WO2017033632A1 - Epoxy resin composition and fiber-reinforced composite material - Google Patents

Epoxy resin composition and fiber-reinforced composite material Download PDF

Info

Publication number
WO2017033632A1
WO2017033632A1 PCT/JP2016/071383 JP2016071383W WO2017033632A1 WO 2017033632 A1 WO2017033632 A1 WO 2017033632A1 JP 2016071383 W JP2016071383 W JP 2016071383W WO 2017033632 A1 WO2017033632 A1 WO 2017033632A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
fiber
resin composition
composition according
compound
Prior art date
Application number
PCT/JP2016/071383
Other languages
French (fr)
Japanese (ja)
Inventor
小林 厚子
森永 邦裕
松井 茂樹
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2017033632A1 publication Critical patent/WO2017033632A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to an epoxy resin composition that can exhibit high heat resistance and fracture toughness in a cured product obtained while having a low viscosity and sufficient pot life, a cured product having the above performance, and a fiber-reinforced composite material
  • the present invention relates to a fiber-reinforced resin molded product and a method for producing a fiber-reinforced resin molded product.
  • Fiber reinforced resin molded products reinforced with reinforcing fibers are attracting attention for their light weight and excellent mechanical strength, and their use in various structural applications such as automobile and aircraft casings and various components has expanded. ing.
  • a fiber reinforced resin molded product can be manufactured by applying a molding method such as a filament winding method, a press molding method, a hand layup method, a pultrusion method, and an RTM method to a fiber reinforced composite material.
  • a molding method such as a filament winding method, a press molding method, a hand layup method, a pultrusion method, and an RTM method to a fiber reinforced composite material.
  • Fiber reinforced composite materials consist of a structure in which reinforced fibers are impregnated with resin, and as resins used in fiber reinforced composite materials, usually stability at normal temperature and durability and strength of cured products are required. In general, thermosetting resins are frequently used.
  • thermosetting resin When a thermosetting resin is used as the resin for the fiber reinforced composite material, it is essential that the resin for the fiber reinforced composite material can be impregnated into the reinforcing fiber as described above. It is required to have a long so-called pot life, which is a viscosity and has a small increase in viscosity during impregnation.
  • the thermosetting resin can be obtained so that the fiber reinforced resin molded product can withstand a severe use environment for a long time.
  • the cured product is required to exhibit high heat resistance and mechanical strength.
  • Examples of materials that can be used in such applications include (A) bisphenol type epoxy resins, (B) acid anhydride curing agents, (C) imidazole compounds, (D) polyols having aromatic rings, and all epoxies.
  • A bisphenol type epoxy resins
  • B acid anhydride curing agents
  • C imidazole compounds
  • D polyols having aromatic rings
  • all epoxies There is provided an epoxy resin composition containing 10 to 20 parts by mass of (C) and 10 to 20 parts by mass of (D) with respect to 100 parts by mass of the total amount of resin (see, for example, Patent Document 1).
  • Patent Document 1 has a problem that pot life is not sufficient, and it is difficult to impregnate reinforcing fibers when producing a large molded product.
  • [A] a polyfunctional epoxy resin that is liquid at room temperature or has a softening point of 65 ° C. or lower, and is at least selected from a phenol novolac epoxy resin, a cresol novolac epoxy resin, and a triphenylmethane epoxy resin
  • An epoxy resin composition for molding a fiber-reinforced composite material RTM in which [B] is in the range of 55/45 to 95/5 is also provided (see, for example, Patent Document 2).
  • the cured product obtained from this epoxy resin composition has a problem that the mechanical strength is insufficient.
  • the problem to be solved by the present invention is an epoxy resin composition that has a low potency and has a sufficient pot life and can exhibit high heat resistance and fracture toughness in the resulting cured product, It is providing the manufacturing method of the hardened
  • the present inventors have used an epoxy resin composition having a predetermined epoxy resin, an acid anhydride, a predetermined polyol compound, and a curing accelerator.
  • the present inventors have found that the above problems can be solved, and have completed the present invention.
  • the present invention comprises an epoxy resin (a) having an average functional group number of 1.5 to 2.2, an acid anhydride (b), two or more alcoholic hydroxyl groups in the molecule, and a hydroxyl group equivalent.
  • An epoxy resin composition comprising a polyol compound (c) of 30 g / eq to 650 g / eq and a curing accelerator (d), a cured product thereof, and a fiber-reinforced composite essentially comprising reinforcing fibers
  • the present invention provides a material, a fiber-reinforced resin molded article, and a method for producing the same.
  • an epoxy resin composition that has a low potency and has a sufficient pot life, and can exhibit high heat resistance and fracture toughness in the resulting cured product, a cured product having the above performance, A fiber-reinforced composite material, a fiber-reinforced resin molded product, and a method for producing a fiber-reinforced resin molded product can be provided.
  • the epoxy resin composition of the present invention has an epoxy resin (a) having an average functional group number of 1.5 to 2.2, an acid anhydride (b), two or more alcoholic hydroxyl groups in the molecule, and An epoxy resin composition having a polyol compound (c) having a hydroxyl group equivalent of 30 g / eq to 650 g / eq, and a curing accelerator (d).
  • Epoxy resin (a) used in the present invention is not particularly limited as long as it is an epoxy resin having an average functional group number of 1.5 to 2.2, but from the viewpoint of further improving the heat resistance of the resulting cured product, An epoxy resin having a functional group number of 1.8 to 2.2 is more preferable.
  • Examples of the epoxy resin (a) include a bisphenol type epoxy resin and a biphenyl type epoxy resin, but it is preferable to use a bisphenol type epoxy resin from the viewpoint that the cured product is more excellent in toughness. These epoxy resins may be used independently and may mix 2 or more types.
  • the bisphenol type epoxy resin examples include bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, halides of these bisphenol type epoxy resins, and alkyl-substituted products. Therefore, it is preferable to use a bisphenol A type epoxy resin or a bisphenol F type epoxy resin because a cured product having more excellent fracture toughness is easily obtained.
  • biphenyl type epoxy resin examples include tetramethyl biphenyl type epoxy.
  • the acid anhydride (b) used in the present invention may be any compound that has an acid anhydride group in the molecule and can cure the epoxy resin (so-called curing agent for epoxy resin), and is particularly limited. is not.
  • Examples of the acid anhydride (b) include unsaturated carboxylic acid anhydrides such as cyclic aliphatic acid anhydrides, aromatic acid anhydrides, and maleic anhydride.
  • Examples of the cyclic aliphatic acid anhydride include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendoethylenetetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, And methyl nadic acid.
  • Examples of the aromatic acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • Examples of the unsaturated carboxylic acid anhydride include maleic anhydride.
  • a cyclic aliphatic acid anhydride from the viewpoint of obtaining a cured product having excellent mechanical properties.
  • a compound having a viscosity at 25 ° C. of 500 mPa ⁇ s or less is more preferable because the epoxy resin composition is excellent in impregnation into reinforcing fibers.
  • Polyol compound (c) The polyol compound (c) used in the present invention is not particularly limited as long as it has two or more alcoholic hydroxyl groups in the molecule and has a hydroxyl group equivalent of 30 g / eq to 650 g / eq.
  • Examples of such a polyol compound (c) include ethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6 as divalent alcohol compounds.
  • -Hexanediol 2-butyl-2-ethyl-1,3-propanediol, compounds having an aromatic ring or cyclo ring and two alcoholic hydroxyl groups in the molecule, and the like.
  • Trimethylolpropane, glycerin and the like, and examples of the tetravalent alcohol compound include pentaerythritol.
  • a divalent alcohol compound is used as the polyol compound (c).
  • the polyol compound (c) it is preferable to use a compound having an aromatic ring or a cyclo ring and two alcoholic hydroxyl groups in the molecule.
  • the polyol compound (c) is a compound having an aromatic ring or a cyclo ring, a polyalkylene oxide chain, and two alcoholic hydroxyl groups in the molecule because the fracture toughness of the cured product is further excellent. It is preferable to use it.
  • Such a compound can be represented, for example, by the general formula (1).
  • a in the formula (1) represents a divalent linking group containing an aromatic ring or a cyclo ring
  • B represents a divalent linking group containing a polyalkylene oxide
  • OH represents an alcoholic hydroxyl group
  • a in the general formula (1) is not particularly limited as long as it is a divalent linking group containing an aromatic ring or a cyclo ring as described above, but the following structural formulas (A-1) to (A-7) It is preferable that it is a bivalent coupling group represented by the structure shown by the point that compatibility is good when using a bisphenol type epoxy resin as said epoxy resin (a).
  • the resulting epoxy resin composition has a lower content.
  • the divalent linking group shown is more preferable, and among them, the divalent linking group represented by (A-4) is particularly preferable.
  • B in the general formula (1) is not particularly limited as long as it is a divalent linking group containing a polyalkylene oxide as described above.
  • the average value of the sum of the number of repeating units of the two polyalkylene oxide chains is preferably in the range of 2 to 18, more preferably 2 to 6.
  • the polyalkylene oxide chain has an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide as a repeating unit, and may have the same structure or may be different for each repeating unit. Alternatively, it may take a block polymerization form.
  • the number of carbon atoms in the alkylene moiety in the repeating unit of the polyalkylene oxide chain is not particularly limited, but preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably. Ethylene oxide or propylene oxide having 2 to 4 carbon atoms and particularly preferably 2 to 3 carbon atoms is preferred.
  • a divalent linking group containing a polyalkylene oxide chain represented by (B-1) or (B-2) is particularly preferable.
  • x and y are the number of repeating units of two polyalkylene chains in one molecule, each independently representing an integer of 1 or more, and an average value thereof Is preferably in the range of 1-9.
  • * A and * OH represent bonding points with A and OH, respectively, in the general formula (1).
  • the polyol compound is particularly preferably a compound having a structure represented by the following structural formulas (1-1) to (1-2).
  • x1, x2, y1, and y2 are each independently an integer of 1 or more, and the average values of x1, x2, y1, and y2 are 1 to 9, respectively. is there.
  • Examples of the polyol compound (c) having the structure as described above include 2,2-bis (4-polyoxyethylene-oxyphenyl) propane and 2,2-bis (4-polyoxypropylene-oxyphenyl) propane.
  • 2,2-bis (4-polyoxypropylene-oxyphenyl) propane is particularly preferable from the viewpoint of the resulting composition having a lower viscosity and good heat resistance of the cured product.
  • the hydroxyl group equivalent of the polyol compound (c) used in the present invention is 30 g / eq to 650 g / eq from the viewpoint of balancing the pot life of the composition with the fracture toughness of the resulting cured product.
  • the range of 30 g / eq to 450 g / eq is preferable from the viewpoint that the performance is further expressed.
  • the polyol compound (c) has a boiling point at normal pressure of 100 ° C. or higher, preferably 140 ° C. or higher, more preferably 180 ° C. or higher.
  • the polyol compound is produced in the process of injecting the epoxy resin composition into the mold or the process of curing the epoxy resin composition when producing a fiber reinforced resin molded product. Since (c) is easy to vaporize, voids may occur in the resulting cured product and fiber reinforced resin molded product, and it may be necessary to devise measures such as lowering the curing temperature or slowing the curing reaction. is there.
  • the curing accelerator (d) may be any compound that can improve the curing activity such as the acid anhydride contained in the epoxy resin composition, and is generally a curing accelerator of an epoxy resin and an acid anhydride. What is used as can also be used in the present invention. Examples of such a curing accelerator (d) include urea derivatives, imidazole derivatives, phosphorus compounds, tertiary amines, organic acid metal salts, Lewis acids, amine complex salts, and the like.
  • examples of the curing accelerator (d) generally used in an epoxy / acid anhydride curing system include imidazole derivatives. Specifically, imidazole, 2-methylimidazole, 2-ethyl 4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1 -Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole and the like can be mentioned.
  • a latent catalyst that is a mixture of an imidazole compound and a compound having a hydroxyl group such as phosphorous acid, phosphorous acid monoester, and phosphorous acid diester should also be used. I can do it.
  • Epoxy resin composition The epoxy resin composition of the present invention has the above-described epoxy resin (a), acid anhydride (b), two or more alcoholic hydroxyl groups in the molecule, and a hydroxyl group equivalent of 30 g /
  • the polyol compound (c) of eq to 650 g / eq and the curing accelerator (d) may be essential, and the others are not particularly limited, but a sufficient pot life can be obtained, and the reinforcing fiber From the viewpoint of having a good balance between the good impregnation of the resin, the curing reaction proceeds promptly, the productivity is improved, and the mechanical strength of the resulting cured product is further improved.
  • the curing accelerator (d) is 0 when the total mass of the epoxy resin (a), the acid anhydride (b), the polyol compound (c) and the curing accelerator (d) is 100 parts by mass. .1 part by mass to 5 parts It is preferably contained at a ratio of 0.0 part by mass.
  • the diol compound (c) is composed of the epoxy resin (a), the above-mentioned
  • the total mass of the acid anhydride (b) and the curing accelerator (d) is 100 parts by mass, it is preferably contained in a proportion of 1 to 20 parts by mass.
  • the blending ratio of the epoxy resin (a), the acid anhydride (b), and the diol compound (c) is the sum of the epoxy resin (a) and the diol compound.
  • the ratio of the functional group equivalent to the functional anhydride equivalent of the acid anhydride is preferably 1.0 / 0.7 to 1.0 / 1.0.
  • the epoxy resin composition of the present invention may contain compounds other than the essential components described above. Examples of such compounds include acid-modified polybutadiene, polyether sulfone resin, polycarbonate resin, polyphenylene ether resin, and phenol resin. These compounds will be described below.
  • Acid-modified polybutadiene is a compound contained in the crosslinked network during the curing reaction of the epoxy resin composition because it has reactivity with the epoxy resin. For this reason, when the acid-modified polybutadiene is used in combination, the obtained cured product can exhibit excellent mechanical strength, heat resistance, and moist heat resistance.
  • Examples of the acid-modified polybutadiene include those having a butadiene skeleton having a skeleton derived from 1,3-butadiene or 2-methyl-1,3-butadiene.
  • the one derived from 1,3-butadiene includes one having a structure of 1,2-vinyl type, 1,4-trans type, 1,4-cis type, or one having two or more of these structures.
  • Those derived from 2-methyl-1,3-butadiene have a structure of any of 1,2-vinyl type, 3,4-vinyl type, 1,4-cis type, and 1,4-trans type And those having two or more of these structures.
  • the acid-modified component of the acid-modified polybutadiene is not particularly limited, and examples thereof include unsaturated carboxylic acids.
  • unsaturated carboxylic acid acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride are preferable, itaconic anhydride and maleic anhydride are preferable, and maleic anhydride is more preferable from the viewpoint of reactivity. .
  • the content of the unsaturated carboxylic acid in the acid-modified polybutadiene is composed of the acid-modified polybutadiene derived from 1,3-butadiene from the viewpoint of reactivity with the epoxy resin (a) and the polyol compound (c).
  • the acid value is preferably 5 mgKOH / g to 400 mgKOH / g, more preferably 20 mgKOH / g to 300 mgKOH / g, and further preferably 50 mgKOH / g to 200 mgKOH / g.
  • the acid value is 5 mgKOH / g or more, the reactivity with the epoxy resin and the like is excellent, and the obtained cured product has improved heat resistance and moist heat resistance.
  • the acid value is 400 mgKOH / g or less, mechanical strength such as elongation characteristics is improved in the obtained cured product by appropriately reacting with an epoxy resin or the like.
  • the unsaturated carboxylic acid component may be copolymerized in the acid-modified polybutadiene, and its form is not limited. Examples thereof include random copolymerization, block copolymerization, and graft copolymerization (graft modification).
  • the average molar mass of the acid-modified polybutadiene is preferably 1,000 to 8,000, more preferably 2,000 to 7,000 when the acid-modified polybutadiene is composed of 1,3-butadiene. Is more preferable.
  • the acid-modified polybutadiene is composed of one derived from 2-methyl-1,3-butadiene, it is preferably 1,000 to 60,000, more preferably 15,000 to 40,000.
  • the average molar mass can be measured using gel permeation chromatography (GPC).
  • the acid-modified polybutadiene is obtained by modifying polybutadiene with an unsaturated carboxylic acid, but a commercially available product may be used as it is.
  • commercially available products include maleic anhydride-modified liquid polybutadiene (Polyvest MA75, Polyvest EP MA120, etc.) manufactured by Evonik Degussa, and maleic anhydride-modified polyisoprene (LIR-403, LIR-410) manufactured by Kuraray. can do.
  • the total mass of the epoxy resin, acid anhydride, and acid-modified polybutadiene in the epoxy resin composition is 100 parts by mass from the viewpoint that the elongation, heat resistance, and heat-and-moisture resistance of the cured product obtained are good.
  • It is preferably contained in a proportion of 1 to 40 parts by mass, more preferably 3 to 30 parts by mass.
  • Polyethersulfone resin is a thermoplastic resin, and is not included in the crosslinked network in the curing reaction of epoxy resin, but in the cured product obtained by the excellent modifier effect having high Tg Furthermore, excellent mechanical strength and heat resistance can be expressed.
  • the total mass of the epoxy resin, the acid anhydride, and the polyether sulfone resin in the epoxy resin composition is 100 mass from the viewpoint that the mechanical strength and heat resistance of the obtained cured product are good.
  • Parts preferably 1 to 30 parts by weight, more preferably 3 to 20 parts by weight.
  • Polycarbonate resin for example, a polycondensate of a divalent or bifunctional phenol and a carbonyl halide, or a divalent or bifunctional phenol and a carbonic acid diester was polymerized by a transesterification method. Things.
  • examples of the divalent or bifunctional phenol used as a raw material for the polycarbonate resin include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl).
  • Ethane 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, Bis (4-hydroxyphenyl) ketone, hydroquinone, resorcin, Tekoru, and the like.
  • bis (hydroxyphenyl) alkanes are preferable, and those using 2,2-bis (4-hydroxyphenyl) propane as the
  • examples of the carbonyl halide or carbonic acid diester to be reacted with a divalent or bifunctional phenol include, for example, phosgene; dihaloformate of dihydric phenol, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate.
  • diaryl carbonates such as: aliphatic carbonate compounds such as dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dibutyl carbonate, diamyl carbonate, and dioctyl carbonate.
  • the polycarbonate resin may have a branched structure in addition to the polymer chain having a linear molecular structure.
  • a branched structure includes 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene as a raw material component.
  • Polyphenylene ether resins include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-14-phenylene) ether, and poly (2,6- Diethyl-1,4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n-propyl-1,4-phenylene) ether, Poly (2-methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-hydroxyethyl-1) , 4-phenylene) ether and the like.
  • poly (2,6-dimethyl-1,4-phenylene) ether is preferable, and 2- (dialkylaminomethyl) -6-methylphenylene ether unit or 2- (N-alkyl-N-phenylaminomethyl)- Polyphenylene ether containing a 6-methylphenylene ether unit or the like as a partial structure may be used.
  • a reactive functional group such as a carboxyl group, an epoxy group, an amino group, a mercapto group, a silyl group, a hydroxyl group, or an anhydrous dicarboxyl group is introduced into the resin structure by any method such as graft reaction or copolymerization.
  • Modified polyphenylene ether resins can also be used as long as the object of the present invention is not impaired.
  • phenolic resin examples include a resol type phenolic resin, a novolac type phenolic resin, and the like, a phenol aralkyl resin, a polyvinylphenol resin, a triazine modified phenol novolac resin modified with melamine or benzoguanamine, and the like.
  • the epoxy resin composition of the present invention contains a polycarbonate resin or a polyphenylene ether resin as described above, so that the cured product obtained can exhibit better mechanical strength, and contains a phenol resin as described above. By doing, in the hardened
  • the epoxy resin composition of the present invention can contain a flame retardant / flame retardant aid, a filler, an additive, and an organic solvent as long as the effects of the present invention are not impaired.
  • the order of blending when producing the epoxy resin composition is not particularly limited as long as the effect of the present invention can be achieved. That is, all the components may be mixed and used in advance, or may be mixed and used in an appropriate order.
  • the compounding method can knead
  • the epoxy resin composition of the present invention may contain a non-halogen flame retardant that does not substantially contain a halogen atom in order to exhibit flame retardancy.
  • non-halogen flame retardants examples include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants.
  • the flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.
  • the phosphorus flame retardant either inorganic or organic can be used.
  • the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like.
  • the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide
  • a method of double coating with a resin may be used.
  • general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa-10-phosphaphenanthrene
  • the phosphorous flame retardant when using the phosphorous flame retardant, may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
  • nitrogen-based flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, guanylmelamine sulfate, melem sulfate, melam sulfate, etc.
  • examples thereof include an aminotriazine sulfate compound, aminotriazine-modified phenol resin, and aminotriazine-modified phenol resin further modified with tung oil, isomerized linseed oil, and the like.
  • cyanuric acid compound examples include cyanuric acid and melamine cyanurate.
  • the amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in an amount of 0.05 to 10 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. It is preferable to blend in the range of 1 to 5 parts by mass.
  • a metal hydroxide, a molybdenum compound or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the amount of the silicone flame retardant is appropriately selected according to the type of the silicone flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to blend in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.
  • inorganic flame retardant examples include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.
  • the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • the metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • boron compound examples include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • the low-melting-point glass include, for example, Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO system, P—Sn—O—F system, PbO—V 2 O 5 —TeO 2 system, Al 2 O 3 —H 2 O system, lead borosilicate system, etc.
  • the glassy compound can be mentioned.
  • the blending amount of the inorganic flame retardant is appropriately selected according to the type of the inorganic flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • epoxy resin cured It is preferable to mix in an amount of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. It is preferable to blend in the range of 5 to 15 parts by mass.
  • organic metal salt flame retardant examples include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.
  • the amount of the organometallic salt-based flame retardant is appropriately selected depending on the type of the organometallic salt-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferably blended in the range of 0.005 to 10 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives. .
  • the epoxy resin composition of the present invention may contain a filler.
  • excellent mechanical properties can be expressed in the obtained cured product.
  • fillers include titanium oxide, glass beads, glass flakes, glass fibers, calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, potassium titanate, aluminum borate, magnesium borate, fused silica, crystalline silica, alumina, and nitriding.
  • fibrous reinforcing agents such as silicon, aluminum hydroxide, kenaf fibers, carbon fibers, alumina fibers, and quartz fibers, and non-fibrous reinforcing agents. These may be used individually by 1 type, or may use 2 or more types together. Moreover, these may be coat
  • glass fiber when used as the filler, it can be selected from long fiber type roving, short fiber type chopped strand, milled fiber, and the like. It is preferable to use a glass fiber that has been surface-treated for the resin used.
  • the strength of the incombustible layer (or carbonized layer) generated during combustion can be further improved.
  • the incombustible layer (or carbonized layer) once generated during combustion is less likely to be damaged, can exhibit stable heat insulation ability, and a greater flame retardant effect can be obtained. Further, high rigidity can be imparted to the material.
  • the epoxy resin composition of this invention may contain the additive.
  • additives include plasticizers, antioxidants, UV absorbers, stabilizers such as light stabilizers, antistatic agents, conductivity-imparting agents, stress relaxation agents, mold release agents, crystallization accelerators, and hydrolysis inhibitors.
  • Agent lubricant, impact imparting agent, slidability improver, compatibilizer, nucleating agent, reinforcing agent, reinforcing agent, flow regulator, dye, sensitizer, coloring pigment, rubbery polymer, thickener It is also possible to add an anti-settling agent, an anti-sagging agent, an antifoaming agent, a coupling agent, an antirust agent, an antibacterial / antifungal agent, an antifouling agent, a conductive polymer and the like.
  • the epoxy resin composition of this invention may contain the organic solvent, when manufacturing a fiber reinforced resin molded article using a filament winding method.
  • organic solvents include methyl ethyl ketone acetone, dimethyl formamide, methyl isobutyl ketone, methoxy propanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, etc. Can be appropriately selected depending on the application.
  • the epoxy resin composition of the present invention has a low viscosity, has a sufficient pot life, and can exhibit excellent heat resistance and fracture toughness in the resulting cured product. It can be used for molded products, cured products and the like. These will be described below.
  • the fiber reinforced composite material of the present invention is a material in a state before curing after the reinforcing fiber is impregnated with the epoxy resin composition.
  • the reinforced fiber may be any of a twisted yarn, an untwisted yarn, or a non-twisted yarn, but the untwisted yarn and the untwisted yarn are preferable because they have excellent formability in the fiber-reinforced composite material.
  • the form of a reinforced fiber can use what the fiber direction arranged in one direction, and a textile fabric.
  • the woven fabric can be freely selected from plain weaving, satin weaving, and the like according to the site and use.
  • carbon fiber glass fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like can be mentioned, and two or more of these can be used in combination. .
  • carbon fiber is preferable from the viewpoint that the strength of the molded product is particularly good.
  • the carbon fiber various types such as polyacrylonitrile-based, pitch-based, and rayon-based can be used.
  • the method for obtaining the fiber reinforced composite material from the epoxy resin composition of the present invention is not particularly limited.
  • the components constituting the epoxy resin composition are uniformly mixed to adjust the varnish, and then obtained as described above.
  • a method of immersing unidirectional reinforcing fibers in which the reinforcing fibers are aligned in one direction in the varnish (the state before curing by the pultrusion method and the filament winding method), and setting the woven fabric of reinforcing fibers in a concave shape, Thereafter, after sealing with a convex mold, a method of injecting resin and impregnating with pressure (state before curing by the RTM method) and the like can be mentioned.
  • the fiber reinforced composite material of the present invention is not necessarily impregnated with the epoxy resin composition up to the inside of the fiber bundle, and may be an embodiment in which the epoxy resin composition is localized near the surface of the fiber. good.
  • the volume content of the reinforced fiber with respect to the total volume of the fiber reinforced composite material is preferably 40% to 85%, and in the range of 50% to 70% from the viewpoint of strength. More preferably.
  • the volume content is less than 40%, the cured product obtained when the content of the epoxy resin composition is too high is insufficient in flame retardancy, or required for a fiber-reinforced composite material excellent in specific modulus and specific strength. Some characteristics may not be satisfied.
  • the volume content exceeds 85%, the adhesion between the reinforcing fiber and the resin composition may be lowered.
  • the fiber-reinforced resin molded product of the present invention is a molded product having reinforcing fibers and a cured product of an epoxy resin composition, and is obtained by thermosetting a fiber-reinforced composite material.
  • the fiber-reinforced resin molded article of the present invention preferably has a volume content of reinforcing fibers in the fiber-reinforced molded article in the range of 40% to 85%, and 50% to 70% from the viewpoint of strength. A range is particularly preferred.
  • Examples of such fiber reinforced resin molded products include front subframes, rear subframes, front pillars, center pillars, side members, cross members, side sills, roof rails, propeller shafts and other automotive parts, electric wire cable core members, Examples include pipe materials for subsea oil fields, roll / pipe materials for printing presses, robot forks, primary structural materials for aircraft, and secondary structural materials.
  • the method for obtaining a fiber-reinforced molded product from the epoxy resin composition of the present invention is not particularly limited, but it is preferable to use a pultrusion method (pultrusion method), a filament winding method, an RTM method, or the like.
  • the pultrusion method is a method in which a fiber reinforced composite material is introduced into a mold, heated and cured, and then pulled out with a drawing device to form a fiber reinforced resin molded product. Is a method in which a fiber reinforced composite material (including unidirectional fibers) is wound around an aluminum liner or a plastic liner while being rotated and then heat cured to form a fiber reinforced resin molded product.
  • the fiber reinforced composite material is preferably thermoset in a temperature range of 50 ° C. to 250 ° C., more preferably in a temperature range of 70 ° C. to 220 ° C. . If the molding temperature is too low, sufficient fast curability may not be obtained. Conversely, if the molding temperature is too high, warping due to thermal strain may be likely to occur. As other molding conditions, the fiber reinforced composite material is pre-cured at 50 ° C. to 100 ° C. to form a tack-free cured product, and further processed at a temperature condition of 120 ° C. to 200 ° C. The method of hardening can be mentioned.
  • Other methods for obtaining a fiber reinforced molded product from the epoxy resin composition of the present invention include a hand lay-up method and a spray-up method in which a fiber aggregate is laid on a mold and the varnish and fiber aggregate are laminated in layers.
  • a hand lay-up method and a spray-up method in which a fiber aggregate is laid on a mold and the varnish and fiber aggregate are laminated in layers.
  • the heating temperature condition depends on the type and use of the curing agent to be combined, What is necessary is just to select suitably.
  • a method of heating the epoxy resin composition in a temperature range of room temperature to about 250 ° C. can be mentioned.
  • a general method of an epoxy resin composition can be used, and a condition peculiar to the epoxy resin composition of the present invention is not particularly necessary.
  • Examples 1 to 5 and Comparative Examples 1 to 4 According to the composition shown in Table 1 below, the epoxy resin, acid anhydride, polyol compound and curing accelerator were placed in a kettle and stirred to homogenize the epoxy resin compositions of Examples 1 to 5 and Comparative Examples 1 to 4. Obtained. Next, the epoxy resin composition obtained above was poured into a mold that had been processed to have a thickness corresponding to the evaluation item, and molded for 10 minutes at 160 ° C. to obtain a cured product.
  • Epoxy resin (a) A-1: BPA type epoxy resin EPICLON 850S (manufactured by DIC Corporation, average functional group number: 2.0) A-2: BPF type epoxy resin EPICLON 830S (manufactured by DIC Corporation, average functional group number: 2.1) A-3: phenol novolac epoxy resin EPICLON N-740 (manufactured by DIC Corporation, average functional group number: 3.7)
  • Polyol compound (c) C-1: 2,2-bis (4-polyoxyethyleneoxyphenyl) propane BA-2 glycol (Hydroxyl equivalent 165 g / eq, manufactured by Nippon Emulsifier Co., Ltd.)
  • C-2 2,2-bis (4-polyoxyethyleneoxyphenyl) propane BA-P2 glycol (hydroxyl equivalent 178 g / eq, manufactured by Nippon Emulsifier Co., Ltd.)
  • C-3 2,2-bis (4-polyoxyethyleneoxyphenyl) propane BA-P13U glycol (manufactured by Nippon Emulsifier Co., Ltd., hydroxyl equivalent 468 g / eq)
  • C-4 polytetramethylene glycol PTMG-1000 (manufactured by Mitsubishi Chemical Corporation, hydroxyl equivalent: 500 g / eq)
  • C-5 Polyethylene glycol PEG-2000 (manufactured by Sanyo Chemical Industries, Ltd., hydroxyl group equivalent 1000 g
  • Curing accelerator (d) D-1 1,2-dimethylimidazole 1,2DMZ (manufactured by Shikoku Chemicals Co., Ltd.)
  • the initial viscosity of the epoxy resin composition obtained above is that the viscosity after 3 hours of storage at 25 ° C. does not exceed 2 times, the pot life is good ( ⁇ ), the one that exceeds 2 times is poor pot life ( ⁇ ) It was.

Abstract

Provided are: an epoxy resin composition which has low viscosity and sufficient pot life and enables a cured product thereof to exhibit high heat resistance and fracture toughness; a cured product having the above-described properties; a fiber-reinforced composite material; a fiber-reinforced resin molded article; and a method for producing a fiber-reinforced resin molded article. An epoxy resin composition which is characterized by containing (a) an epoxy resin having an average number of functional groups of 1.5-2.2, (b) an acid anhydride, (c) a polyol compound containing two or more alcoholic hydroxyl groups in each molecule, while having a hydroxyl equivalent of from 30 g/eq to 650 g/eq, and (d) a curing accelerator.

Description

エポキシ樹脂組成物及び繊維強化複合材料Epoxy resin composition and fiber reinforced composite material
 本発明は、低粘度でかつ十分なポットライフを有しながら、得られる硬化物において高い耐熱性と破壊靭性を発現させることができるエポキシ樹脂組成物、前記性能を有する硬化物、繊維強化複合材料、繊維強化樹脂成形品、及び繊維強化樹脂成形品の製造方法に関する。 The present invention relates to an epoxy resin composition that can exhibit high heat resistance and fracture toughness in a cured product obtained while having a low viscosity and sufficient pot life, a cured product having the above performance, and a fiber-reinforced composite material The present invention relates to a fiber-reinforced resin molded product and a method for producing a fiber-reinforced resin molded product.
 強化繊維で強化した繊維強化樹脂成形品は、軽量でありながら機械強度に優れるといった特徴が注目され、自動車や航空機の筐体、或いは各種部材をはじめ、様々な構造体用途での利用が拡大している。 Fiber reinforced resin molded products reinforced with reinforcing fibers are attracting attention for their light weight and excellent mechanical strength, and their use in various structural applications such as automobile and aircraft casings and various components has expanded. ing.
 繊維強化樹脂成形品は、繊維強化複合材料にフイラメントワインディング法、プレス成形法、ハンドレイアップ法、プルトルージョン法、RTM法など成形方法を適用し製造することができる。 A fiber reinforced resin molded product can be manufactured by applying a molding method such as a filament winding method, a press molding method, a hand layup method, a pultrusion method, and an RTM method to a fiber reinforced composite material.
 繊維強化複合材料は、強化繊維に樹脂を含浸させた構成からなり、繊維強化複合材料に用いられる樹脂としては、通常、常温での安定性と硬化物の耐久性や強度が必要であることから一般的には熱硬化性樹脂が多用されている。 Fiber reinforced composite materials consist of a structure in which reinforced fibers are impregnated with resin, and as resins used in fiber reinforced composite materials, usually stability at normal temperature and durability and strength of cured products are required. In general, thermosetting resins are frequently used.
 なお、繊維強化複合材料用の樹脂として熱硬化性樹脂を用いる場合、繊維強化複合材料用の樹脂は、前記のように強化繊維に含浸できることが必須であるため、熱硬化性樹脂には、低粘度であり、また含浸中に粘度の上昇が少ない、所謂ポットライフが長いことが求められる。 When a thermosetting resin is used as the resin for the fiber reinforced composite material, it is essential that the resin for the fiber reinforced composite material can be impregnated into the reinforcing fiber as described above. It is required to have a long so-called pot life, which is a viscosity and has a small increase in viscosity during impregnation.
 さらに、繊維強化樹脂成形品がエンジンなどの構造部品や電線コア材に用いられる場合においては、繊維強化樹脂成形品が過酷な使用環境に長期間耐えうるよう、熱硬化性樹脂には、得られる硬化物において高い耐熱性と機械強度を発現することが求められる。 Furthermore, when the fiber reinforced resin molded product is used for structural parts such as engines and wire core materials, the thermosetting resin can be obtained so that the fiber reinforced resin molded product can withstand a severe use environment for a long time. The cured product is required to exhibit high heat resistance and mechanical strength.
 このような用途に使用され得る材料として、例えば、(A)ビスフェノール型エポキシ樹脂、(B)酸無水物硬化剤、(C)イミダゾール化合物、(D)芳香環を有するポリオールを含み、かつ全エポキシ樹脂の総量100質量部に対し、(C)を10~20質量部、(D)を10~20質量部含むエポキシ樹脂組成物が提供されている(例えば、特許文献1参照。)。しかしながら、前記特許文献1で提供されているエポキシ樹脂組成物は、ポットライフが十分ではなく、大型の成型物を作製する際に、強化繊維に含浸させることが困難であるという問題があった。 Examples of materials that can be used in such applications include (A) bisphenol type epoxy resins, (B) acid anhydride curing agents, (C) imidazole compounds, (D) polyols having aromatic rings, and all epoxies. There is provided an epoxy resin composition containing 10 to 20 parts by mass of (C) and 10 to 20 parts by mass of (D) with respect to 100 parts by mass of the total amount of resin (see, for example, Patent Document 1). However, the epoxy resin composition provided in Patent Document 1 has a problem that pot life is not sufficient, and it is difficult to impregnate reinforcing fibers when producing a large molded product.
 また、[A]常温で液状であるか、軟化点が65℃以下である多官能エポキシ樹脂であって、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂から選ばれる少なくとも一つの多官能エポキシ樹脂、[B]脂環式エポキシ樹脂、[C]酸無水物硬化剤、[D]硬化促進剤を含み、かつ[A]と[B]の質量配合比[A]/[B]が55/45~95/5の範囲にある繊維強化複合材料RTM成形用エポキシ樹脂組成物も提供されている(例えば、特許文献2参照。)。しかしながら、このエポキシ樹脂組成物から得られる硬化物は機械強度が不足するという問題がある。 [A] a polyfunctional epoxy resin that is liquid at room temperature or has a softening point of 65 ° C. or lower, and is at least selected from a phenol novolac epoxy resin, a cresol novolac epoxy resin, and a triphenylmethane epoxy resin One polyfunctional epoxy resin, [B] alicyclic epoxy resin, [C] acid anhydride curing agent, [D] curing accelerator, and [A] / [B] mass blending ratio [A] / An epoxy resin composition for molding a fiber-reinforced composite material RTM in which [B] is in the range of 55/45 to 95/5 is also provided (see, for example, Patent Document 2). However, the cured product obtained from this epoxy resin composition has a problem that the mechanical strength is insufficient.
 すなわち、低粘度でかつ十分なポットライフを有しながら、得られる硬化物において高い耐熱性と機械強度を兼備すべき用途に使用できるエポキシ樹脂組成物を得ることは困難であった。 That is, it was difficult to obtain an epoxy resin composition that can be used for applications that should have both high heat resistance and mechanical strength in the obtained cured product while having a low viscosity and sufficient pot life.
特開2010-163573号公報JP 2010-163573 A 国際公開第2012/102202号International Publication No. 2012/102202
 従って、本発明が解決しようとする課題は、低粘度でありながら、かつ十分なポットライフを有し、得られる硬化物において高い耐熱性と破壊靭性を発現させることができるエポキシ樹脂組成物、前記性能を有する硬化物、繊維強化複合材料、繊維強化樹脂成形品、及び繊維強化樹脂成形品の製造方法を提供することにある。 Therefore, the problem to be solved by the present invention is an epoxy resin composition that has a low potency and has a sufficient pot life and can exhibit high heat resistance and fracture toughness in the resulting cured product, It is providing the manufacturing method of the hardened | cured material which has performance, a fiber reinforced composite material, a fiber reinforced resin molded product, and a fiber reinforced resin molded product.
 本発明者らは、前記課題を解決するため、鋭意検討した結果、所定のエポキシ樹脂と、酸無水物と、所定のポリオール化合物と、硬化促進剤と、を有するエポキシ樹脂組成物を用いることにより、前記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have used an epoxy resin composition having a predetermined epoxy resin, an acid anhydride, a predetermined polyol compound, and a curing accelerator. The present inventors have found that the above problems can be solved, and have completed the present invention.
 即ち、本発明は、平均官能基数が1.5~2.2のエポキシ樹脂(a)と、酸無水物(b)と、分子中に2以上のアルコール性水酸基を有し、且つ水酸基当量が30g/eq~650g/eqであるポリオール化合物(c)と、硬化促進剤(d)と、を有することを特徴とするエポキシ樹脂組成物、その硬化物、更に強化繊維を必須とする繊維強化複合材料、繊維強化樹脂成形品及びその製造方法を提供するものである。 That is, the present invention comprises an epoxy resin (a) having an average functional group number of 1.5 to 2.2, an acid anhydride (b), two or more alcoholic hydroxyl groups in the molecule, and a hydroxyl group equivalent. An epoxy resin composition comprising a polyol compound (c) of 30 g / eq to 650 g / eq and a curing accelerator (d), a cured product thereof, and a fiber-reinforced composite essentially comprising reinforcing fibers The present invention provides a material, a fiber-reinforced resin molded article, and a method for producing the same.
 本発明によれば、低粘度でありながら、かつ十分なポットライフを有し、得られる硬化物において高い耐熱性と破壊靭性を発現させることができるエポキシ樹脂組成物、前記性能を有する硬化物、繊維強化複合材料、繊維強化樹脂成形品、及び繊維強化樹脂成形品の製造方法を提供することができる。 According to the present invention, an epoxy resin composition that has a low potency and has a sufficient pot life, and can exhibit high heat resistance and fracture toughness in the resulting cured product, a cured product having the above performance, A fiber-reinforced composite material, a fiber-reinforced resin molded product, and a method for producing a fiber-reinforced resin molded product can be provided.
 本発明のエポキシ樹脂組成物は、平均官能基数が1.5~2.2のエポキシ樹脂(a)と、酸無水物(b)と、分子中に2以上のアルコール性水酸基を有し、且つ水酸基当量が30g/eq~650g/eqであるポリオール化合物(c)と、硬化促進剤(d)と、を有するエポキシ樹脂組成物である。 The epoxy resin composition of the present invention has an epoxy resin (a) having an average functional group number of 1.5 to 2.2, an acid anhydride (b), two or more alcoholic hydroxyl groups in the molecule, and An epoxy resin composition having a polyol compound (c) having a hydroxyl group equivalent of 30 g / eq to 650 g / eq, and a curing accelerator (d).
 ・エポキシ樹脂(a)
 本発明で用いるエポキシ樹脂(a)としては、平均官能基数が1.5~2.2であるエポキシ樹脂であれば特に限定されないが、得られる硬化物の耐熱性がより向上する観点から、平均官能基数が1.8~2.2であるエポキシ樹脂であることがより好ましい。
・ Epoxy resin (a)
The epoxy resin (a) used in the present invention is not particularly limited as long as it is an epoxy resin having an average functional group number of 1.5 to 2.2, but from the viewpoint of further improving the heat resistance of the resulting cured product, An epoxy resin having a functional group number of 1.8 to 2.2 is more preferable.
 前記エポキシ樹脂(a)としては、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂等を挙げることができるが、硬化物がより強靭性に優れる観点から、ビスフェノール型エポキシ樹脂を用いることが好ましい。これらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。 Examples of the epoxy resin (a) include a bisphenol type epoxy resin and a biphenyl type epoxy resin, but it is preferable to use a bisphenol type epoxy resin from the viewpoint that the cured product is more excellent in toughness. These epoxy resins may be used independently and may mix 2 or more types.
 前記ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、もしくはこれらビスフェノール型エポキシ樹脂のハロゲン化物、アルキル置換体等が挙げられ、より破壊靭性に優れる硬化物が得られやすいことから、ビスフェノールA型エポキシ樹脂、又はビスフェノールF型エポキシ樹脂を用いることが好ましい。 Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, halides of these bisphenol type epoxy resins, and alkyl-substituted products. Therefore, it is preferable to use a bisphenol A type epoxy resin or a bisphenol F type epoxy resin because a cured product having more excellent fracture toughness is easily obtained.
 前記ビフェニル型エポキシ樹脂としては、例えば、テトラメチルビフェニル型エポキシ等が挙げられる。 Examples of the biphenyl type epoxy resin include tetramethyl biphenyl type epoxy.
 ・酸無水物(b)
 本発明で用いる酸無水物(b)は、分子中に酸無水物基を有し、エポキシ樹脂を硬化させることのできる化合物(いわゆるエポキシ樹脂用硬化剤)であればよく、特に限定されるものではない。そのような、酸無水物(b)としては、例えば、環状脂肪族酸無水物、芳香族酸無水物、無水マレイン酸等の不飽和カルボン酸無水物等が挙げられる。前記環状脂肪族酸無水物としては、無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水メチルエンドエチレンテトラヒドロフタル酸、無水トリアルキルテトラヒドロフタル酸、無水メチルナジック酸等が挙げられる。前記芳香族酸無水物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等が挙げられる。前記不飽和カルボン酸無水物としては、無水マレイン酸等が挙げられる。これらのなかでも、機械物性により優れる硬化物が得られる点から環状脂肪族酸無水物を用いることが好ましい。さらに、エポキシ樹脂組成物が強化繊維への含浸性に優れるようになる点から、前記環状脂肪族酸無水物の中でも、25℃における粘度が500mPa・s以下である化合物がより好ましい。
・ Acid anhydride (b)
The acid anhydride (b) used in the present invention may be any compound that has an acid anhydride group in the molecule and can cure the epoxy resin (so-called curing agent for epoxy resin), and is particularly limited. is not. Examples of the acid anhydride (b) include unsaturated carboxylic acid anhydrides such as cyclic aliphatic acid anhydrides, aromatic acid anhydrides, and maleic anhydride. Examples of the cyclic aliphatic acid anhydride include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendoethylenetetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, And methyl nadic acid. Examples of the aromatic acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Examples of the unsaturated carboxylic acid anhydride include maleic anhydride. Among these, it is preferable to use a cyclic aliphatic acid anhydride from the viewpoint of obtaining a cured product having excellent mechanical properties. Further, among the cyclic aliphatic acid anhydrides, a compound having a viscosity at 25 ° C. of 500 mPa · s or less is more preferable because the epoxy resin composition is excellent in impregnation into reinforcing fibers.
 ・ポリオール化合物(c)
 本発明で用いるポリオール化合物(c)としては、分子中に2以上のアルコール性水酸基を有し、水酸基当量が30g/eq~650g/eqであれば良く、特に限定されるものではない。そのようなポリオール化合物(c)としては、例えば、2価のアルコール化合物として、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、分子中に芳香環又はシクロ環と2つのアルコール性水酸基を有する化合物等を挙げることができ、3価のアルコール化合物としては、トリメチロールプロパン、グリセリン等を挙げることができ、4価のアルコール化合物としてはペンタエリスリトール等を挙げることができる。
Polyol compound (c)
The polyol compound (c) used in the present invention is not particularly limited as long as it has two or more alcoholic hydroxyl groups in the molecule and has a hydroxyl group equivalent of 30 g / eq to 650 g / eq. Examples of such a polyol compound (c) include ethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6 as divalent alcohol compounds. -Hexanediol, 2-butyl-2-ethyl-1,3-propanediol, compounds having an aromatic ring or cyclo ring and two alcoholic hydroxyl groups in the molecule, and the like. , Trimethylolpropane, glycerin and the like, and examples of the tetravalent alcohol compound include pentaerythritol.
 また、低粘度でありながら、十分なポットライフを有し、更に得られる硬化物において破壊靭性と耐熱性がさらに優れる観点からは、前記ポリオール化合物(c)としては、2価のアルコール化合物を用いることが好ましく、その中でも分子中に芳香環又はシクロ環と2つのアルコール性水酸基を有する化合物を用いることが好ましい。さらに、その中でも硬化物の破壊靭性がさらに優れる点から、前記ポリオール化合物(c)としては、分子中に芳香環又はシクロ環と、ポリアルキレンオキサイド鎖と、2つのアルコール性水酸基とを有する化合物を用いることが好ましい。そのような化合物としては、例えば一般式(1)で表すことができる。 In addition, from the viewpoint of having a sufficient pot life while having a low viscosity and further improving fracture toughness and heat resistance in the obtained cured product, a divalent alcohol compound is used as the polyol compound (c). Among them, it is preferable to use a compound having an aromatic ring or a cyclo ring and two alcoholic hydroxyl groups in the molecule. Further, among these, the polyol compound (c) is a compound having an aromatic ring or a cyclo ring, a polyalkylene oxide chain, and two alcoholic hydroxyl groups in the molecule because the fracture toughness of the cured product is further excellent. It is preferable to use it. Such a compound can be represented, for example, by the general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 但し、式(1)中のAは芳香環又はシクロ環を含む2価の連結基を表し、Bはポリアルキレンオキサイドを含む2価の連結基を表し、OHはアルコール性水酸基を表す。 However, A in the formula (1) represents a divalent linking group containing an aromatic ring or a cyclo ring, B represents a divalent linking group containing a polyalkylene oxide, and OH represents an alcoholic hydroxyl group.
 前記一般式(1)中のAとしては、前記のように芳香環又はシクロ環を含む2価の連結基であれば特に限定されないが、下記構造式(A-1)~(A-7)で示される構造で表される2価の連結基であることが、前記エポキシ樹脂(a)として、ビスフェノール型エポキシ樹脂を用いる際に相溶性が良好である点から好ましい。 A in the general formula (1) is not particularly limited as long as it is a divalent linking group containing an aromatic ring or a cyclo ring as described above, but the following structural formulas (A-1) to (A-7) It is preferable that it is a bivalent coupling group represented by the structure shown by the point that compatibility is good when using a bisphenol type epoxy resin as said epoxy resin (a).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 但し、構造式(A-1)~(A-7)中、*Bは一般式(1)におけるBとの結合点を表す。 However, in structural formulas (A-1) to (A-7), * B represents a bonding point with B in the general formula (1).
 さらに、前記一般式(1)中のAとしては、前記構造式(A-1)~(A-7)で表される2価の連結基の中でも、得られるエポキシ樹脂組成物が、より低粘度でありながら、十分なポットライフを有し、且つ得られる硬化物においてより高い破断靱性と耐熱性を発現させることができる点から、前記構造式(A-4)~(A-7)で示される2価の連結基であることがより好ましく、その中でも(A-4)で表される2価の連結基であることが特に好ましい。 Further, as A in the general formula (1), among the divalent linking groups represented by the structural formulas (A-1) to (A-7), the resulting epoxy resin composition has a lower content. In terms of structural formulas (A-4) to (A-7), it has a sufficient pot life while exhibiting viscosity, and can exhibit higher fracture toughness and heat resistance in the obtained cured product. The divalent linking group shown is more preferable, and among them, the divalent linking group represented by (A-4) is particularly preferable.
 前記一般式(1)中のBとしては、前記のようにポリアルキレンオキサイドを含む2価の連結基であれば特に限定されないが、機械強度がさらに高い硬化物が得られる点から、1分子中の2つのポリアルキレンオキサイド鎖の繰り返し単位数の和の平均値が2~18の範囲であることが好ましく、平均値が2~6であることがより好ましい。前記ポリアルキレンオキサイド鎖は、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどのアルキレンオキサイドを繰り返し単位として有するものであり、同一構造のものからなるものであっても、繰り返し単位ごとに異なるものであっても、あるいはブロック重合形式をとるものであってもよい。 B in the general formula (1) is not particularly limited as long as it is a divalent linking group containing a polyalkylene oxide as described above. From the viewpoint of obtaining a cured product having higher mechanical strength, The average value of the sum of the number of repeating units of the two polyalkylene oxide chains is preferably in the range of 2 to 18, more preferably 2 to 6. The polyalkylene oxide chain has an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide as a repeating unit, and may have the same structure or may be different for each repeating unit. Alternatively, it may take a block polymerization form.
 前記ポリアルキレンオキサイド鎖の繰り返し単位中のアルキレン部分の炭素数については、特に制限は無いが、好ましくは炭素数が2~12であり、より好ましくは炭素数が2~6であり、さらに好ましくは炭素数が2~4であり、特に好ましくは炭素数が2~3であるエチレンオキサイドやプロピレンオキサイドである。 The number of carbon atoms in the alkylene moiety in the repeating unit of the polyalkylene oxide chain is not particularly limited, but preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably. Ethylene oxide or propylene oxide having 2 to 4 carbon atoms and particularly preferably 2 to 3 carbon atoms is preferred.
 すなわち、前記一般式(1)中のとしては、(B-1)、(B-2)で表されるポリアルキレンオキサイド鎖を含む2価の連結基が特に好ましい。 That is, in the general formula (1), a divalent linking group containing a polyalkylene oxide chain represented by (B-1) or (B-2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記式(B-1)、(B-2)において、x、yは、一分子中の2つのポリアルキレン鎖の繰り返し単位数であり、それぞれ独立して1以上の整数を表し、その平均値は1~9の範囲であることが好ましい。尚、式B-1)、(B-2)中の*Aと、*OHは、前記一般式(1)において、それぞれA、OHとの結合点を表す。 In the above formulas (B-1) and (B-2), x and y are the number of repeating units of two polyalkylene chains in one molecule, each independently representing an integer of 1 or more, and an average value thereof Is preferably in the range of 1-9. In the formulas B-1) and (B-2), * A and * OH represent bonding points with A and OH, respectively, in the general formula (1).
 従って、前記ポリオール化合物としては、下記構造式(1-1)~(1-2)で表わされる構造を有する化合物であることが、特に好ましい。 Therefore, the polyol compound is particularly preferably a compound having a structure represented by the following structural formulas (1-1) to (1-2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 構造式(1-1)~(1-2)において、x1、x2、y1、y2はそれぞれ独立して1以上の整数であり、x1、x2、y1、y2の平均値はそれぞれ1~9である。 In structural formulas (1-1) to (1-2), x1, x2, y1, and y2 are each independently an integer of 1 or more, and the average values of x1, x2, y1, and y2 are 1 to 9, respectively. is there.
 前記のような構造を有するポリオール化合物(c)としては、例えば、2,2-ビス(4-ポリオキシエチレン-オキシフェニル)プロパン、2,2-ビス(4-ポリオキシプロピレン-オキシフェニル)プロパン等を挙げることができ、得られる組成物がより低粘度であり、硬化物の耐熱性も良好である観点から、2,2-ビス(4-ポリオキシプロピレン-オキシフェニル)プロパンが特に好ましい。 Examples of the polyol compound (c) having the structure as described above include 2,2-bis (4-polyoxyethylene-oxyphenyl) propane and 2,2-bis (4-polyoxypropylene-oxyphenyl) propane. In particular, 2,2-bis (4-polyoxypropylene-oxyphenyl) propane is particularly preferable from the viewpoint of the resulting composition having a lower viscosity and good heat resistance of the cured product.
 本発明で用いるポリオール化合物(c)の水酸基当量は、組成物のポットライフが十分に確保される観点と、得られる硬化物の破壊靭性とのバランスを取る点から、30g/eq~650g/eqの範囲であることを必須とするものであり、特にそれらの性能がより一層発現される点から30g/eq~450g/eqの範囲であることが好ましい。 The hydroxyl group equivalent of the polyol compound (c) used in the present invention is 30 g / eq to 650 g / eq from the viewpoint of balancing the pot life of the composition with the fracture toughness of the resulting cured product. In particular, the range of 30 g / eq to 450 g / eq is preferable from the viewpoint that the performance is further expressed.
 また、前記ポリオール化合物(c)は、常圧における沸点が、100℃以上、好ましくは140℃以上、より好ましくは180℃以上であることが好ましい。前記ポリオール化合物(c)の沸点が低すぎる場合は、繊維強化樹脂成形品を製造する場合、エポキシ樹脂組成物を金型内に注入する過程や、エポキシ樹脂組成物が硬化する過程で前記ポリオール化合物(c)が気化しやすいため、得られる硬化物、繊維強化樹脂成形品中にボイドが生じる場合があり、硬化温度を下げたり、硬化反応を遅くさせたりする等の工夫が必要となる場合がある。なお、複数種の前記ポリオール化合物(c)を用いる場合は、いずれも前記の条件を満たすことが好ましい。 The polyol compound (c) has a boiling point at normal pressure of 100 ° C. or higher, preferably 140 ° C. or higher, more preferably 180 ° C. or higher. When the boiling point of the polyol compound (c) is too low, the polyol compound is produced in the process of injecting the epoxy resin composition into the mold or the process of curing the epoxy resin composition when producing a fiber reinforced resin molded product. Since (c) is easy to vaporize, voids may occur in the resulting cured product and fiber reinforced resin molded product, and it may be necessary to devise measures such as lowering the curing temperature or slowing the curing reaction. is there. In addition, when using the said multiple types of said polyol compound (c), it is preferable that all satisfy | fill the said conditions.
 ・硬化促進剤(d)
 硬化促進剤(d)は、エポキシ樹脂組成物中に含まれる前記酸無水物などの硬化活性を向上させることができる化合物であればよく、一般的にエポキシ樹脂と酸無水物との硬化促進剤として使用されているものを、本発明でも用いることができる。そのような硬化促進剤(d)としては、例えば、尿素誘導体、イミダゾール誘導体、リン系化合物、第3級アミン、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。
・ Curing accelerator (d)
The curing accelerator (d) may be any compound that can improve the curing activity such as the acid anhydride contained in the epoxy resin composition, and is generally a curing accelerator of an epoxy resin and an acid anhydride. What is used as can also be used in the present invention. Examples of such a curing accelerator (d) include urea derivatives, imidazole derivatives, phosphorus compounds, tertiary amines, organic acid metal salts, Lewis acids, amine complex salts, and the like.
 特に、エポキシ/酸無水物硬化系において一般的に使用される硬化促進剤(d)としては、イミダゾール誘導体が挙げられる。具体的にはイミダゾール、2-メチルイミダゾール、2-エチル4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール等を挙げることができる。その他、高度な貯蔵安定性を必要とする場合には、イミダゾール化合物と亜リン酸、亜リン酸モノエステル、及び亜リン酸ジエステルなど水酸基を有する化合物との混合物である潜在性触媒も使用することが出来る。 In particular, examples of the curing accelerator (d) generally used in an epoxy / acid anhydride curing system include imidazole derivatives. Specifically, imidazole, 2-methylimidazole, 2-ethyl 4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1 -Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole and the like can be mentioned. In addition, when high storage stability is required, a latent catalyst that is a mixture of an imidazole compound and a compound having a hydroxyl group such as phosphorous acid, phosphorous acid monoester, and phosphorous acid diester should also be used. I can do it.
 ・エポキシ樹脂組成物
 本発明のエポキシ樹脂組成物は、前述のエポキシ樹脂(a)と、酸無水物(b)と、分子中に2以上のアルコール性水酸基を有し、且つ水酸基当量が30g/eq~650g/eqであるポリオール化合物(c)と、硬化促進剤(d)とを必須とすればよく、その他においては特に限定されるものではないが、十分なポットライフが得られ、強化繊維への含浸性が良好となることと、硬化反応が速やかに進行し、生産性が良好となり、更に得られる硬化物の機械強度がより良好となることとをバランスよく兼備させうる観点より、前記硬化促進剤(d)は、前記エポキシ樹脂(a)と前記酸無水物(b)と前記ポリオール化合物(c)と前記硬化促進剤(d)との合計質量を100質量部としたとき、0.1質量部~5.0質量部の割合で含まれることが好ましい。
Epoxy resin composition The epoxy resin composition of the present invention has the above-described epoxy resin (a), acid anhydride (b), two or more alcoholic hydroxyl groups in the molecule, and a hydroxyl group equivalent of 30 g / The polyol compound (c) of eq to 650 g / eq and the curing accelerator (d) may be essential, and the others are not particularly limited, but a sufficient pot life can be obtained, and the reinforcing fiber From the viewpoint of having a good balance between the good impregnation of the resin, the curing reaction proceeds promptly, the productivity is improved, and the mechanical strength of the resulting cured product is further improved. The curing accelerator (d) is 0 when the total mass of the epoxy resin (a), the acid anhydride (b), the polyol compound (c) and the curing accelerator (d) is 100 parts by mass. .1 part by mass to 5 parts It is preferably contained at a ratio of 0.0 part by mass.
 さらに、本発明のエポキシ樹脂組成物において、十分なポットライフが得られると共に、得られる硬化物の耐熱性にもより優れる観点から、前記ジオール化合物(c)は、前記エポキシ樹脂(a)、前記酸無水物(b)、前記硬化促進剤(d)との合計質量を100質量部としたとき、1質量部~20質量部の割合で含まれることが好ましい。 Furthermore, in the epoxy resin composition of the present invention, from the viewpoint of obtaining a sufficient pot life and more excellent heat resistance of the obtained cured product, the diol compound (c) is composed of the epoxy resin (a), the above-mentioned When the total mass of the acid anhydride (b) and the curing accelerator (d) is 100 parts by mass, it is preferably contained in a proportion of 1 to 20 parts by mass.
 さらに、本発明のエポキシ樹脂組成物において、前記エポキシ樹脂(a)、前記酸無水物(b)、前記ジオール化合物(c)の配合比としては、前記エポキシ樹脂(a)および前記ジオール化合物の合計官能基当量と前記酸無水物の官能基当量の比が1.0/0.7~1.0/1.0であることが好ましい。 Furthermore, in the epoxy resin composition of the present invention, the blending ratio of the epoxy resin (a), the acid anhydride (b), and the diol compound (c) is the sum of the epoxy resin (a) and the diol compound. The ratio of the functional group equivalent to the functional anhydride equivalent of the acid anhydride is preferably 1.0 / 0.7 to 1.0 / 1.0.
 ・その他の樹脂
 本発明のエポキシ樹脂組成物には、前述した必須成分以外の化合物を含有することもできる。そのような化合物としては、例えば、酸変性ポリブタジエン、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、フェノール樹脂などを挙げることができる。以下でこれら化合物について説明する。
-Other resin The epoxy resin composition of the present invention may contain compounds other than the essential components described above. Examples of such compounds include acid-modified polybutadiene, polyether sulfone resin, polycarbonate resin, polyphenylene ether resin, and phenol resin. These compounds will be described below.
 ・酸変性ポリブタジエン
 酸変性ポリブタジエンは、エポキシ樹脂との反応性を有することから、エポキシ樹脂組成物の硬化反応時にその架橋ネットワークに含まれる化合物である。そのため、酸変性ポリブタジエンを併用すると、得られる硬化物において優れた機械強度、耐熱性、および耐湿熱性を発現させることができる。
-Acid-modified polybutadiene Acid-modified polybutadiene is a compound contained in the crosslinked network during the curing reaction of the epoxy resin composition because it has reactivity with the epoxy resin. For this reason, when the acid-modified polybutadiene is used in combination, the obtained cured product can exhibit excellent mechanical strength, heat resistance, and moist heat resistance.
 前記酸変性ポリブタジエンとしては、ブタジエン骨格に、1,3-ブタジエンや、2-メチル-1,3-ブタジエン由来の骨格を有するものが挙げられる。1,3-ブタジエン由来のものとしては、1,2-ビニル型、1,4-トランス型、1,4-シス型のいずれかの構造を有するものやこれらの構造を2種以上有するものが挙げられる。2-メチル-1,3-ブタジエン由来のものとしては、1,2-ビニル型、3,4-ビニル型、1,4-シス型、1,4-トランス型のいずれかの構造を有するものや、これらの構造を2種以上有するものが挙げられる。 Examples of the acid-modified polybutadiene include those having a butadiene skeleton having a skeleton derived from 1,3-butadiene or 2-methyl-1,3-butadiene. The one derived from 1,3-butadiene includes one having a structure of 1,2-vinyl type, 1,4-trans type, 1,4-cis type, or one having two or more of these structures. Can be mentioned. Those derived from 2-methyl-1,3-butadiene have a structure of any of 1,2-vinyl type, 3,4-vinyl type, 1,4-cis type, and 1,4-trans type And those having two or more of these structures.
 前記酸変性ポリブタジエンの酸変性成分としては、特に限定されないが、不飽和カルボン酸を挙げることができる。不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸が好ましく、反応性の点から無水イタコン酸、無水マレイン酸が好ましく、無水マレイン酸がさらに好ましい。 The acid-modified component of the acid-modified polybutadiene is not particularly limited, and examples thereof include unsaturated carboxylic acids. As the unsaturated carboxylic acid, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride are preferable, itaconic anhydride and maleic anhydride are preferable, and maleic anhydride is more preferable from the viewpoint of reactivity. .
 前記酸変性ポリブタジエン中の不飽和カルボン酸の含有量は、エポキシ樹脂(a)、ポリオール化合物(c)との反応性の観点から、酸変性ポリブタジエンが1,3-ブタジエン由来のものから構成される場合には、その酸価は5mgKOH/g~400mgKOH/gであることが好ましく、20mgKOH/g~300mgKOH/gであることがより好ましく、50mgKOH/g~200mgKOH/gであることがさらに好ましい。 The content of the unsaturated carboxylic acid in the acid-modified polybutadiene is composed of the acid-modified polybutadiene derived from 1,3-butadiene from the viewpoint of reactivity with the epoxy resin (a) and the polyol compound (c). In this case, the acid value is preferably 5 mgKOH / g to 400 mgKOH / g, more preferably 20 mgKOH / g to 300 mgKOH / g, and further preferably 50 mgKOH / g to 200 mgKOH / g.
 酸価が5mgKOH/g以上であれば、エポキシ樹脂等との反応性に優れ、得られる硬化物において耐熱性、および耐湿熱性が向上する。一方、酸価が400mgKOH/g以下であれば、エポキシ樹脂等と適度に反応することにより、得られる硬化物において伸び特性などの機械強度が向上する。 When the acid value is 5 mgKOH / g or more, the reactivity with the epoxy resin and the like is excellent, and the obtained cured product has improved heat resistance and moist heat resistance. On the other hand, when the acid value is 400 mgKOH / g or less, mechanical strength such as elongation characteristics is improved in the obtained cured product by appropriately reacting with an epoxy resin or the like.
 また、不飽和カルボン酸成分は、酸変性ポリブタジエン中に共重合されていればよく、その形態は限定されない。例えば、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)等が挙げられる。 Further, the unsaturated carboxylic acid component may be copolymerized in the acid-modified polybutadiene, and its form is not limited. Examples thereof include random copolymerization, block copolymerization, and graft copolymerization (graft modification).
 酸変性ポリブタジエンの平均モル質量は、酸変性ポリブタジエンが1,3-ブタジエン由来のものから構成される場合、1,000~8,000であることが好ましく、2,000~7,000であることがより好ましい。酸変性ポリブタジエンが、2-メチル-1,3-ブタジエン由来のものから構成される場合は、1,000~60,000であることが好ましく、15,000~40,000であることがより好ましい。平均モル質量はゲル浸透クロマトグラフィー(GPC)を用いて測定することができる。 The average molar mass of the acid-modified polybutadiene is preferably 1,000 to 8,000, more preferably 2,000 to 7,000 when the acid-modified polybutadiene is composed of 1,3-butadiene. Is more preferable. When the acid-modified polybutadiene is composed of one derived from 2-methyl-1,3-butadiene, it is preferably 1,000 to 60,000, more preferably 15,000 to 40,000. . The average molar mass can be measured using gel permeation chromatography (GPC).
 酸変性ポリブタジエンは、ポリブタジエンを不飽和カルボン酸変性して得られるが、市販のものをそのまま用いてもよい。市販のものとしては、例えば、エボニック・デグサ社製無水マレイン酸変性液状ポリブタジエン(polyvest MA75、Polyvest EP MA120等)、クラレ社製無水マレイン酸変性ポリイソプレン(LIR-403、LIR-410)などを使用することができる。 The acid-modified polybutadiene is obtained by modifying polybutadiene with an unsaturated carboxylic acid, but a commercially available product may be used as it is. Examples of commercially available products include maleic anhydride-modified liquid polybutadiene (Polyvest MA75, Polyvest EP MA120, etc.) manufactured by Evonik Degussa, and maleic anhydride-modified polyisoprene (LIR-403, LIR-410) manufactured by Kuraray. can do.
 なお、前記酸変性ポリブタジエンとしては、得られる硬化物の伸び、耐熱性、耐湿熱性が良好となる点から、エポキシ樹脂組成物におけるエポキシ樹脂、酸無水物、酸変性ポリブタジエンの合計質量を100質量部としたとき、1質量部~40質量部の割合で含まれていることが好ましく、3質量部~30質量部の割合で含まれていることがさらに好ましい。 As the acid-modified polybutadiene, the total mass of the epoxy resin, acid anhydride, and acid-modified polybutadiene in the epoxy resin composition is 100 parts by mass from the viewpoint that the elongation, heat resistance, and heat-and-moisture resistance of the cured product obtained are good. , It is preferably contained in a proportion of 1 to 40 parts by mass, more preferably 3 to 30 parts by mass.
 ・ポリエーテルスルホン樹脂
 ポリエーテルスルホン樹脂は、熱可塑性樹脂であり、エポキシ樹脂の硬化反応において、架橋ネットワークには含まれないが、高Tgを有する優れた改質剤効果により、得られる硬化物において、さらに優れた機械強度と耐熱性を発現させることができる。
-Polyethersulfone resin Polyethersulfone resin is a thermoplastic resin, and is not included in the crosslinked network in the curing reaction of epoxy resin, but in the cured product obtained by the excellent modifier effect having high Tg Furthermore, excellent mechanical strength and heat resistance can be expressed.
 なお、前記ポリエーテルスルホン樹脂としては、得られる硬化物の機械強度と、耐熱性が良好となる点から、エポキシ樹脂組成物におけるエポキシ樹脂、酸無水物、ポリエーテルスルホン樹脂の合計質量を100質量部としたとき、1質量部~30質量部の割合で含まれていることが好ましく、3質量部~20質量部の割合で含まれていることがさらに好ましい。 In addition, as the polyether sulfone resin, the total mass of the epoxy resin, the acid anhydride, and the polyether sulfone resin in the epoxy resin composition is 100 mass from the viewpoint that the mechanical strength and heat resistance of the obtained cured product are good. Parts, preferably 1 to 30 parts by weight, more preferably 3 to 20 parts by weight.
 ・ポリカーボネート樹脂
 ポリカーボネート樹脂としては、例えば、2価又は2官能型のフェノールとハロゲン化カルボニルとの重縮合物、或いは、2価又は2官能型のフェノールと炭酸ジエステルとをエステル交換法により重合させたものが挙げられる。
Polycarbonate resin As the polycarbonate resin, for example, a polycondensate of a divalent or bifunctional phenol and a carbonyl halide, or a divalent or bifunctional phenol and a carbonic acid diester was polymerized by a transesterification method. Things.
 ここで、ポリカーボネート樹脂の原料である2価又は2官能型のフェノールとしては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン、ハイドロキノン、レゾルシン、カテコール等が挙げられる。これら2価のフェノールの中でも、ビス(ヒドロキシフェニル)アルカン類が好ましく、さらに、2,2-ビス(4-ヒドロキシフェニル)プロパンを主原料としたものが特に好ましい。  Here, examples of the divalent or bifunctional phenol used as a raw material for the polycarbonate resin include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl). Ethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, Bis (4-hydroxyphenyl) ketone, hydroquinone, resorcin, Tekoru, and the like. Among these divalent phenols, bis (hydroxyphenyl) alkanes are preferable, and those using 2,2-bis (4-hydroxyphenyl) propane as the main raw material are particularly preferable.
 他方、2価又は2官能型のフェノールと反応させるハロゲン化カルボニル又は炭酸ジエステルとしては、例えば、ホスゲン;二価フェノールのジハロホルメート、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート等のジアリールカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジアミルカーボネート、ジオクチルカーボネート等の脂肪族カーボネート化合物などが挙げられる。 On the other hand, examples of the carbonyl halide or carbonic acid diester to be reacted with a divalent or bifunctional phenol include, for example, phosgene; dihaloformate of dihydric phenol, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate. And diaryl carbonates such as: aliphatic carbonate compounds such as dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dibutyl carbonate, diamyl carbonate, and dioctyl carbonate.
 また、前記ポリカーボネート樹脂は、そのポリマー鎖の分子構造が直鎖構造であるもののほか、これに分岐構造を有していてもよい。斯かる分岐構造は、原料成分として、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、フロログルシン、トリメリット酸、イサチンビス(o-クレゾール)等を用いることにより導入することができる。 In addition, the polycarbonate resin may have a branched structure in addition to the polymer chain having a linear molecular structure. Such a branched structure includes 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene as a raw material component. , Phloroglucin, trimellitic acid, isatin bis (o-cresol) and the like.
 ・ポリフェニレンエーテル樹脂
 ポリフェニレンエーテル樹脂としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-14-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル等が挙げられる。
Polyphenylene ether resin Examples of polyphenylene ether resins include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-14-phenylene) ether, and poly (2,6- Diethyl-1,4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n-propyl-1,4-phenylene) ether, Poly (2-methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-hydroxyethyl-1) , 4-phenylene) ether and the like.
 この中でも、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルが好ましく、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテルユニットや2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテルユニット等を部分構造として含むポリフェニレンエーテルであってもよい。 Of these, poly (2,6-dimethyl-1,4-phenylene) ether is preferable, and 2- (dialkylaminomethyl) -6-methylphenylene ether unit or 2- (N-alkyl-N-phenylaminomethyl)- Polyphenylene ether containing a 6-methylphenylene ether unit or the like as a partial structure may be used.
 前記ポリフェニレンエーテル樹脂は、その樹脂構造にカルボキシル基、エポキシ基、アミノ基、メルカプト基、シリル基、水酸基、無水ジカルボキル基等の反応性官能基を、グラフト反応や、共重合等何らかの方法で導入した変性ポリフェニレンエーテル樹脂も本発明の目的を損なわない範囲で使用できる。 In the polyphenylene ether resin, a reactive functional group such as a carboxyl group, an epoxy group, an amino group, a mercapto group, a silyl group, a hydroxyl group, or an anhydrous dicarboxyl group is introduced into the resin structure by any method such as graft reaction or copolymerization. Modified polyphenylene ether resins can also be used as long as the object of the present invention is not impaired.
 ・フェノール樹脂
 フェノール樹脂としては、例えば、レゾール型フェノール樹脂、ノボラック型フェノール樹脂等や、フェノールアラルキル樹脂、ポリビニルフェノール樹脂、メラミンまたはベンゾグアナミンで変性されたトリアジン変性フェノールノボラック樹脂等が挙げられる。
-Phenolic resin Examples of the phenolic resin include a resol type phenolic resin, a novolac type phenolic resin, and the like, a phenol aralkyl resin, a polyvinylphenol resin, a triazine modified phenol novolac resin modified with melamine or benzoguanamine, and the like.
 本発明のエポキシ樹脂組成物は、前記のようなポリカーボネート樹脂やポリフェニレンエーテル樹脂を含有することで、得られる硬化物においてより優れた機械強度を発現できるようになり、前記のようなフェノール樹脂を含有することで、得られる硬化物において、より優れた難燃性を発現できるようになる。 The epoxy resin composition of the present invention contains a polycarbonate resin or a polyphenylene ether resin as described above, so that the cured product obtained can exhibit better mechanical strength, and contains a phenol resin as described above. By doing, in the hardened | cured material obtained, the more outstanding flame retardance can be expressed now.
 本発明のエポキシ樹脂組成物は、難燃剤/難燃助剤、充填材、添加剤、有機溶剤を本発明の効果を損なわない範囲で含有することができる。エポキシ樹脂組成物を製造する際の配合順序は、本発明の効果が達成できる方法であれば特に限定されない。すなわち、すべての成分を予め混合して用いてもよいし、適宜順番に混合して用いてもよい。また、配合方法は、例えば、押出機、加熱ロール、ニーダー、ローラミキサー、バンバリーミキサー等の混練機を用いて混練製造することができる。以下で、本発明のエポキシ樹脂組成物に含有可能な各種部材について説明する。 The epoxy resin composition of the present invention can contain a flame retardant / flame retardant aid, a filler, an additive, and an organic solvent as long as the effects of the present invention are not impaired. The order of blending when producing the epoxy resin composition is not particularly limited as long as the effect of the present invention can be achieved. That is, all the components may be mixed and used in advance, or may be mixed and used in an appropriate order. Moreover, the compounding method can knead | mix and manufacture using kneading machines, such as an extruder, a heating roll, a kneader, a roller mixer, a Banbury mixer, for example. Below, the various members which can be contained in the epoxy resin composition of this invention are demonstrated.
 ・難燃剤/難燃助剤
 本発明のエポキシ樹脂組成物は、難燃性を発揮させるために、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を含有していてもよい。
Flame Retardant / Flame Retardant Auxiliary The epoxy resin composition of the present invention may contain a non-halogen flame retardant that does not substantially contain a halogen atom in order to exhibit flame retardancy.
 前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。 Examples of the non-halogen flame retardants include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. The flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.
 前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。 As the phosphorus flame retardant, either inorganic or organic can be used. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .
 また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。 The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used.
 前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン=10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド等の環状有機リン化合物が挙げられる。 Examples of the organic phosphorus compound include, for example, general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,7 And cyclic organophosphorus compounds such as -dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide.
 また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。 In addition, when using the phosphorous flame retardant, the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
 前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。 Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
 前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、前記アミノトリアジン変性フェノール樹脂、及び該アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。 Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, guanylmelamine sulfate, melem sulfate, melam sulfate, etc. Examples thereof include an aminotriazine sulfate compound, aminotriazine-modified phenol resin, and aminotriazine-modified phenol resin further modified with tung oil, isomerized linseed oil, and the like.
 前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。 Specific examples of the cyanuric acid compound include cyanuric acid and melamine cyanurate.
 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05質量部~10質量部の範囲で配合することが好ましく、特に0.1質量部~5質量部の範囲で配合することが好ましい。 The amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in an amount of 0.05 to 10 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. It is preferable to blend in the range of 1 to 5 parts by mass.
 また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。 Further, when using the nitrogen-based flame retardant, a metal hydroxide, a molybdenum compound or the like may be used in combination.
 前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。 The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
 前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05質量部~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。 The amount of the silicone flame retardant is appropriately selected according to the type of the silicone flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to blend in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.
 前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。 Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
 前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。 Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.
 前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。 Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.
 前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。 Specific examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
 前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。 Specific examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
 前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。 Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
 前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。 Specific examples of the low-melting-point glass include, for example, Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO system, P—Sn—O—F system, PbO—V 2 O 5 —TeO 2 system, Al 2 O 3 —H 2 O system, lead borosilicate system, etc. The glassy compound can be mentioned.
 前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05質量部~20質量部の範囲で配合することが好ましく、特に0.5質量部~15質量部の範囲で配合することが好ましい。 The blending amount of the inorganic flame retardant is appropriately selected according to the type of the inorganic flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. For example, epoxy resin, cured It is preferable to mix in an amount of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. It is preferable to blend in the range of 5 to 15 parts by mass.
 前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。 Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.
 前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.005質量部~10質量部の範囲で配合することが好ましい。 The amount of the organometallic salt-based flame retardant is appropriately selected depending on the type of the organometallic salt-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferably blended in the range of 0.005 to 10 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives. .
 ・充填材
 本発明のエポキシ樹脂組成物は、充填材を含有していてもよい。本発明のエポキシ樹脂組成物が充填材を含有すると、得られる硬化物において優れた機械特性を発現させることができるようになる。
-Filler The epoxy resin composition of the present invention may contain a filler. When the epoxy resin composition of the present invention contains a filler, excellent mechanical properties can be expressed in the obtained cured product.
 充填材としては、例えば、酸化チタン、ガラスビーズ、ガラスフレーク、ガラス繊維、炭酸カルシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、チタン酸カリウム、硼酸アルミニウム、硼酸マグネシウム、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミや、ケナフ繊維、炭素繊維、アルミナ繊維、石英繊維等の繊維状補強剤や、非繊維状補強剤等が挙げられる。これらは一種単独で用いても、二種以上を併用してもよい。また、これらは、有機物や無機物等で被覆されていてもよい。 Examples of fillers include titanium oxide, glass beads, glass flakes, glass fibers, calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, potassium titanate, aluminum borate, magnesium borate, fused silica, crystalline silica, alumina, and nitriding. Examples thereof include fibrous reinforcing agents such as silicon, aluminum hydroxide, kenaf fibers, carbon fibers, alumina fibers, and quartz fibers, and non-fibrous reinforcing agents. These may be used individually by 1 type, or may use 2 or more types together. Moreover, these may be coat | covered with organic substance, an inorganic substance, etc.
 また、充填材としてガラス繊維を用いる場合、長繊維タイプのロービング、短繊維タイプのチョップドストランド、ミルドファイバー等から選択して用いることが出来る。ガラス繊維は使用する樹脂用に表面処理した物を用いるのが好ましい。充填材は配合されることによって、燃焼時に生成する不燃層(又は炭化層)の強度を一層向上させることができる。燃焼時に一度生成した不燃層(又は炭化層)が破損しにくくなり、安定した断熱能力を発揮できるようになり、より大きな難燃効果が得られる。さらに、材料に高い剛性も付与することができる。 Also, when glass fiber is used as the filler, it can be selected from long fiber type roving, short fiber type chopped strand, milled fiber, and the like. It is preferable to use a glass fiber that has been surface-treated for the resin used. By blending the filler, the strength of the incombustible layer (or carbonized layer) generated during combustion can be further improved. The incombustible layer (or carbonized layer) once generated during combustion is less likely to be damaged, can exhibit stable heat insulation ability, and a greater flame retardant effect can be obtained. Further, high rigidity can be imparted to the material.
 ・添加剤
 本発明のエポキシ樹脂組成物は、添加剤を含有していてもよい。本発明のエポキシ樹脂組成物が添加剤を含有すると、得られる硬化物において剛性や寸法安定性等、他の特性が向上する。添加剤としては、例えば可塑剤、酸化防止剤、紫外線吸収剤、光安定剤等の安定剤、帯電防止剤、導電性付与剤、応力緩和剤、離型剤、結晶化促進剤、加水分解抑制剤、潤滑剤、衝撃付与剤、摺動性改良剤、相溶化剤、核剤、強化剤、補強剤、流動調整剤、染料、増感材、着色用顔料、ゴム質重合体、増粘剤、沈降防止剤、タレ防止剤、消泡剤、カップリング剤、防錆剤、抗菌・防カビ剤、防汚剤、導電性高分子等を添加することも可能である。
-Additive The epoxy resin composition of this invention may contain the additive. When the epoxy resin composition of the present invention contains an additive, other properties such as rigidity and dimensional stability are improved in the obtained cured product. Examples of additives include plasticizers, antioxidants, UV absorbers, stabilizers such as light stabilizers, antistatic agents, conductivity-imparting agents, stress relaxation agents, mold release agents, crystallization accelerators, and hydrolysis inhibitors. Agent, lubricant, impact imparting agent, slidability improver, compatibilizer, nucleating agent, reinforcing agent, reinforcing agent, flow regulator, dye, sensitizer, coloring pigment, rubbery polymer, thickener It is also possible to add an anti-settling agent, an anti-sagging agent, an antifoaming agent, a coupling agent, an antirust agent, an antibacterial / antifungal agent, an antifouling agent, a conductive polymer and the like.
 ・有機溶剤
 本発明のエポキシ樹脂組成物は、繊維強化樹脂成形品をフィラメントワインディング法を用いて製造する場合などには、有機溶剤を含有していてもよい。ここで使用し得る有機溶剤としては、メチルエチルケトンアセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得る。
-Organic solvent The epoxy resin composition of this invention may contain the organic solvent, when manufacturing a fiber reinforced resin molded article using a filament winding method. Examples of organic solvents that can be used here include methyl ethyl ketone acetone, dimethyl formamide, methyl isobutyl ketone, methoxy propanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, etc. Can be appropriately selected depending on the application.
<エポキシ樹脂組成物の用途>
 本発明のエポキシ樹脂組成物は、低粘度であり、十分なポットライフがありながら、得られる硬化物において優れた耐熱性、破断靱性を発現させることができるため、繊維強化複合材料、繊維強化樹脂成形品、硬化物等に用いることができる。以下にこれらについて説明する。
<Use of epoxy resin composition>
The epoxy resin composition of the present invention has a low viscosity, has a sufficient pot life, and can exhibit excellent heat resistance and fracture toughness in the resulting cured product. It can be used for molded products, cured products and the like. These will be described below.
 1.繊維強化複合材料
 本発明の繊維強化複合材料とは、エポキシ樹脂組成物を強化繊維に含浸させた後の硬化前の状態の材料のことである。ここで、強化繊維は、有撚糸、解撚糸、又は無撚糸などいずれでも良いが、解撚糸や無撚糸が、繊維強化複合材料において優れた成形性を有することから、好ましい。さらに、強化繊維の形態は、繊維方向が一方向に引き揃えたものや、織物が使用できる。織物では、平織り、朱子織りなどから、使用する部位や用途に応じて自由に選択することができる。具体的には、機械的強度や耐久性に優れることから、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられ、これらの2種以上を併用することもできる。これらの中でもとりわけ成形品の強度が良好なものとなる点から炭素繊維が好ましく、かかる、炭素繊維は、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。
1. Fiber Reinforced Composite Material The fiber reinforced composite material of the present invention is a material in a state before curing after the reinforcing fiber is impregnated with the epoxy resin composition. Here, the reinforced fiber may be any of a twisted yarn, an untwisted yarn, or a non-twisted yarn, but the untwisted yarn and the untwisted yarn are preferable because they have excellent formability in the fiber-reinforced composite material. Furthermore, the form of a reinforced fiber can use what the fiber direction arranged in one direction, and a textile fabric. The woven fabric can be freely selected from plain weaving, satin weaving, and the like according to the site and use. Specifically, because of excellent mechanical strength and durability, carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like can be mentioned, and two or more of these can be used in combination. . Among these, carbon fiber is preferable from the viewpoint that the strength of the molded product is particularly good. As the carbon fiber, various types such as polyacrylonitrile-based, pitch-based, and rayon-based can be used.
 本発明のエポキシ樹脂組成物から繊維強化複合材料を得る方法としては、特に限定されないが、例えば、エポキシ樹脂組成物を構成する各成分を均一に混合してワニスを調整し、次いで、前記で得られたワニスに強化繊維を一方向に引き揃えた一方向強化繊維を浸漬させる方法(プルトルージョン法やフイラメントワインディング法での硬化前の状態)や、強化繊維の織物を重ねて凹型にセットし、その後、凸型で密閉してから樹脂を注入し圧力含浸させる方法(RTM法での硬化前の状態)等が挙げられる。 The method for obtaining the fiber reinforced composite material from the epoxy resin composition of the present invention is not particularly limited. For example, the components constituting the epoxy resin composition are uniformly mixed to adjust the varnish, and then obtained as described above. A method of immersing unidirectional reinforcing fibers in which the reinforcing fibers are aligned in one direction in the varnish (the state before curing by the pultrusion method and the filament winding method), and setting the woven fabric of reinforcing fibers in a concave shape, Thereafter, after sealing with a convex mold, a method of injecting resin and impregnating with pressure (state before curing by the RTM method) and the like can be mentioned.
 本発明の繊維強化複合材料は、前記エポキシ樹脂組成物が必ずしも繊維束の内部まで含浸されている必要はなく、繊維の表面付近に該エポキシ樹脂組成物が局在化している態様であっても良い。 The fiber reinforced composite material of the present invention is not necessarily impregnated with the epoxy resin composition up to the inside of the fiber bundle, and may be an embodiment in which the epoxy resin composition is localized near the surface of the fiber. good.
 さらに、本発明の繊維強化複合材料は、繊維強化複合材料の全体積に対する強化繊維の体積含有率が40%~85%であることが好ましく、強度の点から50%~70%の範囲であることがさらに好ましい。体積含有率が40%未満の場合、前記エポキシ樹脂組成物の含有量が多すぎて得られる硬化物の難燃性が不足したり、比弾性率と比強度に優れる繊維強化複合材料に要求される諸特性を満たすことができなかったりする場合がある。また、体積含有率が85%を超えると、強化繊維と樹脂組成物の接着性が低下してしまう場合がある。 Furthermore, in the fiber reinforced composite material of the present invention, the volume content of the reinforced fiber with respect to the total volume of the fiber reinforced composite material is preferably 40% to 85%, and in the range of 50% to 70% from the viewpoint of strength. More preferably. When the volume content is less than 40%, the cured product obtained when the content of the epoxy resin composition is too high is insufficient in flame retardancy, or required for a fiber-reinforced composite material excellent in specific modulus and specific strength. Some characteristics may not be satisfied. On the other hand, if the volume content exceeds 85%, the adhesion between the reinforcing fiber and the resin composition may be lowered.
 2.繊維強化樹脂成形品
 本発明の繊維強化樹脂成形品とは、強化繊維とエポキシ樹脂組成物の硬化物とを有する成形品であり、繊維強化複合材料を熱硬化させて得られるものである。本発明の繊維強化樹脂成形品として、具体的には、繊維強化成形品における強化繊維の体積含有率が40%~85%の範囲であることが好ましく、強度の観点から50%~70%の範囲であることが特に好ましい。そのような繊維強化樹脂成形品としては、例えば、フロントサブフレーム、リアサブフレーム、フロントピラー、センターピラー、サイドメンバー、クロスメンバー、サイドシル、ルーフレール、プロペラシャフトなどの自動車部品、電線ケーブルのコア部材、海底油田用のパイプ材、印刷機用ロール・パイプ材、ロボットフォーク材、航空機の一次構造材、二次構造材などを挙げることができる。
2. Fiber-reinforced resin molded product The fiber-reinforced resin molded product of the present invention is a molded product having reinforcing fibers and a cured product of an epoxy resin composition, and is obtained by thermosetting a fiber-reinforced composite material. Specifically, the fiber-reinforced resin molded article of the present invention preferably has a volume content of reinforcing fibers in the fiber-reinforced molded article in the range of 40% to 85%, and 50% to 70% from the viewpoint of strength. A range is particularly preferred. Examples of such fiber reinforced resin molded products include front subframes, rear subframes, front pillars, center pillars, side members, cross members, side sills, roof rails, propeller shafts and other automotive parts, electric wire cable core members, Examples include pipe materials for subsea oil fields, roll / pipe materials for printing presses, robot forks, primary structural materials for aircraft, and secondary structural materials.
 本発明のエポキシ樹脂組成物から繊維強化成形品を得る方法としては、特に限定されないが、引き抜き成形法(プルトルージョン法)、フイラメントワインディング法、RTM法などを用いることが好ましい。引き抜き成形法(プルトルージョン法)とは、繊維強化複合材料を金型内へ導入して、加熱硬化したのち、引き抜き装置で引き抜くことにより繊維強化樹脂成形品を成形する方法であり、フイラメントワインディング法とは、繊維強化複合材料(一方向繊維を含む)を、アルミライナーやプラスチックライナー等に回転させながら巻きつけたのち、加熱硬化させて繊維強化樹脂成形品を成形する方法であり、RTM法とは、凹型と凸型の2種類の金型を使用する方法であって、前記金型内で繊維強化複合材料を加熱硬化させて繊維強化樹脂成形品を成形する方法である。なお、大型製品や複雑な形状の繊維強化樹脂成形品を成形する場合には、RTM法を用いることが好ましい。 The method for obtaining a fiber-reinforced molded product from the epoxy resin composition of the present invention is not particularly limited, but it is preferable to use a pultrusion method (pultrusion method), a filament winding method, an RTM method, or the like. The pultrusion method (pultrusion method) is a method in which a fiber reinforced composite material is introduced into a mold, heated and cured, and then pulled out with a drawing device to form a fiber reinforced resin molded product. Is a method in which a fiber reinforced composite material (including unidirectional fibers) is wound around an aluminum liner or a plastic liner while being rotated and then heat cured to form a fiber reinforced resin molded product. Is a method using two types of molds, a concave mold and a convex mold, in which a fiber reinforced composite material is heated and cured in the mold to mold a fiber reinforced resin molded product. In addition, when molding a large product or a fiber reinforced resin molded product having a complicated shape, it is preferable to use the RTM method.
 繊維強化樹脂成形品の成形条件としては、繊維強化複合材料を50℃~250℃の温度範囲で熱硬化させて成形することが好ましく、70℃~220℃の温度範囲で成形することがより好ましい。かかる成形温度が低すぎると、十分な速硬化性が得られない場合があり、逆に高すぎると、熱歪みによる反りが発生しやすくなったりする場合があるためである。他の成形条件としては、繊維強化複合材料を50℃~100℃で予備硬化させ、タックフリー状の硬化物にした後、更に、120℃~200℃の温度条件で処理するなど、2段階で硬化させる方法などを挙げることができる。 As the molding conditions of the fiber reinforced resin molded product, the fiber reinforced composite material is preferably thermoset in a temperature range of 50 ° C. to 250 ° C., more preferably in a temperature range of 70 ° C. to 220 ° C. . If the molding temperature is too low, sufficient fast curability may not be obtained. Conversely, if the molding temperature is too high, warping due to thermal strain may be likely to occur. As other molding conditions, the fiber reinforced composite material is pre-cured at 50 ° C. to 100 ° C. to form a tack-free cured product, and further processed at a temperature condition of 120 ° C. to 200 ° C. The method of hardening can be mentioned.
 本発明のエポキシ樹脂組成物から繊維強化成形品を得る他の方法としては、金型に繊維骨材を敷き、前記ワニスや繊維骨材を多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材にワニスを含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有するワニスをシート状にしたものを金型で圧縮成型するSMCプレス法などが挙げられる。 Other methods for obtaining a fiber reinforced molded product from the epoxy resin composition of the present invention include a hand lay-up method and a spray-up method in which a fiber aggregate is laid on a mold and the varnish and fiber aggregate are laminated in layers. Using either male or female type, base material made of reinforcing fiber is piled up while impregnating varnish, molded, covered with a flexible mold that can apply pressure to the molded product, and hermetically sealed Examples include (vacuum) vacuum bag method for molding, and SMC press method in which a varnish containing reinforcing fibers is formed into a sheet shape by compression molding with a mold.
 3.硬化物
 本発明のエポキシ樹脂組成物から硬化物を得る方法としては、一般的なエポキシ樹脂組成物の硬化方法に準拠すればよく、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよい。例えば、エポキシ樹脂組成物を、室温~250℃程度の温度範囲で加熱する方法が挙げられる。成形方法などもエポキシ樹脂組成物の一般的な方法が用いること可能であり、特に本発明のエポキシ樹脂組成物に特有の条件は不要である。
3. Cured product As a method of obtaining a cured product from the epoxy resin composition of the present invention, it is sufficient to comply with a general method for curing an epoxy resin composition, for example, the heating temperature condition depends on the type and use of the curing agent to be combined, What is necessary is just to select suitably. For example, a method of heating the epoxy resin composition in a temperature range of room temperature to about 250 ° C. can be mentioned. As a molding method, a general method of an epoxy resin composition can be used, and a condition peculiar to the epoxy resin composition of the present invention is not particularly necessary.
 次に、本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。 Next, the present invention will be specifically described with reference to examples and comparative examples. In the following, “part” and “%” are based on mass unless otherwise specified.
 実施例1~5及び比較例1~4
 下記表1に示す配合に従い、エポキシ樹脂、酸無水物、ポリオール化合物、硬化促進剤を釜に入れ攪拌し均一化することで、実施例1~5及び比較例1~4のエポキシ樹脂組成物を得た。次に、前記で得られたエポキシ樹脂組成物を、評価項目に応じた厚さになるよう加工した型枠内に流し込み、10分間、160℃の条件にて成形し、硬化物を得た。
Examples 1 to 5 and Comparative Examples 1 to 4
According to the composition shown in Table 1 below, the epoxy resin, acid anhydride, polyol compound and curing accelerator were placed in a kettle and stirred to homogenize the epoxy resin compositions of Examples 1 to 5 and Comparative Examples 1 to 4. Obtained. Next, the epoxy resin composition obtained above was poured into a mold that had been processed to have a thickness corresponding to the evaluation item, and molded for 10 minutes at 160 ° C. to obtain a cured product.
 実施例及び比較例で用いたエポキシ樹脂、酸無水物、ポリオール化合物、硬化促進剤は下記の通りである。
 エポキシ樹脂(a)
 ・a-1:BPA型エポキシ樹脂 EPICLON 850S(DIC株式会社製、平均官能基数:2.0)
 ・a-2:BPF型エポキシ樹脂 EPICLON 830S(DIC株式会社製、平均官能基数:2.1)
 ・a-3:フェノールノボラック型エポキシ樹脂 EPICLON N-740(DIC株式会社製、平均官能基数:3.7)
The epoxy resin, acid anhydride, polyol compound, and curing accelerator used in Examples and Comparative Examples are as follows.
Epoxy resin (a)
A-1: BPA type epoxy resin EPICLON 850S (manufactured by DIC Corporation, average functional group number: 2.0)
A-2: BPF type epoxy resin EPICLON 830S (manufactured by DIC Corporation, average functional group number: 2.1)
A-3: phenol novolac epoxy resin EPICLON N-740 (manufactured by DIC Corporation, average functional group number: 3.7)
 酸無水物(b)
 ・b-1:テトラヒドロメチル無水フタル酸 EPICLON B-570H(DIC株式会社製)
Acid anhydride (b)
B-1: Tetrahydromethylphthalic anhydride EPICLON B-570H (manufactured by DIC Corporation)
 ポリオール化合物(c)
 ・c-1:2,2-ビス(4-ポリオキシエチレンオキシフェニル)プロパン BA-2グリコール(日本乳化剤株式会社製 水酸基当量 165g/eq)
 ・c-2:2,2-ビス(4-ポリオキシエチレンオキシフェニル)プロパン BA-P2グリコール(日本乳化剤株式会社製 水酸基当量178 g/eq)
 ・c-3:2,2-ビス(4-ポリオキシエチレンオキシフェニル)プロパン BA-P13Uグリコール(日本乳化剤株式会社製、水酸基当量468g/eq)
 ・c-4:ポリテトラメチレングリコール PTMG-1000(三菱化学株式会社製、水酸基当量500g/eq)
 ・c-5:ポリエチレングリコール PEG-2000(三洋化成工業株式会社製、水酸基当量1000g/eq)
Polyol compound (c)
C-1: 2,2-bis (4-polyoxyethyleneoxyphenyl) propane BA-2 glycol (Hydroxyl equivalent 165 g / eq, manufactured by Nippon Emulsifier Co., Ltd.)
C-2: 2,2-bis (4-polyoxyethyleneoxyphenyl) propane BA-P2 glycol (hydroxyl equivalent 178 g / eq, manufactured by Nippon Emulsifier Co., Ltd.)
C-3: 2,2-bis (4-polyoxyethyleneoxyphenyl) propane BA-P13U glycol (manufactured by Nippon Emulsifier Co., Ltd., hydroxyl equivalent 468 g / eq)
C-4: polytetramethylene glycol PTMG-1000 (manufactured by Mitsubishi Chemical Corporation, hydroxyl equivalent: 500 g / eq)
C-5: Polyethylene glycol PEG-2000 (manufactured by Sanyo Chemical Industries, Ltd., hydroxyl group equivalent 1000 g / eq)
 硬化促進剤(d)
 ・d-1:1,2-ジメチルイミダゾール 1,2DMZ(四国化成工業株式会社製)
Curing accelerator (d)
D-1: 1,2-dimethylimidazole 1,2DMZ (manufactured by Shikoku Chemicals Co., Ltd.)
 <粘度の測定>
 前記で得られたエポキシ樹脂組成物の25℃における粘度を、粘度計(TOKI SANGYO CO.LTD.VISCOMETER TV-22)を用いて測定した。
<Measurement of viscosity>
The viscosity at 25 ° C. of the epoxy resin composition obtained above was measured using a viscometer (TOKI SANGYO CO. LTD. VISCOMETER TV-22).
 <ポットライフの測定>
 前記で得られたエポキシ樹脂組成物の初期粘度に対し、25℃保管で3時間後の粘度が2倍を超えないものをポットライフ良好(○)2倍を超えるものをポットライフ不良(×)とした。
<Measurement of pot life>
The initial viscosity of the epoxy resin composition obtained above is that the viscosity after 3 hours of storage at 25 ° C. does not exceed 2 times, the pot life is good (◯), the one that exceeds 2 times is poor pot life (×) It was.
 <破壊靱性値の測定>
 前記で得られた厚さ6mmの硬化物をダイヤモンドカッターで幅12mm、長さ55mmに切り出し、さらにダイヤモンドカッターおよび、剃刀をもちいて所定の予亀裂を入れ、これを試験片1とした。試験片1を用いてASTM D5045に従って、破壊靱性値(K1C)を測定した。なお、測定には、株式会社島津製作所製 オートグラフAG-ISを用いた。
<Measurement of fracture toughness value>
The obtained cured product having a thickness of 6 mm was cut into a width of 12 mm and a length of 55 mm using a diamond cutter, and a predetermined pre-crack was made using a diamond cutter and a razor. Using specimen 1, the fracture toughness value (K 1C ) was measured according to ASTM D5045. In addition, Shimadzu Corporation autograph AG-IS was used for the measurement.
 <耐熱性の測定>
 前記で得られた厚さ2mmの硬化物をダイヤモンドカッターで幅5mm、長さ50mmに切り出し、これを試験片2とした。次に、粘弾性測定装置(エスアイアイ・ナノテクノロジー社製「DMS6100」)を用いて試験片2の両持ち曲げによる動的粘弾性を測定し、tanδが最大となる値の温度(ガラス転移点温度)を測定した。その結果を表1に示す。なお、動的粘弾性測定の測定条件は、温度範囲:室温~260℃、昇温速度:3℃/分、周波数:1Hz、歪振幅:10μmとした。
<Measurement of heat resistance>
The cured product having a thickness of 2 mm obtained above was cut into a width of 5 mm and a length of 50 mm with a diamond cutter. Next, using a viscoelasticity measuring device (“DS6100” manufactured by SII NanoTechnology Co., Ltd.), the dynamic viscoelasticity of the test piece 2 due to double-end bending is measured, and the temperature (glass transition point) at which tan δ is maximized. Temperature). The results are shown in Table 1. The measurement conditions for the dynamic viscoelasticity measurement were temperature range: room temperature to 260 ° C., heating rate: 3 ° C./min, frequency: 1 Hz, strain amplitude: 10 μm.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (17)

  1.  平均官能基数が1.5~2.2のエポキシ樹脂(a)と、酸無水物(b)と、分子中に2以上のアルコール性水酸基を有し、且つ水酸基当量が30g/eq~650g/eqであるポリオール化合物(c)と、硬化促進剤(d)と、を有することを特徴とするエポキシ樹脂組成物。 An epoxy resin (a) having an average functional group number of 1.5 to 2.2, an acid anhydride (b), two or more alcoholic hydroxyl groups in the molecule, and a hydroxyl group equivalent of 30 g / eq to 650 g / An epoxy resin composition comprising a polyol compound (c) which is eq, and a curing accelerator (d).
  2.  前記エポキシ樹脂(a)と、前記酸無水物(b)と、前記ポリオール化合物(c)と、前記硬化促進剤(d)との合計質量を100質量部としたとき、前記硬化促進剤(d)を0.1質量部~5.0質量部の割合で含む請求項1記載のエポキシ樹脂組成物。 When the total mass of the epoxy resin (a), the acid anhydride (b), the polyol compound (c), and the curing accelerator (d) is 100 parts by mass, the curing accelerator (d 2) The epoxy resin composition according to claim 1, comprising 0.1 to 5.0 parts by mass.
  3.  前記ジオール化合物(c)が、前記エポキシ樹脂(a)、前記酸無水物(b)、前記硬化促進剤(d)との合計質量を100質量部としたとき、1質量部~20質量部の割合で含む請求項1又は2記載のエポキシ樹脂組成物。 When the diol compound (c) has a total mass of 100 parts by mass with the epoxy resin (a), the acid anhydride (b), and the curing accelerator (d), 1 to 20 parts by mass. The epoxy resin composition according to claim 1 or 2 contained in a proportion.
  4.  前記エポキシ樹脂(a)が、ビスフェノール型エポキシ樹脂である請求項1~3の何れか1項記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the epoxy resin (a) is a bisphenol type epoxy resin.
  5.  前記ビスフェノール型エポキシ樹脂が、ビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂である請求項4記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 4, wherein the bisphenol type epoxy resin is a bisphenol A type epoxy resin or a bisphenol F type epoxy resin.
  6.  前記ポリオール化合物(c)が、分子内に少なくとも芳香環又はシクロ環を有する化合物である請求項1~5の何れか1項記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 5, wherein the polyol compound (c) is a compound having at least an aromatic ring or a cyclo ring in the molecule.
  7.  前記ポリオール化合物(c)が、分子内に少なくともポリアルキレンオキサイドを有する化合物である請求項6記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 6, wherein the polyol compound (c) is a compound having at least a polyalkylene oxide in the molecule.
  8.  前記ポリアルキレンオキサイドを構成するアルキレンオキサイドの繰り返し単位数の平均値が2~18である請求項7記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 7, wherein an average value of the number of repeating units of the alkylene oxide constituting the polyalkylene oxide is 2 to 18.
  9.  前記ポリアルキレンオキサイドが、ポリエチレンオキサイド又はポリプロピレンオキサイドである請求項7又は8記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 7 or 8, wherein the polyalkylene oxide is polyethylene oxide or polypropylene oxide.
  10.  請求項1~9の何れか1項記載のエポキシ樹脂組成物を硬化させてなる硬化物。 A cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 9.
  11.  請求項1~9の何れか1項記載のエポキシ樹脂組成物と、強化繊維とを必須成分とする繊維強化複合材料。 A fiber-reinforced composite material comprising the epoxy resin composition according to any one of claims 1 to 9 and reinforcing fibers as essential components.
  12.  前記強化繊維の体積含有率が40%~85%の範囲内である請求項11記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 11, wherein the volume content of the reinforcing fibers is in the range of 40% to 85%.
  13.  請求項10の硬化物と強化繊維とを必須成分とする繊維強化樹脂成形品。 A fiber-reinforced resin molded product comprising the cured product of claim 10 and reinforcing fibers as essential components.
  14.  前記強化繊維の体積含有率が40%~85%の範囲内である請求項13記載の繊維強化樹脂成形品。 The fiber-reinforced resin molded article according to claim 13, wherein the volume content of the reinforcing fibers is in the range of 40% to 85%.
  15.  電線ケーブルのコア部材である、請求項13又は14記載の繊維強化樹脂成形品。 The fiber-reinforced resin molded product according to claim 13 or 14, which is a core member of an electric cable.
  16.  請求項11又は12記載の繊維強化複合材料を熱硬化させる繊維強化樹脂成形品の製造方法。 A method for producing a fiber-reinforced resin molded article, wherein the fiber-reinforced composite material according to claim 11 or 12 is thermoset.
  17.  請求項11又は12記載の繊維強化複合材料を引き抜き成形する繊維強化樹脂成形品の製造方法。 A method for producing a fiber-reinforced resin molded article, in which the fiber-reinforced composite material according to claim 11 or 12 is pultruded.
PCT/JP2016/071383 2015-08-27 2016-07-21 Epoxy resin composition and fiber-reinforced composite material WO2017033632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-167784 2015-08-27
JP2015167784 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017033632A1 true WO2017033632A1 (en) 2017-03-02

Family

ID=58099957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071383 WO2017033632A1 (en) 2015-08-27 2016-07-21 Epoxy resin composition and fiber-reinforced composite material

Country Status (1)

Country Link
WO (1) WO2017033632A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102853A1 (en) * 2017-11-22 2019-05-31 Dic株式会社 Epoxy resin composition, curable resin composition, and fiber-reinforced composite material
US11827759B2 (en) 2018-01-31 2023-11-28 Toray Industries, Inc. Fiber-reinforced molded article and method of producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128352A (en) * 1991-03-13 1994-05-10 Daicel Huels Ltd Epoxy resin composition
WO2003002661A1 (en) * 2001-06-28 2003-01-09 Toray Industries, Inc. Epoxy resin composition excellent in weather resistance and fiber-reinforced composite materials
JP2010163573A (en) * 2009-01-19 2010-07-29 Toray Ind Inc Epoxy resin composition and fiber-reinforced composite material using the same
JP2012167277A (en) * 2011-02-15 2012-09-06 Everlight Usa Inc Resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128352A (en) * 1991-03-13 1994-05-10 Daicel Huels Ltd Epoxy resin composition
WO2003002661A1 (en) * 2001-06-28 2003-01-09 Toray Industries, Inc. Epoxy resin composition excellent in weather resistance and fiber-reinforced composite materials
JP2010163573A (en) * 2009-01-19 2010-07-29 Toray Ind Inc Epoxy resin composition and fiber-reinforced composite material using the same
JP2012167277A (en) * 2011-02-15 2012-09-06 Everlight Usa Inc Resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102853A1 (en) * 2017-11-22 2019-05-31 Dic株式会社 Epoxy resin composition, curable resin composition, and fiber-reinforced composite material
US11827759B2 (en) 2018-01-31 2023-11-28 Toray Industries, Inc. Fiber-reinforced molded article and method of producing same

Similar Documents

Publication Publication Date Title
JP5954516B1 (en) Epoxy resin composition, cured product, fiber reinforced composite material, fiber reinforced resin molded product, and method for producing fiber reinforced resin molded product
JP6624341B2 (en) Curable composition and fiber reinforced composite material
JP6825757B1 (en) Epoxy resin composition, cured product, fiber reinforced composite material, prepreg and tow prepreg
JP6923090B2 (en) Curable composition, cured product, fiber reinforced composite material, molded product and its manufacturing method
JP7388049B2 (en) Curing agent for epoxy resin, epoxy resin composition and cured product thereof
WO2017033632A1 (en) Epoxy resin composition and fiber-reinforced composite material
JP7006853B2 (en) Curable composition, cured product, fiber reinforced composite material, molded product and its manufacturing method
JP6606924B2 (en) Epoxy resin composition, cured product, fiber reinforced composite material, fiber reinforced resin molded product, and method for producing fiber reinforced resin molded product
JP6780318B2 (en) Curable composition and fiber reinforced composite material
US20220025108A1 (en) Two-pack curable epoxy resin composition, cured product, fiber-reinforced composite material and molded article
JP6780317B2 (en) Curable composition and fiber reinforced composite material
JP7239076B1 (en) Curable composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded product
JP6579367B2 (en) Epoxy resin composition, cured product, fiber reinforced composite material, fiber reinforced resin molded product, and method for producing fiber reinforced resin molded product
WO2023089997A1 (en) Curable composition, cured product, fiber reinforced composite material, and fiber reinforced resin molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16838979

Country of ref document: EP

Kind code of ref document: A1