the obtained test piece was measured according to JIS K7161 using a precision universal testing machine "INSTRON 5582 type" manufactured by Instron. The value of the tensile breaking strain was evaluated as follows and used as an index. ⁇ Evaluation Criteria ⁇ S: 80% or more. A: 40% or more and less than 80%. B: 7% or more and less than 40%. C: 5% or more and less than 7%. D: Less than 5%.
  • the coating liquid is applied to two substrates, the coated surfaces are bonded together and fixed, preheated at 80 ° C. for 1 hour, and then cured by heating at 130 ° C. for 1.5 hours to obtain a laminate. rice field.
  • the hardened material protruding from the side surface of the laminate was scraped off, and the gripping margins of the two steel plates were bent outward at a right angle by 90° to obtain a T-shaped test piece.
  • the peel adhesive strength of the obtained test piece was measured according to JIS K6854.
  • the value of the peel adhesive strength was evaluated as follows and used as an index. ⁇ Evaluation Criteria ⁇ S: 100 N/25 mm or more. A: 15 N/25 mm or more and less than 100 N/25 mm. B: 10 N/25 mm or more and less than 15 N/25 mm. C: less than 10 N/25 mm.
  • a modified epoxy resin containing a structural unit (X) derived from an epoxy resin and a structural unit (Y) derived from an acid-terminated polyester represented by formula (1) It has a weight average molecular weight of 3000 to 50000 and an epoxy equivalent of 500 to 10000 g / eq. It has excellent reactivity with curing agents, and can exhibit its properties even when blended with other epoxy resins.

Abstract

The present invention addresses the problem of providing: a modified epoxy resin that has excellent flexibility and adhesiveness, has good reactivity to a curing agent, and is capable of exhibiting characteristics even when combined with another epoxy resin; a curable resin composition including the modified epoxy resin; and a cured product thereof. This modified epoxy resin is represented by formula 1 and includes a structural unit (X) derived from epoxy resin and a structural unit (Y) derived from acid terminated polyester, wherein the weight average molecular weight is 3,000-50,000, the epoxy equivalent weight is 500-10,000 g/eq, and the proportion of the structural unit (Y) derived from acid terminated polyester in formula 1 is 50-90 wt%.

Description

変性エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、塗料及び接着剤Modified epoxy resin, method for producing the same, curable resin composition, cured product thereof, paint and adhesive
 本発明は、変性エポキシ樹脂及びそれを含む硬化性樹脂組成物並びに硬化物及び硬化物を含む塗料又は接着剤に関する。 The present invention relates to a modified epoxy resin, a curable resin composition containing the same, a cured product, and a paint or adhesive containing the cured product.
 エポキシ樹脂は、電気特性、接着性、耐熱性等に優れることから主に塗料分野、土木分野、電気分野の多くの用途で使用されている。これらの用途で使用されるエポキシ樹脂は、一般には、硬化剤と共に硬化させることで、接着剤や塗料として使用される。
 近年、塗料、電気・電子材料、接着剤、CFRP等などの用途において、種々の高機能化が進んでおり、従来から使用されているエポキシ樹脂を含む硬化物は、硬くて脆いため、これらの用途において要求される性能への対応が困難になってきている。この硬くて脆い性質を改善すべく、従来から可撓性を付与したエポキシ樹脂が研究されている。
Epoxy resins are used in many applications, mainly in the fields of paints, civil engineering, and electricity, due to their excellent electrical properties, adhesiveness, heat resistance, and the like. Epoxy resins used in these applications are generally used as adhesives or paints by curing with a curing agent.
In recent years, in applications such as paints, electrical and electronic materials, adhesives, CFRP, etc., various advanced functions are progressing, and the cured products containing conventionally used epoxy resins are hard and brittle. It is becoming difficult to meet the performance required in applications. In order to improve this hard and brittle property, conventionally, flexible epoxy resins have been studied.
 しかしながら、可撓性エポキシ樹脂は硬化剤との反応性が悪いものが多く、硬化時に局所的な反応が起きてしまい、均一な物性を得にくい問題があった。また、反応性が良い可撓性エポキシ樹脂であっても、他のエポキシ樹脂と配合した際に、特性を発揮できない場合があった。 However, many flexible epoxy resins have poor reactivity with curing agents, causing local reactions during curing, making it difficult to obtain uniform physical properties. Moreover, even flexible epoxy resins with good reactivity may not exhibit their properties when blended with other epoxy resins.
 可撓性エポキシ樹脂としては、酸末端ポリエステルと2官能エポキシ樹脂を反応させた変性エポキシ樹脂が知られており、例えば、特許文献1には、柔軟性酸末端ポリエステルと2官能エポキシ樹脂を反応させて付加物を製造した後、付加物と環を有する酸末端ポリエステルとを反応させて柔軟性の変性エポキシ樹脂を得る製造方法が開示されている。 As a flexible epoxy resin, a modified epoxy resin obtained by reacting an acid-terminated polyester with a bifunctional epoxy resin is known. and then reacting the adduct with an acid-terminated polyester having a ring to obtain a flexible modified epoxy resin.
 また、特許文献2では脂肪族2価カルボン酸と脂肪族2価アルコールとから得られる酸末端ポリエステルと、2官能エポキシ樹脂を反応させて得られる、エポキシ当量が450~800g/当量の範囲の変性エポキシ樹脂が開示されており、特許文献3では、缶用熱ラミネート接着剤の原料として、両末端にカルボキシル基を有するポリエステル5~95重量%およびエポキシ樹脂5~95重量%からなるブロックコポリマーを主成分とする変性エポキシ樹脂が記載されており、脂肪族2価カルボン酸と脂肪族2価アルコールとから得られる酸末端ポリエステルと、2官能芳香族エポキシ樹脂を反応させた変性エポキシ樹脂が開示されている。 Further, in Patent Document 2, a modified epoxy equivalent having an epoxy equivalent in the range of 450 to 800 g/equivalent is obtained by reacting an acid-terminated polyester obtained from an aliphatic divalent carboxylic acid and an aliphatic dihydric alcohol with a bifunctional epoxy resin. Epoxy resins are disclosed, and in Patent Document 3, a block copolymer composed of 5 to 95% by weight of a polyester having carboxyl groups at both ends and 5 to 95% by weight of an epoxy resin is mainly used as a raw material for a heat laminating adhesive for cans. A modified epoxy resin is described as a component, and a modified epoxy resin obtained by reacting an acid-terminated polyester obtained from an aliphatic dicarboxylic acid and an aliphatic dihydric alcohol with a bifunctional aromatic epoxy resin is disclosed. there is
特開昭50-095398号公報JP-A-50-095398 特開2017-8155号公報JP 2017-8155 A 特開平5-43859号公報JP-A-5-43859
 しかしながら、特許文献1に記載の変性エポキシ樹脂は、原料の酸末端ポリエステルを製造する際に、沸点の高いジオール成分を用いているために酸末端純度を十分に制御することができず、それを用いて得られる変性エポキシ樹脂の可撓性は不十分であった。
 特許文献2では低分子量の酸末端ポリエステルを使用しているために、変性エポキシ樹脂中に含まれる2官能エポキシ樹脂成分由来の骨格比率が高くなり、可撓性は不十分であった。
 特許文献3に記載の高分子量樹脂は、高分子量樹脂中に含まれる2官能エポキシ樹脂由来の骨格比率が高く、可撓性は不十分であった。
However, the modified epoxy resin described in Patent Document 1 cannot sufficiently control the purity of the acid terminal when producing the raw material acid-terminated polyester because it uses a diol component with a high boiling point. The flexibility of the modified epoxy resin obtained was insufficient.
In Patent Document 2, since a low-molecular-weight acid-terminated polyester is used, the ratio of the skeleton derived from the bifunctional epoxy resin component contained in the modified epoxy resin is increased, resulting in insufficient flexibility.
The high-molecular-weight resin described in Patent Document 3 has a high skeleton ratio derived from a bifunctional epoxy resin contained in the high-molecular-weight resin, and has insufficient flexibility.
 そこで、本発明は、可撓性と接着性に優れ、硬化剤との反応性も良好であり、他のエポキシ樹脂と配合した際でも特性を発現できる変性エポキシ樹脂、この変性エポキシ樹脂を含んでなる硬化性樹脂組成物ならびに硬化物を提供することを課題とする。 Therefore, the present invention provides a modified epoxy resin that has excellent flexibility and adhesiveness, has good reactivity with a curing agent, and can exhibit properties even when blended with other epoxy resins, including this modified epoxy resin. An object of the present invention is to provide a curable resin composition and a cured product.
 本発明者らは上記課題を解決するために鋭意検討した結果、下記式(1)で示される、エポキシ樹脂由来の構造単位(X)と酸末端ポリエステル由来の構造単位(Y)を含む、変性エポキシ樹脂であって、重量平均分子量が3000~50000であり、且つエポキシ当量が500~10000g/eqであり、式(1)中の酸末端ポリエステル由来の構造単位(Y)の割合が50~90重量%である変性エポキシ樹脂が、上記課題を解決し得ることを見出し、発明の完成に至った。即ち、本発明の要旨は以下の[1]~[10]に存する。
[1]下記式(1)で示される、エポキシ樹脂由来の構造単位(X)と酸末端ポリエステル由来の構造単位(Y)とを含む、変性エポキシ樹脂であって、
 重量平均分子量が3000~50000であり、且つエポキシ当量が500~10000g/eqであり、
 式(1)中の酸末端ポリエステル由来の構造単位(Y)の割合が50~90重量%である、変性エポキシ樹脂。
Figure JPOXMLDOC01-appb-C000009
(上記式(1)中、nは平均の繰り返し数であり、1~10の正数である。Xは下記式(2)で表される2価の基であり、Yは下記式(3)で表される2価の基である。)
Figure JPOXMLDOC01-appb-C000010
(上記式(2)中、Rは炭素数2~40の炭化水素基であり、ヘテロ原子を有していてもよい。pは繰り返し数であり、0~10の整数である。)
Figure JPOXMLDOC01-appb-C000011
 (上記式(3)中、Rは炭素数2~40の炭化水素基であり、ヘテロ原子を有していてもよく、R全体における脂肪族炭化水素基の存在割合が50mol%以上である。Rは炭素数2~30の炭化水素基であり、ヘテロ原子を有していてもよい。qは繰り返し数であり、1~50の整数である。)
[2]前記式(3)中、R全体における炭素数3以下の脂肪族炭化水素基の存在割合が50mol%以上である、[1]に記載の変性エポキシ樹脂。
[3]前記Rが、下記式(4)及び/又は下記式(5)で表される2価の基を含む、[1]又は[2]に記載の変性エポキシ樹脂。
Figure JPOXMLDOC01-appb-C000012
(上記式(4)中、Rは単結合、または、-CH-、-C(CH-、-CH(CH)-、-S-、-SO-、-O-、及び-CO-で表される基からなる群より選ばれる2価の基である。Rは、水素原子、炭素数1~4のアルキル基、フェニル基のいずれかを示し、各々同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000013
(上記式(5)中、Rは水素原子及び炭素数1~20の炭化水素基からなる群より選択され、各々同一でも異なっていてもよいし、Rの一部は互いに結合して、このベンゼン環に縮合する環を形成していてもよい。)
[4]前記Rが、下記式(6)で表される2価の基である、[1]~[3]のいずれかに記載の変性エポキシ樹脂。
Figure JPOXMLDOC01-appb-C000014
(上記式(6)中Rは炭素数1~10の炭化水素基である。rは繰り返し数であり、0~20の整数である。)
[5]前記変性エポキシ樹脂の分子量分布(Mw/Mn)が1.5~20である、[1]~[4]のいずれかに記載の変性エポキシ樹脂。
[6]下記式(7)で示されるエポキシ化合物(A)と下記式(8)で示される酸末端ポリエステル(B)とを反応させて得られる、[1]~[5]のいずれかに記載の変性エポキシ樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000015
(上記式(7)中、R及びpは上記式(2)と同義である。)
Figure JPOXMLDOC01-appb-C000016
(上記式(8)中、R、R及びqは上記式(3)と同義である。)
[7][1]~[5]のいずれかに記載の変性エポキシ樹脂と硬化剤とを含んでなる硬化性樹脂組成物。
[8][7]に記載の硬化性樹脂組成物を硬化してなる硬化物。
[9][8]に記載の硬化物を含む、塗料。
[10][8]に記載の硬化物を含む、接着剤。
As a result of intensive studies by the present inventors in order to solve the above problems, a modified An epoxy resin having a weight average molecular weight of 3,000 to 50,000, an epoxy equivalent of 500 to 10,000 g/eq, and a structural unit (Y) derived from an acid-terminated polyester in the formula (1) having a ratio of 50 to 90. % by weight, it was found that the modified epoxy resin can solve the above problems, and the invention was completed. That is, the gist of the present invention resides in the following [1] to [10].
[1] A modified epoxy resin containing a structural unit (X) derived from an epoxy resin and a structural unit (Y) derived from an acid-terminated polyester represented by the following formula (1),
A weight average molecular weight of 3000 to 50000 and an epoxy equivalent of 500 to 10000 g / eq,
A modified epoxy resin in which the ratio of the structural unit (Y) derived from an acid-terminated polyester in the formula (1) is 50 to 90% by weight.
Figure JPOXMLDOC01-appb-C000009
(In the above formula (1), n is the average number of repetitions and is a positive number of 1 to 10. X is a divalent group represented by the following formula (2), and Y is the following formula (3 ) is a divalent group represented by
Figure JPOXMLDOC01-appb-C000010
(In formula (2) above, R 1 is a hydrocarbon group having 2 to 40 carbon atoms and may have a heteroatom. p is a repeating number and is an integer of 0 to 10.)
Figure JPOXMLDOC01-appb-C000011
(In the above formula (3), R 2 is a hydrocarbon group having 2 to 40 carbon atoms, may have a heteroatom, and the proportion of the aliphatic hydrocarbon group in all of R 2 is 50 mol% or more. R 3 is a hydrocarbon group having 2 to 30 carbon atoms and may have a heteroatom, q is a repeating number and is an integer of 1 to 50.)
[2] The modified epoxy resin according to [1], wherein the proportion of aliphatic hydrocarbon groups having 3 or less carbon atoms in the entirety of R 3 in formula (3) is 50 mol % or more.
[3] The modified epoxy resin according to [1] or [2], wherein R 1 contains a divalent group represented by the following formula (4) and/or the following formula (5).
Figure JPOXMLDOC01-appb-C000012
(In formula (4) above, R 4 is a single bond, or -CH 2 -, -C(CH 3 ) 2 -, -CH(CH 3 )-, -S-, -SO 2 -, -O- , and —CO— R 5 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group; may be different.)
Figure JPOXMLDOC01-appb-C000013
(In formula (5) above, R 6 is selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, each of which may be the same or different, and part of R 6 is , may form a ring condensed to this benzene ring.)
[4] The modified epoxy resin according to any one of [1] to [3], wherein R 1 is a divalent group represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000014
(R 7 in the above formula (6) is a hydrocarbon group having 1 to 10 carbon atoms. r is the number of repetitions and is an integer of 0 to 20.)
[5] The modified epoxy resin according to any one of [1] to [4], wherein the modified epoxy resin has a molecular weight distribution (Mw/Mn) of 1.5 to 20.
[6] Any one of [1] to [5] obtained by reacting an epoxy compound (A) represented by the following formula (7) with an acid-terminated polyester (B) represented by the following formula (8) A method for producing the modified epoxy resin described.
Figure JPOXMLDOC01-appb-C000015
(In formula (7) above, R 1 and p have the same meanings as in formula (2) above.)
Figure JPOXMLDOC01-appb-C000016
(In formula (8) above, R 2 , R 3 and q have the same meanings as in formula (3) above.)
[7] A curable resin composition comprising the modified epoxy resin according to any one of [1] to [5] and a curing agent.
[8] A cured product obtained by curing the curable resin composition according to [7].
[9] A paint comprising the cured product of [8].
[10] An adhesive comprising the cured product of [8].
 本発明によれば、可撓性と接着性に優れ、硬化剤との反応性も良好であり、他のエポキシ樹脂と配合した際でも特性を発現できる変性エポキシ樹脂、ならびに、前記変性エポキシ樹脂を含んでなる硬化性樹脂組成物及びその硬化物を提供できる。しかるに、本発明の変性エポキシ樹脂、硬化性樹脂組成物及び硬化物は、電気・電子材料、FRP(繊維強化樹脂)、接着剤及び塗料等の分野において応用展開が可能である。 According to the present invention, a modified epoxy resin that is excellent in flexibility and adhesiveness, has good reactivity with a curing agent, and can exhibit properties even when blended with other epoxy resins, and the modified epoxy resin. A curable resin composition and a cured product thereof can be provided. However, the modified epoxy resin, curable resin composition and cured product of the present invention can be applied and developed in fields such as electric/electronic materials, FRP (fiber reinforced resin), adhesives and paints.
 以下に本発明の実施の形態を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。本発明において化合物の「2官能」および「2価」とは、実質的に2官能であることを指し、変性エポキシ樹脂製造時にゲル化を誘発しない程度、すなわち5重量%以下であれば3官能以上の化合物を含んでいてもよい。 Although the embodiments of the present invention will be described in detail below, the present invention is not limited to the following description, and can be arbitrarily modified and implemented without departing from the gist of the present invention. In this specification, when a numerical value or a physical property value is sandwiched before and after the "~", it is used to include the values before and after it. In the present invention, the term “bifunctional” and “divalent” of the compound means that it is substantially bifunctional, and trifunctional if it does not induce gelation during production of the modified epoxy resin, i.e., 5% by weight or less. It may contain the above compounds.
〔変性エポキシ樹脂〕
 本発明の一実施形態である変性エポキシ樹脂(以降、単に変性エポキシ樹脂と称す事もある)は、式(1)で示される、エポキシ樹脂由来の構造単位(X)と酸末端ポリエステル由来の構造単位(Y)とを含む、変性エポキシ樹脂であって、重量平均分子量が3000~50000であり、且つエポキシ当量が500~10000g/eqであり、式(1)中の酸末端ポリエステル由来の構造単位(Y)の割合が50~90重量%である。
Figure JPOXMLDOC01-appb-C000017
[Modified epoxy resin]
A modified epoxy resin (hereinafter sometimes simply referred to as a modified epoxy resin), which is one embodiment of the present invention, is represented by the formula (1), wherein a structural unit (X) derived from an epoxy resin and a structure derived from an acid-terminated polyester are A modified epoxy resin containing a unit (Y), having a weight average molecular weight of 3000 to 50000 and an epoxy equivalent of 500 to 10000 g / eq, and a structural unit derived from the acid-terminated polyester in formula (1) The proportion of (Y) is 50 to 90% by weight.
Figure JPOXMLDOC01-appb-C000017
 上記式(1)中、nは平均の繰り返し数であり、1~10の正数である。Xは下記式(2)で表される2価の基であり、Yは下記式(3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000018
 上記式(2)中、Rは炭素数2~40の炭化水素基であり、炭素数2~38が好ましく、炭素数2~35がより好ましく、ヘテロ原子を有していてもよい。炭化水素基としては、脂環式骨格を含む炭化水素基、芳香族炭化水素基、鎖状炭化水素基が挙げられる。脂環式骨格を含む炭化水素基としては、シクロアルキレン基、アルキレンビスシクロアルキレン基、アルキル置換シクロアルキレン基、アルキレンビス(アルキル置換シクロアルキレン)基等が挙げられる。芳香族炭化水素基としては、芳香環を含む炭化水素基であればよいが、アルキレンビスフェニレン基、フェニレン基、ビスフェニレン基、オキシビスフェニレン基、スルホニルビスフェニレン基、カルボニルビスフェニレン基およびそれらがアルキル置換された基等が挙げられる。鎖状炭化水素基としては、アルキレン基、酸素原子を含むアルキレン基等が例示される。中でも、芳香族炭化水素基、鎖状炭化水素基がより好ましい。pは繰り返し数であり、0~10の整数である。
Figure JPOXMLDOC01-appb-C000019
 上記式(3)中、Rは炭素数2~40の炭化水素基であり、ヘテロ原子を有していてもよく、R全体における脂肪族炭化水素基の存在割合が50mol%以上である。Rは炭素数2~30の炭化水素基であり、ヘテロ原子を有していてもよい。qは繰り返し数であり、1~50の整数である。
 Rの炭化水素基としては、特に限定されないが、例えば、直鎖又は分岐を有する脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基が挙げられ、芳香族炭化水素基、直鎖の脂肪族炭化水素基が好ましい。Rの炭化水素基の炭素数として、好ましくは、3~35であり、より好ましくは、3~25であり、更により好ましくは、5~20であり、特に好ましくは6~15である。R全体における脂肪族炭化水素基の存在割合は50mol%以上であるが、好ましくは、60モル%以上、より好ましくは、80モル%以上である。この値が大きくなるほど、本発明の変性エポキシ樹脂を硬化物と共に硬化した際の可撓性が向上する傾向にある。
 Rの炭化水素基としては、特に限定されないが、例えば、直鎖又は分岐を有する脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基が挙げられ、芳香族炭化水素基、直鎖の脂肪族炭化水素基が好ましい。R全体において炭素数3以下の脂肪族炭化水素基の存在割合が50mol%以上であることが好ましく、より好ましくは、60モル%以上、更により好ましくは、80モル%以上、特に好ましくは95モル%以上である。この値が大きくなるほど、本発明の変性エポキシ樹脂を硬化物と共に硬化した際の可撓性が向上する傾向にある。
In the above formula (1), n is the average number of repetitions and is a positive number of 1-10. X is a divalent group represented by the following formula (2), and Y is a divalent group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000018
In formula (2) above, R 1 is a hydrocarbon group having 2 to 40 carbon atoms, preferably 2 to 38 carbon atoms, more preferably 2 to 35 carbon atoms, and may have a heteroatom. The hydrocarbon group includes a hydrocarbon group containing an alicyclic skeleton, an aromatic hydrocarbon group, and a chain hydrocarbon group. Hydrocarbon groups containing an alicyclic skeleton include cycloalkylene groups, alkylenebiscycloalkylene groups, alkyl-substituted cycloalkylene groups, alkylenebis(alkyl-substituted cycloalkylene) groups, and the like. The aromatic hydrocarbon group may be any hydrocarbon group containing an aromatic ring, such as an alkylenebisphenylene group, a phenylene group, a bisphenylene group, an oxybisphenylene group, a sulfonylbisphenylene group, a carbonylbisphenylene group, and Alkyl-substituted groups and the like can be mentioned. Examples of the chain hydrocarbon group include an alkylene group and an alkylene group containing an oxygen atom. Among them, aromatic hydrocarbon groups and chain hydrocarbon groups are more preferable. p is the number of repetitions and is an integer from 0 to 10;
Figure JPOXMLDOC01-appb-C000019
In the above formula (3), R 2 is a hydrocarbon group having 2 to 40 carbon atoms, may have a heteroatom, and the proportion of aliphatic hydrocarbon groups in all of R 2 is 50 mol% or more. . R 3 is a hydrocarbon group having 2 to 30 carbon atoms and may have a heteroatom. q is the number of repetitions and is an integer of 1-50.
The hydrocarbon group for R 2 is not particularly limited, but includes, for example, linear or branched aliphatic hydrocarbon groups, alicyclic hydrocarbon groups and aromatic hydrocarbon groups, aromatic hydrocarbon groups, Straight-chain aliphatic hydrocarbon groups are preferred. The number of carbon atoms in the hydrocarbon group for R 2 is preferably 3-35, more preferably 3-25, even more preferably 5-20, and particularly preferably 6-15. The proportion of the aliphatic hydrocarbon groups present in all R 2 is 50 mol % or more, preferably 60 mol % or more, and more preferably 80 mol % or more. As this value increases, the flexibility tends to improve when the modified epoxy resin of the present invention is cured together with the cured product.
The hydrocarbon group for R 3 is not particularly limited, but includes, for example, a linear or branched aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, an aromatic hydrocarbon group, Straight-chain aliphatic hydrocarbon groups are preferred. The proportion of aliphatic hydrocarbon groups having 3 or less carbon atoms in all of R 3 is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 80 mol% or more, and particularly preferably 95 mol% or more. As this value increases, the flexibility tends to improve when the modified epoxy resin of the present invention is cured together with the cured product.
 本実施形態の変性エポキシ樹脂は、接着性に優れながら可撓性にも優れ、硬化剤との反応性も良好な効果を奏する。この効果は、分子内にエステル結合を有する点と、変性エポキシ樹脂中の構造単位Yの占める割合を特定の量に調整する点と、変性エポキシ樹脂を構成する構造単位(X)および構造単位(Y)を特定の構造に調整する点と、により発現する。 The modified epoxy resin of this embodiment has excellent adhesiveness, flexibility, and good reactivity with the curing agent. This effect is due to the presence of an ester bond in the molecule, the adjustment of the ratio of the structural unit Y in the modified epoxy resin to a specific amount, and the structural unit (X) and the structural unit ( It is expressed by adjusting Y) to a specific structure.
 変性エポキシ樹脂のエポキシ当量は、500~10000g/eqであるが、好ましくは800g/eq以上、より好ましくは1000g/eq以上、更に好ましくは1300g/eq以上、特に好ましくは1400g/eq以上である。エポキシ当量が大きくなるほど、可撓性が向上する点から好ましいが、エポキシ当量が500g/eq未満となると、硬化物の架橋点間距離が短くなってしまい、3次元ネットワーク構造が過剰に緻密になってしまい硬脆さが発現してしまう恐れがあるため好ましくない。 The epoxy equivalent of the modified epoxy resin is 500 to 10000 g/eq, preferably 800 g/eq or more, more preferably 1000 g/eq or more, still more preferably 1300 g/eq or more, and particularly preferably 1400 g/eq or more. The larger the epoxy equivalent, the better the flexibility, but if the epoxy equivalent is less than 500 g/eq, the distance between the cross-linking points of the cured product becomes short, and the three-dimensional network structure becomes excessively dense. It is not preferable because there is a possibility that it will become hard and brittle.
 一方、好ましくは6000g/eq以下、より好ましくは5000g/eq以下、さらに好ましくは4000g/eq以下である。エポキシ当量が小さくなるほど、接着性が向上する点から好ましいが、10000g/eqを超えると、架橋点間距離が長くなり緻密な三次元ネットワーク構造を形成できず、接着強度を低下させる恐れがあるため好ましくない。 On the other hand, it is preferably 6000 g/eq or less, more preferably 5000 g/eq or less, and even more preferably 4000 g/eq or less. The smaller the epoxy equivalent, the better the adhesiveness, but if it exceeds 10,000 g/eq, the distance between the cross-linking points becomes long and a dense three-dimensional network structure cannot be formed, which may reduce the adhesive strength. I don't like it.
 変性エポキシ樹脂の重量平均分子量(Mw)は、3000~50000であるが、4000以上であることが好ましく、5500以上であることがより好ましく、7000以上であることがさらに好ましい。一方、40000以下であることがより好ましく、25000以下であることがより好ましく、20000以下であることが特に好ましい。重量平均分子量が50000を超えると、架橋点間距離が長くなり緻密な三次元ネットワーク構造を形成できず、接着強度を低下させる傾向にあり好ましくない。 The weight average molecular weight (Mw) of the modified epoxy resin is 3000 to 50000, preferably 4000 or more, more preferably 5500 or more, and even more preferably 7000 or more. On the other hand, it is more preferably 40,000 or less, more preferably 25,000 or less, and particularly preferably 20,000 or less. If the weight-average molecular weight exceeds 50,000, the distance between cross-linking points becomes long and a dense three-dimensional network structure cannot be formed, which tends to reduce the adhesive strength, which is not preferable.
 変性エポキシ樹脂の分子量分布(=重量平均分子量(Mw)/数平均分子量(Mn))の値の下限値は、1.5以上であることが好ましく、2.0以上であることがより好ましい。一方上限値は、20.0以下であることが好ましく、15.0以下であることがより好ましく、10.0以下であることがさらに好ましい。分子量分布の値を前記範囲内に調整することで、再現性良く変性エポキシ樹脂を合成できる。 The lower limit of the molecular weight distribution (=weight average molecular weight (Mw)/number average molecular weight (Mn)) of the modified epoxy resin is preferably 1.5 or more, more preferably 2.0 or more. On the other hand, the upper limit is preferably 20.0 or less, more preferably 15.0 or less, even more preferably 10.0 or less. By adjusting the value of the molecular weight distribution within the above range, a modified epoxy resin can be synthesized with good reproducibility.
 なお、エポキシ樹脂の重量平均分子量(Mw)及び数平均分子量(Mn)はゲルパーミエーションクロマトグラフィー法(GPC法)により測定することができる。より詳細な方法の例について後述の実施例において説明する。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the epoxy resin can be measured by gel permeation chromatography (GPC method). More detailed method examples are described in the examples below.
 変性エポキシ樹脂は、上記式(1)中の酸末端ポリエステル由来の構造単位(Y)の割合が特定の範囲である時に優れた効果を発現する。変性エポキシ樹脂中の構造単位(Y)の割合は、下記式で表される。
式:構造単位(Y)の割合(重量%)=(構造単位(Y)の重量)×100)÷変性エポキシ樹脂の重量
The modified epoxy resin exhibits excellent effects when the proportion of the acid-terminated polyester-derived structural unit (Y) in the above formula (1) is within a specific range. The ratio of structural units (Y) in the modified epoxy resin is represented by the following formula.
Formula: Proportion (% by weight) of structural unit (Y) = (weight of structural unit (Y)) x 100)/weight of modified epoxy resin
 構造単位(Y)の割合は、50~90重量%であるが、88重量%以下が好ましく、85重量%以下であることがより好ましく、83重量%以下が更に好ましい。構造単位(Y)の割合が90重量%を超えると、変性エポキシ樹脂を製造する際、酸末端ポリエステル(B)に対してエポキシ化合物(A)の割合が少ないため、均一な反応が進まない恐れがある。
 一方、構造単位(Y)の割合は、55重量%であることが好ましく、60重量%であることがより好ましく、70重量%以上であることが更により好ましい。構造単位(Y)の割合が50重量%を下回ると、変性エポキシ樹脂が呈する可撓性ポリエステル骨格由来の特性が損なわれ、エポキシ化合物(A)の特性が大きく反映される傾向があり、特に破断伸度が悪化する傾向にある。
The proportion of the structural unit (Y) is 50 to 90% by weight, preferably 88% by weight or less, more preferably 85% by weight or less, and even more preferably 83% by weight or less. If the ratio of the structural unit (Y) exceeds 90% by weight, the ratio of the epoxy compound (A) to the acid-terminated polyester (B) is small when producing the modified epoxy resin, so there is a risk that the reaction will not proceed uniformly. There is
On the other hand, the proportion of the structural unit (Y) is preferably 55% by weight, more preferably 60% by weight, and even more preferably 70% by weight or more. If the ratio of the structural unit (Y) is less than 50% by weight, the properties derived from the flexible polyester skeleton exhibited by the modified epoxy resin are impaired, and the properties of the epoxy compound (A) tend to be greatly reflected. Elongation tends to deteriorate.
 変性エポキシ樹脂は、上記式(1)の構造を有するが、nは平均の繰り返し数であり、1~10の正数であるが、好ましくは、1~8の正数であり、より好ましくは1~5の正数である。 The modified epoxy resin has the structure of formula (1) above, where n is the average number of repetitions and is a positive number of 1 to 10, preferably a positive number of 1 to 8, more preferably It is a positive number from 1 to 5.
 Xは2官能エポキシ化合物に由来する構造単位であり、具体的には式(2)で表される2価の基である。式(2)中、Rは炭素数2~40の炭化水素基であり、ヘテロ原子を有していてもよい。なお、pは繰り返し数であり、0~10の整数であるが、好ましくは1~8であり、より好ましくは1~5である。 X is a structural unit derived from a bifunctional epoxy compound, specifically a divalent group represented by formula (2). In formula (2), R 1 is a hydrocarbon group having 2 to 40 carbon atoms and may have a heteroatom. Note that p is the number of repetitions and is an integer of 0 to 10, preferably 1 to 8, more preferably 1 to 5.
 なお、Rは、下記式(4)及び/又は下記式(5)で表される2価の基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(4)中、Rは単結合、または、-CH-、-C(CH-、-CH(CH)-、-S-、-SO-、-O-、及び-CO-で表される基からなる群より選ばれる2価の基である。Rは、水素原子、炭素数1~4のアルキル基、フェニル基のいずれかを示し、各々同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000021
 式(5)中、Rは水素原子及び炭素数1~20の炭化水素基からなる群より選択され、各々同一でも異なっていてもよいし、Rの一部は互いに結合して、このベンゼン環に縮合する環を形成していてもよい。
R 1 preferably contains a divalent group represented by the following formula (4) and/or the following formula (5).
Figure JPOXMLDOC01-appb-C000020
In formula (4), R 4 is a single bond, or —CH 2 —, —C(CH 3 ) 2 —, —CH(CH 3 )—, —S—, —SO 2 —, —O—, and It is a divalent group selected from the group consisting of groups represented by -CO-. R 5 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group, each of which may be the same or different.
Figure JPOXMLDOC01-appb-C000021
In formula (5), R 6 is selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, each of which may be the same or different, and part of R 6 is bonded to each other to A ring condensed to the benzene ring may be formed.
 Rが、式(4)及び/又は式(5)を含む場合、Rの全体において、50重量%以上が好ましく、より好ましくは65重量%以上、更に好ましくは75重量%以上、特に好ましくは85重量%以上である。 When R 1 includes formula (4) and/or formula (5), the total content of R 1 is preferably 50% by weight or more, more preferably 65% by weight or more, still more preferably 75% by weight or more, and particularly preferably is 85% by weight or more.
 また、Rは式(6)で表される2価の基であることも好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(6)中Rは炭素数1~10の炭化水素基であり、炭素数2~8が好ましく、炭素数2~6であることがより好ましい。具体的には炭化水素基としては、アルキレン基、シクロアルキレン基、芳香族炭化水素基が好ましく、アルキレン基がより好ましい。アルキレン基としては、エチレン基、プロピレン基、トリメチレン基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基、ヘプタンジイル基、オクタンジイル基が好ましく、エチレン基、プロピレン基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基がより好ましく、エチレン基、プロピレン基が特に好ましい。rは繰り返し数であり、0~20の整数である。
R 1 is also preferably a divalent group represented by formula (6).
Figure JPOXMLDOC01-appb-C000022
In the above formula (6), R 7 is a hydrocarbon group having 1 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms. Specifically, the hydrocarbon group is preferably an alkylene group, a cycloalkylene group or an aromatic hydrocarbon group, more preferably an alkylene group. The alkylene group is preferably an ethylene group, a propylene group, a trimethylene group, a butanediyl group, a pentanediyl group, a hexanediyl group, a heptanediyl group or an octanediyl group, more preferably an ethylene group, a propylene group, a butanediyl group, a pentanediyl group or a hexanediyl group. An ethylene group and a propylene group are particularly preferred. r is a repetition number and is an integer from 0 to 20;
 変性エポキシ樹脂は、式(7)で示されるエポキシ化合物(A)と式(8)で示される酸末端ポリエステル(B)とを反応させることで製造することもできる。
Figure JPOXMLDOC01-appb-C000023
 上記式(7)中、R及びpは上記式(2)と同義である。
Figure JPOXMLDOC01-appb-C000024
 上記式(8)中、R、R及びqは上記式(3)と同義である。
The modified epoxy resin can also be produced by reacting the epoxy compound (A) represented by formula (7) with the acid-terminated polyester (B) represented by formula (8).
Figure JPOXMLDOC01-appb-C000023
In formula (7) above, R 1 and p have the same meanings as in formula (2) above.
Figure JPOXMLDOC01-appb-C000024
In formula (8) above, R 2 , R 3 and q have the same meanings as in formula (3) above.
〔エポキシ化合物(A)〕
 式(7)で表されるエポキシ化合物(A)は、分子内に2個のエポキシ基を有する化合物である。
 エポキシ基を2個有する2官能のエポキシ化合物としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールEジグリシジルエーテル、ビスフェノールZジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールアセトフェノンジグリシジルエーテル、ビスフェノールトリメチルシクロヘキサンジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、テトラメチルビスフェノールAジグリシジルエーテル、テトラメチルビスフェノールFジグリシジルエーテル、テトラ-t-ブチルビスフェノールAジグリシジルエーテル、テトラメチルビスフェノールSジグリシジルエーテル等のビスフェノール系ジグリシジルエーテル類;ビフェノールジグリシジルエーテル、テトラメチルビフェノールジグリシジルエーテル、ジメチルビフェノールジグリシジルエーテル、テトラ-t-ブチルビフェノールジグリシジルエーテル等のビフェノール系ジグリシジルエーテル類;ハイドロキノンジグリシジルエーテル、ジヒドロアントラセンジグリシジルエーテル、メチルハイドロキノンジグリシジルエーテル、ジブチルハイドロキノンジグリシジルエーテル、レゾルシンジグリシジルエーテル、メチルレゾルシンジグリシジルエーテル等のベンゼンジオール系ジグリシジルエーテル類;ジヒドロアントラハイドロキノンジグリシジルエーテル、ジヒドロキシジフェニルエーテルジグリシジルエーテル、チオジフェノールジグリシジルエーテル、ジヒドロキシナフタレンジグリシジルエーテル等の芳香族系ジグリシジルエーテル類;前記ビスフェノール系ジグリシジルエーテル類、ビフェノール系ジグリシジルエーテル類、ベンゼンジオール系ジグリシジルエーテル類及び芳香族系ジグリシジルエーテル類から選ばれるジグリシジルエーテル類の芳香環に水素を添加したエポキシ化合物;アジピン酸、コハク酸、フタル酸、テトラヒドロフタル酸、メチルヘキサヒドロフタル酸、テレフタル酸、イソフタル酸、オルソフタル酸、ビフェニルジカルボン酸、ダイマー酸等の種々のカルボン酸類と、エピハロヒドリンとから製造されるエポキシ樹脂;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、1,5-ペンタンジオールジグリシジルエーテル、ポリペンタメチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリヘキサメチレングリコールジグリシジルエーテル、1,7-ヘプタンジオールジグリシジルエーテル、ポリヘプタメチレングリコールジグリシジルエーテル、1,8-オクタンジオールジグリシジルエーテル、1,10-デカンジオールジグリシジルエーテル、2,2-ジメチル-1,3-プロパンジオールジグリシジルエーテル等の鎖状構造のみからなる(ポリ)アルキレングリコールジグリシジルエーテル類;1,4-シクロヘキサンジメタノールジグリシジルエーテル等の環状構造を有するアルキレングリコールジグリシジルエーテル類等が挙げられる。
[Epoxy compound (A)]
The epoxy compound (A) represented by formula (7) is a compound having two epoxy groups in the molecule.
Examples of bifunctional epoxy compounds having two epoxy groups include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol E diglycidyl ether, bisphenol Z diglycidyl ether, bisphenol S diglycidyl ether, and bisphenol AD diglycidyl ether. Ether, bisphenol acetophenone diglycidyl ether, bisphenol trimethylcyclohexane diglycidyl ether, bisphenol fluorenediglycidyl ether, tetramethylbisphenol A diglycidyl ether, tetramethylbisphenol F diglycidyl ether, tetra-t-butylbisphenol A diglycidyl ether, tetramethyl bisphenol diglycidyl ethers such as bisphenol S diglycidyl ether; biphenol diglycidyl ethers such as biphenol diglycidyl ether, tetramethylbiphenol diglycidyl ether, dimethylbiphenol diglycidyl ether, tetra-t-butylbiphenol diglycidyl ether; Benzenediol-based diglycidyl ethers such as hydroquinone diglycidyl ether, dihydroanthracene diglycidyl ether, methylhydroquinone diglycidyl ether, dibutyl hydroquinone diglycidyl ether, resorcinol diglycidyl ether, methylresorcinol diglycidyl ether; dihydroanthrahydroquinone diglycidyl ether, Aromatic diglycidyl ethers such as dihydroxydiphenyl ether diglycidyl ether, thiodiphenol diglycidyl ether, dihydroxynaphthalenediglycidyl ether; the bisphenol diglycidyl ethers, biphenol diglycidyl ethers, benzenediol diglycidyl ethers and aromatic diglycidyl ethers with hydrogen added to the aromatic ring of diglycidyl ethers; adipic acid, succinic acid, phthalic acid, tetrahydrophthalic acid, methylhexahydrophthalic acid, terephthalic acid, isophthalic acid Epoxy resins produced from various carboxylic acids such as orthophthalic acid, biphenyldicarboxylic acid, dimer acid, and epihalohydrin; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, poly Propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, polytetramethylene glycol diglycidyl ether, 1,5-pentanediol diglycidyl ether, polypentamethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyhexamethylene glycol diglycidyl ether, 1,7-heptanediol diglycidyl ether, polyheptamethylene glycol diglycidyl ether, 1,8-octanediol diglycidyl ether, 1,10-decanediol diglycidyl ether, 2, (Poly)alkylene glycol diglycidyl ethers consisting only of a chain structure such as 2-dimethyl-1,3-propanediol diglycidyl ether; Glycidyl ethers and the like can be mentioned.
 エポキシ化合物(A)としては特に限定されないが、接着性を制御できる観点からビスフェノール系ジグリシジルエーテル類、ベンゼンジオール系ジグリシジルエーテル類、ビフェノール系ジグリシジルエーテル類、ポリアルキレンポリオール系ジグリシジルエーテル類、アルキレングリコールジグリシジルエーテル類を使用することが好ましく、特に好ましくはポリアルキレンポリオール系ジグリシジルエーテル類、アルキレングリコールジグリシジルエーテル類を使用することがより好ましい。 The epoxy compound (A) is not particularly limited, but from the viewpoint of being able to control adhesion, bisphenol-based diglycidyl ethers, benzenediol-based diglycidyl ethers, biphenol-based diglycidyl ethers, polyalkylene polyol-based diglycidyl ethers, Alkylene glycol diglycidyl ethers are preferably used, and polyalkylene polyol-based diglycidyl ethers and alkylene glycol diglycidyl ethers are particularly preferably used.
 エポキシ化合物(A)のエポキシ当量は、特に限定されないが、100g/eq~1200g/eqが好ましい。取り扱い並びに可撓性向上や接着性の観点から、より好ましくは、110g/eq~1000g/eqであり、更により好ましくは、120g/eq~800g/eqである。
 エポキシ化合物(A)の性状としては、特に限定されず、固体状であっても、液体状であっても、半固体状であってもよいが、液状又は半固体状が好ましい。
Although the epoxy equivalent of the epoxy compound (A) is not particularly limited, it is preferably 100 g/eq to 1200 g/eq. From the viewpoints of handling, improvement of flexibility and adhesiveness, it is more preferably 110 g/eq to 1000 g/eq, still more preferably 120 g/eq to 800 g/eq.
The properties of the epoxy compound (A) are not particularly limited, and may be solid, liquid, or semi-solid, preferably liquid or semi-solid.
 以上に挙げたエポキシ化合物(A)は1種のみでも複数種を組み合わせて使用することもできる。好ましい組み合わせとしてはビスフェノール系ジグリシジルエーテル類、ベンゼンジオール系ジグリシジルエーテル類、ビフェノール系ジグリシジルエーテル類、ポリアルキレンポリオール系ジグリシジルエーテル類、アルキレングリコールジグリシジルエーテル類から選ばれる組み合わせである。 The epoxy compounds (A) listed above can be used alone or in combination of multiple types. A preferred combination is a combination selected from bisphenol-based diglycidyl ethers, benzenediol-based diglycidyl ethers, biphenol-based diglycidyl ethers, polyalkylenepolyol-based diglycidyl ethers, and alkylene glycol diglycidyl ethers.
〔酸末端ポリエステル(B)〕
 式(8)で示される酸末端ポリエステル(B)は、2価カルボン酸と2価アルコールの重縮合により製造されるカルボン酸末端のポリエステル樹脂である。
 なお、上述の式(3)におけるRは、酸末端ポリエステル(B)において、後述する2価カルボン酸に由来する繰り返し構成単位に該当し、Rは、酸末端ポリエステル(B)において、2価アルコールに由来する繰り返し単位に該当するものであり、上述の式(3)において、R、Rは、それぞれの繰返し単位の由来となる化合物に対する化合物単位とも呼ぶこともある。
[Acid-terminated polyester (B)]
The acid-terminated polyester (B) represented by formula (8) is a carboxylic acid-terminated polyester resin produced by polycondensation of a dihydric carboxylic acid and a dihydric alcohol.
In addition, R 2 in the above formula (3) corresponds to a repeating structural unit derived from a divalent carboxylic acid described later in the acid-terminated polyester (B), and R 3 is 2 in the acid-terminated polyester (B). It corresponds to a repeating unit derived from a functional alcohol, and in the above formula (3), R 2 and R 3 may also be referred to as compound units for compounds from which the respective repeating units are derived.
 該2価カルボン酸としては特に限定されないが、以下のようなものが挙げられる。テレフタル酸、イソフタル酸、ナフタレンジカルボン酸の異性体(具体的には1,4-、1,5-、1,6-、1,7-、2,5-、2,6-、2,7-、2,8-)、コハク酸、セバシン酸、イソデシルコハク酸、ドデセニルコハク酸、マレイン酸、アジピン酸、フランジカルボン酸、マロン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、テトラデカン二酸、ペンタデカン二酸、タプシン酸、ヘプタデカン二酸、ジプロピルマロン酸、3-エチル-3-メチルグルタル酸、3,3-テトラメチレングルタル酸、ダイマー酸、水添ダイマー酸等の脂肪族ジカルボン酸類;1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、デカヒドロ-1,4-ナフタレンジカルボン酸、2,3-ノルボルナンジカルボン酸、1,3-アダマンタンジカルボン酸等が挙げられるが、好ましくは、テレフタル酸、イソフタル酸、アジピン酸、セバシン酸である。これらの2価カルボン酸は単独で用いてもよいし、複数種用いてもよい。 Although the divalent carboxylic acid is not particularly limited, it includes the following. Isomers of terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid (specifically 1,4-, 1,5-, 1,6-, 1,7-, 2,5-, 2,6-, 2,7 -, 2,8-), succinic acid, sebacic acid, isodecylsuccinic acid, dodecenylsuccinic acid, maleic acid, adipic acid, furandicarboxylic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanedioic acid , dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, thapsic acid, heptadecanedioic acid, dipropylmalonic acid, 3-ethyl-3-methylglutaric acid, 3,3-tetramethyleneglutaric acid, dimer acid, Aliphatic dicarboxylic acids such as hydrogenated dimer acid; 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, 1,2-cyclo pentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, decahydro-1,4-naphthalenedicarboxylic acid, 2,3 -norbornanedicarboxylic acid, 1,3-adamantanedicarboxylic acid and the like, preferably terephthalic acid, isophthalic acid, adipic acid and sebacic acid. These divalent carboxylic acids may be used alone or in combination.
 2価カルボン酸としては、可撓性を高くする観点から脂肪族2価カルボン酸を使用することが好ましい。
 脂肪族2価カルボン酸の使用量は全2価カルボン酸成分中50mol%以上が好ましく、60mol%以上がより好ましく、70mol%以上がより好ましく、80mol%以上がさらに好ましく、90mol%以上が前記の理由から特に好ましい。
As the divalent carboxylic acid, it is preferable to use an aliphatic divalent carboxylic acid from the viewpoint of increasing flexibility.
The amount of the aliphatic dicarboxylic acid used is preferably 50 mol% or more, more preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and 90 mol% or more of the total divalent carboxylic acid component. It is particularly preferred for this reason.
 該2価アルコールとしては特に限定されないが、以下のようなものが挙げられる。エチレングリコール、ポリエチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、ポリプロピレングリコール、1,4-ブタンジオール、ポリテトラメチレングリコール、1,5-ペンタンジオール、ポリペンタメチレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオール、ポリヘキサメチレングリコール、1,7-ヘプタンジオール、ポリヘプタメチレングリコール、1,8-オクタンジオール、1,10-デカンジオール、2,2-ジメチル-1,3-プロパンジオール等の鎖状構造のみからなるジオール類や、1,4-シクロヘキサンジメタノール、イソソルバイド等の環状構造を有するジオール類、ビスフェノールAエチレンオキシド付加物、ビスフェノールAプロピレンオキシド付加物等のビスフェノール類に脂肪族アルコールが付加したジオール類等が挙げられる。これらの2価アルコールは単独で用いてもよいし複数種用いてもよい。 The dihydric alcohol is not particularly limited, but includes the following. Ethylene glycol, polyethylene glycol, 1,2-propylene glycol, 1,3-propanediol, polypropylene glycol, 1,4-butanediol, polytetramethylene glycol, 1,5-pentanediol, polypentamethylene glycol, neopentyl glycol , 1,6-hexanediol, polyhexamethylene glycol, 1,7-heptanediol, polyheptamethylene glycol, 1,8-octanediol, 1,10-decanediol, 2,2-dimethyl-1,3-propane Diols consisting only of a chain structure such as diols, diols having a cyclic structure such as 1,4-cyclohexanedimethanol and isosorbide, bisphenols such as bisphenol A ethylene oxide adducts, bisphenol A propylene oxide adducts and other aliphatic Examples include diols to which alcohol is added. These dihydric alcohols may be used alone or in combination.
 2価アルコールとしては、炭素数3以下の2価アルコールを使用することが好ましく、エチレングリコール、1,2-プロピレングリコールを使用することがより好ましい。エチレングリコール、1,2-プロピレングリコールはいずれも沸点が200℃以下であり、酸末端ポリエステルの製造工程における減圧下反応時に不要な2価アルコール成分を十分に留去しながら反応できるため、酸末端ポリエステルの酸末端純度を高くすることができる。反対に、酸末端ポリエステルの酸末端純度が低い場合、すなわち水酸基末端である場合、エポキシ樹脂との共重合反応に関与できず、得られる変性エポキシ樹脂の末端エポキシ基純度が下がる。その結果、硬化時に設計通りの3次元ネットワーク構造を構築できずに、可撓性および接着性が低下する傾向にある。 As the dihydric alcohol, it is preferable to use a dihydric alcohol having 3 or less carbon atoms, and it is more preferable to use ethylene glycol and 1,2-propylene glycol. Both ethylene glycol and 1,2-propylene glycol have a boiling point of 200° C. or less, and can be reacted while sufficiently distilling off unnecessary dihydric alcohol components during the reaction under reduced pressure in the production process of acid-terminated polyester. The acid terminal purity of the polyester can be increased. On the contrary, when the acid terminal purity of the acid-terminated polyester is low, that is, when it is hydroxyl-terminated, it cannot participate in the copolymerization reaction with the epoxy resin, and the terminal epoxy group purity of the resulting modified epoxy resin is lowered. As a result, the three-dimensional network structure as designed cannot be constructed during curing, and flexibility and adhesiveness tend to decrease.
 炭素数3以下の2価アルコールの使用量は全2価アルコール成分中50mol%以上が好ましく、55mol%以上がより好ましく、60mol%以上がより好ましく、70mol%以上がより好ましく、80mol%以上がさらに好ましく、90mol%以上が前記の理由で特に好ましい。 The amount of the dihydric alcohol having 3 or less carbon atoms used is preferably 50 mol% or more, more preferably 55 mol% or more, more preferably 60 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more of the total dihydric alcohol component. Preferably, 90 mol % or more is particularly preferable for the reason described above.
 酸末端ポリエステル(B)の製造方法は特に限定されず、公知の方法で製造することができる。例えば、2価カルボン酸成分および2価アルコール成分等を含む単量体混合物を反応容器に投入し、加熱昇温して、エステル化反応またはエステル交換反応を行い、反応で生じた水または2価アルコール成分を除去する。その後引き続き重縮合反応を実施するが、このとき反応装置内を徐々に減圧し、150mmHg(20kPa)以下、好ましくは15mmHg(2kPa)以下の真空下で2価アルコール成分を留出除去させながら重縮合を行う。 The method for producing the acid-terminated polyester (B) is not particularly limited, and it can be produced by a known method. For example, a monomer mixture containing a dihydric carboxylic acid component, a dihydric alcohol component, etc. is put into a reaction vessel, heated to raise the temperature, an esterification reaction or a transesterification reaction is performed, and the water or divalent Remove the alcohol component. After that, the polycondensation reaction is continued. At this time, the pressure inside the reactor is gradually reduced, and the polycondensation is carried out while distilling off the dihydric alcohol component under a vacuum of 150 mmHg (20 kPa) or less, preferably 15 mmHg (2 kPa) or less. I do.
 エステル化反応、エステル交換反応、重縮合反応時に用いる触媒としては、チタン系触媒、酢酸カルシウム、酢酸カルシウム水和物、ジブチルスズオキシド、酢酸スズ、二硫化スズ、酸化スズ、2-エチルヘキサンスズ等のスズ系触媒、酢酸亜鉛、三酸化アンチモン、二酸化ゲルマニウムなどが挙げられる。これらのうち、触媒としては、反応性が良好な点からチタン系触媒が好ましい。 Catalysts used for esterification reaction, transesterification reaction and polycondensation reaction include titanium-based catalysts, calcium acetate, calcium acetate hydrate, dibutyltin oxide, tin acetate, tin disulfide, tin oxide, 2-ethylhexanetin and the like. Tin-based catalysts, zinc acetate, antimony trioxide, germanium dioxide and the like. Among these catalysts, titanium-based catalysts are preferred because of their good reactivity.
 チタン系触媒としては、例えばアルコキシ基を有するチタンアルコキシド化合物、カルボン酸チタン化合物、カルボン酸チタニル、カルボン酸チタニル塩、チタンキレート化合物などが挙げられる。
 アルコキシ基を有するチタンアルコキシド化合物としては、例えばテトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトラブトキシチタン、テトラペントキシチタン、テトラオクトキシチタンなどが挙げられる。
Examples of titanium-based catalysts include titanium alkoxide compounds having an alkoxy group, titanium carboxylate compounds, titanyl carboxylates, titanyl carboxylate salts, and titanium chelate compounds.
Titanium alkoxide compounds having an alkoxy group include, for example, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, tetrapentoxytitanium, tetraoctoxytitanium and the like.
 カルボン酸チタン化合物としては、例えば蟻酸チタン、酢酸チタン、プロピオン酸チタン、オクタン酸チタン、シュウ酸チタン、コハク酸チタン、マレイン酸チタン、アジピン酸チタン、セバシン酸チタン、ヘキサントリカルボン酸チタン、イソオクタントリカルボン酸チタン、オクタンテトラカルボン酸チタン、デカンテトラカルボン酸チタン、安息香酸チタン、フタル酸チタン、テレフタル酸チタン、イソフタル酸チタン、1,3-ナフタレンジカルボン酸チタン、4,4-ビフェニルジカルボン酸チタン、2,5-トルエンジカルボン酸チタン、アントラセンジカルボン酸チタン、トリメリット酸チタン、2,4,6-ナフタレントリカルボン酸チタン、ピロメリット酸チタン、2,3,4,6-ナフタレンテトラカルボン酸チタンなどが挙げられる。これらのチタン系触媒のうち、テトラブトキシチタンが好ましい。チタン系触媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of titanium carboxylate compounds include titanium formate, titanium acetate, titanium propionate, titanium octanoate, titanium oxalate, titanium succinate, titanium maleate, titanium adipate, titanium sebacate, titanium hexanetricarboxylate, and isooctanetricarboxylic acid. titanium, titanium octanetetracarboxylate, titanium decanetetracarboxylate, titanium benzoate, titanium phthalate, titanium terephthalate, titanium isophthalate, titanium 1,3-naphthalenedicarboxylate, titanium 4,4-biphenyldicarboxylate, 2, Titanium 5-toluenedicarboxylate, titanium anthracene dicarboxylate, titanium trimellitate, 2,4,6-naphthalenetricarboxylate, titanium pyromellitic acid, titanium 2,3,4,6-naphthalenetetracarboxylate, and the like. . Among these titanium-based catalysts, tetrabutoxy titanium is preferred. Titanium-based catalysts may be used alone or in combination of two or more.
 エステル化反応またはエステル交換反応、重縮合反応の反応温度は150~300℃が好ましい。反応温度が150℃以上であれば生産性が良好となる傾向にあり、300℃以下であれば得られる酸末端ポリエステル(B)の分解を抑制することができる。反応温度の下限値は180℃以上がより好ましく、上限値は280℃以下がより好ましい。 The reaction temperature for the esterification reaction, transesterification reaction, or polycondensation reaction is preferably 150 to 300°C. If the reaction temperature is 150°C or higher, productivity tends to be good, and if it is 300°C or lower, decomposition of the obtained acid-terminated polyester (B) can be suppressed. The lower limit of the reaction temperature is more preferably 180°C or higher, and the upper limit is more preferably 280°C or lower.
 触媒の使用量としては2価カルボン酸成分と2価アルコール成分の合計重量に対して10ppm~10000ppmであることが重合反応性確保の観点で好ましい。触媒の使用量が10ppm未満であったり、10000ppmを超えたりすると、重縮合の時間調整では対応しきれず重合反応性が低下する。 The amount of catalyst used is preferably 10 ppm to 10000 ppm with respect to the total weight of the divalent carboxylic acid component and the dihydric alcohol component from the viewpoint of ensuring polymerization reactivity. If the amount of the catalyst used is less than 10 ppm or more than 10000 ppm, the time adjustment for polycondensation cannot cope with this, resulting in a decrease in polymerization reactivity.
 酸末端ポリエステル(B)の重量平均分子量(Mw)の下限値は、1000以上であることが好ましく、1,500以上であることがより好ましく、2,000以上であることが特に好ましい。一方、重量平均分子量(Mw)の上限値は、10,000以下であることが好ましく、9,000以下であることがより好ましく、8,000以下であることが特に好ましい。前記、上限値と下限値を満たすことで、変性エポキシ樹脂中に占める構造単位(Y)を好適な範囲に調整することができる。 The lower limit of the weight average molecular weight (Mw) of the acid-terminated polyester (B) is preferably 1,000 or more, more preferably 1,500 or more, and particularly preferably 2,000 or more. On the other hand, the upper limit of the weight average molecular weight (Mw) is preferably 10,000 or less, more preferably 9,000 or less, and particularly preferably 8,000 or less. By satisfying the above upper limit and lower limit, the structural unit (Y) occupying the modified epoxy resin can be adjusted to a suitable range.
 分子量分布(=重量平均分子量(Mw)/数平均分子量(Mn))は1.1以上であることが好ましく、1.2以上であることがより好ましく、1.3以上であることがより好ましく、1.5以上であることがより好ましく、2.0以上であることが原料入手の観点から特に好ましい。また、分子量分布(Mw/Mn)は10.0以下であることが好ましく、5.0以下であることがより好ましく、4.3以下であることが、設計通りの3次元ネットワーク構造を形成して接着性をよくする点で特に好ましい。 The molecular weight distribution (=weight average molecular weight (Mw)/number average molecular weight (Mn)) is preferably 1.1 or more, more preferably 1.2 or more, and more preferably 1.3 or more. , is more preferably 1.5 or more, and particularly preferably 2.0 or more from the viewpoint of raw material availability. Further, the molecular weight distribution (Mw/Mn) is preferably 10.0 or less, more preferably 5.0 or less, and 4.3 or less to form a three-dimensional network structure as designed. It is particularly preferable in terms of improving the adhesiveness.
 なお、酸末端ポリエステル(B)の重量平均分子量(Mw)、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定することができ、ポリスチレン換算の値を用いる。具体的な測定方法は後掲の実施例の項に記載の通りである。 The weight-average molecular weight (Mw) and number-average molecular weight (Mn) of the acid-terminated polyester (B) can be measured by gel permeation chromatography (GPC method), and polystyrene equivalent values are used. A specific measuring method is as described in the section of Examples below.
 酸末端ポリエステル(B)の常温での性状はガラス状固体、結晶性固体、液体など特に限定されないが、変性エポキシ樹脂の粘度を下げ、混和性を高める観点から結晶性固体または液体が好ましい。 The properties of the acid-terminated polyester (B) at room temperature are not particularly limited, such as a vitreous solid, a crystalline solid, or a liquid, but a crystalline solid or liquid is preferable from the viewpoint of lowering the viscosity of the modified epoxy resin and increasing miscibility.
 酸末端ポリエステル(B)の水酸基価は特に限定されないが、水酸基価は0.001mgKOH/g以上であることが好ましく、0.005mgKOH/g以上であることがより好ましく、0.01mgKOH/g以上であることが原料入手性の観点から特に好ましい。また、酸末端ポリエステル(B)の水酸基価は60mgKOH/g以下であることが好ましく、50mgKOH/g以下であることがより好ましく、40mgKOH/g以下であることがより好ましく、30mgKOH/g以下であることが接着性、可撓性を向上する観点から特に好ましい。 The hydroxyl value of the acid-terminated polyester (B) is not particularly limited. It is particularly preferable from the viewpoint of raw material availability. Further, the hydroxyl value of the acid-terminated polyester (B) is preferably 60 mgKOH/g or less, more preferably 50 mgKOH/g or less, more preferably 40 mgKOH/g or less, and 30 mgKOH/g or less. is particularly preferable from the viewpoint of improving adhesiveness and flexibility.
 酸末端ポリエステル(B)の酸価は特に限定されないが、酸価は10mgKOH/g以上であることが好ましく、20mgKOH/g以上であることがさらに好ましく、30mgKOH/g以上であることが特に好ましい。また、酸価は100mgKOH/g以下であることが好ましく、90mgKOH/g以下であることがより好ましく、80mgKOH/g以下であることがより好ましい。前記範囲に調整することで、変性エポキシ樹脂の末端エポキシ基純度が向上し、接着性、可撓性を向上することができる。 The acid value of the acid-terminated polyester (B) is not particularly limited, but the acid value is preferably 10 mgKOH/g or more, more preferably 20 mgKOH/g or more, and particularly preferably 30 mgKOH/g or more. Also, the acid value is preferably 100 mgKOH/g or less, more preferably 90 mgKOH/g or less, and even more preferably 80 mgKOH/g or less. By adjusting the content within the above range, the purity of the terminal epoxy group of the modified epoxy resin can be improved, and the adhesiveness and flexibility can be improved.
 なお、酸末端ポリエステル(B)のガラス転移温度(Tg)、水酸基価、酸価の具体的な測定方法は後掲の実施例の項に記載の通りである。
 酸末端ポリエステル(B)は、1種のみを用いても、2価カルボン酸や2価アルコールの種類や物性等の異なるものを複数種類組み合わせて使用することもできる。
Specific methods for measuring the glass transition temperature (Tg), hydroxyl value, and acid value of the acid-terminated polyester (B) are as described in Examples below.
The acid-terminated polyester (B) may be used singly or in combination with a plurality of divalent carboxylic acids or dihydric alcohols having different types and physical properties.
 本発明において、酸末端ポリエステル(B)は脂肪族骨格を含んでいるため、変性エポキシ樹脂中に含まれるこの構造単位はソフトセグメントとしてふるまう。このため、ハードセグメントとしてふるまう芳香族骨格をもつエポキシ化合物(A)を使用することにより、変性エポキシ樹脂全体の物性を制御することが可能である。一方で、ソフトセグメントとしてふるまうポリアルキレンポリオール系、アルキレングリコール系骨格をもつエポキシ化合物(A)を使用することで、変性エポキシ樹脂の可撓性をさらに向上させることも可能である。このような変性エポキシ樹脂と他のエポキシ化合物を適切に配合することで優れた硬化物性を発現することが可能である。 In the present invention, since the acid-terminated polyester (B) contains an aliphatic skeleton, this structural unit contained in the modified epoxy resin behaves as a soft segment. Therefore, by using an epoxy compound (A) having an aromatic skeleton that behaves as a hard segment, it is possible to control the physical properties of the modified epoxy resin as a whole. On the other hand, it is possible to further improve the flexibility of the modified epoxy resin by using the epoxy compound (A) having a polyalkylene polyol-based or alkylene glycol-based skeleton that behaves as a soft segment. By appropriately blending such a modified epoxy resin with other epoxy compounds, it is possible to exhibit excellent cured physical properties.
〔変性エポキシ樹脂〕
[仕込み比]
 変性エポキシ樹脂の製造時のエポキシ化合物(A)と酸末端ポリエステル(B)の仕込み比は、得られる変性エポキシ樹脂の理論エポキシ当量から算出され、前記理論エポキシ当量の下限値は、下限値は、500g/eq以上である必要があり、好ましくは800g/eq以上、より好ましくは1000g/eq以上、より好ましくは1300g/eq以上、さらに好ましくは1400g/eq以上である。好ましい理由は、変性エポキシ樹脂の項で述べた通りである。
 一方、理論エポキシ当量の上限値は、5000g/eq以下である必要があり、好ましくは、4500g/eq以下、さらに好ましくは4000g/eq以下である。好ましい理由は、変性エポキシ樹脂の項で述べた通りである。
[Modified epoxy resin]
[Batch ratio]
The charge ratio of the epoxy compound (A) and the acid-terminated polyester (B) at the time of manufacturing the modified epoxy resin is calculated from the theoretical epoxy equivalent of the modified epoxy resin to be obtained, and the lower limit of the theoretical epoxy equivalent is It should be 500 g/eq or more, preferably 800 g/eq or more, more preferably 1000 g/eq or more, more preferably 1300 g/eq or more, still more preferably 1400 g/eq or more. The reason why it is preferable is as described in the section on the modified epoxy resin.
On the other hand, the upper limit of the theoretical epoxy equivalent must be 5000 g/eq or less, preferably 4500 g/eq or less, more preferably 4000 g/eq or less. The reason why it is preferable is as described in the section on the modified epoxy resin.
[変性エポキシ樹脂の製造方法]
 変性エポキシ樹脂は、式(7)で示されるエポキシ化合物(A)と式(8)で示される酸末端ポリエステル(B)とを、触媒共存下において、好適な仕込み比のもと反応させることで得られる。
[Method for producing modified epoxy resin]
The modified epoxy resin is produced by reacting the epoxy compound (A) represented by the formula (7) and the acid-terminated polyester (B) represented by the formula (8) in the presence of a catalyst at a suitable feed ratio. can get.
[触媒(E)]
 変性エポキシ樹脂を製造するための反応工程には触媒(E)を用いてもよい。触媒(E)としては、通常、エポキシ樹脂の製法におけるアドバンス法の触媒として用いられるものであれば特に制限されない。
 触媒(E)としては、例えば、アルカリ金属化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩、環状アミン類、イミダゾール類等が挙げられる。
[Catalyst (E)]
A catalyst (E) may be used in the reaction step for producing the modified epoxy resin. The catalyst (E) is not particularly limited as long as it is usually used as a catalyst for the advance method in the production of epoxy resins.
Examples of the catalyst (E) include alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, imidazoles and the like.
 アルカリ金属化合物の具体例としては、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属水酸化物;炭酸ナトリウム、重炭酸ナトリウム、塩化ナトリウム、塩化リチウム、塩化カリウム等のアルカリ金属塩;ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属アルコキシド;アルカリ金属フェノキシド、水素化ナトリウム、水素化リチウム等のアルカリ金属の水素化物;酢酸ナトリウム、ステアリン酸ナトリウム等の有機酸のアルカリ金属塩等が挙げられる。 Specific examples of alkali metal compounds include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide; alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium chloride, lithium chloride and potassium chloride; alkali metal alkoxides such as methoxide and sodium ethoxide; alkali metal hydrides such as alkali metal phenoxide, sodium hydride and lithium hydride; alkali metal salts of organic acids such as sodium acetate and sodium stearate;
 有機リン化合物の具体例としては、トリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-m-トリルホスフィン、トリ-p-トリルホスフィン、トリ-2,4-キシリルホスフィン、トリ-2,5-キシリルホスフィン、トリ-3,5-キシリルホスフィン、トリス(p-tert-ブチルフェニル)ホスフィン、トリス(p-メトキシフェニル)ホスフィン、トリス(p-tert-ブトキシフェニル)ホスフィン、トリ(p-n-オクチルフェニル)ホスフィン、トリ(p-n-ノニルフェニル)ホスフィン、トリアリルホスフィン、トリブチルホスフィン、トリメチルホスフィン、トリベンジルホスフィン、トリイソブチルホスフィン、トリ-tert-ブチルホスフィン、トリ-n-オクチルホスフィン、トリシクロヘキシルホスフィン、トリ-n-プロピルホスフィン、ジ-t-ブチルメチルホスフィン、トリ-n-ブチルホスフィン、シクロヘキシルジ-tert-ブチルホスフィン、ジエチルフェニルホスフィン、ジ-n-ブチルフェニルホスフィン、ジ-tert-ブチルフェニルホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、ジフェニルプロピルホスフィン、イソプロピルジフェニルホスフィン、シクロヘキシルジフェニルホスフィン、テトラメチルホスホニウムブロマイド、テトラメチルホスホニウムアイオダイド、テトラメチルホスホニウムハイドロオキサイド、トリメチルシクロヘキシルホスホニウムクロライド、トリメチルシクロヘキシルホスホニウムブロマイド、トリメチルベンジルホスホニウムクロライド、トリメチルベンジルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、トリフェニルメチルホスホニウムブロマイド、トリフェニルメチルホスホニウムアイオダイド、トリフェニルエチルホスホニウムクロライド、トリフェニルエチルホスホニウムブロマイド、トリフェニルエチルホスホニウムアイオダイド、トリフェニルベンジルホスホニウムクロライド、トリフェニルベンジルホスホニウムブロマイド等が挙げられる。 Specific examples of organic phosphorus compounds include triphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tri-2,4-xylylphosphine, tri-2,5- xylylphosphine, tri-3,5-xylylphosphine, tris(p-tert-butylphenyl)phosphine, tris(p-methoxyphenyl)phosphine, tris(p-tert-butoxyphenyl)phosphine, tri(pn) -octylphenyl)phosphine, tri(pn-nonylphenyl)phosphine, triallylphosphine, tributylphosphine, trimethylphosphine, tribenzylphosphine, triisobutylphosphine, tri-tert-butylphosphine, tri-n-octylphosphine, tri Cyclohexylphosphine, tri-n-propylphosphine, di-t-butylmethylphosphine, tri-n-butylphosphine, cyclohexyldi-tert-butylphosphine, diethylphenylphosphine, di-n-butylphenylphosphine, di-tert-butyl phenylphosphine, methyldiphenylphosphine, ethyldiphenylphosphine, diphenylpropylphosphine, isopropyldiphenylphosphine, cyclohexyldiphenylphosphine, tetramethylphosphonium bromide, tetramethylphosphonium iodide, tetramethylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethylcyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bromide, tetraphenylphosphonium bromide, triphenylmethylphosphonium bromide, triphenylmethylphosphonium iodide, triphenylethylphosphonium chloride, triphenylethylphosphonium bromide, triphenylethylphosphonium iodide, triphenylbenzyl phosphonium chloride, triphenylbenzylphosphonium bromide and the like.
 第3級アミン類の具体例としては、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリエタノールアミン、N,N-ジメチルベンジルアミン等が挙げられる。 Specific examples of tertiary amines include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, N,N-dimethylbenzylamine, and the like.
 第4級アンモニウム塩の具体例としては、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムハイドロオキサイド、トリエチルメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラエチルアンモニウムアイオダイド、テトラプロピルアンモニウムブロマイド、テトラプロピルアンモニウムハイドロオキサイド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、テトラブチルアンモニウムアイオダイド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムハイドロオキサイド、ベンジルトリブチルアンモニウムクロライド、フェニルトリメチルアンモニウムクロライド等が挙げられる。 Specific examples of quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium hydroxide, triethylmethylammonium chloride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrapropylammonium bromide, tetrapropylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium hydroxide, benzyltributylammonium chloride, phenyltrimethylammonium chloride, etc. be done.
 環状アミン類の具体例としては、1,8-ジアザビシクロ(5,4,0)-7-ウンデセン、1,5-ジアザビシクロ(4,3,0)-5-ノネン等が挙げられる。 Specific examples of cyclic amines include 1,8-diazabicyclo(5,4,0)-7-undecene and 1,5-diazabicyclo(4,3,0)-5-nonene.
 イミダゾール類の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等が挙げられる。
 以上に挙げた触媒(E)は1種のみで用いても2種以上を組み合わせて用いてもよい。
Specific examples of imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole and the like.
The catalysts (E) listed above may be used alone or in combination of two or more.
触媒としては反応温度以上の沸点を持つ第3級アミン類を使用することが、重合反応を円滑に進行させる点で好ましい。 As the catalyst, it is preferable to use a tertiary amine having a boiling point higher than the reaction temperature, in order to allow the polymerization reaction to proceed smoothly.
 触媒(E)を用いる場合、その使用量は通常、前記エポキシ化合物(A)の使用量に対して10000重量ppm以下、例えば10~5000重量ppmとすることが好ましい。触媒の使用量が10000重量ppmを超えると、変性エポキシ樹脂中に残存する触媒がエポキシ基のアニオン重合を誘発するため、貯蔵安定性が著しく低下する。 When the catalyst (E) is used, the amount used is usually 10000 ppm by weight or less, for example 10 to 5000 ppm by weight, relative to the amount of the epoxy compound (A) used. When the amount of the catalyst used exceeds 10000 ppm by weight, the catalyst remaining in the modified epoxy resin induces anionic polymerization of epoxy groups, resulting in a marked decrease in storage stability.
[反応溶媒(F)]
 変性エポキシ樹脂を製造するための反応工程において、反応溶媒(F)を用いてもよい。この反応溶媒(F)としては、原料を溶解するものであれば、どのようなものでもよいが、通常は有機溶媒である。
[Reaction solvent (F)]
A reaction solvent (F) may be used in the reaction step for producing the modified epoxy resin. As the reaction solvent (F), any solvent can be used as long as it dissolves the raw materials, but it is usually an organic solvent.
 有機溶媒としては例えば、芳香族系溶媒、ケトン系溶媒、アミド系溶媒、グリコールエーテル系溶媒等が挙げられる。芳香族系溶媒の具体例としては、ベンゼン、トルエン、キシレン等が挙げられる。ケトン系溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、2-オクタノン、シクロペンタノン、シクロヘキサノン、アセチルアセトン等が挙げられる。アミド系溶媒の具体例としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチルピロリドン等が挙げられる。グリコールエーテル系溶媒の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。 Examples of organic solvents include aromatic solvents, ketone solvents, amide solvents, glycol ether solvents, and the like. Specific examples of aromatic solvents include benzene, toluene, and xylene. Specific examples of ketone solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclopentanone, cyclohexanone and acetylacetone. Specific examples of amide solvents include formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, 2-pyrrolidone, N-methylpyrrolidone and the like. Specific examples of glycol ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol. mono-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate and the like.
 以上に挙げた反応溶媒(F)は1種のみを用いても2種以上を組み合わせて用いてもよい。
 なお、反応途中で高粘性生成物が生じたときは反応溶媒(F)を更に加えて反応を続けることもできる。
The reaction solvents (F) listed above may be used alone or in combination of two or more.
In addition, when a highly viscous product is generated during the reaction, the reaction solvent (F) can be further added to continue the reaction.
<反応条件>
 エポキシ化合物(A)と酸末端ポリエステル(B)との反応は、常圧、加圧、減圧いずれの条件で行うこともできる。
 反応温度は通常、60~240℃、好ましくは80~220℃、より好ましくは100~200℃である。反応温度が上記下限以上であると反応を進行させやすいために好ましい。また、反応温度が上記上限以下であると副反応が進行しにくく、高純度の変性エポキシ樹脂を得る観点から好ましい。
<Reaction conditions>
The reaction between the epoxy compound (A) and the acid-terminated polyester (B) can be carried out under normal pressure, increased pressure, or reduced pressure.
The reaction temperature is generally 60-240°C, preferably 80-220°C, more preferably 100-200°C. It is preferable that the reaction temperature is equal to or higher than the above lower limit because the reaction can easily proceed. Further, when the reaction temperature is equal to or lower than the above upper limit, the side reaction hardly progresses, which is preferable from the viewpoint of obtaining a highly pure modified epoxy resin.
 反応時間としては特に限定されないが、通常0.5~24時間であり、好ましくは1~22時間であり、更に好ましくは1.5~20時間である。反応時間が上記上限以下であると、生産効率向上の点で好ましく、上記下限以上であると、未反応成分を削減できる点で好ましい。 Although the reaction time is not particularly limited, it is usually 0.5 to 24 hours, preferably 1 to 22 hours, more preferably 1.5 to 20 hours. When the reaction time is equal to or less than the above upper limit, it is preferable from the viewpoint of improving production efficiency, and when it is equal to or more than the above lower limit, it is preferable from the point of being able to reduce unreacted components.
[希釈溶剤(G)]
 変性エポキシ樹脂は、反応終了後に希釈溶剤(G)を混合して固形分濃度を調整してもよい。その希釈溶剤(G)としては、通常、エポキシ樹脂を溶解するものであれば、どのようなものでもよいが、通常は有機溶剤である。有機溶剤の具体例としては前述の反応溶媒(F)として挙げたものと同様のものを用いることができる。
[Dilution solvent (G)]
The modified epoxy resin may be mixed with a diluent solvent (G) after completion of the reaction to adjust the solid content concentration. As the diluting solvent (G), any solvent can be used as long as it dissolves the epoxy resin, but it is usually an organic solvent. As specific examples of the organic solvent, the same ones as those mentioned above as the reaction solvent (F) can be used.
 なお、本発明において、「溶媒」と「溶剤」という語は、反応時に用いるものを「溶媒」、反応終了後に用いるものを「溶剤」として用いることとするが、同種のものを用いても、異種のものを用いてもよい。 In the present invention, the terms "solvent" and "solvent" are used to refer to those used during the reaction as "solvent" and those used after completion of the reaction as "solvent". Different species may be used.
〔硬化性樹脂組成物〕
 本発明の一実施形態である硬化性樹脂組成物は、少なくとも前述した変性エポキシ樹脂と硬化剤とを含むものである。また、硬化性樹脂組成物には、必要に応じて、他のエポキシ化合物、硬化促進剤、その他の成分等を適宜配合することができる。
[Curable resin composition]
A curable resin composition, which is one embodiment of the present invention, contains at least the above-described modified epoxy resin and a curing agent. In addition, if necessary, other epoxy compounds, curing accelerators, other components, and the like can be appropriately blended into the curable resin composition.
[硬化剤]
 硬化剤は、エポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質である。なお、本発明においては通常、「硬化促進剤」と呼ばれるものであってもエポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質であれば、硬化剤とみなすこととする。
 硬化性樹脂組成物における硬化剤の含有量は、変性エポキシ樹脂100重量部に対して好ましくは0.1~1000重量部であり、より好ましくは100重量部以下であり、更に好ましくは80重量部以下であり、特に好ましくは60重量部以下である。
[Curing agent]
A curing agent is a substance that contributes to cross-linking and/or chain extension reactions between epoxy groups of an epoxy resin. In the present invention, even if a substance is usually called a "curing accelerator", it is regarded as a curing agent if it is a substance that contributes to the cross-linking reaction and/or chain extension reaction between the epoxy groups of the epoxy resin. do.
The content of the curing agent in the curable resin composition is preferably 0.1 to 1000 parts by weight, more preferably 100 parts by weight or less, and still more preferably 80 parts by weight with respect to 100 parts by weight of the modified epoxy resin. or less, particularly preferably 60 parts by weight or less.
 また、変性エポキシ樹脂以外の後述する他のエポキシ化合物が含まれる場合、硬化剤の含有量は、固形分としての全エポキシ成分100重量部に対して好ましくは0.1~1000重量部であり、より好ましくは100重量部以下であり、更に好ましくは80重量部以下であり、特に好ましくは60重量部以下である。
 硬化剤のより好ましい量は、硬化剤の種類に応じてそれぞれ以下に記載する通りである。
In addition, when other epoxy compounds described later other than the modified epoxy resin are included, the content of the curing agent is preferably 0.1 to 1000 parts by weight with respect to 100 parts by weight of the total epoxy component as a solid content, It is more preferably 100 parts by weight or less, still more preferably 80 parts by weight or less, and particularly preferably 60 parts by weight or less.
A more preferred amount of curing agent is as described below, depending on the type of curing agent.
 本明細書において、「固形分」とは溶媒を除いた成分を意味し、固体のエポキシ樹脂ないしはエポキシ化合物のみならず、半固形や粘稠な液状物をも含むものとする。また、「全エポキシ成分」とは、変性エポキシ樹脂と後述する他のエポキシ化合物との合計を意味する。 As used herein, the term "solid content" means components excluding solvent, and includes not only solid epoxy resins or epoxy compounds, but also semi-solid and viscous liquid substances. Further, "total epoxy component" means the sum of the modified epoxy resin and other epoxy compounds described later.
 硬化剤としては多官能フェノール類、ポリイソシアネート系化合物、アミン系化合物、酸無水物系化合物及び酸末端ポリエステル樹脂、イミダゾール系化合物、アミド系化合物、カチオン重合開始剤及び有機ホスフィン類からなる群のうちの少なくとも1つを用いることが好ましい。 Curing agents include polyfunctional phenols, polyisocyanate compounds, amine compounds, acid anhydride compounds and acid-terminated polyester resins, imidazole compounds, amide compounds, cationic polymerization initiators, and organic phosphines. It is preferable to use at least one of
 多官能フェノール類の例としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールB、ビスフェノールAD、ビスフェノールZ、テトラブロモビスフェノールA等のビスフェノール類、4,4’-ビフェノール、3,3’,5,5’-テトラメチル-4,4’-ビフェノール等のビフェノール類;カテコール、レゾルシン、ヒドロキノン、ジヒドロキシナフタレン類;及びこれらの化合物の芳香環に結合した水素原子がハロゲン基、アルキル基、アリール基、エーテル基、エステル基、硫黄、リン、珪素等のヘテロ元素を含む有機置換基等の非妨害性置換基で置換されたもの等が挙げられる。
 更に、これらのフェノール類やフェノール、クレゾール、アルキルフェノール等の単官能フェノール類とアルデヒド類の重縮合物であるノボラック類、レゾール類等が挙げられる。
Examples of polyfunctional phenols include bisphenols such as bisphenol A, bisphenol F, bisphenol S, bisphenol B, bisphenol AD, bisphenol Z, tetrabromobisphenol A, 4,4'-biphenol, 3,3',5, Biphenols such as 5'-tetramethyl-4,4'-biphenol; catechol, resorcinol, hydroquinone, dihydroxynaphthalenes; and hydrogen atoms bonded to aromatic rings of these compounds are halogen groups, alkyl groups, aryl groups, ethers and those substituted with non-interfering substituents such as organic substituents containing heteroatoms such as group, ester group, sulfur, phosphorus, silicon and the like.
Furthermore, these phenols, phenol, cresol, polycondensation products of monofunctional phenols such as alkylphenols and aldehydes, novolacs and resols, etc., can also be used.
 ポリイソシアネート系化合物の例としては、トリレンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ダイマー酸ジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジントリイソシアネート等のポリイソシアネート化合物が挙げられる。更に、これらのポリイソシアネート化合物と、アミノ基、水酸基、カルボキシル基、水等の活性水素原子を少なくとも2個有する化合物との反応により得られるポリイソシアネート化合物、又は前記のポリイソシアネート化合物の3~5量体等を挙げることができる。 Examples of polyisocyanate compounds include tolylene diisocyanate, methylcyclohexane diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, dimer acid diisocyanate, trimethylhexamethylene diisocyanate, Examples include polyisocyanate compounds such as lysine triisocyanate. Further, a polyisocyanate compound obtained by reacting these polyisocyanate compounds with a compound having at least two active hydrogen atoms such as an amino group, a hydroxyl group, a carboxyl group and water, or 3 to 5 amounts of the above polyisocyanate compound. The body and the like can be mentioned.
 アミン系化合物の例としては、脂肪族の一級、二級、三級アミン、芳香族の一級、二級、三級アミン、環状アミン、グアニジン類、尿素誘導体等があり、具体的には、トリエチレンテトラミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、メタキシレンジアミン、ジシアンジアミド、1,8-ジアザビシクロ(5,4,0)-7-ウンデセン、1,5-ジアザビシクロ(4,3,0)-5-ノネン、ジメチル尿素、グアニル尿素等が挙げられる。
 酸無水物系化合物の例としては、無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸、無水マレイン酸と不飽和化合物の縮合物等が挙げられる。
 酸末端ポリエステル樹脂の例としては、酸末端ポリエステル(B)の項で上げられた2価カルボン酸と2価アルコールとを反応させて得られる重縮合物があげられる。
Examples of amine compounds include aliphatic primary, secondary and tertiary amines, aromatic primary, secondary and tertiary amines, cyclic amines, guanidines, urea derivatives and the like. Ethylenetetramine, diaminodiphenylmethane, diaminodiphenyl ether, metaxylenediamine, dicyandiamide, 1,8-diazabicyclo(5,4,0)-7-undecene, 1,5-diazabicyclo(4,3,0)-5-nonene, dimethyl Urea, guanyl urea and the like can be mentioned.
Examples of acid anhydride compounds include phthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride, and condensates of maleic anhydride and unsaturated compounds.
Examples of acid-terminated polyester resins include polycondensates obtained by reacting dihydric carboxylic acids and dihydric alcohols listed in the section of acid-terminated polyester (B).
 イミダゾール系化合物の例としては、1-イソブチル-2-メチルイミダゾール、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、ベンズイミダゾール等が挙げられる。なお、イミダゾール系化合物は後述する硬化促進剤としての機能も果たすが、本発明においては硬化剤に分類するものとする。
 アミド系化合物の例としては、ジシアンジアミド及びその誘導体、ポリアミド樹脂等が挙げられる。
Examples of imidazole compounds include 1-isobutyl-2-methylimidazole, 2-methylimidazole, 1-benzyl-2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, benzimidazole and the like. be done. Although the imidazole compound also functions as a curing accelerator, which will be described later, it is classified as a curing agent in the present invention.
Examples of amide compounds include dicyandiamide and derivatives thereof, and polyamide resins.
 カチオン重合開始剤は、熱又は活性エネルギー線照射によってカチオンを発生するものであり、芳香族オニウム塩等が挙げられる。具体的には、SbF-、BF-、AsF-、PF-、CFSO32-、B(C-等のアニオン成分とヨウ素、硫黄、窒素、リン等の原子を含む芳香族カチオン成分とからなる化合物等が挙げられる。特に、ジアリールヨードニウム塩、トリアリールスルフォニウム塩が好ましい。
 有機ホスフィン類としては、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等が例示され、ホスホニウム塩としては、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等が例示され、テトラフェニルボロン塩としては、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等が例示される。
Cationic polymerization initiators generate cations upon exposure to heat or active energy rays, and include aromatic onium salts and the like. Specifically, anionic components such as SbF 6 -, BF 4 -, AsF 6 -, PF 6 -, CF 3 SO 32 -, B(C 6 F 5 ) 4 - and iodine, sulfur, nitrogen, phosphorus, etc. A compound consisting of an aromatic cation component containing atoms and the like can be mentioned. Diaryliodonium salts and triarylsulfonium salts are particularly preferred.
Examples of organic phosphines include tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine. Phosphonium salts include tetraphenylphosphonium/tetraphenylborate, tetraphenylphosphonium/ethyltriphenylborate, tetra Examples include butylphosphonium/tetrabutylborate and the like, and tetraphenylboron salts include 2-ethyl-4-methylimidazole/tetraphenylborate and N-methylmorpholine/tetraphenylborate.
 硬化剤として多官能フェノール類、アミン系化合物、酸無水物系化合物、酸末端ポリエステル樹脂を用いる場合は、硬化性樹脂組成物の全エポキシ基に対する硬化剤中の官能基(多官能フェノール類の水酸基、アミン系化合物のアミノ基又は酸無水物系化合物の酸無水物基)の当量比で0.8~1.5の範囲となるように用いることが好ましい。ポリイソシアネート系化合物を用いる場合、硬化性樹脂組成物中の水酸基数に対してポリイソシアネート系化合物中のイソシアネート基数が、当量比で1:0.01~1:1.5の範囲で用いることが好ましい。イミダゾール系化合物を用いる場合、硬化性樹脂組成物中の固形分としての全エポキシ成分100重量部に対して0.5~10重量部の範囲で用いることが好ましい。アミド系化合物を用いる場合、硬化性樹脂組成物中の固形分としての全エポキシ成分とアミド系化合物との合計量に対して0.1~20重量%の範囲で用いることが好ましい。カチオン重合開始剤を用いる場合、硬化性樹脂組成物中の固形分としての全エポキシ成分100重量部に対し、0.01~15重量部の範囲で用いることが好ましい。有機ホスフィン類を用いる場合、硬化性樹脂組成物中の固形分としての全エポキシ成分と有機ホスフィン類との合計量に対して0.1~20重量%の範囲で用いることが好ましい。 When using a polyfunctional phenol, an amine compound, an acid anhydride compound, or an acid-terminated polyester resin as a curing agent, the functional groups in the curing agent for all epoxy groups in the curable resin composition (hydroxyl groups of the polyfunctional phenol , the amino group of the amine-based compound or the acid anhydride group of the acid anhydride-based compound) is preferably used so that the equivalent ratio is in the range of 0.8 to 1.5. When a polyisocyanate-based compound is used, the number of isocyanate groups in the polyisocyanate-based compound to the number of hydroxyl groups in the curable resin composition is in the range of 1:0.01 to 1:1.5 in terms of equivalent ratio. preferable. When an imidazole compound is used, it is preferably used in the range of 0.5 to 10 parts by weight with respect to 100 parts by weight of all epoxy components as solid content in the curable resin composition. When an amide compound is used, it is preferably used in the range of 0.1 to 20% by weight with respect to the total amount of all epoxy components and the amide compound as solid content in the curable resin composition. When a cationic polymerization initiator is used, it is preferably used in the range of 0.01 to 15 parts by weight with respect to 100 parts by weight of all epoxy components as solid content in the curable resin composition. When organic phosphines are used, they are preferably used in a range of 0.1 to 20% by weight based on the total amount of all epoxy components and organic phosphines as solid content in the curable resin composition.
 以上に挙げた硬化剤の他、例えば、メルカプタン系化合物、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体等も硬化剤として用いることができる。
 これらの硬化剤は1種のみで用いてもよく、2種以上を組み合わせて用いてもよい。
In addition to the curing agents listed above, for example, mercaptan compounds, organic acid dihydrazides, halogenated boron amine complexes, and the like can also be used as curing agents.
These curing agents may be used alone or in combination of two or more.
[他のエポキシ化合物]
 硬化性樹脂組成物には、上記変性エポキシ樹脂以外のエポキシ化合物(本明細書において、「他のエポキシ化合物」と称することがある。)を用いることができる。
 他のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、その他の多官能フェノール型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、上記芳香族エポキシ樹脂の芳香環を水素添加したエポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂等のエポキシ化合物が挙げられる。以上に挙げた他のエポキシ化合物は1種のみで用いても、2種以上を組み合わせて用いてもよい。
[Other epoxy compounds]
Epoxy compounds other than the above modified epoxy resin (in this specification, may be referred to as "another epoxy compound") can be used in the curable resin composition.
Other epoxy compounds include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin. , Tetrabromobisphenol A type epoxy resin, glycidyl ether type epoxy resin such as other polyfunctional phenol type epoxy resin, epoxy resin obtained by hydrogenating the aromatic ring of the above aromatic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy Epoxy compounds such as resins, linear aliphatic epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins can be mentioned. The other epoxy compounds listed above may be used alone or in combination of two or more.
 硬化性樹脂組成物が、上記変性エポキシ樹脂と他のエポキシ化合物とを含有する場合、エポキシ樹脂含有組成物中の固形分としての全エポキシ成分中の他のエポキシ化合物の割合は、好ましくは1重量%以上であり、より好ましくは5重量%以上であり、一方、好ましくは99重量%以下であり、より好ましくは95重量%以下である。他のエポキシ化合物の割合が上記下限値以上であることにより、他のエポキシ化合物を配合することによる物性向上効果を十分に得ることができる。一方、他のエポキシ化合物の割合が上記上限値以下であることにより、変性エポキシ樹脂による可撓性向上効果を得ることができる。 When the curable resin composition contains the modified epoxy resin and another epoxy compound, the proportion of the other epoxy compound in the total epoxy component as a solid content in the epoxy resin-containing composition is preferably 1 weight. % or more, more preferably 5 wt % or more, and preferably 99 wt % or less, more preferably 95 wt % or less. When the proportion of the other epoxy compound is at least the above lower limit, it is possible to sufficiently obtain the effect of improving physical properties by blending the other epoxy compound. On the other hand, when the ratio of the other epoxy compound is equal to or less than the above upper limit, the effect of improving the flexibility of the modified epoxy resin can be obtained.
[溶剤]
 硬化性樹脂組成物には、塗膜形成時等の取り扱い時に、エポキシ樹脂含有組成物の粘度を適度に調整するために溶剤を配合し、希釈してもよい。硬化性樹脂組成物において、溶剤は、硬化性樹脂組成物の成形における取り扱い性、作業性を確保するために用いられ、その使用量には特に制限がない。なお、前述の通り、本発明においては「溶剤」という語と「溶媒」という語をその使用形態により区別して用いるが、それぞれ独立して同種のものを用いても異なるものを用いてもよい。
 変性エポキシ樹脂が含み得る溶剤としては、変性エポキシ樹脂の製造に用いる反応溶媒(F)として例示した有機溶媒の1種又は2種以上を用いることができる。
[solvent]
The curable resin composition may be mixed with and diluted with a solvent in order to appropriately adjust the viscosity of the epoxy resin-containing composition during handling such as coating film formation. In the curable resin composition, the solvent is used to ensure handleability and workability in molding the curable resin composition, and there is no particular limitation on the amount used. As described above, in the present invention, the terms "solvent" and "solvent" are used separately depending on the mode of use, but the same type or different types may be used independently.
As the solvent that the modified epoxy resin may contain, one or more of the organic solvents exemplified as the reaction solvent (F) used in the production of the modified epoxy resin can be used.
[その他の成分]
 硬化性樹脂組成物には、以上に挙げた成分の他にその他の成分を含有することができる。その他の成分としては例えば、硬化促進剤(ただし、前記硬化剤に該当するものを除く。)、カップリング剤、難燃剤、酸化防止剤、光安定剤、可塑剤、反応性希釈剤、顔料、無機充填材、有機充填材等が挙げられる。以上に挙げたその他の成分はエポキシ樹脂含有組成物の所望の物性により適宜組み合わせて用いることができる。
 硬化性樹脂組成物に上記化合物が配合されていることは、エポキシ樹脂組成物の分離精製を行った後にSEC-MALS法、元素分析法、官能基分析により確認することができる。
[Other ingredients]
The curable resin composition may contain other components in addition to the components listed above. Other components include, for example, curing accelerators (excluding those corresponding to the above curing agents), coupling agents, flame retardants, antioxidants, light stabilizers, plasticizers, reactive diluents, pigments, Examples include inorganic fillers and organic fillers. The other components listed above can be used in appropriate combination depending on the desired physical properties of the epoxy resin-containing composition.
The fact that the above compound is blended in the curable resin composition can be confirmed by SEC-MALS, elemental analysis, and functional group analysis after separation and purification of the epoxy resin composition.
〔硬化物〕
 硬化性樹脂組成物を硬化させることにより、硬化物を得ることができる。ここでいう「硬化」とは熱及び/又は光等によりエポキシ樹脂を意図的に硬化させることを意味するものであり、その硬化の程度は所望の物性、用途により制御すればよい。
 硬化性樹脂組成物を硬化させて硬化物とする際の硬化方法は、硬化性樹脂組成物中の配合成分や配合量、配合物の形状によっても異なるが、通常、50~200℃で5秒~180分の加熱条件が挙げられる。この加熱は50~160℃で5秒~30分の一次加熱と、一次加熱温度よりも40~120℃高い90~200℃で1分~150分の二次加熱との二段処理で行うことが、硬化不良を少なくする点で好ましい。
[Cured product]
A cured product can be obtained by curing the curable resin composition. The term "curing" as used herein means intentionally curing the epoxy resin with heat and/or light, and the degree of curing may be controlled according to desired physical properties and applications.
The curing method for curing the curable resin composition to obtain a cured product varies depending on the ingredients and amounts in the curable resin composition and the shape of the compound, but is usually 50 to 200 ° C. for 5 seconds. Heating conditions of ~180 minutes can be mentioned. This heating should be carried out in two stages: primary heating at 50 to 160°C for 5 seconds to 30 minutes, and secondary heating at 90 to 200°C, which is 40 to 120°C higher than the primary heating temperature, for 1 minute to 150 minutes. is preferable from the viewpoint of reducing poor curing.
 硬化物を半硬化物として製造する際には、加熱等により形状が保てる程度に硬化性樹脂組成物の硬化反応を進行させればよい。硬化性樹脂組成物が溶剤を含んでいる場合には、加熱、減圧、風乾等の手法で大部分の溶剤を除去するが、半硬化物中に5重量%以下の溶剤を残留させてもよい。
 硬化物に上記変性エポキシ樹脂が含まれていることは、この硬化物の赤外分光法により、硬化物から上記変性エポキシ樹脂を特定することで確認することができる。
When a cured product is produced as a semi-cured product, the curing reaction of the curable resin composition may be allowed to proceed by heating or the like to such an extent that the shape can be maintained. When the curable resin composition contains a solvent, most of the solvent is removed by heating, depressurization, air drying, etc., but 5% by weight or less of the solvent may remain in the semi-cured product. .
The presence of the modified epoxy resin in the cured product can be confirmed by identifying the modified epoxy resin from the cured product by infrared spectroscopy of the cured product.
〔用途〕
 可撓性と接着性に優れた変性エポキシ樹脂、この変性エポキシ樹脂を含んでなる硬化性樹脂組成物ならびに硬化物に関する。前記変性エポキシ、硬化性樹脂組成物、硬化物は、電気特性、接着性、可撓性、耐熱性等に優れることから主に塗料分野、接着分野、土木分野、電気分野の多くの用途で使用することができ、とりわけ、塗料分野、接着用途において好適に使用することができる。
[Use]
The present invention relates to a modified epoxy resin excellent in flexibility and adhesiveness, a curable resin composition containing this modified epoxy resin, and a cured product. The above-mentioned modified epoxy, curable resin composition, and cured product are excellent in electrical properties, adhesiveness, flexibility, heat resistance, etc., and are mainly used in many applications in the fields of coatings, adhesives, civil engineering, and electrical fields. It can be used particularly preferably in the field of paints and adhesive applications.
 以下、本発明を実施例に基づいてより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited by the following examples. It should be noted that various production conditions and values of evaluation results in the following examples have the meaning of preferred values for the upper limit or lower limit in the embodiments of the present invention, and the preferred range is the above-described upper limit or lower limit value. , the range defined by the values in the following examples or a combination of the values in the examples.
 以下の実施例及び比較例において用いたエポキシ樹脂、酸末端ポリエステル、評価方法は以下の通りである。
[エポキシ化合物(A)]
 エポキシ化合物(A)として、以下のA-1~A-7を用いた。
A-1:1,6-ヘキサンジオールジグリシジルエーテル(三菱ケミカル社製、エポキシ当量:116g/eq、液状)
A-2:ビスフェノールA型エポキシ樹脂(三菱ケミカル社製 jER(登録商標)828US、エポキシ当量:186g/eq、液状)
A-3:ビスフェノールF型エポキシ樹脂(三菱ケミカル社製 jER(登録商標)806H、エポキシ当量:169g/eq、液状)
A-4:ポリオキシプロピレングリコールジグリシジルエーテル(三洋化成社製 グリシエールPP300P、エポキシ当量:296g/eq、液状)
A-5:レゾルシノール型エポキシ樹脂(ナガセケムテックス社製 デナコールEX-201、エポキシ当量:113g/eq、液状)
A-6:超可撓性エポキシ樹脂(三菱ケミカル社製 YX7110、エポキシ当量:1000g/eq、半固体)
A-7:ダイマー酸型エポキシ樹脂(三菱ケミカル社製 jER(登録商標)871、エポキシ当量:415g/eq、液状)
The epoxy resins, acid-terminated polyesters, and evaluation methods used in the following examples and comparative examples are as follows.
[Epoxy compound (A)]
The following A-1 to A-7 were used as the epoxy compound (A).
A-1: 1,6-hexanediol diglycidyl ether (manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 116 g/eq, liquid)
A-2: Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation jER (registered trademark) 828US, epoxy equivalent: 186 g / eq, liquid)
A-3: Bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation jER (registered trademark) 806H, epoxy equivalent: 169 g / eq, liquid)
A-4: Polyoxypropylene glycol diglycidyl ether (manufactured by Sanyo Chemical Co., Ltd. Glycier PP300P, epoxy equivalent: 296 g / eq, liquid)
A-5: Resorcinol-type epoxy resin (Denacol EX-201 manufactured by Nagase ChemteX Corporation, epoxy equivalent: 113 g/eq, liquid)
A-6: Ultra-flexible epoxy resin (YX7110 manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 1000 g / eq, semi-solid)
A-7: Dimer acid type epoxy resin (manufactured by Mitsubishi Chemical Corporation jER (registered trademark) 871, epoxy equivalent: 415 g / eq, liquid)
[酸末端ポリエステル(B)]
 酸末端ポリエステル(B)として、表-1に示すB-1~B-5を用いた。いずれも、表-1に示す2価カルボン酸と2価アルコールとを反応させて得られたものである。
 以降、B-1~B-5の製造方法、酸価ならびにカルボン酸当量、水酸基価、ガラス転移温度、酸末端純度、重量平均分子量及び数平均分子量を順に示す。
[Acid-terminated polyester (B)]
B-1 to B-5 shown in Table 1 were used as the acid-terminated polyester (B). All of them are obtained by reacting dihydric carboxylic acids and dihydric alcohols shown in Table-1.
Hereinafter, production methods, acid values, carboxylic acid equivalents, hydroxyl values, glass transition temperatures, acid terminal purities, weight average molecular weights and number average molecular weights of B-1 to B-5 are shown in order.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
<B-1~B-5の製造> 
 B-1~B-5の合成は、以下の通り行った。まず、表-1に示す2価カルボン酸成分と2価アルコール成分の合計重量に対して1000ppmのテトラブトキシチタンを蒸留塔備え付けの反応容器に投入した。次いで、撹拌下、昇温を開始し、反応系内の温度が265℃になるように加熱し、この温度を保持した。エステル化反応が終了し、反応系内からの水の留出がなくなった後、反応系内の温度を265℃に保持したまま、反応系内を減圧し、反応系から2価アルコール成分を留出させながら縮合反応を行った。
 反応とともに反応系の粘度が上昇し、攪拌翼のトルクが所定のトルクを示した時点で攪拌を停止し、反応系を常圧に戻し、窒素により加圧して反応物を取り出し、B-1~B-5を製造した。
<Production of B-1 to B-5>
Synthesis of B-1 to B-5 was carried out as follows. First, 1000 ppm of tetrabutoxytitanium with respect to the total weight of the dihydric carboxylic acid component and the dihydric alcohol component shown in Table 1 was put into a reaction vessel equipped with a distillation column. Next, while stirring, the temperature was started to rise, and the temperature in the reaction system was heated to 265°C, and this temperature was maintained. After the esterification reaction is completed and no more water is distilled out from the reaction system, the pressure in the reaction system is reduced while maintaining the temperature in the reaction system at 265° C. to distill off the dihydric alcohol component from the reaction system. Condensation reaction was carried out while letting out.
The viscosity of the reaction system increases with the reaction, and when the torque of the stirring blade reaches a predetermined torque, the stirring is stopped, the reaction system is returned to normal pressure, and pressurized with nitrogen to take out the reactant, and B-1 to B-5 was produced.
<酸価・カルボン酸当量の測定>
 酸末端ポリエステル(B)の酸価は、以下の手順で測定を行った。
 酸末端ポリエステル(B)約0.2gを枝付き三角フラスコ内に精秤し(A(g))、ベンジルアルコール10mLを加え、窒素雰囲気下として230℃のヒーターにて15分加熱し完全に溶解した。室温まで放冷後、ベンジルアルコール10mL、クロロホルム20mL、フェノールフタレイン溶液数滴を加え、0.02規定のKOH溶液にて滴定した(滴定量=B(mL)、KOH溶液の力価=p)。ブランク測定を同様に行い(滴定量=C(mL))、以下の式に従って酸価を算出した。
 酸価(mgKOH/g)={(B-C)×0.02×56.11×p}/A
 続いて、得られた酸価(mgKOH/g)から、以下の式に従って、酸当量を算出した。 
 カルボン酸当量(g/eq)=56.11/酸価(mgKOH/g)×1000
<Measurement of acid value/carboxylic acid equivalent>
The acid value of the acid-terminated polyester (B) was measured by the following procedure.
About 0.2 g of acid-terminated polyester (B) was precisely weighed in a side-armed Erlenmeyer flask (A (g)), 10 mL of benzyl alcohol was added, and the mixture was heated under a nitrogen atmosphere with a heater at 230°C for 15 minutes to dissolve completely. did. After allowing to cool to room temperature, 10 mL of benzyl alcohol, 20 mL of chloroform, and several drops of phenolphthalein solution were added and titrated with a 0.02N KOH solution (titration = B (mL), titer of KOH solution = p). . A blank measurement was performed in the same manner (titration = C (mL)), and the acid value was calculated according to the following formula.
Acid value (mgKOH/g) = {(BC) x 0.02 x 56.11 x p}/A
Subsequently, the acid equivalent was calculated according to the following formula from the obtained acid value (mgKOH/g).
Carboxylic acid equivalent (g/eq) = 56.11/acid value (mgKOH/g) x 1000
<水酸基価の測定>
 酸末端ポリエステル(B)の水酸基価は、以下の手順で測定を行った。
 溶液1:酸末端ポリエステル(B)約5gを枝付き三角フラスコ内に精秤し(A(g))、THF50mLを加え、完全に溶解した。
 溶液2:N、N-ジメチルアミノピリジン5gをTHF500mLへ溶解させたジメチルアミノピリジンTHF溶液30mLを、「溶液1」へ添加した。
 無水酢酸22mLにTHF200mLを加えた無水酢酸THF溶液を準備し、この溶液10mLを「溶液2」へ添加し、20分間混合したものを「溶液3」とする。イオン交換水3mLを「溶液3」に添加し、20分間混合したものを「溶液4」とする。「溶液4」に50mLのTHFを加えたものを、「溶液5」とする。「溶液5」に0.5N-KOHメタノール溶液25mLとフェノールフタレイン指示薬を添加したものを、「溶液6」とする。「溶液6」を0.5N-KOHメタノール溶液で滴定し、微紫色に溶液が呈色した点の添加量を測定する(B(mL))。ブランク測定時に必要な滴定量(C(mL))も同時に確認し、上記で求めた酸価と0.5N-KOHメタノール溶液の力価pを用いて、以下の式に従って水酸基価を算出した。
 水酸基価(mgKOH/g)=[酸価]+{(C-B)×0.5×56.11×p}/A
<Measurement of hydroxyl value>
The hydroxyl value of the acid-terminated polyester (B) was measured by the following procedure.
Solution 1: About 5 g of acid-terminated polyester (B) was precisely weighed into a side-armed Erlenmeyer flask (A (g)), and 50 mL of THF was added to dissolve completely.
Solution 2: 30 mL of dimethylaminopyridine THF solution prepared by dissolving 5 g of N,N-dimethylaminopyridine in 500 mL of THF was added to "Solution 1".
Prepare an acetic anhydride THF solution by adding 200 mL of THF to 22 mL of acetic anhydride, add 10 mL of this solution to "solution 2", and mix for 20 minutes to obtain "solution 3". Add 3 mL of ion-exchanged water to "Solution 3" and mix for 20 minutes to obtain "Solution 4". "Solution 5" is obtained by adding 50 mL of THF to "Solution 4". "Solution 6" is obtained by adding 25 mL of 0.5N-KOH methanol solution and phenolphthalein indicator to "Solution 5". "Solution 6" is titrated with a 0.5N-KOH methanol solution, and the added amount is measured at the point where the solution turns slightly purple (B (mL)). The titration amount (C (mL)) required for blank measurement was also confirmed at the same time, and the hydroxyl value was calculated according to the following formula using the acid value obtained above and the titer p of the 0.5N-KOH methanol solution.
Hydroxyl value (mgKOH/g) = [acid value] + {(CB) x 0.5 x 56.11 x p}/A
<Tg(ガラス転移温度)の測定>
 酸末端ポリエステル(B)のガラス転移温度は、島津製作所(株)製示差走差熱量計DSC-60を用い、昇温速度5℃/分で測定した時のチャートの低温側のベースラインとガラス転移温度近傍にある吸熱カーブの接線との交点の温度として求めた。
<Measurement of Tg (glass transition temperature)>
The glass transition temperature of the acid-terminated polyester (B) was measured using a differential scanning calorimeter DSC-60 manufactured by Shimadzu Corporation at a heating rate of 5 ° C./min. It was obtained as the temperature at the intersection with the tangent line of the endothermic curve near the transition temperature.
<酸末端純度の計算>
 酸末端純度は以下の式に従って算出した。
 酸末端純度=数平均分子量/カルボン酸当量(g/eq)
 本実施例では2価カルボン酸と2価アルコールを重縮合し、直鎖状の酸末端ポリエステルを製造していることから、理想的には1分子当たり2つのカルボン酸を有する。すなわち、酸末端純度の計算値が2に近いほど酸末端純度が高い。酸末端純度が高ければ変性エポキシ樹脂のエポキシ基末端純度も高くなり、硬化時に設計通りの3次元ネットワーク構造を形成することができる。
<Calculation of acid terminal purity>
Acid terminal purity was calculated according to the following formula.
Acid terminal purity = number average molecular weight/carboxylic acid equivalent (g/eq)
In this example, since a dihydric carboxylic acid and a dihydric alcohol are polycondensed to produce a linear acid-terminated polyester, one molecule ideally has two carboxylic acids. That is, the closer the calculated acid terminal purity is to 2, the higher the acid terminal purity. If the acid terminal purity is high, the epoxy group terminal purity of the modified epoxy resin is also high, and a three-dimensional network structure as designed can be formed during curing.
<重量平均分子量及び数平均分子量の測定>
 酸末端ポリエステル(B)の重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。GPCの測定に用いた装置及び測定条件は以下の通りである。
 装置:GPC
 機種:HLC-8020GPC(東ソー製)
 カラム:TSKgelGMHXL(カラムサイズ:7.8mm(ID)×30.0cm(L))を3本直列に連結(東ソー製)
 検出器:RI(東ソー製)
 溶離液:THF(1mL/分、40℃)
 サンプル:0.04%テトラヒドロフラン溶液(100μインジェクション)
 検量線:標準ポリスチレン(東ソー製)
<Measurement of Weight Average Molecular Weight and Number Average Molecular Weight>
The weight average molecular weight and number average molecular weight of the acid-terminated polyester (B) were measured by gel permeation chromatography (GPC). The apparatus and measurement conditions used for GPC measurement are as follows.
Apparatus: GPC
Model: HLC-8020GPC (manufactured by Tosoh)
Column: Three TSKgelGMHXL (column size: 7.8 mm (ID) × 30.0 cm (L)) connected in series (manufactured by Tosoh)
Detector: RI (manufactured by Tosoh)
Eluent: THF (1 mL/min, 40°C)
Sample: 0.04% tetrahydrofuran solution (100μ injection)
Calibration curve: standard polystyrene (manufactured by Tosoh)
〔評価方法〕
 以下の実施例及び比較例における評価方法は以下の通りである。
[エポキシ当量]
 実施例及び比較例におけるエポキシ当量は、JIS K 7236に基づき測定を行った。
〔Evaluation method〕
Evaluation methods in the following examples and comparative examples are as follows.
[Epoxy equivalent]
Epoxy equivalents in Examples and Comparative Examples were measured according to JIS K 7236.
[数平均分子量(Mn)、重量平均分子量(Mw)]
 実施例及び比較例における重量平均分子量(Mw)と数平均分子量(Mn)、ならびに分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。GPCの測定に用いた装置及び測定条件は以下の通りである。
 装置:GPC
 機種:HLC-8120GPC(東ソー製)
 カラム:TSKGEL HM-H+H4000+H4000+H3000+H2000(東ソー製)
 検出器:UV-8020(東ソー製)、254nm
 溶離液:THF(0.5mL/分、40℃)
 サンプル:1%テトラヒドロフラン溶液(10μLインジェクション)
 検量線:標準ポリスチレン(東ソー製)
[Number average molecular weight (Mn), weight average molecular weight (Mw)]
The weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw/Mn) in Examples and Comparative Examples were measured by gel permeation chromatography (GPC). The apparatus and measurement conditions used for GPC measurement are as follows.
Apparatus: GPC
Model: HLC-8120GPC (manufactured by Tosoh)
Column: TSKGEL HM-H + H4000 + H4000 + H3000 + H2000 (manufactured by Tosoh)
Detector: UV-8020 (manufactured by Tosoh), 254 nm
Eluent: THF (0.5 mL/min, 40°C)
Sample: 1% tetrahydrofuran solution (10 μL injection)
Calibration curve: standard polystyrene (manufactured by Tosoh)
[ガラス転移温度(Tg)]
 実施例及び比較例におけるガラス転移点(Tg)は、SIIナノテクノロジー(株)製 示差走査熱量計「DSC7020」を使用し、-50~200℃まで10℃/minで昇温して測定を行った。昇温速度10℃/分で測定した時のチャートの低温側のベースラインとガラス転移温度近傍にある吸熱カーブの接線との交点の温度として求めた。
[Glass transition temperature (Tg)]
The glass transition point (Tg) in the examples and comparative examples was measured using a differential scanning calorimeter "DSC7020" manufactured by SII Nanotechnology Co., Ltd. by heating from -50 to 200°C at a rate of 10°C/min. rice field. It was obtained as the temperature at the intersection of the base line on the low temperature side of the chart measured at a heating rate of 10°C/min and the tangent line of the endothermic curve in the vicinity of the glass transition temperature.
 [融点]
 実施例及び比較例における融点は、アズワン(株)製 融点測定器「ATM-02」を使用し、測定を行った。
[粘度]
 実施例及び比較例における粘度は、25℃および70℃においてコーンプレート型粘度計を使用して測定を行った。
[Melting point]
Melting points in Examples and Comparative Examples were measured using a melting point measuring instrument "ATM-02" manufactured by AS ONE Corporation.
[viscosity]
Viscosities in Examples and Comparative Examples were measured at 25° C. and 70° C. using a cone-plate viscometer.
[性状]
 実施例及び比較例における性状は23℃での樹脂の状態を、液体、固体、高粘度液体および結晶性固体の4種類に区別した。
[硬化物の評価方法]
 実施例及び比較例における硬化物評価は、表-3の配合比に従って配合を実施して、硬化させることで、取り扱い性を評価した。硬化剤にはジシアンジアミド(DICY)、硬化促進剤には3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア(DCMU)を使用した。硬化物を使用して引張試験およびT型剥離試験を実施することで可撓性や接着性を総合的に判定した。
[Properties]
In the examples and comparative examples, the state of the resin at 23° C. was classified into four types: liquid, solid, high-viscosity liquid and crystalline solid.
[Evaluation method of cured product]
For evaluation of cured products in Examples and Comparative Examples, handling properties were evaluated by compounding according to the compounding ratio in Table 3 and curing. Dicyandiamide (DICY) was used as a curing agent, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was used as a curing accelerator. A tensile test and a T-peel test were performed using the cured product to comprehensively determine the flexibility and adhesiveness.
<取り扱い性>
 取り扱い性は混和性および硬化剤との反応性の2項目を評価した。
 混和性は配合時に各成分を均一に混ぜやすいか否かを下記の通り評価し、指標とした。混和性の評価がC以下の場合、以降の評価は実施しなかった。
≪評価基準≫
A:容易に混和できる。
B1:配合物の粘度が高いために加温する必要があるが、容易に混和できる。
B2:配合物に結晶性があるために加温する必要があるが、容易に混和できる。
C:配合物の粘度が著しく高いために、均一に混和することが困難。
<Handleability>
Two items of miscibility and reactivity with the curing agent were evaluated for handleability.
The miscibility was evaluated as follows to determine whether or not each component was easily mixed uniformly at the time of blending, and was used as an index. If the miscibility rating was C or lower, no further evaluation was performed.
≪Evaluation Criteria≫
A: Easy to mix.
B1: The formulation is highly viscous and requires heating, but can be easily mixed.
B2: The formulation is crystalline and requires warming, but is easily miscible.
C: It is difficult to mix uniformly because the viscosity of the formulation is remarkably high.
 硬化剤との反応性は、配合物を80℃で1時間予備加熱をした後、130℃で1.5時間加熱して硬化させた硬化物を下記の通り評価し、指標とした。硬化剤との反応性の評価が×の場合、以降の評価は実施しなかった。
≪評価基準≫
〇:均一に硬化している硬化物が得られる。
×:硬化物が分離しており、硬化していない。
The reactivity with the curing agent was obtained by preheating the composition at 80° C. for 1 hour and then heating it at 130° C. for 1.5 hours to cure the cured product. When the evaluation of reactivity with the curing agent was x, subsequent evaluation was not performed.
≪Evaluation Criteria≫
◯: A uniformly cured product is obtained.
x: The cured product is separated and not cured.
<ガラス転移温度(Tg)>
 引張試験片の一部を使用して[ガラス転移温度(Tg)および融点]の項と同様の方法で測定を行った。補外ガラス転移開始温度(Tig)は、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線のこう配が最大になるような点で引いた接線との交点の温度とした。中間点ガラス転移温度(Tmg)は、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度とした。
<Glass transition temperature (Tg)>
A portion of the tensile test piece was used and measured in the same manner as in the section [Glass transition temperature (Tg) and melting point]. The extrapolated glass transition start temperature (Tig) is the intersection of a straight line extending the base line on the low temperature side to the high temperature side and a tangent line drawn at a point where the gradient of the stepwise change portion of the glass transition curve is maximized. was the temperature of The midpoint glass transition temperature (Tmg) was taken as the temperature at the point where a straight line equidistant from the extended straight line of each base line intersects the curve of the stepwise change portion of the glass transition.
<引張試験>
 配合物を80℃で1時間予備加熱をした後、130℃で1.5時間加熱して硬化させ、厚さ3mmの硬化物の板を作成した。この硬化物をダンベル型に加工し、試験片を得た。得られた試験片の引張破壊ひずみをインストロン社製 精密万能試験機「INSTRON 5582型」を使用し、JIS K7161に準じて測定した。引張破壊ひずみの値を下記の通り評価し、指標とした。
≪評価基準≫
S:80%以上。
A:40%以上、80%未満。
B:7%以上、40%未満。
C:5%以上、7%未満。
D:5%未満。
<Tensile test>
After preheating the formulation at 80° C. for 1 hour, it was cured by heating at 130° C. for 1.5 hours to prepare a cured plate having a thickness of 3 mm. This cured product was processed into a dumbbell shape to obtain a test piece. The tensile strain at break of the obtained test piece was measured according to JIS K7161 using a precision universal testing machine "INSTRON 5582 type" manufactured by Instron. The value of the tensile breaking strain was evaluated as follows and used as an index.
≪Evaluation Criteria≫
S: 80% or more.
A: 40% or more and less than 80%.
B: 7% or more and less than 40%.
C: 5% or more and less than 7%.
D: Less than 5%.
<T型剥離試験>
 配合物10部に対して、ガラスビーズJ-100(粒径100μm)を0.02部加えて混合し、塗布液を調製した。
 幅25mm×長さ200mm×厚み0.5mmの鋼板(JISG3141 SPCC-SD、(株)エンジニアリングテストサービス製)を脱脂したものを基材として使用した。2枚の基材に塗布液を塗布し、塗布面同士を貼り合わせて固定し、80℃で1時間予備加熱をした後、130℃で1.5時間加熱して硬化させ、積層体を得た。積層体の側面にはみ出た硬化物を削り取り、2枚の鋼板のつかみしろ部分を外側へ向かって直角に90°折り曲げて、T字型の試験片を得た。
<T-type peel test>
0.02 parts of glass beads J-100 (particle diameter: 100 µm) were added to 10 parts of the compound and mixed to prepare a coating solution.
A degreased steel plate (JISG3141 SPCC-SD, manufactured by Engineering Test Service Co., Ltd.) having a width of 25 mm, a length of 200 mm, and a thickness of 0.5 mm was used as the substrate. The coating liquid is applied to two substrates, the coated surfaces are bonded together and fixed, preheated at 80 ° C. for 1 hour, and then cured by heating at 130 ° C. for 1.5 hours to obtain a laminate. rice field. The hardened material protruding from the side surface of the laminate was scraped off, and the gripping margins of the two steel plates were bent outward at a right angle by 90° to obtain a T-shaped test piece.
 インストロン社製 精密万能試験機「INSTRON 5582型」を使用し、JIS K6854に準じて、得られた試験片の剥離接着強さを測定した。剥離接着強さの値を下記の通り評価し、指標とした。
≪評価基準≫
S:100N/25mm以上。
A:15N/25mm以上、100N/25mm未満。
B:10N/25mm以上、15N/25mm未満。
C:10N/25mm未満。
Using a precision universal testing machine "INSTRON 5582 type" manufactured by Instron, the peel adhesive strength of the obtained test piece was measured according to JIS K6854. The value of the peel adhesive strength was evaluated as follows and used as an index.
≪Evaluation Criteria≫
S: 100 N/25 mm or more.
A: 15 N/25 mm or more and less than 100 N/25 mm.
B: 10 N/25 mm or more and less than 15 N/25 mm.
C: less than 10 N/25 mm.
<総合評価>
 取り扱い性、引張試験、T型剥離試験の結果を総合的に判断し、下記の通り評価し、指標とした。
S:実用水準を十分に満たす。
A:実用水準を満たす。
B:実用水準を満たさない。
C:実用水準を全く満たさない。
D:評価に値しない。
<Comprehensive evaluation>
The results of handleability, tensile test, and T-type peel test were comprehensively judged, evaluated as follows, and used as an index.
S: Fully satisfies the practical level.
A: It satisfies the practical level.
B: Does not satisfy the practical level.
C: Does not satisfy the practical level at all.
D: Not worthy of evaluation.
(比較例1~3、実施例1~7)
 表-2に記載の仕込み重量に従い、エポキシ化合物(A)と酸末端ポリエステル(B)、N,N-ジメチルベンジルアミン(エポキシ化合物(A)の仕込み重量に対して1000ppm)を、反応器に入れ、窒素ガス雰囲気下150℃で6時間、重合反応を行い、変性エポキシ樹脂を得た。
 得られた変性エポキシ樹脂について、エポキシ当量、重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)、Tg、融点、性状、粘度の測定を行い、表-2にまとめた。
 
(Comparative Examples 1-3, Examples 1-7)
Epoxy compound (A), acid-terminated polyester (B), and N,N-dimethylbenzylamine (1000 ppm with respect to the charged weight of epoxy compound (A)) were placed in a reactor according to the charged weights shown in Table-2. , under a nitrogen gas atmosphere at 150°C for 6 hours, to obtain a modified epoxy resin.
The resulting modified epoxy resin was measured for epoxy equivalent, weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw/Mn), Tg, melting point, properties, and viscosity. rice field.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
(比較例a~f、実施例a~g)
 表-3の配合比に従って配合して硬化させ、取り扱い性を確認した後、Tg測定、引張試験、T型剥離試験、を実施し、同表-3にまとめた。
(Comparative Examples a to f, Examples a to g)
After compounding and curing according to the compounding ratio in Table-3 and confirming the handleability, Tg measurement, tensile test, and T-type peel test were performed, and the results are summarized in Table-3.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
[評価結果]
 表-3の実施例及び比較例から分かるように、式(1)で示される、エポキシ樹脂由来の構造単位(X)と酸末端ポリエステル由来の構造単位(Y)とを含む、変性エポキシ樹脂であって、重量平均分子量が3000~50000であり、且つエポキシ当量が500~10000g/eqであり、構造単位(X)と構造単位(Y)を特定の範囲にすることで可撓性と接着性に優れ、硬化剤との反応性も良好であり、他のエポキシ樹脂と配合した際でも特性を発現できる。
 
[Evaluation results]
As can be seen from the examples and comparative examples in Table 3, a modified epoxy resin containing a structural unit (X) derived from an epoxy resin and a structural unit (Y) derived from an acid-terminated polyester represented by formula (1) It has a weight average molecular weight of 3000 to 50000 and an epoxy equivalent of 500 to 10000 g / eq. It has excellent reactivity with curing agents, and can exhibit its properties even when blended with other epoxy resins.

Claims (10)

  1.  下記式(1)で示される、エポキシ樹脂由来の構造単位(X)と酸末端ポリエステル由来の構造単位(Y)とを含む、変性エポキシ樹脂であって、
     重量平均分子量が3000~50000であり、且つエポキシ当量が500~10000g/eqであり、
     式(1)中の酸末端ポリエステル由来の構造単位(Y)の割合が50~90重量%である、変性エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、nは平均の繰り返し数であり、1~10の正数である。Xは下記式(2)で表される2価の基であり、Yは下記式(3)で表される2価の基である。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(2)中、Rは炭素数2~40の炭化水素基であり、ヘテロ原子を有していてもよい。pは繰り返し数であり、0~10の整数である。)
    Figure JPOXMLDOC01-appb-C000003
    (上記式(3)中、Rは炭素数2~40の炭化水素基であり、ヘテロ原子を有していてもよく、R全体における脂肪族炭化水素基の存在割合が50mol%以上である。Rは炭素数2~30の炭化水素基であり、ヘテロ原子を有していてもよい。qは繰り返し数であり、1~50の整数である。)
    A modified epoxy resin comprising an epoxy resin-derived structural unit (X) and an acid-terminated polyester-derived structural unit (Y) represented by the following formula (1),
    A weight average molecular weight of 3000 to 50000 and an epoxy equivalent of 500 to 10000 g / eq,
    A modified epoxy resin in which the ratio of the structural unit (Y) derived from an acid-terminated polyester in the formula (1) is 50 to 90% by weight.
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1), n is the average number of repetitions and is a positive number of 1 to 10. X is a divalent group represented by the following formula (2), and Y is the following formula (3 ) is a divalent group represented by
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2) above, R 1 is a hydrocarbon group having 2 to 40 carbon atoms and may have a heteroatom. p is a repeating number and is an integer of 0 to 10.)
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula (3), R 2 is a hydrocarbon group having 2 to 40 carbon atoms, may have a heteroatom, and the proportion of the aliphatic hydrocarbon group in all of R 2 is 50 mol% or more. R 3 is a hydrocarbon group having 2 to 30 carbon atoms and may have a heteroatom, q is a repeating number and is an integer of 1 to 50.)
  2.  前記式(3)中、R全体における炭素数3以下の脂肪族炭化水素基の存在割合が50mol%以上である、請求項1に記載の変性エポキシ樹脂。 2. The modified epoxy resin according to claim 1, wherein the proportion of aliphatic hydrocarbon groups having 3 or less carbon atoms in the entirety of R3 in formula ( 3 ) is 50 mol % or more.
  3.  前記Rが、下記式(4)及び/又は下記式(5)で表される2価の基を含む、請求項1又は2に記載の変性エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(4)中、Rは単結合、または、-CH-、-C(CH-、-CH(CH)-、-S-、-SO-、-O-、及び-CO-で表される基からなる群より選ばれる2価の基である。Rは、水素原子、炭素数1~4のアルキル基、フェニル基のいずれかを示し、各々同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (上記式(5)中、Rは水素原子及び炭素数1~20の炭化水素基からなる群より選択され、各々同一でも異なっていてもよいし、Rの一部は互いに結合して、このベンゼン環に縮合する環を形成していてもよい。)
    The modified epoxy resin according to claim 1 or 2, wherein said R 1 contains a divalent group represented by the following formula (4) and/or the following formula (5).
    Figure JPOXMLDOC01-appb-C000004
    (In formula (4) above, R 4 is a single bond, or -CH 2 -, -C(CH 3 ) 2 -, -CH(CH 3 )-, -S-, -SO 2 -, -O- , and —CO— R 5 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group; may be different.)
    Figure JPOXMLDOC01-appb-C000005
    (In formula (5) above, R 6 is selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, each of which may be the same or different, and part of R 6 is , may form a ring condensed to this benzene ring.)
  4.  前記Rが、下記式(6)で表される2価の基である、請求項1~3のいずれか1項に記載の変性エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000006
    (上記式(6)中Rは炭素数1~10の炭化水素基である。rは繰り返し数であり、0~20の整数である。)
    The modified epoxy resin according to any one of claims 1 to 3, wherein said R 1 is a divalent group represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000006
    (R 7 in the above formula (6) is a hydrocarbon group having 1 to 10 carbon atoms. r is the number of repetitions and is an integer of 0 to 20.)
  5.  前記変性エポキシ樹脂の分子量分布(Mw/Mn)が1.5~20である、請求項1~4のいずれか1項に記載の変性エポキシ樹脂。 The modified epoxy resin according to any one of claims 1 to 4, wherein the modified epoxy resin has a molecular weight distribution (Mw/Mn) of 1.5 to 20.
  6.  下記式(7)で示されるエポキシ化合物(A)と下記式(8)で示される酸末端ポリエステル(B)とを反応させて得られる、請求項1~5のいずれか1項に記載の変性エポキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (上記式(7)中、R及びpは上記式(2)と同義である。)
    Figure JPOXMLDOC01-appb-C000008
    (上記式(8)中、R、R及びqは上記式(3)と同義である。)
    Modified according to any one of claims 1 to 5, obtained by reacting an epoxy compound (A) represented by the following formula (7) with an acid-terminated polyester (B) represented by the following formula (8). A method for producing an epoxy resin.
    Figure JPOXMLDOC01-appb-C000007
    (In formula (7) above, R 1 and p have the same meanings as in formula (2) above.)
    Figure JPOXMLDOC01-appb-C000008
    (In formula (8) above, R 2 , R 3 and q have the same meanings as in formula (3) above.)
  7.  請求項1~5のいずれか1項に記載の変性エポキシ樹脂と硬化剤とを含んでなる硬化性樹脂組成物。 A curable resin composition comprising the modified epoxy resin according to any one of claims 1 to 5 and a curing agent.
  8.  請求項7に記載の硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition according to claim 7.
  9.  請求項8に記載の硬化物を含む、塗料。 A paint containing the cured product according to claim 8.
  10.  請求項8に記載の硬化物を含む、接着剤。
     
     
    An adhesive comprising the cured product according to claim 8 .

PCT/JP2022/006176 2021-03-23 2022-02-16 Modified epoxy resin, manufacturing method therefor, curable resin composition, cured product thereof, coating material, and adhesive agent WO2022201985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508781A JPWO2022201985A1 (en) 2021-03-23 2022-02-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-048388 2021-03-23
JP2021048388 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022201985A1 true WO2022201985A1 (en) 2022-09-29

Family

ID=83396937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006176 WO2022201985A1 (en) 2021-03-23 2022-02-16 Modified epoxy resin, manufacturing method therefor, curable resin composition, cured product thereof, coating material, and adhesive agent

Country Status (3)

Country Link
JP (1) JPWO2022201985A1 (en)
TW (1) TW202248265A (en)
WO (1) WO2022201985A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131599A (en) * 1975-04-28 1976-11-16 Ciba Geigy Ag Process for preparing epoxide resin of crystalline crossslinked elastomer and epoxide resin prepared by same process
JPH1087789A (en) * 1996-07-26 1998-04-07 Vianova Resins Gmbh Elastic self-crosslinkable binder for coating can and coil, and its production and use
JP2017008155A (en) * 2015-06-18 2017-01-12 Dic株式会社 Polyester modified epoxy resin and adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131599A (en) * 1975-04-28 1976-11-16 Ciba Geigy Ag Process for preparing epoxide resin of crystalline crossslinked elastomer and epoxide resin prepared by same process
JPH1087789A (en) * 1996-07-26 1998-04-07 Vianova Resins Gmbh Elastic self-crosslinkable binder for coating can and coil, and its production and use
JP2017008155A (en) * 2015-06-18 2017-01-12 Dic株式会社 Polyester modified epoxy resin and adhesive

Also Published As

Publication number Publication date
JPWO2022201985A1 (en) 2022-09-29
TW202248265A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
JP5795804B2 (en) Coating composition
EP2414424B1 (en) Thermosetting compositions containing isocyanurate rings
KR20130118310A (en) Advanced poly epoxy ester resin compositions
US11787898B2 (en) Epoxy resin, epoxy resin-containing composition and cured product thereof
JP2015532352A (en) Reinforced epoxy thermosetting resin containing core shell rubber and polyol
WO2019102853A1 (en) Epoxy resin composition, curable resin composition, and fiber-reinforced composite material
JP2013108011A (en) Epoxy resin solution, epoxy resin composition, hardened material and adhesive
CN113004495B (en) Nonionic aqueous epoxy curing agent, and preparation method and application thereof
WO2022201985A1 (en) Modified epoxy resin, manufacturing method therefor, curable resin composition, cured product thereof, coating material, and adhesive agent
JP6409487B2 (en) Epoxy resin and production method thereof, epoxy resin-containing composition and cured product
WO1998050447A1 (en) Modified epoxy resin and its use as a formulating component for heat-curable compositions, especially for powder coatings
JP5686629B2 (en) Epoxy resin composition
WO2023140256A1 (en) Modified epoxy resin, curable resin composition, and cured product thereof
JP7444068B2 (en) Curable resin composition, cured product, and sheet-shaped molded product
JP2022068849A (en) Modified epoxy resin, curable resin composition and cured product thereof
TW202214736A (en) Modified phenoxy resin, method for producing same, resin composition, cured product, and laminated board for electrical/electronic circuit
JP6628089B2 (en) Curable composition and adhesive
EP1732980A1 (en) Thermosetting composition and curing method thereof
JP4857598B2 (en) Epoxy compound, method for producing the same, and epoxy resin composition
JP7412939B2 (en) Method for manufacturing phenoxy resin
JP2017210582A (en) Epoxy compound, epoxy compound-containing composition, and cured product thereof
JP2023127807A (en) Epoxy resin, curable resin composition, photosensitive resin composition, coating, cured product, and coating film
TW202344544A (en) Epoxy resin composition, reinforcing fiber-containing epoxy resin composition, prepreg and fiber-reinforced plastic using these, and thermoplastic epoxy resin
JP2024033232A (en) Modified glycidylamine type epoxy resin, manufacturing method thereof, curable resin composition and cured product
JP2014024907A (en) Epoxy resin, epoxy resin composition, and cured product of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508781

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774785

Country of ref document: EP

Kind code of ref document: A1