WO2020003824A1 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
WO2020003824A1
WO2020003824A1 PCT/JP2019/020415 JP2019020415W WO2020003824A1 WO 2020003824 A1 WO2020003824 A1 WO 2020003824A1 JP 2019020415 W JP2019020415 W JP 2019020415W WO 2020003824 A1 WO2020003824 A1 WO 2020003824A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
group
naphthol
curing agent
Prior art date
Application number
PCT/JP2019/020415
Other languages
French (fr)
Japanese (ja)
Inventor
雅樹 迫
泰 佐藤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2020527287A priority Critical patent/JP7049605B2/en
Priority to CN201980042792.XA priority patent/CN112313260A/en
Publication of WO2020003824A1 publication Critical patent/WO2020003824A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to an epoxy resin composition and a cured product thereof.
  • Patent Document 1 discloses an epoxy resin composition having a predetermined structure as a resin composition having high heat resistance, low water absorption, and high adhesiveness.
  • Patent Document 2 discloses an epoxy resin having a predetermined structure as a resin having excellent flame retardancy, moisture resistance, heat resistance, low thermal expansion, and excellent adhesion to a metal substrate. ing.
  • Patent Document 3 discloses an epoxy resin composition using a polycondensate of an aromatic polycarboxylic acid and an aromatic polyhydroxy compound having an aryloxycarbonyl group at a chain end as a curing agent for an epoxy resin. Proposed. This epoxy resin composition is excellent in heat resistance and can give a cured epoxy resin having a low dielectric loss tangent.
  • the present invention is a further development of the above-described technology, and provides an epoxy resin composition having excellent heat resistance and adhesion, capable of obtaining a cured product having a lower dielectric loss tangent, and a cured product thereof. Make it an issue.
  • the present invention relates to the following [1] to [8].
  • [1] An epoxy resin composition comprising an ⁇ -naphthol biphenylaralkyl type epoxy resin and a curing agent, wherein the curing agent has an active ester structure.
  • R 1 represents a hydrogen atom, a halogen atom, a glycidyloxy group, an allyl group, an alkyl group, an alkoxy group, or an aryl group.
  • N is an integer of 1 to 20.
  • the curing agent is an active ester compound or resin using a compound having two or more phenolic hydroxyl groups and an aromatic monocarboxylic acid or an acid halide thereof as an essential reaction raw material [1] or [2].
  • the epoxy resin composition according to the above. [5] The epoxy resin composition according to any one of [1] to [4], further comprising a curing accelerator.
  • [7] A printed wiring board using the epoxy resin composition according to any one of [1] to [5].
  • [8] A semiconductor sealing material using the epoxy resin composition according to any one of [1] to [5].
  • an epoxy resin composition having excellent heat resistance and adhesion and capable of obtaining a cured product having a lower dielectric loss tangent, and a cured product thereof.
  • 5 is a GPC chart of the ⁇ -naphthol biphenylaralkyl type epoxy resin (A-2) obtained in Synthesis Example 2.
  • 6 is a GPC chart of the ⁇ -naphthol aralkyl type epoxy resin (B-2) obtained in Comparative Synthesis Example 2.
  • 9 is a GPC chart of ⁇ -naphthol aralkyl epoxy resin (B-4) obtained in Comparative Synthesis Example 4.
  • 9 is a GPC chart of the methoxy-modified ⁇ -naphthol biphenylaralkyl type epoxy resin (B-6) obtained in Comparative Synthesis Example 6.
  • epoxy resin composition contains an ⁇ -naphthol biphenylaralkyl type epoxy resin and a curing agent.
  • the ⁇ -naphthol biphenyl aralkyl type epoxy resin is an epoxy resin having a functional group derived from ⁇ -naphthol and a biphenyl group in a molecular main skeleton.
  • an epoxy resin having such a molecular main skeleton and a curing agent having an active ester structure described later an epoxy that has excellent heat resistance and adhesion and provides a cured product having superior dielectric properties than conventional ones.
  • a resin composition can be obtained.
  • an epoxy resin having a structure represented by the following formula (1) can be used as the ⁇ -naphthol biphenyl aralkyl type epoxy resin.
  • R 1 represents a hydrogen atom, a halogen atom, a glycidyloxy group, an allyl group, an alkyl group, an alkoxy group, or an aryl group.
  • n is an integer of 1 to 20, preferably 1 to 15, and more preferably 1 to 12.
  • the halogen atom include a chlorine atom, a bromo atom, and an iodine atom.
  • the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • alkoxy group examples include an alkoxy group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
  • alkoxy group having 1 to 6 carbon atoms examples include a methoxy group, an ethoxy group, a normal propyloxy group, an isopropyloxy group, a normal butyloxy group, a tertiary butyloxy group, a pentyloxy group, a normal hexyloxy group, and a cyclohexyl. Oxy groups and the like can be mentioned.
  • the aryl group include a phenyl group, a benzyl group, a naphthyl group, and a methoxynaphthyl group.
  • R 1 is preferably a hydrogen atom, because it has excellent balance between impregnation into a substrate such as a reinforcing fiber and heat resistance and toughness in a cured product.
  • the softening point of the ⁇ -naphthol biphenylaralkyl type epoxy resin is not particularly limited, but is preferably from 70 ° C. to 140 ° C., and preferably from 75 ° C. to 130 ° C., since the solvent solubility and the heat resistance of the cured product are improved. Is more preferable, and the temperature is more preferably from 80 ° C to 120 ° C.
  • the softening point is measured according to JIS K7234.
  • the epoxy equivalent of the ⁇ -naphthol biphenyl aralkyl type epoxy resin is preferably in the range of 280 to 450 g / equivalent, because both the heat resistance of the cured product and the impregnation property of the base material such as reinforcing fibers are excellent.
  • the method for producing the ⁇ -naphthol biphenylaralkyl-type epoxy resin is not particularly limited, and it can be obtained by subjecting a polycondensate of ⁇ -naphthol to a biphenyl compound such as bischloromethylbiphenyl to polyglycidyl ether using epichlorohydrin or the like. .
  • the curing agent has an active ester structure.
  • Active ester structure means an ester structure derived from a phenol group and an aromatic carboxylic acid group.
  • the curing agent can be composed of a compound or a resin having an active ester structure (hereinafter, also simply referred to as “active ester resin”). Specific examples of the active ester resin include compounds (a1) having one phenolic hydroxyl group, compounds (a2) having two or more phenolic hydroxyl groups, and aromatic polycarboxylic acids or their acid halides (a3).
  • An active ester resin (II) using a compound selected from an acid halide (b3) as a reaction raw material is exemplified. These may be used alone or in combination.
  • Examples of the compound (a1) having one phenolic hydroxyl group include phenol, o-cresol, m-cresol, p-cresol, 3,5-xylenol, 2,6-xylenol, o-phenylphenol, p-phenyl
  • Examples thereof include aromatic monohydroxy compounds such as phenol, 2-benzylphenol, 4-benzylphenol, 4- ( ⁇ -cumyl) phenol, ⁇ -naphthol, and ⁇ -naphthol.
  • a cured product having a lower dielectric loss tangent when the curing agent has a residue of ⁇ -naphthol, ⁇ -naphthol o-phenylphenol, and / or p-phenylphenol, a cured product having a lower dielectric loss tangent can be obtained.
  • aromatic polyhydric hydroxy compounds examples include resorcinol, hydroquinone, trimethylhydroquinone, bisphenol A, bisphenol F, bisphenol S, 1,6-naphthalenediol, 2,6-naphthalenediol, 2,3-naphthalenediol, Aromatic dihydroxy compounds such as 7-naphthalenediol, 1,4-naphthalenediol, 3,3 ′, 5,5′-tetramethylbisphenol F, 3,3 ′, 5,5′-tetramethylbiphenol; 1,3 Aromatic trihydroxy compounds such as 2,5-trihydroxybenzene, 1,2,3-trihydroxybenzene, 2,4,4'-trihydroxybenzophenone and triphenolmethane; 2,2 ', 4,4'-tetra Hydroxybenzophenone, 1,1,2,2-tetraphenolethane It can be mentioned.
  • the compounds (a2) and (b1) may be compounds represented by the following formula (4).
  • n is an integer of 0 to 20
  • Ar 1 each independently represents a substituent having a phenolic hydroxyl group
  • Z is each independently an oxygen atom, a sulfur atom, a sulfonyl group, a substituted or unsubstituted carbon atom.
  • the Ar 1 is not particularly restricted but includes, for example, phenol, o-cresol, m-cresol, p-cresol, 3,5-xylenol, 2,6-xylenol, o-phenylphenol, p-phenylphenol, 2- Examples thereof include residues of aromatic monohydroxy compounds such as benzylphenol, 4-benzylphenol, 4- ( ⁇ -cumyl) phenol, ⁇ -naphthol, and ⁇ -naphthol.
  • the alkylene having 1 to 20 carbon atoms is not particularly limited, but includes methylene, ethylene, propylene, 1-methylmethylene, 1,1-dimethylmethylene, 1-methylethylene, 1,1-dimethylethylene, 1,2 -Dimethylethylene, propylene, butylene, 1-methylpropylene, 2-methylpropylene, pentylene, hexylene and the like.
  • the cycloalkylene having 3 to 20 carbon atoms is not particularly limited, but includes cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclopentylene, cycloheptylene, and the following formulas (5-1) to (5) And cycloalkylene represented by -4).
  • the arylene having 6 to 20 carbon atoms is not particularly limited, and examples thereof include an arylene represented by the following formula (6-1).
  • the aralkylene having 8 to 20 carbon atoms is not particularly limited, and examples thereof include aralkylenes represented by the following formulas (7-1) to (7-5).
  • Z in the formula (4) is preferably a cycloalkylene having 3 to 20 carbon atoms, an arylene having 6 to 20 carbon atoms, or an aralkylene having 8 to 20 carbon atoms, and the formula (5- Those represented by 3), (5-4), (6-1), and (7-1) to (7-5) are more preferable from the viewpoint of adhesion and dielectric properties.
  • M in the formula (4) is 0 or an integer of 1 to 10, preferably 0 to 8, and preferably 0 to 5 from the viewpoint of solvent solubility.
  • the compounds (a2) and (b1) may have a structure represented by the following formula (8).
  • 1 is an integer of 1 or more, and R 3 represents a hydrogen atom, an alkyl group, or an aryl group.
  • l is preferably an integer of 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12.
  • the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • aryl group examples include a benzyl group, a naphthyl group, and a methoxynaphthyl group.
  • the compounds represented by the formulas (4) and (8) are preferable from the viewpoint of solvent solubility and dielectric properties of the reaction product, and the compounds represented by the formula (4) Wherein Ar 1 is a residue of phenol, orthocresol, or ⁇ -naphthol or ⁇ -naphthol, and Z is a group represented by the formulas (5-3), (6-1), (7-1) to (7-1) 5) and those represented by the formula (8) are more preferable.
  • aromatic monocarboxylic acid or its acid halide (b2) examples include benzoic acid and benzoic acid chloride.
  • aromatic polycarboxylic acids or their acid halides (a3) and (b3) include, for example, aromatics such as isophthalic acid, terephthalic acid, 1,4-, 2,3- or 2,6-naphthalenedicarboxylic acid Dicarboxylic acids; aromatic tricarboxylic acids such as trimesic acid and trimellitic acid; pyromellitic acid; and acid chlorides thereof.
  • aromatics such as isophthalic acid, terephthalic acid, 1,4-, 2,3- or 2,6-naphthalenedicarboxylic acid Dicarboxylic acids
  • aromatic tricarboxylic acids such as trimesic acid and trimellitic acid
  • pyromellitic acid and acid chlorides thereof.
  • isophthalic acid or a mixture of isophthalic acid and terephthalic acid is preferred from the viewpoint that the melting point of the reactant and the solvent solubility are excellent.
  • Examples of the active ester resin having the above structure include the following active ester resins (I) and (II).
  • Examples of the active ester resin (I) include an active ester resin having a structure represented by the following formula (2).
  • X represents a compound residue containing a monovalent phenolic hydroxyl group
  • Y represents a compound residue containing a divalent phenolic hydroxyl group.
  • n is an integer of 0 to 20, preferably 0 to 15, and more preferably 0 to 10.
  • Examples of the active ester resin (II) include an active ester resin having a structure represented by the following formula (3).
  • Y represents a compound residue having a divalent phenolic hydroxyl group
  • R 2 represents a hydrogen atom or an alkyl group.
  • n is an integer of 0 to 20, preferably 0 to 15, and more preferably 0 to 10.
  • the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group.
  • the active ester resin (I) represented by the formula (2) is preferable in terms of excellent wet heat resistance.
  • the esterification equivalent of the active ester resin is preferably from 150 to 400 g / eq, more preferably from 160 to 350 g / eq, even more preferably from 170 to 300 g / eq.
  • the melt viscosity of the active ester resin is preferably from 0.01 to 500 dPa ⁇ s, more preferably from 0.01 to 400 dPa ⁇ s, as measured by an ICI viscometer at 200 ° C. More preferably, it is 300 dPa ⁇ s.
  • the softening point of the active ester resin is not particularly limited, but is preferably 200 ° C or lower, more preferably 190 ° C or lower, further preferably 170 ° C or lower from the viewpoint of solvent solubility.
  • the softening points are as described above.
  • the method for producing the active ester resin is not particularly limited, and the active ester resin can be produced by a known and commonly used synthesis method such as an acetic anhydride method, an interfacial polymerization method, and a solution method.
  • the curing agent may further contain another curing agent for epoxy resin in addition to the active ester resin.
  • the epoxy resin curing agent that can be used here include amine compounds, amide compounds, acid anhydride compounds, and phenol compounds.
  • the amount used is preferably in the range of 1% by mass to 30% by mass in the whole resin composition.
  • the amount of the ⁇ -naphthol biphenyl aralkyl type epoxy resin and the active ester resin in the resin composition is such that the aryloxycarbonyl group in the active ester resin is based on 1 mol of the epoxy group in the ⁇ -naphthol biphenyl aralkyl type epoxy resin.
  • the amount is preferably 0.15 to 5 mol, more preferably 0.9 to 2.0 mol.
  • the resin composition can contain a curing accelerator as needed.
  • the curing accelerator include a phosphorus compound, a tertiary amine, imidazole, a metal salt of an organic acid, a Lewis acid, and an amine complex.
  • dimethylaminopyridine or imidazole is preferred from the viewpoint of excellent heat resistance, dielectric properties, solder resistance, and the like.
  • triphenylphosphine is used for phosphorus compounds and 1,8-diazabicyclo is used for tertiary amines because of its excellent curability, heat resistance, electrical properties, and moisture resistance reliability.
  • the amount of the curing accelerator used is preferably in the range of 0.01 to 5.0 parts by mass, and more preferably 0.01 to 2.0 parts by mass, based on 100 parts by mass of the ⁇ -naphthol biphenylaralkyl type epoxy resin. More preferably, it is within the range. When the content is in the above range, a sufficient curing reaction rate can be obtained, and a resin composition that gives a cured product having more excellent heat resistance can be obtained.
  • the resin composition may further contain other resin components.
  • Other resin components include, for example, cyanate ester resin; bismaleimide resin; benzoxazine resin; allyl group-containing resin represented by diallyl bisphenol and triallyl isocyanurate; polyphosphate and phosphate-carbonate copolymer And the like. These may be used alone or in combination of two or more.
  • the mixing ratio of these other resin components is not particularly limited, and can be appropriately adjusted according to the desired cured product performance and the like. As an example of the mixing ratio, it can be in the range of 1 to 50% by mass in the whole resin composition.
  • the resin composition may contain various additives such as a flame retardant, an inorganic filler, a silane coupling agent, a release agent, a pigment, and an emulsifier, if necessary.
  • the flame retardant include inorganic phosphorus compounds such as ammonium phosphate such as red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and phosphate amides; phosphate ester compounds, phosphonic acid Compound, phosphinic acid compound, phosphine oxide compound, phosphorane compound, organic nitrogen-containing phosphorus compound, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) ) Cyclic organic phosphorus such as -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-dihydrooxynaphth
  • the inorganic filler is mixed, for example, when the resin composition is used for a semiconductor sealing material.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
  • fused silica is preferred because it allows more inorganic filler to be blended.
  • Fused silica can be used in either crushed or spherical form.However, in order to increase the blending amount of the fused silica, and to suppress an increase in the melt viscosity of the resin composition, a spherical form is mainly used. preferable.
  • the filling rate is preferably in the range of 0.5 to 95 parts by mass with respect to 100 parts by mass of the resin component.
  • the method for producing the resin composition is not particularly limited.
  • the resin composition can be obtained by uniformly mixing the above-mentioned components at, for example, 0 ° C. to 200 ° C. using a stirrer or a three-roll mill.
  • the resin composition can be molded by heating and curing, for example, in a temperature range of about 20 to 250 ° C. by a known and commonly used thermosetting method.
  • the cured product of the resin composition according to the present embodiment has a glass transition temperature of 140 ° C. or higher, is excellent in heat resistance, and has a low dielectric loss tangent at 1 GHz of less than 2.0 ⁇ 10 ⁇ 3.
  • the adhesion is equal to or higher than that of the conventional material. From the above, it can be preferably used for electronic materials such as printed wiring boards, semiconductor encapsulation materials, and resist materials.
  • the resin composition When the resin composition is used for a printed wiring board application or a build-up adhesive film application, it is generally preferable to mix and dilute an organic solvent before use.
  • the organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, and the like.
  • the type and amount of the organic solvent can be appropriately adjusted according to the use environment of the resin composition.For example, in the case of a printed wiring board, a polar solvent having a boiling point of 160 ° C.
  • methyl ethyl ketone, acetone, and dimethylformamide may be used.
  • it is used in such a proportion that the non-volatile content is 40 to 80% by mass.
  • ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, etc.
  • acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, etc .
  • the method of manufacturing a printed wiring board using a resin composition includes, for example, a method in which a prepreg is obtained by impregnating a resin composition into a reinforcing base material and curing the resin composition, and then laminating the prepreg with a copper foil and heat-pressing. it can.
  • the reinforcing substrate include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the impregnation amount of the resin composition is not particularly limited, but usually, it is preferably prepared so that the resin content in the prepreg is 20 to 80% by mass.
  • the semiconductor encapsulating material can be prepared by mixing the compound using an extruder, a kneader, a roll, or the like, for example.
  • a method for molding a semiconductor package using the obtained semiconductor encapsulation material is, for example, casting the semiconductor encapsulation material using a transfer molding machine, an injection molding machine, or the like, and further molding the semiconductor package at a temperature of 50 to 200 ° C.
  • a method of heating under the conditions for 2 to 10 hours can be mentioned, and a semiconductor device as a molded product can be obtained by such a method.
  • the mixture was neutralized with 85% phosphoric acid until the pH became neutral, the stirring was stopped, and the lower layer was extracted. After adding 15 parts of p-toluenesulfonic acid and heating to 180 ° C. over 2 hours while distilling off volatile components, the mixture was neutralized with a 49% aqueous sodium hydroxide solution until the pH became neutral. After reducing the pressure while maintaining the temperature and distilling off the volatile components, the resulting resin was taken out to obtain ⁇ -naphthol biphenylaralkyl resin (A-1). The hydroxyl equivalent was 272 g / eq.
  • FIG. 1 shows a GPC chart of the obtained epoxy resin (A-2).
  • the active ester resin C-1 corresponds to an active ester resin having a structure in which X is an ⁇ -naphthol residue and n is 0 in the above formula (2).
  • the esterification equivalent of this active ester resin (C-2) was 223 g / eq, and the softening point was 150 ° C.
  • the melt viscosity was 100 dPa ⁇ s (200 ° C.).
  • X is an ⁇ -naphthol residue
  • n is 2 on average
  • Y is represented by the chemical formula (4)
  • Z is (5-3) It corresponds to an active ester resin having a structure in which Ar 1 is a phenol residue.
  • Example 1 ⁇ -naphthol biphenyl aralkyl type epoxy resin (A-2), active ester (C-1), and curing accelerator (N, N-dimethyl-4-aminopyridine, special grade, manufactured by Wako Pure Chemical Industries, Ltd.)
  • A-2 ⁇ -naphthol biphenyl aralkyl type epoxy resin
  • C-1 active ester
  • curing accelerator N, N-dimethyl-4-aminopyridine, special grade, manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 2 The epoxy resin (A-2) and the active ester resin (C-2) were weighed according to the formulations shown in Table 2, adjusted to a nonvolatile content of 60% with methyl ethyl ketone (MEK), and dissolved using a rotation revolution mixer. . After N, N-dimethyl-4-aminopyridine as a catalyst was adjusted and blended so that the gel time was within 5 to 7 minutes, a glass cloth laminate was prepared under the following conditions. (Conditions for creating a laminate) Base material: Nitto Boseki Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

Provided are an epoxy resin composition whereby it is possible to obtain a cured product having excellent heat resistance and adhesion, as well as a lower dielectric loss tangent, and a cured product of the epoxy resin composition. Specifically, the present invention is an epoxy resin composition containing an α-naphthol-biphenyl-aralkyl-type epoxy resin and a curing agent, the curing agent containing an active ester structure. The α-naphthol-biphenyl-aralkyl-type epoxy resin preferably has the structure represented by formula (1). The curing agent preferably has the structure represented by formula (2). The curing agent is preferably a resin or an active ester compound having as essential raw materials for reaction a compound having two or more phenolic hydroxyl groups, and an aromatic monocarboxylic acid or an acid halide thereof.

Description

エポキシ樹脂組成物及びその硬化物Epoxy resin composition and cured product thereof
 本発明は、エポキシ樹脂組成物及びその硬化物に関する。 The present invention relates to an epoxy resin composition and a cured product thereof.
 エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、その硬化物において優れた耐熱性と絶縁性を発現することから、半導体や多層プリント基板などの電子部品用途において広く用いられている。特許文献1には、高耐熱性、低吸水性、高接着性を兼ね備えた樹脂組成物として、所定の構造を有するエポキシ樹脂組成物が開示されている。特許文献2には、難燃性に優れるとともに、耐湿性、耐熱性、低熱膨張性、金属基材との接着性にも優れた性能を有する樹脂として、所定の構造を有するエポキシ樹脂が開示されている。 Epoxy resin compositions containing an epoxy resin and its curing agent as essential components have been widely used in electronic component applications such as semiconductors and multilayer printed circuit boards because the cured products exhibit excellent heat resistance and insulation properties. . Patent Document 1 discloses an epoxy resin composition having a predetermined structure as a resin composition having high heat resistance, low water absorption, and high adhesiveness. Patent Document 2 discloses an epoxy resin having a predetermined structure as a resin having excellent flame retardancy, moisture resistance, heat resistance, low thermal expansion, and excellent adhesion to a metal substrate. ing.
 電子部品用途のなかでもプリント配線板材料の技術分野では、情報の高速処理に適応するために、誘電特性の向上が必要とされている。誘電特性に優れる材料として、エポキシ樹脂及び活性エステル樹脂からなる硬化系樹脂組成物が検討されている。例えば、特許文献3には、連鎖末端にアリールオキシカルボニル基を有する、芳香族多価カルボン酸と芳香族多価ヒドロキシ化合物との重縮合体をエポキシ樹脂の硬化剤として使用したエポキシ樹脂組成物が提案されている。このエポキシ樹脂組成物は、耐熱性に優れ、誘電正接の低いエポキシ樹脂硬化物を与えることができる。また基板の誘電特性を向上させるために使用される銅箔の表面粗度を低下させる検討も行われているが、この場合、誘電特性が向上する一方で、樹脂層との密着性は低下し、各種不良が発生しやすくなる。以上のことから、電子部品市場では耐熱性、誘電特性、密着性の良好な樹脂が求められている。 で も In the technical field of printed wiring board materials, especially for electronic parts, there is a need to improve dielectric properties in order to adapt to high-speed processing of information. As a material having excellent dielectric properties, a curable resin composition comprising an epoxy resin and an active ester resin has been studied. For example, Patent Document 3 discloses an epoxy resin composition using a polycondensate of an aromatic polycarboxylic acid and an aromatic polyhydroxy compound having an aryloxycarbonyl group at a chain end as a curing agent for an epoxy resin. Proposed. This epoxy resin composition is excellent in heat resistance and can give a cured epoxy resin having a low dielectric loss tangent. Also, studies have been made to reduce the surface roughness of the copper foil used to improve the dielectric properties of the substrate.In this case, while the dielectric properties are improved, the adhesion to the resin layer is reduced. And various defects are likely to occur. From the above, in the electronic component market, a resin having good heat resistance, dielectric properties and adhesion is demanded.
特開平6-271654号公報JP-A-6-271654 特開2006-160868号公報JP 2006-160868 A 特開2008-291279号公報JP 2008-291279 A
 本発明は、上記技術をさらに進めたものであり、優れた耐熱性、密着性を有するとともに誘電正接がより低い硬化物を得ることができるエポキシ樹脂組成物、及びその硬化物を提供することを課題とする。 The present invention is a further development of the above-described technology, and provides an epoxy resin composition having excellent heat resistance and adhesion, capable of obtaining a cured product having a lower dielectric loss tangent, and a cured product thereof. Make it an issue.
 本発明者らは鋭意検討を重ねた結果、α-ナフトールビフェニルアラルキル型エポキシ樹脂と、フェノール基及び芳香族カルボン酸基から生成するエステル構造(以下、「活性エステル構造」ともいう。)を有する硬化剤とを組み合わせて用いることで上記の課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have found that a curing having an α-naphthol biphenylaralkyl type epoxy resin and an ester structure formed from a phenol group and an aromatic carboxylic acid group (hereinafter also referred to as “active ester structure”). It has been found that the above-mentioned problems can be solved by using an agent in combination, and the present invention has been completed.
 すなわち、本発明は以下の[1]~[8]に関する。
[1]α-ナフトールビフェニルアラルキル型エポキシ樹脂、及び硬化剤を含有し、前記硬化剤が、活性エステル構造を有する、エポキシ樹脂組成物。
[2]前記α-ナフトールビフェニルアラルキル型エポキシ樹脂が、以下の式(1)で表される構造を有する、[1]に記載のエポキシ樹脂組成物。
That is, the present invention relates to the following [1] to [8].
[1] An epoxy resin composition comprising an α-naphthol biphenylaralkyl type epoxy resin and a curing agent, wherein the curing agent has an active ester structure.
[2] The epoxy resin composition according to [1], wherein the α-naphthol biphenylaralkyl type epoxy resin has a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは水素原子、ハロゲン原子、グリシジルオキシ基、アリル基、アルキル基、アルコキシ基、又はアリール基を示す。nは1~20の整数である。)
[3]前記硬化剤が、以下の式(2)で表される構造を有する、[1]又は[2]に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(In the formula (1), R 1 represents a hydrogen atom, a halogen atom, a glycidyloxy group, an allyl group, an alkyl group, an alkoxy group, or an aryl group. N is an integer of 1 to 20.)
[3] The epoxy resin composition according to [1] or [2], wherein the curing agent has a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
(式(2)中、Xは1価のフェノール性水酸基を含有する化合物残基を表し、Yは2価のフェノール性水酸基を含有する化合物残基を表す。nは0~20の整数である。)
[4]前記硬化剤が、フェノール性水酸基を2つ以上有する化合物と芳香族モノカルボン酸またはその酸ハロゲン化物とを必須の反応原料とする活性エステル化合物又は樹脂である[1]又は[2]に記載のエポキシ樹脂組成物。
[5]さらに硬化促進剤を含有する、[1]から[4]のいずれかに記載のエポキシ樹脂組成物。
[6][1]から[5]のいずれかに記載のエポキシ樹脂組成物の硬化物。
[7][1]から[5]のいずれかに記載のエポキシ樹脂組成物を用いたプリント配線基板。
[8][1]から[5]のいずれかに記載のエポキシ樹脂組成物を用いた半導体封止材料。
Figure JPOXMLDOC01-appb-C000004
(In formula (2), X represents a compound residue containing a monovalent phenolic hydroxyl group, Y represents a compound residue containing a divalent phenolic hydroxyl group, and n is an integer of 0 to 20. .)
[4] The curing agent is an active ester compound or resin using a compound having two or more phenolic hydroxyl groups and an aromatic monocarboxylic acid or an acid halide thereof as an essential reaction raw material [1] or [2]. The epoxy resin composition according to the above.
[5] The epoxy resin composition according to any one of [1] to [4], further comprising a curing accelerator.
[6] A cured product of the epoxy resin composition according to any one of [1] to [5].
[7] A printed wiring board using the epoxy resin composition according to any one of [1] to [5].
[8] A semiconductor sealing material using the epoxy resin composition according to any one of [1] to [5].
 本発明によれば、優れた耐熱性、密着性を有するとともに誘電正接がより低い硬化物を得ることができるエポキシ樹脂組成物、及びその硬化物を提供することができる。 According to the present invention, it is possible to provide an epoxy resin composition having excellent heat resistance and adhesion and capable of obtaining a cured product having a lower dielectric loss tangent, and a cured product thereof.
合成例2で得られたα-ナフトールビフェニルアラルキル型エポキシ樹脂(A-2)のGPCチャートである。5 is a GPC chart of the α-naphthol biphenylaralkyl type epoxy resin (A-2) obtained in Synthesis Example 2. 比較合成例2で得られたα-ナフトールアラルキル型エポキシ樹脂(B-2)のGPCチャートである。6 is a GPC chart of the α-naphthol aralkyl type epoxy resin (B-2) obtained in Comparative Synthesis Example 2. 比較合成例4で得られたβ-ナフトールアラルキル型エポキシ樹脂(B-4)のGPCチャートである。9 is a GPC chart of β-naphthol aralkyl epoxy resin (B-4) obtained in Comparative Synthesis Example 4. 比較合成例6で得られたメトキシ変性α-ナフトールビフェニルアラルキル型エポキシ樹脂(B-6)のGPCチャートである。9 is a GPC chart of the methoxy-modified α-naphthol biphenylaralkyl type epoxy resin (B-6) obtained in Comparative Synthesis Example 6.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Hereinafter, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention.
[エポキシ樹脂組成物]
 本実施形態に係るエポキシ樹脂組成物(以下、単に「樹脂組成物」ともいう。)は、α-ナフトールビフェニルアラルキル型エポキシ樹脂及び硬化剤を含有する。
[Epoxy resin composition]
The epoxy resin composition according to the present embodiment (hereinafter, also simply referred to as “resin composition”) contains an α-naphthol biphenylaralkyl type epoxy resin and a curing agent.
(エポキシ樹脂)
 α-ナフトールビフェニルアラルキル型エポキシ樹脂は、分子主骨格にα-ナフトール由来の官能基とビフェニル基とを有するエポキシ樹脂である。こうした分子主骨格を有するエポキシ樹脂と、後述する活性エステル構造を有する硬化剤とを組み合わせることで、優れた耐熱性及び密着性を有するとともに、従来よりも優れた誘電特性を有する硬化物を与えるエポキシ樹脂組成物を得ることができる。
(Epoxy resin)
The α-naphthol biphenyl aralkyl type epoxy resin is an epoxy resin having a functional group derived from α-naphthol and a biphenyl group in a molecular main skeleton. By combining an epoxy resin having such a molecular main skeleton and a curing agent having an active ester structure described later, an epoxy that has excellent heat resistance and adhesion and provides a cured product having superior dielectric properties than conventional ones. A resin composition can be obtained.
 α-ナフトールビフェニルアラルキル型エポキシ樹脂としては、以下の式(1)で表される構造を有するエポキシ樹脂を用いることができる。 As the α-naphthol biphenyl aralkyl type epoxy resin, an epoxy resin having a structure represented by the following formula (1) can be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 但し、式(1)中、Rは水素原子、ハロゲン原子、グリシジルオキシ基、アリル基、アルキル基、アルコキシ基、又はアリール基を示す。nは1~20、好ましくは1~15、より好ましくは1~12の整数である。ハロゲン原子としては、例えば、塩素原子、ブロモ原子、ヨウ素原子等を挙げることができる。アルキル基としては、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。アルコキシ基としては、炭素原子数1~10、好ましくは炭素原子数1~6のアルコキシ基を挙げることができる。炭素原子数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、ノルマルプロピルオキシ基、イソプロピルオキシ基、ノルマルブチルオキシ基、ターシャリーブチルオキシ基、ペンチルオキシ基、ノルマルヘキシルオキシ基、シクロヘキシルオキシ基等を挙げることができる。アリール基としては、フェニル基、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。中でも、強化繊維等の基材への含浸性、硬化物における耐熱性及び靱性のバランスに優れることから、Rは水素原子であることが好ましい。 Here, in the formula (1), R 1 represents a hydrogen atom, a halogen atom, a glycidyloxy group, an allyl group, an alkyl group, an alkoxy group, or an aryl group. n is an integer of 1 to 20, preferably 1 to 15, and more preferably 1 to 12. Examples of the halogen atom include a chlorine atom, a bromo atom, and an iodine atom. Examples of the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group. . Examples of the alkoxy group include an alkoxy group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a normal propyloxy group, an isopropyloxy group, a normal butyloxy group, a tertiary butyloxy group, a pentyloxy group, a normal hexyloxy group, and a cyclohexyl. Oxy groups and the like can be mentioned. Examples of the aryl group include a phenyl group, a benzyl group, a naphthyl group, and a methoxynaphthyl group. Above all, R 1 is preferably a hydrogen atom, because it has excellent balance between impregnation into a substrate such as a reinforcing fiber and heat resistance and toughness in a cured product.
 α-ナフトールビフェニルアラルキル型エポキシ樹脂の軟化点は、特に限定されないが、溶剤溶解性と硬化物の耐熱性が良好となることから、70℃~140℃であることが好ましく、75℃~130℃であることがより好ましく、80℃~120℃であることがさらに好ましい。なお、軟化点は、JIS K7234に準拠して測定する。 The softening point of the α-naphthol biphenylaralkyl type epoxy resin is not particularly limited, but is preferably from 70 ° C. to 140 ° C., and preferably from 75 ° C. to 130 ° C., since the solvent solubility and the heat resistance of the cured product are improved. Is more preferable, and the temperature is more preferably from 80 ° C to 120 ° C. The softening point is measured according to JIS K7234.
 α-ナフトールビフェニルアラルキル型エポキシ樹脂のエポキシ当量は、硬化物における耐熱性と強化繊維等の基材への含浸性との両方に優れることから、280~450g/当量の範囲であることが好ましい。 The epoxy equivalent of the α-naphthol biphenyl aralkyl type epoxy resin is preferably in the range of 280 to 450 g / equivalent, because both the heat resistance of the cured product and the impregnation property of the base material such as reinforcing fibers are excellent.
 α-ナフトールビフェニルアラルキル型エポキシ樹脂の製法は、特に限定されず、α-ナフトールとビスクロロメチルビフェニル等のビフェニル化合物との重縮合物を、エピクロルヒドリン等を用いてポリグリシジルエーテル化して得ることができる。 The method for producing the α-naphthol biphenylaralkyl-type epoxy resin is not particularly limited, and it can be obtained by subjecting a polycondensate of α-naphthol to a biphenyl compound such as bischloromethylbiphenyl to polyglycidyl ether using epichlorohydrin or the like. .
(硬化剤)
 硬化剤は、活性エステル構造を有する。「活性エステル構造」とは、フェノール基及び芳香族カルボン酸基に由来するエステル構造を意味している。硬化剤は、活性エステル構造を有する化合物又は樹脂(以下、単に「活性エステル樹脂」ともいう。)で構成することができる。活性エステル樹脂の具体的な例としては、フェノール性水酸基を1つ有する化合物(a1)、フェノール性水酸基を2つ以上有する化合物(a2)及び芳香族ポリカルボン酸又はその酸ハロゲン化物(a3)から選択される化合物を反応原料とする活性エステル樹脂(I)、フェノール性水酸基を2つ以上有する化合物(b1)、芳香族モノカルボン酸又はその酸ハロゲン化物(b2)及び芳香族ポリカルボン酸又はその酸ハロゲン化物(b3)から選択される化合物を反応原料とする活性エステル樹脂(II)が挙げられる。これらは単独で使用しても、併用しても良い。
(Curing agent)
The curing agent has an active ester structure. “Active ester structure” means an ester structure derived from a phenol group and an aromatic carboxylic acid group. The curing agent can be composed of a compound or a resin having an active ester structure (hereinafter, also simply referred to as “active ester resin”). Specific examples of the active ester resin include compounds (a1) having one phenolic hydroxyl group, compounds (a2) having two or more phenolic hydroxyl groups, and aromatic polycarboxylic acids or their acid halides (a3). Active ester resin (I) using the selected compound as a reaction raw material, compound (b1) having two or more phenolic hydroxyl groups, aromatic monocarboxylic acid or its acid halide (b2) and aromatic polycarboxylic acid or its An active ester resin (II) using a compound selected from an acid halide (b3) as a reaction raw material is exemplified. These may be used alone or in combination.
 フェノール性水酸基を1つ有する化合物(a1)としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、3,5-キシレノール、2,6-キシレノール、o-フェニルフェノール、p-フェニルフェノール、2-ベンジルフェノール、4-ベンジルフェノール、4-(α-クミル)フェノール、α-ナフトール、β-ナフトールなどの芳香族モノヒドロキシ化合物を挙げることができる。中でも、硬化剤がα-ナフトール、β-ナフトールo-フェニルフェノール、及び/又はp-フェニルフェノールの残基を有することでより低い誘電正接の硬化物を得ることができる。 Examples of the compound (a1) having one phenolic hydroxyl group include phenol, o-cresol, m-cresol, p-cresol, 3,5-xylenol, 2,6-xylenol, o-phenylphenol, p-phenyl Examples thereof include aromatic monohydroxy compounds such as phenol, 2-benzylphenol, 4-benzylphenol, 4- (α-cumyl) phenol, α-naphthol, and β-naphthol. Above all, when the curing agent has a residue of α-naphthol, β-naphthol o-phenylphenol, and / or p-phenylphenol, a cured product having a lower dielectric loss tangent can be obtained.
 フェノール性水酸基を2つ以上有する化合物(a2)、(b1)としては、芳香族多価ヒドロキシ化合物を挙げることができる。芳香族多価ヒドロキシ化合物としては、例えば、レゾルシノール、ヒドロキノン、トリメチルヒドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、1,6-ナフタレンジオール、2,6-ナフタレンジオール、2,3-ナフタレンジオール、2,7-ナフタレンジオール、1,4-ナフタレンジオール、3,3',5,5'-テトラメチルビスフェノールF、3,3',5,5'-テトラメチルビフェノール等の芳香族ジヒドロキシ化合物;1,3,5-トリヒドロキシベンゼン、1,2,3-トリヒドロキシベンゼン、2,4,4’-トリヒドロキシベンゾフェノン、トリフェノールメタン等の芳香族トリヒドロキシ化合物;2,2',4,4'-テトラヒドロキシベンゾフェノン、1,1,2,2-テトラフェノールエタン等を挙げることができる。 化合物 As the compounds (a2) and (b1) having two or more phenolic hydroxyl groups, there can be mentioned aromatic polyhydric hydroxy compounds. Examples of the aromatic polyhydroxy compound include resorcinol, hydroquinone, trimethylhydroquinone, bisphenol A, bisphenol F, bisphenol S, 1,6-naphthalenediol, 2,6-naphthalenediol, 2,3-naphthalenediol, Aromatic dihydroxy compounds such as 7-naphthalenediol, 1,4-naphthalenediol, 3,3 ′, 5,5′-tetramethylbisphenol F, 3,3 ′, 5,5′-tetramethylbiphenol; 1,3 Aromatic trihydroxy compounds such as 2,5-trihydroxybenzene, 1,2,3-trihydroxybenzene, 2,4,4'-trihydroxybenzophenone and triphenolmethane; 2,2 ', 4,4'-tetra Hydroxybenzophenone, 1,1,2,2-tetraphenolethane It can be mentioned.
 また、化合物(a2)、(b1)は、下記式(4)で表される化合物でもよい。 化合物 Further, the compounds (a2) and (b1) may be compounds represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
(但し、式(4)中、mは0~20の整数である)
Figure JPOXMLDOC01-appb-C000006
(In the formula (4), m is an integer of 0 to 20)
 上記式(4)において、Arはそれぞれ独立して、フェノール性水酸基を含有する置換基を表し、Zは、それぞれ独立して、酸素原子、硫黄原子、スルホニル基、置換若しくは非置換の炭素原子数1~20のアルキレン、置換若しくは非置換の炭素原子数3~20のシクロアルキレン、炭素原子数6~20のアリーレン、又は炭素原子数8~20のアラルキレンである。 In the above formula (4), Ar 1 each independently represents a substituent having a phenolic hydroxyl group, and Z is each independently an oxygen atom, a sulfur atom, a sulfonyl group, a substituted or unsubstituted carbon atom. And alkylene having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkylene having 3 to 20 carbon atoms, arylene having 6 to 20 carbon atoms, and aralkylene having 8 to 20 carbon atoms.
 Arとしては、特に制限されないが、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、3,5-キシレノール、2,6-キシレノール、o-フェニルフェノール、p-フェニルフェノール、2-ベンジルフェノール、4-ベンジルフェノール、4-(α-クミル)フェノール、α-ナフトール、β-ナフトールなどの芳香族モノヒドロキシ化合物の残基を挙げることができる。 The Ar 1 is not particularly restricted but includes, for example, phenol, o-cresol, m-cresol, p-cresol, 3,5-xylenol, 2,6-xylenol, o-phenylphenol, p-phenylphenol, 2- Examples thereof include residues of aromatic monohydroxy compounds such as benzylphenol, 4-benzylphenol, 4- (α-cumyl) phenol, α-naphthol, and β-naphthol.
 前記炭素原子数1~20のアルキレンとしては、特に制限されないが、メチレン、エチレン、プロピレン、1-メチルメチレン、1,1-ジメチルメチレン、1-メチルエチレン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、プロピレン、ブチレン、1-メチルプロピレン、2-メチルプロピレン、ペンチレン、ヘキシレン等が挙げられる。 The alkylene having 1 to 20 carbon atoms is not particularly limited, but includes methylene, ethylene, propylene, 1-methylmethylene, 1,1-dimethylmethylene, 1-methylethylene, 1,1-dimethylethylene, 1,2 -Dimethylethylene, propylene, butylene, 1-methylpropylene, 2-methylpropylene, pentylene, hexylene and the like.
 前記炭素原子数3~20のシクロアルキレンとしては、特に制限されないが、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン、シクロペンチレン、シクロへプチレン、および下記式(5-1)~(5-4)で表されるシクロアルキレン等が挙げられる。 The cycloalkylene having 3 to 20 carbon atoms is not particularly limited, but includes cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclopentylene, cycloheptylene, and the following formulas (5-1) to (5) And cycloalkylene represented by -4).
Figure JPOXMLDOC01-appb-C000007
 なお、上記式(5-1)~(5-4)において、「*」はArと結合する部位を表す。
Figure JPOXMLDOC01-appb-C000007
In the formulas (5-1) to (5-4), “*” represents a site that binds to Ar 1 .
 前記炭素原子数6~20のアリーレンとしては、特に制限されないが、下記式(6-1)で表されるアリーレン等が挙げられる。 The arylene having 6 to 20 carbon atoms is not particularly limited, and examples thereof include an arylene represented by the following formula (6-1).
Figure JPOXMLDOC01-appb-C000008
 なお、上記式(6-1)において、「*」はArと結合する部位を表す。
Figure JPOXMLDOC01-appb-C000008
In the above formula (6-1), “*” represents a site that binds to Ar 1 .
 前記炭素原子数8~20のアラルキレンとしては、特に制限されないが、下記式(7-1)~(7-5)で表されるアラルキレン等が挙げられる。 The aralkylene having 8 to 20 carbon atoms is not particularly limited, and examples thereof include aralkylenes represented by the following formulas (7-1) to (7-5).
Figure JPOXMLDOC01-appb-C000009
 なお、式(7-1)~(7-5)において、「*」はArと結合する部位を表す。
Figure JPOXMLDOC01-appb-C000009
In the formulas (7-1) to (7-5), “*” represents a site bonding to Ar 1 .
 上述のうち、式(4)中のZは、炭素原子数3~20のシクロアルキレン、炭素原子数6~20のアリーレン、炭素原子数8~20のアラルキレンであることが好ましく、式(5-3)、(5-4)、(6-1)、(7-1)~(7-5)で表されるものであることが、密着性と誘電特性の観点からより好ましい。式(4)におけるmは、0または1~10の整数であり、好ましくは0~8であり、溶剤溶解性の観点から、好ましくは0~5である。 In the above, Z in the formula (4) is preferably a cycloalkylene having 3 to 20 carbon atoms, an arylene having 6 to 20 carbon atoms, or an aralkylene having 8 to 20 carbon atoms, and the formula (5- Those represented by 3), (5-4), (6-1), and (7-1) to (7-5) are more preferable from the viewpoint of adhesion and dielectric properties. M in the formula (4) is 0 or an integer of 1 to 10, preferably 0 to 8, and preferably 0 to 5 from the viewpoint of solvent solubility.
 また、化合物(a2)、(b1)は下記式(8)記載の構造でも良い。 化合物 Further, the compounds (a2) and (b1) may have a structure represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000010
・・・(8)
(但し式(8)中、lは1以上の整数、Rは水素原子、アルキル基、アリール基を示す。)
 式(8)において、lは好ましくは1~20、より好ましくは1~15、さらに好ましくは1~12の整数である。アルキル基としては、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。アリール基としては、ベンジル基、ナフチル基、メトキシナフチル基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
... (8)
(In the formula (8), 1 is an integer of 1 or more, and R 3 represents a hydrogen atom, an alkyl group, or an aryl group.)
In the formula (8), l is preferably an integer of 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12. Examples of the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group. . Examples of the aryl group include a benzyl group, a naphthyl group, and a methoxynaphthyl group.
 化合物(a2)、(b1)は、上述した中でも、反応生成物の溶剤溶解性と誘電特性の点で、式(4)、(8)で表される化合物が好ましく、更に、式(4)の内、Arがフェノール、オルソクレゾール、又はα-ナフトール、β-ナフトールの残基であり、かつZが式(5-3)、(6-1)、(7-1)~(7-5)であるもの、及び、式(8)であるものがより好ましい。 Among the compounds (a2) and (b1), the compounds represented by the formulas (4) and (8) are preferable from the viewpoint of solvent solubility and dielectric properties of the reaction product, and the compounds represented by the formula (4) Wherein Ar 1 is a residue of phenol, orthocresol, or α-naphthol or β-naphthol, and Z is a group represented by the formulas (5-3), (6-1), (7-1) to (7-1) 5) and those represented by the formula (8) are more preferable.
 芳香族モノカルボン酸又はその酸ハロゲン化物(b2)としては、具体的には、安息香酸、安息香酸クロリドを挙げることができる。 Specific examples of the aromatic monocarboxylic acid or its acid halide (b2) include benzoic acid and benzoic acid chloride.
 芳香族ポリカルボン酸又はその酸ハロゲン化物(a3)、(b3)としては、例えば、イソフタル酸、テレフタル酸、1,4-、2,3-、あるいは2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸;トリメシン酸、トリメリット酸等の芳香族トリカルボン酸;ピロメリット酸;およびこれらの酸塩化物等を挙げることができる。中でも、反応物の融点や溶剤溶解性が優れる点で、イソフタル酸、あるいはイソフタル酸とテレフタル酸との混合物が好ましい。 Examples of the aromatic polycarboxylic acids or their acid halides (a3) and (b3) include, for example, aromatics such as isophthalic acid, terephthalic acid, 1,4-, 2,3- or 2,6-naphthalenedicarboxylic acid Dicarboxylic acids; aromatic tricarboxylic acids such as trimesic acid and trimellitic acid; pyromellitic acid; and acid chlorides thereof. Above all, isophthalic acid or a mixture of isophthalic acid and terephthalic acid is preferred from the viewpoint that the melting point of the reactant and the solvent solubility are excellent.
 上記構造を有する活性エステル樹脂としては、例えば、以下の活性エステル樹脂(I)及び(II)を挙げることができる。 活性 Examples of the active ester resin having the above structure include the following active ester resins (I) and (II).
 活性エステル樹脂(I)としては、例えば、以下の式(2)で表される構造を有する活性エステル樹脂を挙げることができる。 Examples of the active ester resin (I) include an active ester resin having a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000011
 式(2)中、Xは1価のフェノール性水酸基を含有する化合物残基を表し、Yは2価のフェノール性水酸基を含有する化合物残基を表す。nは0~20、好ましくは0~15、より好ましくは0~10の整数である。
Figure JPOXMLDOC01-appb-C000011
In the formula (2), X represents a compound residue containing a monovalent phenolic hydroxyl group, and Y represents a compound residue containing a divalent phenolic hydroxyl group. n is an integer of 0 to 20, preferably 0 to 15, and more preferably 0 to 10.
 活性エステル樹脂(II)としては、例えば、以下の式(3)で表される構造を有する活性エステル樹脂を挙げることができる。 Examples of the active ester resin (II) include an active ester resin having a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(3)中、Yは2価のフェノール性水酸基を含有する化合物残基を表し、Rは水素原子、アルキル基を表す。nは0~20、好ましくは0~15、より好ましくは0~10の整数である。アルキル基としては、炭素原子数1~20、好ましくは炭素原子数1~6のアルキル基を挙げることができる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、ペンチル基、ノルマルヘキシル基、シクロヘキシル基等を挙げることができる。 In the formula (3), Y represents a compound residue having a divalent phenolic hydroxyl group, and R 2 represents a hydrogen atom or an alkyl group. n is an integer of 0 to 20, preferably 0 to 15, and more preferably 0 to 10. Examples of the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a pentyl group, a normal hexyl group, and a cyclohexyl group. .
 この中でも、耐湿熱性に優れる点で、式(2)で表される活性エステル樹脂(I)であることが好ましい。 中 で も Among these, the active ester resin (I) represented by the formula (2) is preferable in terms of excellent wet heat resistance.
 活性エステル樹脂のエステル化当量は、150~400g/eqであることが好ましく、160~350g/eqであることがより好ましく、170~300g/eqであることがさらに好ましい。活性エステル樹脂のエステル化当量を上記範囲とすることで、耐熱性と誘電特性を良好なバランスとすることができる。 エ ス テ ル The esterification equivalent of the active ester resin is preferably from 150 to 400 g / eq, more preferably from 160 to 350 g / eq, even more preferably from 170 to 300 g / eq. By setting the esterification equivalent of the active ester resin within the above range, a good balance between heat resistance and dielectric properties can be obtained.
 活性エステル樹脂の溶融粘度は、200℃、ICI粘度計により測定した値として0.01~500dPa・sであることが好ましく、0.01~400dPa・sであることがより好ましく、0.01~300dPa・sであることがさらに好ましい。活性エステル樹脂の溶融粘度を上記範囲とすることで、成形性と硬化物の耐熱性を良好なバランスとすることができる。 The melt viscosity of the active ester resin is preferably from 0.01 to 500 dPa · s, more preferably from 0.01 to 400 dPa · s, as measured by an ICI viscometer at 200 ° C. More preferably, it is 300 dPa · s. By setting the melt viscosity of the active ester resin in the above range, the moldability and the heat resistance of the cured product can be well balanced.
 活性エステル樹脂の軟化点は、特に限定されないが、溶剤溶解性の点で、200℃以下であることが好ましく、190℃以下であることがより好ましく、170℃以下であることがさらに好ましい。なお、軟化点は上記のとおりである。 (4) The softening point of the active ester resin is not particularly limited, but is preferably 200 ° C or lower, more preferably 190 ° C or lower, further preferably 170 ° C or lower from the viewpoint of solvent solubility. The softening points are as described above.
 活性エステル樹脂の製法は、特に限定されず、無水酢酸法、界面重合法、溶液法などの公知慣用の合成法により製造することができる。 The method for producing the active ester resin is not particularly limited, and the active ester resin can be produced by a known and commonly used synthesis method such as an acetic anhydride method, an interfacial polymerization method, and a solution method.
 硬化剤は、活性エステル樹脂の他に、他のエポキシ樹脂用硬化剤をさらに含有していてもよい。ここで用いることのできるエポキシ樹脂用硬化剤としては、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、フェノール系化合物などの硬化剤を挙げることができる。エポキシ樹脂用硬化剤を併用する場合、その使用量は全樹脂組成物中1質量%~30質量%の範囲であることが好ましい。 The curing agent may further contain another curing agent for epoxy resin in addition to the active ester resin. Examples of the epoxy resin curing agent that can be used here include amine compounds, amide compounds, acid anhydride compounds, and phenol compounds. When an epoxy resin curing agent is used in combination, the amount used is preferably in the range of 1% by mass to 30% by mass in the whole resin composition.
(配合量)
 樹脂組成物中のα-ナフトールビフェニルアラルキル型エポキシ樹脂及び活性エステル樹脂の配合量は、α-ナフトールビフェニルアラルキル型エポキシ樹脂中のエポキシ基1モルに対して、活性エステル樹脂中のアリールオキシカルボニル基が0.15~5モルとなる配合量が好ましく、0.9~2.0モルとなる配合量がさらに好ましい。上記配合量とするとα-ナフトールビフェニルアラルキル型エポキシ樹脂の硬化が十分に行われ、誘電正接の低い硬化物を与えるエポキシ樹脂組成物を容易に得ることができる。
(Blending amount)
The amount of the α-naphthol biphenyl aralkyl type epoxy resin and the active ester resin in the resin composition is such that the aryloxycarbonyl group in the active ester resin is based on 1 mol of the epoxy group in the α-naphthol biphenyl aralkyl type epoxy resin. The amount is preferably 0.15 to 5 mol, more preferably 0.9 to 2.0 mol. With the above amount, the α-naphthol biphenylaralkyl type epoxy resin is sufficiently cured, and an epoxy resin composition giving a cured product having a low dielectric loss tangent can be easily obtained.
(硬化促進剤)
 樹脂組成物は、必要に応じて、硬化促進剤を含有することができる。硬化促進剤としては、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等を挙げることができる。特にビルドアップ材料用途や回路基板用途として使用する場合には、耐熱性、誘電特性、耐ハンダ性等に優れる点から、ジメチルアミノピリジンやイミダゾールが好ましい。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)が好ましい。硬化促進剤の使用量は、α-ナフトールビフェニルアラルキル型エポキシ樹脂100質量部に対して、0.01~5.0質量部の範囲であることが好ましく、0.01~2.0質量部の範囲であることがより好ましい。上記範囲にすることで、十分な硬化反応速度が得られるとともに、より耐熱性に優れた硬化物を与える樹脂組成物を得ることができる。
(Curing accelerator)
The resin composition can contain a curing accelerator as needed. Examples of the curing accelerator include a phosphorus compound, a tertiary amine, imidazole, a metal salt of an organic acid, a Lewis acid, and an amine complex. In particular, when used as a build-up material application or a circuit board application, dimethylaminopyridine or imidazole is preferred from the viewpoint of excellent heat resistance, dielectric properties, solder resistance, and the like. In particular, when used as a semiconductor encapsulant, triphenylphosphine is used for phosphorus compounds and 1,8-diazabicyclo is used for tertiary amines because of its excellent curability, heat resistance, electrical properties, and moisture resistance reliability. -[5.4.0] -undecene (DBU) is preferred. The amount of the curing accelerator used is preferably in the range of 0.01 to 5.0 parts by mass, and more preferably 0.01 to 2.0 parts by mass, based on 100 parts by mass of the α-naphthol biphenylaralkyl type epoxy resin. More preferably, it is within the range. When the content is in the above range, a sufficient curing reaction rate can be obtained, and a resin composition that gives a cured product having more excellent heat resistance can be obtained.
(他の添加成分)
 樹脂組成物は、更にその他の樹脂成分を含有しても良い。その他の樹脂成分としては、例えば、シアン酸エステル樹脂;ビスマレイミド樹脂;ベンゾオキサジン樹脂;ジアリルビスフェノールやトリアリルイソシアヌレートに代表されるアリル基含有樹脂;ポリリン酸エステルやリン酸エステル-カーボネート共重合体等を挙げることができる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
(Other additives)
The resin composition may further contain other resin components. Other resin components include, for example, cyanate ester resin; bismaleimide resin; benzoxazine resin; allyl group-containing resin represented by diallyl bisphenol and triallyl isocyanurate; polyphosphate and phosphate-carbonate copolymer And the like. These may be used alone or in combination of two or more.
 これらその他の樹脂成分の配合割合は特に限定されず、所望の硬化物性能等に応じて適宜調整することができる。配合割合の一例としては、全樹脂組成物中1~50質量%の範囲とすることができる。 配合 The mixing ratio of these other resin components is not particularly limited, and can be appropriately adjusted according to the desired cured product performance and the like. As an example of the mixing ratio, it can be in the range of 1 to 50% by mass in the whole resin composition.
 樹脂組成物は、必要に応じて、難燃剤、無機質充填材、シランカップリング剤、離型剤、顔料、乳化剤等の各種添加剤を含有してもよい。難燃剤としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム、リン酸アミド等の無機リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物;トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等の窒素系難燃剤;シリコーンオイル、シリコーンゴム、シリコーン樹脂等のシリコーン系難燃剤;金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等の無機難燃剤等を挙げることができる。これら難燃剤を用いる場合は、全樹脂組成物中0.1~20質量%の範囲であることが好ましい。 The resin composition may contain various additives such as a flame retardant, an inorganic filler, a silane coupling agent, a release agent, a pigment, and an emulsifier, if necessary. Examples of the flame retardant include inorganic phosphorus compounds such as ammonium phosphate such as red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and phosphate amides; phosphate ester compounds, phosphonic acid Compound, phosphinic acid compound, phosphine oxide compound, phosphorane compound, organic nitrogen-containing phosphorus compound, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) ) Cyclic organic phosphorus such as -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide Compound and its compound such as epoxy resin and phenol resin Organic phosphorus compounds such as derivatives reacted with: nitrogen-based flame retardants such as triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines; silicone-based flame retardants such as silicone oils, silicone rubbers, and silicone resins; metal hydroxides; Inorganic flame retardants such as metal oxides, metal carbonate compounds, metal powders, boron compounds, and low-melting glass can be used. When these flame retardants are used, the content is preferably in the range of 0.1 to 20% by mass of the whole resin composition.
 無機質充填材は、例えば、樹脂組成物を半導体封止材料用途に用いる場合などに配合される。無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等を挙げることができる。中でも、無機質充填材をより多く配合することが可能となることから、溶融シリカが好ましい。溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、かつ、樹脂組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は樹脂成分100質量部に対して、0.5~95質量部の範囲で配合することが好ましい。 The inorganic filler is mixed, for example, when the resin composition is used for a semiconductor sealing material. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. Among them, fused silica is preferred because it allows more inorganic filler to be blended. Fused silica can be used in either crushed or spherical form.However, in order to increase the blending amount of the fused silica, and to suppress an increase in the melt viscosity of the resin composition, a spherical form is mainly used. preferable. Further, in order to increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The filling rate is preferably in the range of 0.5 to 95 parts by mass with respect to 100 parts by mass of the resin component.
 樹脂組成物の製法は、特に限定されず、例えば、上記した各成分を撹拌装置や3本ロール等を用いて、例えば0℃~200℃で均一に混合することにより得ることができる。 (4) The method for producing the resin composition is not particularly limited. For example, the resin composition can be obtained by uniformly mixing the above-mentioned components at, for example, 0 ° C. to 200 ° C. using a stirrer or a three-roll mill.
[硬化物]
 樹脂組成物は、公知慣用の熱硬化法により、例えば、20~250℃程度の温度範囲で加熱硬化させ、成型することができる。
 本実施形態に係る樹脂組成物の硬化物は、140℃以上のガラス転移温度を有し耐熱性に優れているとともに、1GHzにおける誘電正接が2.0×10-3未満という低い誘電正接を示すことができ、密着性も従来材料と同等以上である。以上のことから、プリント配線基板や半導体封止材料、レジスト材料等の電子材料用途に好ましく用いることができる。
[Cured product]
The resin composition can be molded by heating and curing, for example, in a temperature range of about 20 to 250 ° C. by a known and commonly used thermosetting method.
The cured product of the resin composition according to the present embodiment has a glass transition temperature of 140 ° C. or higher, is excellent in heat resistance, and has a low dielectric loss tangent at 1 GHz of less than 2.0 × 10 −3. And the adhesion is equal to or higher than that of the conventional material. From the above, it can be preferably used for electronic materials such as printed wiring boards, semiconductor encapsulation materials, and resist materials.
[プリント配線基板等]
 樹脂組成物をプリント配線基板用途やビルドアップ接着フィルム用途に用いる場合、一般には有機溶剤を配合して希釈して用いることが好ましい。有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等を挙げることができる。有機溶剤の種類や配合量は樹脂組成物の使用環境に応じて適宜調整できるが、例えば、プリント配線基板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、不揮発分が40~80質量%となる割合で使用することが好ましい。ビルドアップ接着フィルム用途では、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、不揮発分が30~70質量%となる割合で使用することが好ましい。
[Printed circuit boards, etc.]
When the resin composition is used for a printed wiring board application or a build-up adhesive film application, it is generally preferable to mix and dilute an organic solvent before use. Examples of the organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, and the like. The type and amount of the organic solvent can be appropriately adjusted according to the use environment of the resin composition.For example, in the case of a printed wiring board, a polar solvent having a boiling point of 160 ° C. or lower such as methyl ethyl ketone, acetone, and dimethylformamide may be used. Preferably, it is used in such a proportion that the non-volatile content is 40 to 80% by mass. For build-up adhesive film applications, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, etc., acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, etc .; It is preferable to use a solvent, an aromatic hydrocarbon solvent such as toluene or xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, or the like, and it is preferable to use a non-volatile content in a ratio of 30 to 70% by mass.
 樹脂組成物を用いてプリント配線基板を製造する方法は、例えば、樹脂組成物を補強基材に含浸し硬化させてプリプレグを得、これと銅箔とを重ねて加熱圧着させる方法を挙げることができる。補強基材としては、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布等を挙げることができる。樹脂組成物の含浸量は特に限定されないが、通常、プリプレグ中の樹脂分が20~80質量%となるように調製することが好ましい。 The method of manufacturing a printed wiring board using a resin composition includes, for example, a method in which a prepreg is obtained by impregnating a resin composition into a reinforcing base material and curing the resin composition, and then laminating the prepreg with a copper foil and heat-pressing. it can. Examples of the reinforcing substrate include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. The impregnation amount of the resin composition is not particularly limited, but usually, it is preferably prepared so that the resin content in the prepreg is 20 to 80% by mass.
[半導体封止材料]
 樹脂組成物を半導体封止材料用途に用いる場合、一般には上記のような無機質充填材を配合することが好ましい。半導体封止材料は、例えば、押出機、ニーダー、ロール等を用いて配合物を混合して調製することができる。得られた半導体封止材料を用いて半導体パッケージを成型する方法は、例えば、該半導体封止材料を注型或いはトランスファー成形機、射出成型機などを用いて成形し、更に50~200℃の温度条件下で2~10時間加熱する方法を挙げることができ、このような方法により、成形物である半導体装置を得ることができる。
[Semiconductor sealing material]
When the resin composition is used for a semiconductor encapsulating material, it is generally preferable to mix the above-mentioned inorganic filler. The semiconductor encapsulating material can be prepared by mixing the compound using an extruder, a kneader, a roll, or the like, for example. A method for molding a semiconductor package using the obtained semiconductor encapsulation material is, for example, casting the semiconductor encapsulation material using a transfer molding machine, an injection molding machine, or the like, and further molding the semiconductor package at a temperature of 50 to 200 ° C. A method of heating under the conditions for 2 to 10 hours can be mentioned, and a semiconductor device as a molded product can be obtained by such a method.
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。以下において「部」、「%」は特に断りがない限り質量基準である。なお、軟化点測定、GPC測定及び溶融粘度は以下の条件にて測定した。 The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. In the following, “parts” and “%” are based on mass unless otherwise specified. In addition, softening point measurement, GPC measurement, and melt viscosity were measured on condition of the following.
(1)軟化点測定
 JIS K7234に準拠した。
(2)GPC測定
 装置:東ソー株式会社製「HLC-8220 GPC」により下記の条件下に測定した。
 ・カラム:東ソー株式会社製ガードカラム「HXL-L」
        +東ソー株式会社製「TSK-GEL  G2000HXL」
        +東ソー株式会社製「TSK-GEL  G2000HXL」
        +東ソー株式会社製「TSK-GEL  G3000HXL」
        +東ソー株式会社製「TSK-GEL  G4000HXL」
 ・カラム温度: 40℃、
 ・溶媒:テトラヒドロフラン
 ・流速:1mL/min
 ・検出器:RI
(3)溶融粘度測定
 (東亜工業株式会社)製「コーンプレート粘度計CV-1S」により測定した。
(1) Measurement of softening point Based on JIS K7234.
(2) GPC Measurement Apparatus: Measured under the following conditions using “HLC-8220 GPC” manufactured by Tosoh Corporation.
・ Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
-Column temperature: 40 ° C,
・ Solvent: tetrahydrofuran ・ Flow rate: 1mL / min
・ Detector: RI
(3) Melt Viscosity Measurement The melt viscosity was measured by “Cone Plate Viscometer CV-1S” manufactured by Toa Industry Co., Ltd.
<エポキシ樹脂の合成>
[合成例1]α-ナフトールビフェニルアラルキル型樹脂(A-1)の合成
 撹拌機、冷却管、及び窒素封入口が備わったフラスコに、窒素ガスを吹き込みながら、α-ナフトール360部、トルエン586部、ビスクロロメチルビフェニル377部を仕込み、80℃に加熱した。ここに、49%水酸化ナトリウム水溶液245部を1時間かけて滴下したのち、90℃に加熱して11時間ホールドした。85%リン酸を使用してpHが中性になるまで中和し、撹拌を停止し下層を抜き出した。パラトルエンスルホン酸15部を添加し、揮発成分を留去しながら2時間かけて180℃まで加熱したのち、49%水酸化ナトリウム水溶液を使用してpHが中性になるまで中和し、内温を維持しながら減圧し、揮発分を留去したのち、得られた樹脂を取り出してα-ナフトールビフェニルアラルキル樹脂(A-1)を得た。水酸基当量は272g/eqであった。
<Synthesis of epoxy resin>
[Synthesis Example 1] Synthesis of α-naphthol biphenylaralkyl-type resin (A-1) While blowing nitrogen gas into a flask equipped with a stirrer, a condenser, and a nitrogen inlet, 360 parts of α-naphthol and 586 parts of toluene were added. And 377 parts of bischloromethylbiphenyl, and heated to 80 ° C. Here, 245 parts of a 49% sodium hydroxide aqueous solution was added dropwise over 1 hour, and then heated to 90 ° C. and held for 11 hours. The mixture was neutralized with 85% phosphoric acid until the pH became neutral, the stirring was stopped, and the lower layer was extracted. After adding 15 parts of p-toluenesulfonic acid and heating to 180 ° C. over 2 hours while distilling off volatile components, the mixture was neutralized with a 49% aqueous sodium hydroxide solution until the pH became neutral. After reducing the pressure while maintaining the temperature and distilling off the volatile components, the resulting resin was taken out to obtain α-naphthol biphenylaralkyl resin (A-1). The hydroxyl equivalent was 272 g / eq.
[合成例2]α-ナフトールビフェニルアラルキル型エポキシ樹脂(A-2)の合成
 温度計、冷却管、及び撹拌器を取り付けたフラスコに窒素ガスパージを施しながら、合成例1-1で得られたα-ナフトールビフェニルアラルキル樹脂(A-1)272g(水酸基当量1.0g/eq)、エピクロルヒドリン740g(8.0モル)、n-ブタノール53gを仕込み溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220g(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、150℃減圧下で未反応エピクロルヒドリンを留去した。次に、得られた粗エポキシ樹脂にメチルイソブチルケトン600gとn-ブタノール100gとを加え溶解した。更にこの溶液に10重量%水酸化ナトリウム水溶液15部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水200gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去してエポキシ樹脂(A-2)を得た。得られたエポキシ樹脂(A-2)の軟化点は100℃であり、エポキシ当量は325g/eqであった。図1に、得られたエポキシ樹脂(A-2)のGPCチャートを示す。
[Synthesis Example 2] Synthesis of α-naphthol biphenyl aralkyl type epoxy resin (A-2) While purging nitrogen gas to a flask equipped with a thermometer, a cooling tube, and a stirrer, the α obtained in Synthesis Example 1-1. Then, 272 g of naphthol biphenyl aralkyl resin (A-1) (hydroxyl equivalent 1.0 g / eq), 740 g (8.0 mol) of epichlorohydrin and 53 g of n-butanol were charged and dissolved. After the temperature was raised to 50 ° C., 220 g (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and then the reaction was further performed at 50 ° C. for 1 hour. After the reaction was completed, unreacted epichlorohydrin was distilled off under reduced pressure at 150 ° C. Next, 600 g of methyl isobutyl ketone and 100 g of n-butanol were added to and dissolved in the obtained crude epoxy resin. Further, 15 parts of a 10% by weight aqueous sodium hydroxide solution was added to the solution, and the mixture was reacted at 80 ° C. for 2 hours. After that, washing with 200 g of water was repeated three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after microfiltration, the solvent was distilled off under reduced pressure to obtain an epoxy resin (A-2). The obtained epoxy resin (A-2) had a softening point of 100 ° C. and an epoxy equivalent of 325 g / eq. FIG. 1 shows a GPC chart of the obtained epoxy resin (A-2).
[比較合成例1]α-ナフトールアラルキル樹脂(B-1)の合成
 ビスクロロメチルビフェニルをパラキシレンジクロリド263部に変更した以外は合成例1-1と同様に操作して、α-ナフトールアラルキル樹脂(B-1)を得た。水酸基当量は224g/eqであった。
[Comparative Synthesis Example 1] Synthesis of α-naphthol aralkyl resin (B-1) An α-naphthol aralkyl resin was prepared in the same manner as in Synthesis Example 1-1 except that bischloromethylbiphenyl was changed to 263 parts of paraxylene dichloride. (B-1) was obtained. The hydroxyl equivalent was 224 g / eq.
[比較合成例2]α-ナフトールアラルキル型エポキシ樹脂(B-2)の合成
 α-ナフトールビフェニルアラルキル樹脂(A-1)を比較合成例1で得られたα-ナフトールアラルキル樹脂(B-1)224部に変更した以外は、合成例2と同様の操作を行い、エポキシ樹脂(B-2)を得た。得られたエポキシ樹脂(B-2)の軟化点は83℃、エポキシ当量は274g/eqであった。図2に、得られたエポキシ樹脂(B-2)のGPCチャートを示す。
[Comparative Synthesis Example 2] Synthesis of α-naphthol aralkyl type epoxy resin (B-2) α-naphthol biphenyl aralkyl resin (A-1) was obtained from α-naphthol aralkyl resin (B-1) obtained in Comparative Synthesis Example 1. An epoxy resin (B-2) was obtained in the same manner as in Synthesis Example 2 except that the amount was changed to 224 parts. The obtained epoxy resin (B-2) had a softening point of 83 ° C. and an epoxy equivalent of 274 g / eq. FIG. 2 shows a GPC chart of the obtained epoxy resin (B-2).
[比較合成例3]β-ナフトールアラルキル樹脂(B-3)の合成
 ビスクロロメチルビフェニルをパラキシレンジクロリド263部に変更し、α-ナフトールをβ―ナフトール360部に変更した以外は合成例1と同様に操作して、β-ナフトールアラルキル樹脂(B-3)を得た。水酸基当量は224g/eqであった。
[Comparative Synthesis Example 3] Synthesis of β-naphthol aralkyl resin (B-3) Synthesis Example 1 was the same as that of Example 1, except that bischloromethylbiphenyl was changed to 263 parts of paraxylene dichloride and α-naphthol was changed to 360 parts of β-naphthol. By the same operation, β-naphthol aralkyl resin (B-3) was obtained. The hydroxyl equivalent was 224 g / eq.
[比較合成例4]β-ナフトールアラルキル型エポキシ樹脂(B-4)の合成
 α-ナフトールビフェニルアラルキル樹脂(A-1)を比較合成例3で得られたβ-ナフトールアラルキル樹脂(B-3)224部に変更した以外は合成例2と同様の操作を行い、エポキシ樹脂(B-4)を得た。得られたエポキシ樹脂(B-4)の軟化点は95℃、エポキシ当量は292g/eqであった。図3に、得られたエポキシ樹脂(B-4)のGPCチャートを示す。
[Comparative Synthesis Example 4] Synthesis of β-naphthol aralkyl type epoxy resin (B-4) α-naphthol biphenyl aralkyl resin (A-1) was obtained from Comparative Synthesis Example 3 as β-naphthol aralkyl resin (B-3). An epoxy resin (B-4) was obtained in the same manner as in Synthesis Example 2 except that the amount was changed to 224 parts. The obtained epoxy resin (B-4) had a softening point of 95 ° C. and an epoxy equivalent of 292 g / eq. FIG. 3 shows a GPC chart of the obtained epoxy resin (B-4).
[比較合成例5]メトキシ変性α-ナフトールビフェニルアラルキル樹脂(B-5)の合成
 撹拌機、冷却管、及び窒素封入口が備わったフラスコに、窒素ガスを吹き込みながら、α-ナフトール360部、パラキシレングリコールジメチルエーテル208部、パラトルエンスルホン酸11部を仕込み、揮発分を留去しながら内温180℃まで加熱した。そのまま2時間ホールドしたのち、49%水酸化ナトリウム水溶液を使用してpHが中性になるまで中和した。190℃まで加熱後、内温を維持しながら減圧、水蒸気蒸留を行い、揮発分を留去した。得られた樹脂を取り出してメトキシ変性α-ナフトールビフェニルアラルキル樹脂(B-5)を得た。水酸基当量は298g/eqであった。GPCの2核体ピークから計算したメトキシ化率は20%であった。
[Comparative Synthesis Example 5] Synthesis of methoxy-modified α-naphthol biphenylaralkyl resin (B-5) While blowing nitrogen gas into a flask equipped with a stirrer, a cooling tube, and a nitrogen charging port, 360 parts of α-naphthol 208 parts of xylene glycol dimethyl ether and 11 parts of p-toluenesulfonic acid were charged, and heated to an internal temperature of 180 ° C. while distilling off volatile components. After holding for 2 hours, the mixture was neutralized with a 49% aqueous sodium hydroxide solution until the pH became neutral. After heating to 190 ° C., steam distillation was performed under reduced pressure while maintaining the internal temperature to remove volatile components. The obtained resin was taken out to obtain a methoxy-modified α-naphthol biphenylaralkyl resin (B-5). The hydroxyl equivalent was 298 g / eq. The methoxylation ratio calculated from the binuclear peak of GPC was 20%.
[比較合成例6]メトキシ変性α-ナフトールビフェニルアラルキル型エポキシ樹脂(B-6)の合成
 α-ナフトールビフェニルアラルキル樹脂(A-1)を比較合成例5で得られたメトキシ変性α-ナフトールビフェニルアラルキル樹脂(B-5)298部に変更した以外は、合成例2と同様の操作を行い、エポキシ樹脂(B-6)を得た。得られたエポキシ樹脂の軟化点は96℃、エポキシ当量は357g/eqであった。図4に、得られたエポキシ樹脂(B-6)のGPCチャートを示す。
[Comparative Synthesis Example 6] Synthesis of methoxy-modified α-naphthol biphenylaralkyl type epoxy resin (B-6) The α-naphthol biphenyl aralkyl resin (A-1) was obtained by the methoxy-modified α-naphthol biphenyl aralkyl obtained in Comparative Synthesis Example 5. An epoxy resin (B-6) was obtained in the same manner as in Synthesis Example 2 except that the amount of the resin (B-5) was changed to 298 parts. The obtained epoxy resin had a softening point of 96 ° C. and an epoxy equivalent of 357 g / eq. FIG. 4 shows a GPC chart of the obtained epoxy resin (B-6).
<活性エステル樹脂の合成>
[合成例3]活性エステル樹脂(C-1)の合成
 温度計、滴下ロート、冷却管、分留管、及び攪拌器を取り付けたフラスコにイソフタル酸クロリド202.0g(酸クロリド基のモル数:2.0モル)及びトルエン1250gを仕込み、系内を減圧窒素置換し、溶解させた。次いで、α-ナフトール288.0g(2.0モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、テトラブチルアンモニウムブロマイド0.63gを溶解させ、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液420gを3時間かけて滴下した。次いでこの条件下で1.0時間攪拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン層に水を投入して約15分間攪拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、熱減圧下乾燥して活性エステル樹脂(C-1)を得た。この活性エステル樹脂1のエステル化当量は209g/eq、溶融粘度は0.04dPa・s(200℃)であった。軟化点は79℃であった。なお、活性エステル樹脂C-1は、上記した式(2)においてXがα―ナフトール残基であり、nが0である示す構造を有する活性エステル樹脂に相当する。
<Synthesis of active ester resin>
[Synthesis Example 3] Synthesis of active ester resin (C-1) In a flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionating tube, and a stirrer, 202.0 g of isophthalic acid chloride (moles of acid chloride group: 2.0 mol) and 1250 g of toluene, and the system was purged with nitrogen under reduced pressure and dissolved. Next, 288.0 g (2.0 mol) of α-naphthol was charged, and the system was replaced with nitrogen under reduced pressure and dissolved. After that, 0.63 g of tetrabutylammonium bromide was dissolved, and 420 g of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours while controlling the inside of the system to 60 ° C. or less while purging with nitrogen gas. Then, stirring was continued under these conditions for 1.0 hour. After the completion of the reaction, the mixture was allowed to stand and separated to remove an aqueous layer. Further, water was added to the toluene layer in which the reactant was dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, drying was performed under reduced pressure under heat to obtain an active ester resin (C-1). The esterification equivalent of this active ester resin 1 was 209 g / eq, and the melt viscosity was 0.04 dPa · s (200 ° C.). The softening point was 79 ° C. The active ester resin C-1 corresponds to an active ester resin having a structure in which X is an α-naphthol residue and n is 0 in the above formula (2).
[合成例4]活性エステル樹脂(C-2)の合成
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにジシクロペンタジエンとフェノールとの重付加反応樹脂(水酸基当量:165g/eq、軟化点85℃)165g、α-ナフトール72g(0.5モル)、及びトルエン630gを仕込み、系内を減圧窒素置換し溶解させた。次いで、イソフタル酸クロライド152g(0.75モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液210gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン層に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、熱減圧下乾燥して活性エステル樹脂(C-2)を合成した。この活性エステル樹脂(C-2)のエステル化当量は223g/eq、軟化点は150℃であった。溶融粘度は100dPa・s(200℃)であった。なお、活性エステル樹脂(C-2)は、上記した式(2)においてXがα―ナフトール残基であり、nが平均して2であり、Yが化学式(4)で表され、Zが(5-3)、Arがフェノール残基である構造を有する活性エステル樹脂に相当する。
[Synthesis Example 4] Synthesis of Active Ester Resin (C-2) A polyaddition reaction resin of dicyclopentadiene and phenol (hydroxyl equivalent: in a flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionating tube, and a stirrer) 165 g, 165 g / eq, softening point of 85 ° C.), 72 g (0.5 mol) of α-naphthol, and 630 g of toluene were charged, and the system was dissolved under reduced pressure nitrogen. Next, 152 g (0.75 mol) of isophthalic acid chloride was charged, and the system was replaced with nitrogen under reduced pressure to dissolve it. Thereafter, the inside of the system was controlled at 60 ° C. or lower while nitrogen gas purge was performed, and 210 g of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. Then, stirring was continued under these conditions for 1.0 hour. After the completion of the reaction, the mixture was allowed to stand and separated to remove an aqueous layer. Further, water was added to the toluene layer in which the reactant was dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, drying was performed under reduced pressure under heat to synthesize an active ester resin (C-2). The esterification equivalent of this active ester resin (C-2) was 223 g / eq, and the softening point was 150 ° C. The melt viscosity was 100 dPa · s (200 ° C.). In the active ester resin (C-2), in the above formula (2), X is an α-naphthol residue, n is 2 on average, Y is represented by the chemical formula (4), and Z is (5-3) It corresponds to an active ester resin having a structure in which Ar 1 is a phenol residue.
[実施例1]
 α-ナフトールビフェニルアラルキル型エポキシ樹脂(A-2)、活性エステル(C-1)、及び硬化促進剤(N,N-ジメチル-4-アミノピリジン、和光純薬工業株式会社製、特級)を、表1に示す配合で、熱風乾燥機を用いて150℃で加熱混合した後、冷却して固形化してエポキシ樹脂組成物を得た。
[Example 1]
α-naphthol biphenyl aralkyl type epoxy resin (A-2), active ester (C-1), and curing accelerator (N, N-dimethyl-4-aminopyridine, special grade, manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was heated and mixed at 150 ° C. using a hot air drier according to the composition shown in Table 1, and then cooled and solidified to obtain an epoxy resin composition.
[比較例1~4]
 表1に示す配合とした以外は実施例1と同様にして、エポキシ樹脂組成物を得た。なお、比較例4では、エポキシ樹脂として、日本化薬株式会社製のフェノール・ビフェニルアラルキル型エポキシ樹脂(エポキシ当量278g/eq)を用いた。
[Comparative Examples 1 to 4]
An epoxy resin composition was obtained in the same manner as in Example 1 except that the composition shown in Table 1 was used. In Comparative Example 4, a phenol / biphenylaralkyl epoxy resin (epoxy equivalent: 278 g / eq) manufactured by Nippon Kayaku Co., Ltd. was used.
<評価>
 実施例及び比較例のエポキシ樹脂組成物を用いて、以下の方法で作製した試験片について、以下の方法で耐熱性及び誘電特性を評価した。結果を表1に示した。
<Evaluation>
Using the epoxy resin compositions of Examples and Comparative Examples, test pieces prepared by the following methods were evaluated for heat resistance and dielectric properties by the following methods. The results are shown in Table 1.
[試験片の作成]
 実施例及び比較例のエポキシ樹脂組成物を150℃プレスにて10分間プレスして、硬化させ、成形した後、更に175℃で5時間加熱して、80mm×100mm×厚さ1.6mmの試験片を得た。
[Preparation of test piece]
The epoxy resin compositions of Examples and Comparative Examples were pressed at 150 ° C. for 10 minutes, cured, molded, then heated at 175 ° C. for 5 hours, and tested at 80 mm × 100 mm × 1.6 mm thick. I got a piece.
[耐熱性(ガラス転移温度)]
 粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用いて、弾性率変化が最大となる(tanδが最も大きい)温度をガラス転移温度として評価した。
[Heat resistance (glass transition temperature)]
Using a viscoelasticity measuring device (DMA: Rheometrics solid viscoelasticity measuring device RSAII, rectangular tension method; frequency 1 Hz, heating rate 3 ° C./min), the change in elastic modulus becomes maximum (tan δ is the largest). The temperature was evaluated as the glass transition temperature.
[誘電正接]
 JIS-C-6481に準拠し、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」により、絶乾後23℃、湿度50%の室内に24時間保管した後の試験片の1GHzでの値を測定した。実施例1のエポキシ樹脂組成物は、硬化物の誘電正接が0.0020以下であり、優れた誘電特性を有する硬化物を得ることができる。
[Dielectric loss tangent]
Based on JIS-C-6481, the value at 1 GHz of the test specimen after being stored in a room at 23 ° C. and 50% humidity for 24 hours after absolute drying using an impedance material analyzer “HP4291B” manufactured by Agilent Technologies, Inc. Was measured. In the epoxy resin composition of Example 1, the cured product has a dielectric loss tangent of 0.0020 or less, and a cured product having excellent dielectric properties can be obtained.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[実施例2]
 エポキシ樹脂(A-2)及び活性エステル樹脂(C-2)を、表2に示す配合で計量したのち、メチルエチルケトン(MEK)にて不揮発分60%に調整し自転公転ミキサーを使用して溶解した。触媒であるN,N-ジメチル-4-アミノピリジンをゲルタイムが5~7分以内となるように調整して配合した後、下記の通りの条件でガラスクロス積層板を作成した。
(積層板の作成条件)
 基材:日東紡績株式会社製ガラスクロス「#2116」(210×280mm)
 銅箔:JX日鉱日石金属株式会社製「JTC箔」(18μm)
 プライ数:6
 プリプレグ化条件:160℃
 硬化条件:200℃、40kg/cmで1.5時間
 成型後板厚:0.8mm
[Example 2]
The epoxy resin (A-2) and the active ester resin (C-2) were weighed according to the formulations shown in Table 2, adjusted to a nonvolatile content of 60% with methyl ethyl ketone (MEK), and dissolved using a rotation revolution mixer. . After N, N-dimethyl-4-aminopyridine as a catalyst was adjusted and blended so that the gel time was within 5 to 7 minutes, a glass cloth laminate was prepared under the following conditions.
(Conditions for creating a laminate)
Base material: Nitto Boseki Co., Ltd. glass cloth “# 2116” (210 × 280 mm)
Copper foil: “JTC foil” (18 μm) manufactured by JX Nippon Oil & Metal Corporation
Number of plies: 6
Prepreg formation condition: 160 ° C
Curing conditions: 200 ° C., 40 kg / cm 2 for 1.5 hours Sheet thickness after molding: 0.8 mm
[比較例5,6]
 表2の配合とした以外は、実施例2と同様にして、積層板を作成した。
[Comparative Examples 5 and 6]
A laminate was prepared in the same manner as in Example 2 except that the composition was as shown in Table 2.
<評価>
[ピール強度]
 実施例及び比較例の積層板について、JIS-6911に準拠し、先で得た積層板を幅10mm、長さ200mmのサイズに切り出し、これを試験片として銅箔のピール強度を測定した結果を表2に示した。実施例の積層板は従来と同等かそれ以上のピール強度を有している。
<Evaluation>
[Peel strength]
With respect to the laminates of Examples and Comparative Examples, according to JIS-6911, the laminates obtained above were cut out to a size of 10 mm in width and 200 mm in length, and the peel strength of the copper foil was measured using these as test specimens. The results are shown in Table 2. The laminate of the embodiment has a peel strength equal to or higher than the conventional one.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014

Claims (8)

  1.  α-ナフトールビフェニルアラルキル型エポキシ樹脂、及び硬化剤を含有し、前記硬化剤が、活性エステル構造を有する、エポキシ樹脂組成物。 (4) An epoxy resin composition comprising an α-naphthol biphenylaralkyl type epoxy resin and a curing agent, wherein the curing agent has an active ester structure.
  2.  前記α-ナフトールビフェニルアラルキル型エポキシ樹脂が、以下の式(1)で表される構造を有する、請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素原子、ハロゲン原子、グリシジルオキシ基、アリル基、アルキル基、アルコキシ基、又はアリール基を示す。nは1~20の整数である。)
    2. The epoxy resin composition according to claim 1, wherein the α-naphthol biphenylaralkyl type epoxy resin has a structure represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 represents a hydrogen atom, a halogen atom, a glycidyloxy group, an allyl group, an alkyl group, an alkoxy group, or an aryl group. N is an integer of 1 to 20.)
  3.  前記硬化剤が、以下の式(2)で表される構造を有する、請求項1又は2に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Xは1価のフェノール性水酸基を含有する化合物残基を表し、Yは2価のフェノール性水酸基を含有する化合物残基を表す。nは0~20の整数である。)
    The epoxy resin composition according to claim 1, wherein the curing agent has a structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), X represents a compound residue containing a monovalent phenolic hydroxyl group, Y represents a compound residue containing a divalent phenolic hydroxyl group, and n is an integer of 0 to 20. .)
  4.  前記硬化剤が、フェノール性水酸基を2つ以上有する化合物と芳香族モノカルボン酸またはその酸ハロゲン化物とを必須の反応原料とする活性エステル化合物又は樹脂である、請求項1又は2に記載のエポキシ樹脂組成物。 The epoxy according to claim 1 or 2, wherein the curing agent is an active ester compound or resin using a compound having two or more phenolic hydroxyl groups and an aromatic monocarboxylic acid or an acid halide thereof as an essential reaction raw material. Resin composition.
  5.  さらに硬化促進剤を含有する、請求項1から4のいずれか一項に記載のエポキシ樹脂組成物。 (5) The epoxy resin composition according to any one of (1) to (4), further comprising a curing accelerator.
  6.  請求項1から5のいずれか一項に記載のエポキシ樹脂組成物の硬化物。 A cured product of the epoxy resin composition according to any one of claims 1 to 5.
  7.  請求項1から5のいずれか一項に記載のエポキシ樹脂組成物を用いたプリント配線基板。 A printed wiring board using the epoxy resin composition according to any one of claims 1 to 5.
  8.  請求項1から5のいずれか一項に記載のエポキシ樹脂組成物を用いた半導体封止材料。 A semiconductor encapsulating material using the epoxy resin composition according to any one of claims 1 to 5.
PCT/JP2019/020415 2018-06-27 2019-05-23 Epoxy resin composition and cured product thereof WO2020003824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020527287A JP7049605B2 (en) 2018-06-27 2019-05-23 Epoxy resin composition and its cured product
CN201980042792.XA CN112313260A (en) 2018-06-27 2019-05-23 Epoxy resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018121553 2018-06-27
JP2018-121553 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020003824A1 true WO2020003824A1 (en) 2020-01-02

Family

ID=68986399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020415 WO2020003824A1 (en) 2018-06-27 2019-05-23 Epoxy resin composition and cured product thereof

Country Status (4)

Country Link
JP (1) JP7049605B2 (en)
CN (1) CN112313260A (en)
TW (1) TWI802711B (en)
WO (1) WO2020003824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805801A (en) * 2022-06-08 2022-07-29 黑龙江省科学院石油化学研究院 Cyanate ester resin with low hygroscopicity and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195981B (en) * 2021-12-24 2023-10-13 广东省科学院化工研究所 Biphenyl epoxy resin and synthetic method and application thereof
CN115466373B (en) * 2022-10-20 2024-01-30 湖南嘉盛德材料科技股份有限公司 Preparation method of naphthol biphenyl aralkyl type epoxy resin
CN115819317B (en) * 2022-12-27 2024-03-08 苏州生益科技有限公司 Active ester compound and resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304225A (en) * 1991-04-01 1992-10-27 Nippon Kayaku Co Ltd New compound, resin, resin composition, and cured article
JPH06271654A (en) * 1993-03-22 1994-09-27 Nippon Kayaku Co Ltd Naphthalene ring-containing resin, resin composition and its cured product
JP2002220359A (en) * 2001-01-26 2002-08-09 Nippon Shokubai Co Ltd Polyvalent phenol and epoxy resin derived from it
JP2009242559A (en) * 2008-03-31 2009-10-22 Dic Corp Epoxy resin composition and cured product of the same
WO2010061980A1 (en) * 2008-11-28 2010-06-03 味の素株式会社 Resin composition
JP2011252037A (en) * 2010-05-31 2011-12-15 Meiwa Kasei Kk Epoxy resin composition and semiconductor sealing material and laminated board using the same
JP2016028135A (en) * 2014-07-08 2016-02-25 Dic株式会社 Epoxy resin composition, curable resin composition, active ester, cured product, semiconductor sealing material, semiconductor device, prepreg, flexible wiring board, circuit board, build-up film, build-up substrate, fiber-reinforced composite material, and molding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304225A (en) * 1991-04-01 1992-10-27 Nippon Kayaku Co Ltd New compound, resin, resin composition, and cured article
JPH06271654A (en) * 1993-03-22 1994-09-27 Nippon Kayaku Co Ltd Naphthalene ring-containing resin, resin composition and its cured product
JP2002220359A (en) * 2001-01-26 2002-08-09 Nippon Shokubai Co Ltd Polyvalent phenol and epoxy resin derived from it
JP2009242559A (en) * 2008-03-31 2009-10-22 Dic Corp Epoxy resin composition and cured product of the same
WO2010061980A1 (en) * 2008-11-28 2010-06-03 味の素株式会社 Resin composition
JP2011252037A (en) * 2010-05-31 2011-12-15 Meiwa Kasei Kk Epoxy resin composition and semiconductor sealing material and laminated board using the same
JP2016028135A (en) * 2014-07-08 2016-02-25 Dic株式会社 Epoxy resin composition, curable resin composition, active ester, cured product, semiconductor sealing material, semiconductor device, prepreg, flexible wiring board, circuit board, build-up film, build-up substrate, fiber-reinforced composite material, and molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805801A (en) * 2022-06-08 2022-07-29 黑龙江省科学院石油化学研究院 Cyanate ester resin with low hygroscopicity and preparation method thereof
CN114805801B (en) * 2022-06-08 2023-07-25 黑龙江省科学院石油化学研究院 Cyanate resin with low hygroscopicity and preparation method thereof

Also Published As

Publication number Publication date
TW202006003A (en) 2020-02-01
TWI802711B (en) 2023-05-21
CN112313260A (en) 2021-02-02
JPWO2020003824A1 (en) 2021-05-20
JP7049605B2 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2020003824A1 (en) Epoxy resin composition and cured product thereof
JP3729821B2 (en) Non-halogen resin composition
JP5814431B2 (en) Phosphorus-containing phenolic resin and cured flame retardant epoxy resin containing the same
KR102583421B1 (en) Raw material composition for producing active ester resin, active ester resin and method for producing the same, and thermosetting resin composition and cured product thereof
JP7137152B2 (en) Active ester composition
CN109415484B (en) Active ester composition and cured product thereof
WO2018008411A1 (en) Active ester resin composition and cured product of same
TWI758471B (en) hardening composition
CN112714758B (en) Monofunctional phenol compound, active ester resin, method for producing the same, thermosetting resin composition, and cured product thereof
WO2018008410A1 (en) Active ester resin and cured product thereof
JP2018009129A (en) Active ester resin and cured product thereof
JP6332719B1 (en) Active ester resin and its cured product
KR102657745B1 (en) Monofunctional phenol compound, active ester resin and method for producing the same, and thermosetting resin composition and cured product thereof
JP6332721B1 (en) Active ester resin and its cured product
JP7228085B2 (en) Active ester compound and curable composition
JP7276665B2 (en) Active ester composition and semiconductor encapsulation material
WO2018173499A1 (en) Polyester resin and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825480

Country of ref document: EP

Kind code of ref document: A1