JP2018009129A - Active ester resin and cured product thereof - Google Patents

Active ester resin and cured product thereof Download PDF

Info

Publication number
JP2018009129A
JP2018009129A JP2016140418A JP2016140418A JP2018009129A JP 2018009129 A JP2018009129 A JP 2018009129A JP 2016140418 A JP2016140418 A JP 2016140418A JP 2016140418 A JP2016140418 A JP 2016140418A JP 2018009129 A JP2018009129 A JP 2018009129A
Authority
JP
Japan
Prior art keywords
group
active ester
compound
resin
phenolic hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016140418A
Other languages
Japanese (ja)
Other versions
JP6862701B2 (en
Inventor
泰 佐藤
Yasushi Sato
泰 佐藤
竜也 岡本
Tatsuya Okamoto
竜也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2016140418A priority Critical patent/JP6862701B2/en
Publication of JP2018009129A publication Critical patent/JP2018009129A/en
Application granted granted Critical
Publication of JP6862701B2 publication Critical patent/JP6862701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an active ester resin which has a low curing shrinkage rate and gives a cured product excellent in dielectric characteristics, a curable resin composition containing the same, a cured product thereof, a printed wiring board, and a semiconductor sealing material.SOLUTION: The active ester resin uses as essential reaction raw materials: a compound (A) having one phenolic hydroxyl group in the molecular structure; a phenolic hydroxyl group-containing resin (B) using as essential reaction raw materials a phenolic hydroxyl group-containing compound (b1) and a divinyl compound (b2); and an aromatic polycarboxylic acid or an acid halide thereof (C). The curable resin composition containing the active ester resin, the cured product thereof, the printed wiring board, and the semiconductor sealing material are also provided.SELECTED DRAWING: None

Description

本発明は、硬化収縮率が低く、かつ、硬化物における誘電特性に優れる活性エステル樹脂、これを含有する硬化性樹脂組成物、その硬化物、プリント配線基板及び半導体封止材料に関する。   The present invention relates to an active ester resin having a low cure shrinkage and excellent dielectric properties in a cured product, a curable resin composition containing the same, a cured product thereof, a printed wiring board, and a semiconductor sealing material.

半導体や多層プリント基板等に用いられる絶縁材料の技術分野では、各種電子部材の薄型化や信号の高速化及び高周波数化に伴い、これらの市場動向に合わせた新たな樹脂材料の開発が求められている。例えば、電子部材の薄型化に伴い熱による部材の「反り」が顕著化するが、これを抑えるために、硬化収縮率が低く寸法安定性の高い樹脂材料の開発が進められている。また、信号の高速化及び高周波数化に対しては、発熱等によるエネルギー損失を低減させるため、硬化物における誘電率と誘電正接との両値が共に低い樹脂材料の開発が進められている。   In the technical field of insulating materials used for semiconductors and multilayer printed circuit boards, development of new resin materials that meet these market trends is required as various electronic components become thinner and signals become faster and higher in frequency. ing. For example, as the electronic member becomes thinner, the “warping” of the member due to heat becomes more prominent. In order to suppress this, development of a resin material having a low curing shrinkage rate and high dimensional stability is underway. In addition, in order to reduce the energy loss due to heat generation or the like for increasing the signal speed and frequency, development of a resin material having both low values of dielectric constant and dielectric loss tangent in the cured product is underway.

硬化物における誘電率と誘電正接とが比較的低い樹脂材料として、ジシクロペンタジエン変性フェノール樹脂とα−ナフトールとをフタル酸クロライドでエステル化して得られる活性エステル樹脂をエポキシ樹脂の硬化剤として用いる技術が知られている(下記特許文献1参照)。特許文献1記載の活性エステル樹脂は、フェノールノボラック樹脂のような従来型の硬化剤を用いた場合と比較すると、硬化物における誘電率や誘電正接が低い特徴を有するが、昨今の市場要求レベルを満たすものではなく、特に誘電正接の値については一層の低減が求められていた。また、硬化収縮率について更なる低減が求められていた。   Technology that uses an active ester resin obtained by esterifying dicyclopentadiene-modified phenolic resin and α-naphthol with phthalic acid chloride as a curing agent for epoxy resin, as a resin material having a relatively low dielectric constant and dielectric loss tangent in the cured product Is known (see Patent Document 1 below). The active ester resin described in Patent Document 1 has a low dielectric constant and dielectric loss tangent in a cured product as compared with the case where a conventional curing agent such as a phenol novolac resin is used. However, the value of the dielectric loss tangent has been required to be further reduced. Further, there has been a demand for further reduction in curing shrinkage.

特開2004−169021号公報JP 2004-169021 A

従って、本発明が解決しようとする課題は、硬化収縮率が低く、かつ、硬化物における誘電特性に優れる活性エステル樹脂、これを含有する硬化性樹脂組成物、その硬化物、プリント配線基板及び半導体封止材料を提供することにある。   Accordingly, the problem to be solved by the present invention is an active ester resin having a low cure shrinkage and excellent dielectric properties in a cured product, a curable resin composition containing the same, a cured product thereof, a printed wiring board, and a semiconductor It is to provide a sealing material.

本発明者らは前記課題を解決すべく鋭意検討した結果、フェノール性水酸基含有化合物とジビニル化合物とを必須の反応原料とするフェノール性水酸基含有樹脂を用いて得られる活性エステル樹脂は、硬化収縮率が低く、かつ、硬化物における誘電率及び誘電正接が共に極めて低いことを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an active ester resin obtained using a phenolic hydroxyl group-containing resin having a phenolic hydroxyl group-containing compound and a divinyl compound as essential reaction raw materials has a cure shrinkage rate. Was found to be low and the dielectric constant and dielectric loss tangent of the cured product were both extremely low, leading to the completion of the present invention.

即ち、本発明は、分子構造中にフェノール性水酸基を一つ有する化合物(A)、フェノール性水酸基含有化合物(b1)とジビニル化合物(b2)とを必須の反応原料とするフェノール性水酸基含有樹脂(B)、及び芳香族ポリカルボン酸又はその酸ハロゲン化物(C)を必須の反応原料とすることを特徴とする活性エステル樹脂に関する。   That is, the present invention relates to a phenolic hydroxyl group-containing resin comprising a compound (A) having one phenolic hydroxyl group in the molecular structure, a phenolic hydroxyl group-containing compound (b1) and a divinyl compound (b2) as essential reaction materials ( The present invention relates to an active ester resin characterized by using B) and an aromatic polycarboxylic acid or an acid halide (C) thereof as an essential reaction raw material.

本発明は更に、前記活性エステル樹脂と、硬化剤とを含有する硬化性樹脂組成物に関する。   The present invention further relates to a curable resin composition containing the active ester resin and a curing agent.

本発明は更に、前記硬化性樹脂組成物の硬化物に関する。   The present invention further relates to a cured product of the curable resin composition.

本発明は更に、前記硬化性樹脂組成物を用いてなるプリント配線基板に関する。   The present invention further relates to a printed wiring board using the curable resin composition.

本発明は更に、前記硬化性樹脂組成物を用いてなる半導体封止材料に関する。   The present invention further relates to a semiconductor sealing material using the curable resin composition.

本発明によれば、硬化収縮率が低く、かつ、硬化物における誘電特性に優れる活性エステル樹脂、これを含有する硬化性樹脂組成物、その硬化物、プリント配線基板及び半導体封止材料を提供することができる。   According to the present invention, there are provided an active ester resin having a low cure shrinkage and excellent dielectric properties in a cured product, a curable resin composition containing the same, a cured product thereof, a printed wiring board, and a semiconductor sealing material. be able to.

図1は、実施例1で得られた活性エステル樹脂(1)のGPCチャート図である。1 is a GPC chart of the active ester resin (1) obtained in Example 1. FIG. 図2は、実施例2で得られた活性エステル樹脂(2)のGPCチャート図である。FIG. 2 is a GPC chart of the active ester resin (2) obtained in Example 2. 図3は、実施例3で得られた活性エステル樹脂(3)のGPCチャート図である。FIG. 3 is a GPC chart of the active ester resin (3) obtained in Example 3. 図4は、実施例4で得られた活性エステル樹脂(4)のGPCチャート図である。FIG. 4 is a GPC chart of the active ester resin (4) obtained in Example 4. 図5は、実施例5で得られた活性エステル樹脂(5)のGPCチャート図である。FIG. 5 is a GPC chart of the active ester resin (5) obtained in Example 5. 図6は、実施例6で得られた活性エステル樹脂(6)のGPCチャート図である。FIG. 6 is a GPC chart of the active ester resin (6) obtained in Example 6. 図7は、実施例6で得られた活性エステル樹脂(6)の13C−NMRチャート図である。FIG. 7 is a 13 C-NMR chart of the active ester resin (6) obtained in Example 6. 図8は、実施例6で得られた活性エステル樹脂(6)のMSチャート図である。FIG. 8 is an MS chart of the active ester resin (6) obtained in Example 6.

以下、本発明を詳細に説明する。
本発明の活性エステル樹脂は、分子構造中にフェノール性水酸基を一つ有する化合物(A)、フェノール性水酸基含有化合物(b1)とジビニル化合物(b2)とを必須の反応原料とするフェノール性水酸基含有樹脂(B)、及び芳香族ポリカルボン酸又はその酸ハロゲン化物(C)を必須の反応原料とすることを特徴とする。
Hereinafter, the present invention will be described in detail.
The active ester resin of the present invention contains a phenolic hydroxyl group containing a compound (A) having one phenolic hydroxyl group in the molecular structure, a phenolic hydroxyl group-containing compound (b1) and a divinyl compound (b2) as essential reaction materials. Resin (B) and aromatic polycarboxylic acid or its acid halide (C) are used as essential reaction raw materials.

前記分子構造中にフェノール性水酸基を一つ有する化合物(A)は、芳香環上に水酸基を一つ有する芳香族化合物であれば何れの化合物でもよく、その他の具体構造は特に限定されない。本発明では、分子構造中にフェノール性水酸基を一つ有する化合物(A)は一種類を単独で用いてもよいし、2種類以上を併用して用いてもよい。前記分子構造中にフェノール性水酸基を一つ有する化合物(A)は、具体的には、フェノール或いはフェノールの芳香核上に一つ乃至複数の置換基を有するフェノール化合物、ナフトール或いはナフトールの芳香核上に一つ乃至複数の置換基を有するナフトール化合物、アントラセノール或いはアントラセノールの芳香核上に一つ乃至複数の置換基を有するナフトール化合物等が挙げられる。芳香核上の置換基は、例えば、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換したアリール基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換したアラルキル基等が挙げられる。   The compound (A) having one phenolic hydroxyl group in the molecular structure may be any compound as long as it is an aromatic compound having one hydroxyl group on the aromatic ring, and other specific structures are not particularly limited. In the present invention, the compound (A) having one phenolic hydroxyl group in the molecular structure may be used alone or in combination of two or more. The compound (A) having one phenolic hydroxyl group in the molecular structure is specifically a phenol compound having one or more substituents on the aromatic nucleus of phenol or phenol, naphthol or naphthol aromatic nucleus. And naphthol compounds having one or more substituents, anthracenol, or naphthol compounds having one or more substituents on the aromatic nucleus of anthracenol. Substituents on the aromatic nucleus include, for example, aliphatic carbonization such as methyl, ethyl, vinyl, propyl, butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, and nonyl groups. Hydrogen group; alkoxy group such as methoxy group, ethoxy group, propyloxy group, butoxy group; halogen atom such as fluorine atom, chlorine atom, bromine atom; phenyl group, naphthyl group, anthryl group, and the aromatic nucleus An aryl group substituted by an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, etc .; a phenylmethyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and the aliphatic hydrocarbon group or alkoxy group on the aromatic nucleus thereof; And an aralkyl group substituted with a halogen atom or the like.

これらの中でも、硬化収縮率が低く、かつ、硬化物における誘電特性に優れる活性エステル樹脂となることからナフトール化合物が好ましく、1−ナフトール又は2−ナフトールが特に好ましい。   Among these, a naphthol compound is preferable because it has a low cure shrinkage and is excellent in dielectric properties in a cured product, and 1-naphthol or 2-naphthol is particularly preferable.

前記フェノール性水酸基含有樹脂(B)について、フェノール性水酸基含有化合物(b1)は、芳香環上に水酸基を有する芳香族化合物であれば何れの化合物でもよく、その他の具体構造は特に限定されない。具体的には、前記分子構造中にフェノール性水酸基を一つ有する化合物(A)として例示した種々の化合物と同様のものが挙げられる。また、フェノール性水酸基含有化合物(b1)は一種類を単独で用いてもよいし、2種類以上を併用して用いてもよい。中でも、硬化収縮率が低く、かつ、硬化物における誘電特性に優れる活性エステル樹脂となることからナフトール化合物が好ましく、1−ナフトール又は2−ナフトールが特に好ましい。   Regarding the phenolic hydroxyl group-containing resin (B), the phenolic hydroxyl group-containing compound (b1) may be any compound as long as it is an aromatic compound having a hydroxyl group on the aromatic ring, and the other specific structure is not particularly limited. Specific examples include the same compounds as the various compounds exemplified as the compound (A) having one phenolic hydroxyl group in the molecular structure. Moreover, a phenolic hydroxyl group containing compound (b1) may be used individually by 1 type, and may be used in combination of 2 or more types. Among them, a naphthol compound is preferable because it has a low cure shrinkage and is excellent in dielectric properties in a cured product, and 1-naphthol or 2-naphthol is particularly preferable.

前記ジビニル化合物(b2)は、前記フェノール性水酸基含有化合物(b1)と反応し、前記フェノール性水酸基含有化合物(b1)同士を結節させ得る化合物であれば何れの化合物でもよく、その他の具体構造は特に限定されない。また、ジビニル化合物(b2)は一種類を単独で用いてもよいし、2種類以上を併用して用いてもよい。中でも、硬化収縮率が低く、かつ、硬化物における誘電特性に優れる活性エステル樹脂となることから分子構造中に芳香環或いはシクロ環を有する化合物であることが好ましい。前記ジビニル化合物(b2)のより好ましい具体構造としては、例えば、下記構造式(1−1)〜(1−4)   The divinyl compound (b2) may be any compound as long as it can react with the phenolic hydroxyl group-containing compound (b1) and knot the phenolic hydroxyl group-containing compound (b1), and the other specific structures are as follows. There is no particular limitation. Moreover, a divinyl compound (b2) may be used individually by 1 type, and may be used in combination of 2 or more types. Among them, a compound having an aromatic ring or a cyclo ring in the molecular structure is preferable because it becomes an active ester resin having a low cure shrinkage and excellent dielectric properties in a cured product. As a more preferable specific structure of the divinyl compound (b2), for example, the following structural formulas (1-1) to (1-4)

Figure 2018009129
(式中Rはそれぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかであり、iは0又は1〜4の整数である。Yは炭素原子数1〜4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは1〜4の整数である。)
の何れかで表される化合物等が挙げられる。
Figure 2018009129
(In the formula, each R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group, and i is an integer of 0 or 1 to 4. Y is the number of carbon atoms. Any one of an alkylene group of 1-4, an oxygen atom, a sulfur atom, and a carbonyl group, j is an integer of 1-4.)
Or a compound represented by any of the above.

前記構造式(1−1)〜(1−4)中のRはそれぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかであり、具体的には、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換したアリール基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換したアラルキル基等が挙げられる。 R 1 in the structural formulas (1-1) to (1-4) is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. Specifically, , Aliphatic hydrocarbon groups such as methyl group, ethyl group, vinyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group; methoxy group, ethoxy group, An alkoxy group such as a propyloxy group and a butoxy group; a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; a phenyl group, a naphthyl group, an anthryl group, and the aliphatic hydrocarbon group and alkoxy group on the aromatic nucleus; Aryl groups substituted by halogen atoms, etc .; phenylmethyl group, phenylethyl group, naphthylmethyl group, naphthylethyl group, and aliphatic hydrocarbons on these aromatic nuclei And an aralkyl group substituted with a group, an alkoxy group, a halogen atom, or the like.

前記構造式(1−1)〜(1−4)の何れかで表される化合物の中でも、硬化収縮率が低く、かつ、硬化物における誘電特性に優れる活性エステル樹脂となることから前記構造式(1−1)で表される化合物であることが好ましい。   Among the compounds represented by any of the structural formulas (1-1) to (1-4), an active ester resin having a low curing shrinkage rate and excellent dielectric properties in a cured product is used. It is preferable that it is a compound represented by (1-1).

前記ジビニル化合物(b2)として前記構造式(1−1)〜(1−4)の何れかで表される化合物を用いた場合、前記フェノール性水酸基含有樹脂(B)は、フェノール性水酸基含有化合物(b1)が下記構造式(2)   When the compound represented by any of the structural formulas (1-1) to (1-4) is used as the divinyl compound (b2), the phenolic hydroxyl group-containing resin (B) is a phenolic hydroxyl group-containing compound. (B1) is the following structural formula (2)

Figure 2018009129
[式中Xは下記構造式(X−1)〜(X−4)の何れかで表される構造部位である。
Figure 2018009129
[Wherein X is a structural moiety represented by any of the following structural formulas (X-1) to (X-4).

Figure 2018009129
(式中Rはそれぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかであり、iは0又は1〜4の整数である。Yは炭素原子数1〜4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは1〜4の整数である。)]
で表される構造部位(α)で結節された分子構造を有するものとなる。
Figure 2018009129
(In the formula, each R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group, and i is an integer of 0 or 1 to 4. Y is the number of carbon atoms. Any one of an alkylene group of 1-4, an oxygen atom, a sulfur atom, and a carbonyl group, j is an integer of 1-4)
It has a molecular structure knotted at the structural site (α) represented by

前記フェノール性水酸基含有樹脂(B)は、前記フェノール性水酸基含有化合物(b1)及び前記ジビニル化合物(b2)の他、更にその他の化合物を反応原料としても良い。その他の化合物は、例えば、各種のアルデヒド化合物等、ジビニル化合物(b2)以外の化合物であって前記ナフトール化合物(b)を結節し得る化合物(b2’)や、フェノール性水酸基含有樹脂(B)中の芳香環上の置換基として脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基を導入するための置換基導入剤(b3)等が挙げられる。   In addition to the phenolic hydroxyl group-containing compound (b1) and the divinyl compound (b2), the phenolic hydroxyl group-containing resin (B) may contain other compounds as reaction raw materials. The other compound is, for example, a compound (b2 ′) that is a compound other than the divinyl compound (b2) such as various aldehyde compounds and can knot the naphthol compound (b), or a phenolic hydroxyl group-containing resin (B). Examples of the substituent on the aromatic ring include a substituent introducing agent (b3) for introducing an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, and an aralkyl group.

前記化合物(b2’)を用いる場合には、硬化収縮率が低く、かつ、硬化物における誘電正接が低いという本発明の効果が十分に発揮されることから、前記ジビニル化合物(b2)と前記化合物(b2’)との合計に対し、前記ジビニル化合物(b2)が50質量%以上となることが好ましく、80質量%以上となることが好ましい。   When the compound (b2 ′) is used, the divinyl compound (b2) and the compound are sufficiently exhibited because the effect of the present invention is sufficiently exhibited that the cure shrinkage ratio is low and the dielectric loss tangent in the cured product is low. It is preferable that the said divinyl compound (b2) will be 50 mass% or more with respect to the sum total with (b2 '), and it is preferable that it will be 80 mass% or more.

前記置換基導入剤(b3)は、例えば、フェニルメタノール化合物、フェニルメチルハライド化合物、ナフチルメタノール化合物、ナフチルメチルハライド化合物、及びスチレン化合物等のアラルキル基導入剤等が挙げられる。   Examples of the substituent introduction agent (b3) include aralkyl group introduction agents such as a phenylmethanol compound, a phenylmethyl halide compound, a naphthylmethanol compound, a naphthylmethyl halide compound, and a styrene compound.

前記フェノール性水酸基含有樹脂(B)を製造する方法は特に限定されないが、一分子あたりのフェノール性水酸基数が2以上となるように反応原料の割合を調整することが好ましい。例えば、前記ジビニル化合物(b2)1モルに対して前記フェノール性水酸基含有化合物(b1)を2〜10モルの範囲で用い、酸触媒条件下、80〜180℃程度の温度条件下で加熱撹拌する方法により製造することができる。反応は必要に応じて有機溶媒中で行っても良い。反応終了後は所望に応じて、過剰量の前記フェノール性水酸基含有化合物(b1)を留去するなどしても良い。また、反応生成物中の未反応フェノール性水酸基含有化合物(b1)をそのまま分子構造中にフェノール性水酸基を一つ有する化合物(A)として用いても良い。   The method for producing the phenolic hydroxyl group-containing resin (B) is not particularly limited, but it is preferable to adjust the ratio of reaction raw materials so that the number of phenolic hydroxyl groups per molecule is 2 or more. For example, the phenolic hydroxyl group-containing compound (b1) is used in a range of 2 to 10 moles with respect to 1 mole of the divinyl compound (b2), and heated and stirred under acid catalyst conditions and at a temperature of about 80 to 180 ° C. It can be manufactured by a method. You may perform reaction in an organic solvent as needed. After completion of the reaction, an excessive amount of the phenolic hydroxyl group-containing compound (b1) may be distilled off as desired. Further, the unreacted phenolic hydroxyl group-containing compound (b1) in the reaction product may be used as it is as the compound (A) having one phenolic hydroxyl group in the molecular structure.

前記酸触媒は、例えば、パラトルエンスルホン酸、ジメチル硫酸、ジエチル硫酸、硫酸、塩酸、シュウ酸等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。酸触媒の添加量は、前記フェノール性水酸基含有化合物(b1)に対し、0.01〜10質量%の範囲で用いることが好ましい。   Examples of the acid catalyst include p-toluenesulfonic acid, dimethyl sulfate, diethyl sulfate, sulfuric acid, hydrochloric acid, and oxalic acid. These may be used alone or in combination of two or more. The addition amount of the acid catalyst is preferably in the range of 0.01 to 10% by mass with respect to the phenolic hydroxyl group-containing compound (b1).

前記有機溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。   Examples of the organic solvent include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; and carbitols such as cellosolve and butyl carbitol. Examples include solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like. These may be used alone or as a mixed solvent of two or more.

前記フェノール性水酸基含有樹脂(B)の具体構造の一例として、例えば、前記フェノール性水酸基含有化合物(b1)としてナフトールを用い、前記ジビニル化合物(b2)としてジビニルベンゼンを用いた場合の構造例を下記構造式(B−1)に示す。なお、下記構造式(B−1)はフェノール性水酸基含有樹脂(B)の具体構造の一例に過ぎず、その他の樹脂構造を排除するものではない。   As an example of a specific structure of the phenolic hydroxyl group-containing resin (B), for example, a structure example in the case of using naphthol as the phenolic hydroxyl group-containing compound (b1) and divinylbenzene as the divinyl compound (b2) is shown below. Shown in Structural Formula (B-1) The following structural formula (B-1) is merely an example of the specific structure of the phenolic hydroxyl group-containing resin (B), and does not exclude other resin structures.

Figure 2018009129
[式中nは1〜10の整数である。Rはそれぞれ独立に水素原子又は下記構造式(R−1)で表される構造部位である。]
Figure 2018009129
[Wherein n is an integer of 1 to 10. Each R is independently a hydrogen atom or a structural moiety represented by the following structural formula (R-1). ]

Figure 2018009129
Figure 2018009129

また、一般に市販されているジビニルベンゼンはエチルスチレンを一部含むことがある。この場合、前記構造式(B−1)中のRとして、下記構造式(R−2)で表される構造が一部導入されることがある。   Further, commercially available divinylbenzene may contain a part of ethylstyrene. In this case, a part of the structure represented by the following structural formula (R-2) may be introduced as R in the structural formula (B-1).

Figure 2018009129
Figure 2018009129

前記フェノール性水酸基含有樹脂(B)の水酸基当量は、溶剤溶解性が高く、様々な用途に利用しやすい活性エステル樹脂となることから、130〜300g/当量の範囲であることが好ましい。   The hydroxyl equivalent of the phenolic hydroxyl group-containing resin (B) is preferably in the range of 130 to 300 g / equivalent because it is highly soluble in a solvent and becomes an active ester resin that can be easily used for various applications.

前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)は、前記分子構造中にフェノール性水酸基を一つ有する化合物(A)及び前記フェノール性水酸基含有樹脂(B)が有するフェノール性水酸基と反応してエステル結合を形成し得る芳香族化合物であれば、具体構造は特に限定されず、何れの化合物であっても良い。具体例としては、例えば、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸、トリメリット酸等のベンゼントリカルボン酸、ナフタレン−1,4−ジカルボン酸、ナフタレン−2,3−ジカルボン酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸等のナフタレンジカルボン酸、これらの酸ハロゲン化物、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した化合物等が挙げられる。酸ハロゲン化物は、例えば、酸塩化物、酸臭化物、酸フッ化物、酸ヨウ化物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、反応活性が高く硬化性に優れる活性エステル樹脂となることから、イソフタル酸やテレフタル酸等のベンゼンジカルボン酸又はその酸ハロゲン化物が好ましい。   The aromatic polycarboxylic acid or its acid halide (C) reacts with the compound (A) having one phenolic hydroxyl group in the molecular structure and the phenolic hydroxyl group of the phenolic hydroxyl group-containing resin (B). The specific structure is not particularly limited as long as it is an aromatic compound capable of forming an ester bond, and any compound may be used. Specific examples include benzenedicarboxylic acids such as isophthalic acid and terephthalic acid, benzenetricarboxylic acids such as trimellitic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-2,3-dicarboxylic acid, and naphthalene-2,6. -Naphthalene dicarboxylic acid such as dicarboxylic acid and naphthalene-2,7-dicarboxylic acid, acid halides thereof, and compounds in which the aliphatic hydrocarbon group, alkoxy group, halogen atom, etc. are substituted on the aromatic nucleus Can be mentioned. Examples of the acid halide include acid chloride, acid bromide, acid fluoride, and acid iodide. These may be used alone or in combination of two or more. Among these, benzenedicarboxylic acids such as isophthalic acid and terephthalic acid or acid halides thereof are preferable because they are active ester resins having high reaction activity and excellent curability.

本発明の活性エステル樹脂は、例えば、前記分子構造中にフェノール性水酸基を一つ有する化合物(A)、前記フェノール性水酸基含有樹脂(B)、及び前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)を必須とする反応原料を、アルカリ触媒の存在下、40〜65℃程度の温度条件下で加熱撹拌する方法により製造することができる。反応は必要に応じて有機溶媒中で行っても良い。また、反応終了後は所望に応じて、水洗や再沈殿等により反応生成物を精製しても良い。   The active ester resin of the present invention includes, for example, a compound (A) having one phenolic hydroxyl group in the molecular structure, the phenolic hydroxyl group-containing resin (B), the aromatic polycarboxylic acid or an acid halide thereof ( A reaction raw material essentially comprising C) can be produced by a method of heating and stirring under a temperature condition of about 40 to 65 ° C. in the presence of an alkali catalyst. You may perform reaction in an organic solvent as needed. Further, after completion of the reaction, the reaction product may be purified by washing, reprecipitation or the like, if desired.

前記アルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ピリジン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。また、3.0〜30%程度の水溶液として用いても良い。中でも、触媒能の高い水酸化ナトリウム又は水酸化カリウムが好ましい。   Examples of the alkali catalyst include sodium hydroxide, potassium hydroxide, triethylamine, pyridine and the like. These may be used alone or in combination of two or more. Further, it may be used as an aqueous solution of about 3.0 to 30%. Among these, sodium hydroxide or potassium hydroxide having high catalytic ability is preferable.

前記有機溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。   Examples of the organic solvent include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; and carbitols such as cellosolve and butyl carbitol. Examples include solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like. These may be used alone or as a mixed solvent of two or more.

前記分子構造中にフェノール性水酸基を一つ有する化合物(A)、前記フェノール性水酸基含有樹脂(B)、及び前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)の反応割合は、所望の分子設計に応じて適宜変更することができる。中でも、溶剤溶解性が高く、様々な用途に利用しやすい活性エステル樹脂となることから、前記分子構造中にフェノール性水酸基を一つ有する化合物(A)が有する水酸基のモル数(AOH)と前記フェノール性水酸基含有樹脂(B)が有する水酸基のモル数(BOH)との割合[(AOH)/(BOH)]が10/90〜75/25となる割合であることが好ましく、25/75〜50/50となる割合であることがより好ましい。また、芳香族ポリカルボン酸又はその酸ハロゲン化物(C)が有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記分子構造中にフェノール性水酸基を一つ有する化合物(A)が有する水酸基のモル数と前記フェノール性水酸基含有樹脂(B)が有する水酸基のモル数との合計が0.95〜1.05モルとなる割合であることが好ましい。 The reaction ratio of the compound (A) having one phenolic hydroxyl group in the molecular structure, the phenolic hydroxyl group-containing resin (B), and the aromatic polycarboxylic acid or acid halide (C) thereof is determined as a desired molecule. It can be appropriately changed according to the design. Among them, since it becomes an active ester resin that has high solvent solubility and can be easily used for various applications, the number of moles of hydroxyl groups (A OH ) of the compound (A) having one phenolic hydroxyl group in the molecular structure preferably the phenolic hydroxyl group-containing resin (B) is the number of moles of the hydroxyl groups the ratio of (B OH) [(a OH ) / (B OH)] is the rate at which the 10 / 90-75 / 25, The ratio is more preferably 25/75 to 50/50. In addition, with respect to a total of 1 mol of the carboxyl group or acid halide group of the aromatic polycarboxylic acid or its acid halide (C), the hydroxyl group of the compound (A) having one phenolic hydroxyl group in the molecular structure It is preferable that the sum of the number of moles and the number of moles of hydroxyl groups of the phenolic hydroxyl group-containing resin (B) is 0.95 to 1.05 moles.

本発明の活性エステル樹脂は、前記分子構造中にフェノール性水酸基を一つ有する化合物(A)と、前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)とのエステル化合物(AC)を一部含有していても良い。前記エステル化合物(AC)は、例えば、前記分子構造中にフェノール性水酸基を一つ有する化合物(A)、前記フェノール性水酸基含有樹脂(B)、及び前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)の反応割合を調整することにより、活性エステル樹脂の一成分として製造することができる。   The active ester resin of the present invention is a part of the ester compound (AC) of the compound (A) having one phenolic hydroxyl group in the molecular structure and the aromatic polycarboxylic acid or its acid halide (C). You may contain. The ester compound (AC) includes, for example, a compound (A) having one phenolic hydroxyl group in the molecular structure, the phenolic hydroxyl group-containing resin (B), the aromatic polycarboxylic acid or an acid halide thereof ( By adjusting the reaction ratio of C), it can be produced as one component of an active ester resin.

前記エステル化合物(AC)の具体構造の一例として、例えば、前記分子構造中にフェノール性水酸基を一つ有する化合物(A)としてナフトール化合物を用い、前記芳香族ポリカルボン酸又はその酸ハロゲン化物(C)としてベンゼンジカルボン酸又はその酸ハロゲン化物を用いた場合の構造例を下記構造式(3)に示す。なお、下記構造式(3)は前記エステル化合物(AC)の具体構造の一例に過ぎず、その他の分子構造を有するジエステル化合物を排除するものではない。   As an example of the specific structure of the ester compound (AC), for example, a naphthol compound is used as the compound (A) having one phenolic hydroxyl group in the molecular structure, and the aromatic polycarboxylic acid or its acid halide (C A structural example in the case of using benzenedicarboxylic acid or an acid halide thereof as () is shown in the following structural formula (3). The following structural formula (3) is merely an example of the specific structure of the ester compound (AC), and does not exclude other diester compounds having a molecular structure.

Figure 2018009129
(式中Rはそれぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかであり、ナフタレン環を形成するどの炭素原子に結合していても良い。pは0又は1〜3の整数である。)
Figure 2018009129
(In the formula, each R 2 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group, and may be bonded to any carbon atom forming a naphthalene ring. Is an integer of 0 or 1-3.)

活性エステル樹脂が前記エステル化合物(AC)を含有する場合の含有量は、硬化収縮率が低く、かつ、硬化性にも優れる活性エステル樹脂となることから、活性エステル樹脂の40%未満であることが好ましく、10%以上35%未満であることが特に好ましい。   When the active ester resin contains the ester compound (AC), the content is less than 40% of the active ester resin because the active ester resin has a low cure shrinkage and excellent curability. Is preferably 10% or more and less than 35%.

活性エステル樹脂中の前記エステル化合物(AC)の含有量は、下記条件で測定されるGPCチャート図の面積比から算出される値である。   The content of the ester compound (AC) in the active ester resin is a value calculated from the area ratio of the GPC chart measured under the following conditions.

測定装置 :東ソー株式会社製「HLC−8320 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G4000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC−WorkStation」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8320」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)
Measuring device: “HLC-8320 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G4000HXL”
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
Detector: RI (differential refractometer)
Data processing: “GPC workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8320”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids, filtered through a microfilter (50 μl)

本発明の活性エステル樹脂の重量平均分子量(Mw)は、硬化収縮率の低い活性エステル樹脂となる点で600〜5,000の範囲で好ましく、800〜3,000の範囲であることが特に好ましい。なお、活性エステル樹脂の重量平均分子量(Mw)は、前記エステル化合物(AC)の含有量を求める際と同条件のGPCにて測定される値である。   The weight average molecular weight (Mw) of the active ester resin of the present invention is preferably in the range of 600 to 5,000, particularly preferably in the range of 800 to 3,000, from the viewpoint of becoming an active ester resin having a low cure shrinkage rate. . In addition, the weight average molecular weight (Mw) of active ester resin is a value measured by GPC of the same conditions as the time of calculating | requiring content of the said ester compound (AC).

また、本発明の活性エステル樹脂の軟化点は、JIS K7234に基づいて測定される値で80〜180℃の範囲であることが好ましく、85〜160℃の範囲であることがより好ましい。   Further, the softening point of the active ester resin of the present invention is preferably a range of 80 to 180 ° C, more preferably a range of 85 to 160 ° C as a value measured based on JIS K7234.

本発明の活性エステル樹脂の官能基当量は、硬化収縮率が低く、かつ、硬化性にも優れる活性エステル樹脂となることから、200〜350g/当量の範囲であることが好ましく、200〜300g/当量の範囲であることが特に好ましい。なお、本発明において活性エステル樹脂中の官能基とは、活性エステル樹脂中のエステル結合部位とフェノール性水酸基とのことを言う。また、活性エステル樹脂の官能基当量は、反応原料の仕込み量から算出される値である。   The functional group equivalent of the active ester resin of the present invention is preferably in the range of 200 to 350 g / equivalent, since it becomes an active ester resin having a low cure shrinkage and excellent curability. An equivalent range is particularly preferable. In the present invention, the functional group in the active ester resin means an ester bond site and a phenolic hydroxyl group in the active ester resin. The functional group equivalent of the active ester resin is a value calculated from the charged amount of the reaction raw material.

本発明の硬化性樹脂組成物は、前述の活性エステル樹脂と硬化剤とを含有する。前記硬化剤は本発明の活性エステル樹脂と反応し得る化合物であれば良く、特に限定なく様々な化合物が利用できる。硬化剤の一例としては、例えば、エポキシ樹脂が挙げられる。   The curable resin composition of the present invention contains the aforementioned active ester resin and a curing agent. The curing agent may be a compound that can react with the active ester resin of the present invention, and various compounds can be used without any particular limitation. An example of the curing agent is an epoxy resin.

前記エポキシ樹脂は、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ビフェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、テトラフェノールエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等が挙げられる。   Examples of the epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolac type epoxy resin, bisphenol novolac type epoxy resin, biphenol novolac type epoxy resin, bisphenol type epoxy resin, biphenyl type epoxy resin, and triphenolmethane. Type epoxy resin, tetraphenolethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin and the like.

前記硬化剤としてエポキシ樹脂を用いる場合、本発明の活性エステル樹脂以外に、その他のエポキシ樹脂用硬化剤を併用してもよい。ここで用いるその他のエポキシ樹脂用硬化剤は、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等のアミン化合物;ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物;フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、ビスフェノールノボラック樹脂、ビフェニルノボラック樹脂、ジシクロペンタジエン−フェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型樹脂、テトラフェノールエタン型樹脂、アミノトリアジン変性フェノール樹脂等のフェノール樹脂等が挙げられる。 When using an epoxy resin as the curing agent, in addition to the active ester resin of the present invention, other epoxy resin curing agents may be used in combination. Other epoxy resin curing agents used here are, for example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complexes, guanidine derivatives, and other amine compounds; dicyandiamide, linolene Amide compounds such as polyamide resin synthesized from acid dimer and ethylenediamine; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl anhydride Acid anhydrides such as nadic acid, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride; phenol novolak resin, cresol novolak resin, naphthol novolak resin, bisphenol novolak Fat, biphenyl novolac resins, dicyclopentadiene - phenol addition type resins, phenol aralkyl resins, naphthol aralkyl resins, triphenolmethane resins, tetraphenolethane type resins, phenolic resins such as aminotriazine-modified phenolic resin.

本発明の活性エステル樹脂、エポキシ樹脂、及びその他のエポキシ樹脂用硬化剤の配合割合は、エポキシ樹脂中のエポキシ基の合計1モルに対して、前記活性エステル樹脂及びその他のエポキシ樹脂用硬化剤中の官能基の合計が0.7〜1.5モルとなる割合であることが好ましい。   The compounding ratio of the active ester resin, the epoxy resin, and the other epoxy resin curing agent of the present invention is in the active ester resin and the other epoxy resin curing agent with respect to a total of 1 mol of epoxy groups in the epoxy resin. It is preferable that it is a ratio from which the sum total of functional group becomes 0.7-1.5 mol.

本発明の硬化性樹脂組成物は、この他、シアン酸エステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、スチレン−無水マレイン酸樹脂、ジアリルビスフェノールやトリアリルイソシアヌレートに代表されるアリル基含有樹脂、ポリリン酸エステルやリン酸エステル−カーボネート共重合体等を含有しても良い。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。   In addition, the curable resin composition of the present invention includes cyanate ester resin, bismaleimide resin, benzoxazine resin, styrene-maleic anhydride resin, allyl group-containing resin represented by diallyl bisphenol and triallyl isocyanurate, polyphosphorus An acid ester, a phosphate ester-carbonate copolymer, or the like may be contained. These may be used alone or in combination of two or more.

本発明の硬化性樹脂組成物は必要に応じて硬化促進剤、難燃剤、無機質充填材、シランカップリング剤、離型剤、顔料、乳化剤等の各種添加剤を含有しても良い。   The curable resin composition of this invention may contain various additives, such as a hardening accelerator, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, an emulsifier, as needed.

前記硬化促進剤は、例えば、リン系化合物、第3級アミン、イミダゾール化合物、ピリジン化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。中でも、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)、イミダゾール化合物では2−エチル−4−メチルイミダゾール、ピリジン化合物では4−ジメチルアミノピリジンが好ましい。   Examples of the curing accelerator include phosphorus compounds, tertiary amines, imidazole compounds, pyridine compounds, organic acid metal salts, Lewis acids, amine complex salts, and the like. Among them, from the viewpoint of excellent curability, heat resistance, electrical properties, moisture resistance reliability, etc., triphenylphosphine for phosphorus compounds, 1,8-diazabicyclo- [5.4.0] -undecene (DBU for tertiary amines). ), 2-ethyl-4-methylimidazole is preferred for imidazole compounds, and 4-dimethylaminopyridine is preferred for pyridine compounds.

前記難燃剤は、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム、リン酸アミド等の無機リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物;トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等の窒素系難燃剤;シリコーンオイル、シリコーンゴム、シリコーン樹脂等のシリコーン系難燃剤;金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等の無機難燃剤等が挙げられる。これら難燃剤を用いる場合は、硬化性樹脂組成物中0.1〜20質量%の範囲であることが好ましい。   The flame retardant is, for example, red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphate such as ammonium polyphosphate, inorganic phosphorus compounds such as phosphate amide; phosphate ester compound, phosphonic acid Compound, phosphinic acid compound, phosphine oxide compound, phosphorane compound, organic nitrogen-containing phosphorus compound, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) ) Cyclic organic phosphorus such as -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide Compound, and compound such as epoxy resin and phenol resin Organic phosphorus compounds such as reacted derivatives; nitrogen-based flame retardants such as triazine compounds, cyanuric acid compounds, isocyanuric acid compounds and phenothiazines; silicone-based flame retardants such as silicone oil, silicone rubber and silicone resin; metal hydroxides, metals Examples thereof include inorganic flame retardants such as oxides, metal carbonate compounds, metal powders, boron compounds, and low-melting glass. When using these flame retardants, it is preferable that it is the range of 0.1-20 mass% in curable resin composition.

前記無機質充填材は、例えば、本発明の硬化性樹脂組成物を半導体封止材料用途に用いる場合などに配合される。前記無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。中でも、無機質充填材をより多く配合することが可能となることから、前記溶融シリカが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ、硬化性組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は硬化性樹脂組成物100質量部中、0.5〜95質量部の範囲で配合することが好ましい。   The said inorganic filler is mix | blended, for example when using the curable resin composition of this invention for a semiconductor sealing material use. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. Especially, since it becomes possible to mix | blend more inorganic fillers, the said fused silica is preferable. The fused silica can be used in either crushed or spherical shape, but in order to increase the blending amount of the fused silica and to suppress an increase in the melt viscosity of the curable composition, a spherical one is mainly used. It is preferable. Furthermore, in order to increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The filling rate is preferably in the range of 0.5 to 95 parts by mass in 100 parts by mass of the curable resin composition.

この他、本発明の硬化性樹脂組成物を導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。   In addition, when using the curable resin composition of this invention for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can be used.

以上詳述した通り、本発明の活性エステル樹脂は、硬化収縮率が低く、かつ、硬化物における誘電正接が低いという優れた性能を有する。この他、汎用有機溶剤への溶解性や、エポキシ樹脂との硬化性等、樹脂材料に求められる一般的な要求性能も十分に高いものであり、プリント配線基板や半導体封止材料、レジスト材料等の電子材料用途の他、塗料や接着剤、成型品等の用途にも広く利用することができる。   As described above in detail, the active ester resin of the present invention has excellent performance such as a low curing shrinkage and a low dielectric loss tangent in the cured product. In addition, the general required performance required for resin materials, such as solubility in general-purpose organic solvents and curability with epoxy resins, is sufficiently high, such as printed wiring boards, semiconductor encapsulation materials, resist materials, etc. In addition to the above electronic material applications, it can be widely used for applications such as paints, adhesives and molded products.

本発明の硬化性樹脂組成物をプリント配線基板用途やビルドアップ接着フィルム用途に用いる場合、一般には有機溶剤を配合して希釈して用いることが好ましい。前記有機溶剤は、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。有機溶剤の種類や配合量は硬化性樹脂組成物の使用環境に応じて適宜調整できるが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、不揮発分が40〜80質量%となる割合で使用することが好ましい。ビルドアップ接着フィルム用途では、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、不揮発分が30〜60質量%となる割合で使用することが好ましい。   When using the curable resin composition of this invention for a printed wiring board use or a buildup adhesive film use, generally it is preferable to mix | blend and use an organic solvent. Examples of the organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like. The type and blending amount of the organic solvent can be adjusted as appropriate according to the use environment of the curable resin composition. For example, for printed wiring board applications, methyl ethyl ketone, acetone, dimethylformamide and the like are polar solvents having a boiling point of 160 ° C. or lower. It is preferable to use it at a ratio that the nonvolatile content is 40 to 80% by mass. For build-up adhesive film applications, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, etc., acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, carbitols such as cellosolve, butyl carbitol, etc. It is preferable to use a solvent, an aromatic hydrocarbon solvent such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like, and it is preferable to use the nonvolatile component in a proportion of 30 to 60% by mass.

また、本発明の硬化性樹脂組成物を用いてプリント配線基板を製造する方法は、例えば、硬化性組成物を補強基材に含浸し硬化させてプリプレグを得、これと銅箔とを重ねて加熱圧着させる方法が挙げられる。前記補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。硬化性樹脂組成物の含浸量は特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。   Moreover, the method of manufacturing a printed wiring board using the curable resin composition of the present invention includes, for example, impregnating a curable composition into a reinforcing base material and curing it to obtain a prepreg, and stacking this with a copper foil. The method of carrying out thermocompression bonding is mentioned. Examples of the reinforcing substrate include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. The impregnation amount of the curable resin composition is not particularly limited, but it is usually preferable that the resin content in the prepreg is adjusted to 20 to 60% by mass.

本発明の硬化性樹脂組成物を半導体封止材料用途に用いる場合、一般には無機質充填材を配合することが好ましい。半導体封止材料は、例えば、押出機、ニーダー、ロール等を用いて配合物を混合して調製することができる。得られた半導体封止材料を用いて半導体パッケージを成型する方法は、例えば、該半導体封止材料を注型或いはトランスファー成形機、射出成型機などを用いて成形し、更に50〜200℃の温度条件下で2〜10時間加熱する方法が挙げられ、このような方法により、成形物である半導体装置を得ることが出来る。   When using the curable resin composition of this invention for a semiconductor sealing material use, generally it is preferable to mix | blend an inorganic filler. The semiconductor sealing material can be prepared by mixing the compound using, for example, an extruder, a kneader, a roll, or the like. A method for molding a semiconductor package using the obtained semiconductor sealing material is, for example, molding the semiconductor sealing material using a casting or transfer molding machine, an injection molding machine, etc., and a temperature of 50 to 200 ° C. The method of heating for 2 to 10 hours under conditions is mentioned, By such a method, the semiconductor device which is a molding can be obtained.

次に本発明を実施例、比較例により具体的に説明する。実施例中の「部」及び「%」の記載は、特に断わりのない限り質量基準である。なお、本実施例におけるGPC、13C−NMR、MALDI−TOF−MSの測定条件は以下の通りである。   Next, the present invention will be specifically described with reference to examples and comparative examples. In the examples, “parts” and “%” are based on mass unless otherwise specified. In addition, the measurement conditions of GPC, 13C-NMR, and MALDI-TOF-MS in this example are as follows.

GPCの測定条件
測定装置 :東ソー株式会社製「HLC−8320 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G4000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC−WorkStation」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8320」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)
GPC measurement conditions Measuring device: “HLC-8320 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G4000HXL”
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
Detector: RI (differential refractometer)
Data processing: “GPC workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8320”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids, filtered through a microfilter (50 μl)

13C−NMRの測定条件
装置:日本電子(株)製 ECA-500
測定モード:SINGLE−PULSE−DEC(NOE消去の1H完全デカップリング法)
溶媒 :重クロロホルム
パルス角度:30°パルス
試料濃度 :30wt%
積算回数 :4000回
13C-NMR measurement condition apparatus: ECA-500 manufactured by JEOL Ltd.
Measurement mode: SINGLE-PULSE-DEC (1H complete decoupling method of NOE elimination)
Solvent: Deuterated chloroform pulse angle: 30 ° Pulse sample concentration: 30 wt%
Integration count: 4000 times

MALDI−TOF−MSの測定条件
装置:島津/KRSTOS社製 AXIMA−TOF2
イオン化法:マトリックス支援レーザー脱離イオン化法
Measurement condition apparatus for MALDI-TOF-MS: Shimazu / AXIMA-TOF2 manufactured by KRSTOS
Ionization method: Matrix-assisted laser desorption ionization method

実施例1 活性エステル樹脂(1)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、フェノール282質量部、トルエン200質量部、ジビニルベンゼン(新日鉄住金化学社製「DVB−810」ジビニルベンゼン純度81%、エチルスチレンを19%含有)130質量部、パラトルエンスルホン酸1水和物1質量部を仕込んだ。フラスコの内容物を撹拌しながら120℃まで昇温し、120℃で1時間撹拌して反応させた。反応終了後、49%水酸化ナトリウム水溶液1質量部を添加して中和した後、トルエン400質量部加え、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応のフェノールとフェノール性水酸基含有樹脂(B−1)とを含む混合物(1)401質量部を得た。得られた混合物(1)の水酸基当量は138g/当量であった。
Example 1 Production of Active Ester Resin (1) A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube and a stirrer was charged with 282 parts by mass of phenol, 200 parts by mass of toluene, and divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.). "DVB-810" divinylbenzene purity 81%, containing 19% ethylstyrene) 130 parts by weight and 1 part by weight of paratoluenesulfonic acid monohydrate were charged. While stirring the contents of the flask, the temperature was raised to 120 ° C., and the reaction was carried out by stirring at 120 ° C. for 1 hour. After the reaction was completed, 1 part by mass of a 49% aqueous sodium hydroxide solution was added for neutralization, 400 parts by mass of toluene was added, and the mixture was washed 3 times with 200 parts by mass of water. Toluene and the like were distilled off under heating and reduced pressure conditions to obtain 401 parts by mass of a mixture (1) containing unreacted phenol and a phenolic hydroxyl group-containing resin (B-1). The obtained mixture (1) had a hydroxyl group equivalent of 138 g / equivalent.

温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド152質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(1)206質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液300質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(1)295質量部を得た。活性エステル樹脂(1)の官能基当量は202g/当量、JIS K7234に基づいて測定した軟化点は87℃であった。得られた活性エステル樹脂(1)のGPCチャートを図1に示す。GPCチャート図の面積比から算出した活性エステル樹脂(1)中のエステル化合物(AC)の含有量は19.2%、重量平均分子量(Mw)は1677であった。   A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 152 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure. Next, 206 parts by mass of the mixture (1) obtained above was charged, and the system was dissolved while substituting with nitrogen under reduced pressure. While adding 0.4 g of tetrabutylammonium bromide and performing a nitrogen gas purge, the inside of the reaction system was controlled to 60 ° C. or less, and 300 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. After completion of dropping, the reaction was continued for 1 hour with stirring. After completion of the reaction, the reaction mixture was allowed to stand for liquid separation, and the aqueous layer was removed. After adding water to the remaining organic layer and stirring and mixing for about 15 minutes, the mixture was allowed to stand and liquid-separated, and the aqueous layer was removed. This operation was repeated until the pH of the aqueous layer reached 7, and then toluene and the like were distilled off under heating and reduced pressure conditions to obtain 295 parts by mass of an active ester resin (1). The functional group equivalent of the active ester resin (1) was 202 g / equivalent, and the softening point measured based on JIS K7234 was 87 ° C. A GPC chart of the obtained active ester resin (1) is shown in FIG. The content of the ester compound (AC) in the active ester resin (1) calculated from the area ratio of the GPC chart was 19.2%, and the weight average molecular weight (Mw) was 1677.

実施例2 活性エステル樹脂(2)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、オルソクレゾール324質量部、トルエン200質量部、ジビニルベンゼン(新日鉄住金化学社製「DVB−810」ジビニルベンゼン純度81%、エチルスチレンを19%含有)130質量部、パラトルエンスルホン酸1水和物1質量部を仕込んだ。フラスコの内容物を撹拌しながら120℃まで昇温し、120℃で1時間撹拌して反応させた。反応終了後、49%水酸化ナトリウム水溶液1質量部を添加して中和した後、トルエン400質量部加え、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応のオルソクレゾールとフェノール性水酸基含有樹脂(B−2)とを含む混合物(2)440質量部を得た。得られた混合物(2)の水酸基当量は152g/当量であった。
Example 2 Production of Active Ester Resin (2) A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 324 parts by mass of orthocresol, 200 parts by mass of toluene, and divinylbenzene (Nippon Steel & Sumikin Chemical Co., Ltd.). “DVB-810” manufactured by DVB-810 having a purity of 81% divinylbenzene and 19% ethyl styrene) was added in an amount of 130 parts by mass and 1 part by mass of paratoluenesulfonic acid monohydrate. While stirring the contents of the flask, the temperature was raised to 120 ° C., and the reaction was carried out by stirring at 120 ° C. for 1 hour. After the reaction was completed, 1 part by mass of a 49% aqueous sodium hydroxide solution was added for neutralization, 400 parts by mass of toluene was added, and the mixture was washed 3 times with 200 parts by mass of water. Toluene and the like were distilled off under heating and reduced pressure conditions to obtain 440 parts by mass of a mixture (2) containing unreacted orthocresol and a phenolic hydroxyl group-containing resin (B-2). The obtained mixture (2) had a hydroxyl group equivalent of 152 g / equivalent.

温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド152質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(2)227質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液300質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(2)310質量部を得た。活性エステル樹脂(2)の官能基当量は216g/当量、JIS K7234に基づいて測定した軟化点は99℃であった。得られた活性エステル樹脂(2)のGPCチャートを図2に示す。GPCチャート図の面積比から算出した活性エステル樹脂(2)中のエステル化合物(AC)の含有量は17.4%、重量平均分子量(Mw)は1288であった。   A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 152 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure. Next, 227 parts by mass of the previously obtained mixture (2) was charged, and the system was dissolved while substituting with nitrogen under reduced pressure. While adding 0.4 g of tetrabutylammonium bromide and performing a nitrogen gas purge, the inside of the reaction system was controlled to 60 ° C. or less, and 300 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. After completion of dropping, the reaction was continued for 1 hour with stirring. After completion of the reaction, the reaction mixture was allowed to stand for liquid separation and the aqueous layer was removed. After adding water to the remaining organic layer and stirring and mixing for about 15 minutes, the mixture was allowed to stand and liquid-separated, and the aqueous layer was removed. This operation was repeated until the pH of the aqueous layer became 7, and then toluene and the like were distilled off under heating and reduced pressure to obtain 310 parts by mass of an active ester resin (2). The functional group equivalent of the active ester resin (2) was 216 g / equivalent, and the softening point measured based on JIS K7234 was 99 ° C. A GPC chart of the obtained active ester resin (2) is shown in FIG. The content of the ester compound (AC) in the active ester resin (2) calculated from the area ratio of the GPC chart was 17.4%, and the weight average molecular weight (Mw) was 1288.

実施例3 活性エステル樹脂(3)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、パラターシャリーブチルフェノール450質量部、トルエン200質量部、ジビニルベンゼン(新日鉄住金化学社製「DVB−810」ジビニルベンゼン純度81%、エチルスチレンを19%含有)130質量部、パラトルエンスルホン酸1水和物1質量部を仕込んだ。フラスコの内容物を撹拌しながら120℃まで昇温し、120℃で1時間撹拌して反応させた。反応終了後、49%水酸化ナトリウム水溶液1質量部を添加して中和した後、トルエン400質量部加え、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応のパラターシャリーブチルフェノールとフェノール性水酸基含有樹脂(B−3)とを含む混合物(3)565質量部を得た。得られた混合物(3)の水酸基当量は194g/当量であった。
Example 3 Production of Active Ester Resin (3) In a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer, 450 parts by mass of paratertiary butylphenol, 200 parts by mass of toluene, divinylbenzene (Nippon Steel & Sumitomo Metal) "DVB-810" divinylbenzene purity 81%, containing 19% ethyl styrene) 130 parts by mass and 1 part by mass of paratoluenesulfonic acid monohydrate were prepared. While stirring the contents of the flask, the temperature was raised to 120 ° C., and the reaction was carried out by stirring at 120 ° C. for 1 hour. After the reaction was completed, 1 part by mass of a 49% aqueous sodium hydroxide solution was added for neutralization, 400 parts by mass of toluene was added, and the mixture was washed 3 times with 200 parts by mass of water. Toluene and the like were distilled off under heating and reduced pressure conditions to obtain 565 parts by mass of a mixture (3) containing unreacted paratertiary butylphenol and a phenolic hydroxyl group-containing resin (B-3). The obtained mixture (3) had a hydroxyl group equivalent of 194 g / equivalent.

温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド152質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(3)290質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液300質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(3)365質量部を得た。活性エステル樹脂(3)の官能基当量は258g/当量、JIS K7234に基づいて測定した軟化点は119℃であった。得られた活性エステル樹脂(3)のGPCチャートを図3に示す。GPCチャート図の面積比から算出した活性エステル樹脂(3)中のエステル化合物(AC)の含有量は20.0%、重量平均分子量(Mw)は1305であった。   A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 152 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure. Next, 290 parts by mass of the mixture (3) obtained above was charged, and the system was dissolved while substituting with nitrogen under reduced pressure. While adding 0.4 g of tetrabutylammonium bromide and performing a nitrogen gas purge, the inside of the reaction system was controlled to 60 ° C. or less, and 300 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. After completion of dropping, the reaction was continued for 1 hour with stirring. After completion of the reaction, the reaction mixture was allowed to stand for liquid separation, and the aqueous layer was removed. After adding water to the remaining organic layer and stirring and mixing for about 15 minutes, the mixture was allowed to stand and liquid-separated, and the aqueous layer was removed. This operation was repeated until the pH of the aqueous layer became 7, and then toluene and the like were distilled off under heating and reduced pressure conditions to obtain 365 parts by mass of an active ester resin (3). The functional group equivalent of the active ester resin (3) was 258 g / equivalent, and the softening point measured based on JIS K7234 was 119 ° C. The GPC chart of the obtained active ester resin (3) is shown in FIG. The content of the ester compound (AC) in the active ester resin (3) calculated from the area ratio of the GPC chart was 20.0%, and the weight average molecular weight (Mw) was 1305.

実施例4 活性エステル樹脂(4)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、オルソフェニルフェノール511質量部、トルエン200質量部、ジビニルベンゼン(新日鉄住金化学社製「DVB−810」ジビニルベンゼン純度81%、エチルスチレンを19%含有)130質量部、パラトルエンスルホン酸1水和物1質量部を仕込んだ。フラスコの内容物を撹拌しながら120℃まで昇温し、120℃で1時間撹拌して反応させた。反応終了後、49%水酸化ナトリウム水溶液1質量部を添加して中和した後、トルエン400質量部加え、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応のオルソフェニルフェノールとフェノール性水酸基含有樹脂(B−4)とを含む混合物(4)612質量部得た。得られた混合物(4)の水酸基当量は214g/当量であった。
Example 4 Production of Active Ester Resin (4) A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube and a stirrer was combined with 511 parts by mass of orthophenylphenol, 200 parts by mass of toluene, and divinylbenzene (Nippon Steel & Sumikin Chemical). "DVB-810" divinylbenzene purity 81%, containing 19% ethylstyrene) 130 parts by mass and 1 part by mass of paratoluenesulfonic acid monohydrate were charged. While stirring the contents of the flask, the temperature was raised to 120 ° C., and the reaction was carried out by stirring at 120 ° C. for 1 hour. After the reaction was completed, 1 part by mass of a 49% aqueous sodium hydroxide solution was added for neutralization, 400 parts by mass of toluene was added, and the mixture was washed 3 times with 200 parts by mass of water. Toluene and the like were distilled off under heating and reduced pressure to obtain 612 parts by mass of a mixture (4) containing unreacted orthophenylphenol and phenolic hydroxyl group-containing resin (B-4). The obtained mixture (4) had a hydroxyl group equivalent of 214 g / equivalent.

温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド152質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(4)320質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液300質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(4)397質量部を得た。活性エステル樹脂(4)の官能基当量は278g/当量、JIS K7234に基づいて測定した軟化点は112℃であった。得られた活性エステル樹脂(4)のGPCチャートを図4に示す。GPCチャート図の面積比から算出した活性エステル樹脂(4)中のエステル化合物(AC)の含有量は18.2%、重量平均分子量(Mw)は1209であった。   A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 152 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure. Next, 320 parts by mass of the mixture (4) obtained above was charged, and the system was dissolved while substituting with nitrogen under reduced pressure. While adding 0.4 g of tetrabutylammonium bromide and performing a nitrogen gas purge, the inside of the reaction system was controlled to 60 ° C. or less, and 300 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. After completion of dropping, the reaction was continued for 1 hour with stirring. After completion of the reaction, the reaction mixture was allowed to stand for liquid separation, and the aqueous layer was removed. After adding water to the remaining organic layer and stirring and mixing for about 15 minutes, the mixture was allowed to stand and liquid-separated, and the aqueous layer was removed. This operation was repeated until the pH of the aqueous layer reached 7, and then toluene and the like were distilled off under heating and reduced pressure conditions to obtain 397 parts by mass of an active ester resin (4). The functional group equivalent of the active ester resin (4) was 278 g / equivalent, and the softening point measured based on JIS K7234 was 112 ° C. The GPC chart of the obtained active ester resin (4) is shown in FIG. The content of the ester compound (AC) in the active ester resin (4) calculated from the area ratio of the GPC chart was 18.2%, and the weight average molecular weight (Mw) was 1209.

実施例5 活性エステル樹脂(5)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2−ナフトール432質量部、トルエン200質量部、ジビニルベンゼン(新日鉄住金化学社製「DVB−810」ジビニルベンゼン純度81%、エチルスチレンを19%含有)130質量部、パラトルエンスルホン酸1水和物1質量部を仕込んだ。フラスコの内容物を撹拌しながら120℃まで昇温し、120℃で1時間撹拌して反応させた。反応終了後、49%水酸化ナトリウム水溶液1質量部を添加して中和した後、トルエン400質量部加え、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応の2−ナフトールとフェノール性水酸基含有樹脂(B−5)とを含む混合物(5)545質量部得た。得られた混合物(5)の水酸基当量は187g/当量であった。
Example 5 Production of Active Ester Resin (5) A flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 432 parts by mass of 2-naphthol, 200 parts by mass of toluene, and divinylbenzene (Nippon Steel & Sumikin Chemical). "DVB-810" divinylbenzene purity 81%, containing 19% ethylstyrene) 130 parts by mass and 1 part by mass of paratoluenesulfonic acid monohydrate were charged. While stirring the contents of the flask, the temperature was raised to 120 ° C., and the reaction was carried out by stirring at 120 ° C. for 1 hour. After the reaction was completed, 1 part by mass of a 49% aqueous sodium hydroxide solution was added for neutralization, 400 parts by mass of toluene was added, and the mixture was washed 3 times with 200 parts by mass of water. Toluene and the like were distilled off under heating and reduced pressure conditions to obtain 545 parts by mass of a mixture (5) containing unreacted 2-naphthol and a phenolic hydroxyl group-containing resin (B-5). The obtained mixture (5) had a hydroxyl equivalent of 187 g / equivalent.

温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド152質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、先で得た混合物(5)281質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液300質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(5)367質量部を得た。活性エステル樹脂(5)の官能基当量は252g/当量、JIS K7234に基づいて測定した軟化点は136℃であった。得られた活性エステル樹脂(5)のGPCチャートを図5に示す。GPCチャート図の面積比から算出した活性エステル樹脂(5)中のエステル化合物(AC)の含有量は20.9%、重量平均分子量(Mw)は1648であった。   A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 152 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure. Next, 281 parts by mass of the previously obtained mixture (5) was charged, and the system was dissolved while substituting with nitrogen under reduced pressure. While adding 0.4 g of tetrabutylammonium bromide and performing a nitrogen gas purge, the inside of the reaction system was controlled to 60 ° C. or less, and 300 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. After completion of dropping, the reaction was continued for 1 hour with stirring. After completion of the reaction, the reaction mixture was allowed to stand for liquid separation, and the aqueous layer was removed. After adding water to the remaining organic layer and stirring and mixing for about 15 minutes, the mixture was allowed to stand and liquid-separated, and the aqueous layer was removed. This operation was repeated until the pH of the aqueous layer reached 7, and then toluene and the like were distilled off under heating and reduced pressure conditions to obtain 367 parts by mass of an active ester resin (5). The functional group equivalent of the active ester resin (5) was 252 g / equivalent, and the softening point measured based on JIS K7234 was 136 ° C. The GPC chart of the obtained active ester resin (5) is shown in FIG. The content of the ester compound (AC) in the active ester resin (5) calculated from the area ratio of the GPC chart was 20.9%, and the weight average molecular weight (Mw) was 1648.

実施例6 活性エステル樹脂(6)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1−ナフトール404質量部、トルエン200質量部、ジビニルベンゼン(新日鉄住金化学社製「DVB−810」ジビニルベンゼン純度81%、エチルスチレンを19%含有)91質量部、パラトルエンスルホン酸1水和物1質量部を仕込んだ。フラスコの内容物を撹拌しながら120℃まで昇温し、120℃で1時間撹拌して反応させた。反応終了後、49%水酸化ナトリウム水溶液1質量部を添加して中和した後、トルエン400質量部加え、水200質量部で3回洗浄した。加熱減圧条件下でトルエン等を留去し、未反応の1−ナフトールとフェノール性水酸基含有樹脂(B−6)とを含む混合物(6)482質量部得た。得られた混合物(6)の水酸基当量は177g/当量であった。
Example 6 Production of Active Ester Resin (6) A flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 404 parts by mass of 1-naphthol, 200 parts by mass of toluene, and divinylbenzene (Nippon Steel & Sumikin Chemical). "DVB-810" divinylbenzene purity 81%, containing 19% ethylstyrene) 91 parts by mass and 1 part by mass of paratoluenesulfonic acid monohydrate were charged. While stirring the contents of the flask, the temperature was raised to 120 ° C., and the reaction was carried out by stirring at 120 ° C. for 1 hour. After the reaction was completed, 1 part by mass of a 49% aqueous sodium hydroxide solution was added for neutralization, 400 parts by mass of toluene was added, and the mixture was washed 3 times with 200 parts by mass of water. Toluene and the like were distilled off under heating and reduced pressure to obtain 482 parts by mass of a mixture (6) containing unreacted 1-naphthol and a phenolic hydroxyl group-containing resin (B-6). The obtained mixture (6) had a hydroxyl equivalent of 177 g / equivalent.

温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド141質量部とトルエン1000質量部を仕込み、系内を減圧窒素置換しながら溶解 させた。次いで、先で得た混合物(6)247質量部を仕込み、系内を減圧窒素置換しながら溶解させた。テトラブチルアンモニウムブロマイド0.4gを加え、窒素ガスパージを施しながら、反応系内を60℃以下に制御して、20%水酸化ナトリウム水溶液280質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(6)320質量部を得た。活性エステル樹脂(6)の官能基当量は241g/当量、JIS K7234に基づいて測定した軟化点は130℃であった。得られた活性エステル樹脂(6)のGPCチャートを図6、13C−NMRを図7、MSを図8に示す。GPCチャート図の面積比から算出した活性エステル樹脂(6)中のエステル化合物(AC)の含有量は31.3%、重量平均分子量(Mw)は971であった。   A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 141 parts by mass of isophthalic acid chloride and 1000 parts by mass of toluene, and dissolved in the system while substituting with nitrogen under reduced pressure. Next, 247 parts by mass of the mixture (6) obtained above was charged, and the system was dissolved while substituting with nitrogen under reduced pressure. While adding 0.4 g of tetrabutylammonium bromide and performing a nitrogen gas purge, the inside of the reaction system was controlled to 60 ° C. or lower, and 280 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. After completion of dropping, the reaction was continued for 1 hour with stirring. After completion of the reaction, the reaction mixture was allowed to stand for liquid separation, and the aqueous layer was removed. After adding water to the remaining organic layer and stirring and mixing for about 15 minutes, the mixture was allowed to stand and liquid-separated, and the aqueous layer was removed. This operation was repeated until the pH of the aqueous layer reached 7, and then toluene and the like were distilled off under heating and reduced pressure conditions to obtain 320 parts by mass of an active ester resin (6). The functional group equivalent of the active ester resin (6) was 241 g / equivalent, and the softening point measured according to JIS K7234 was 130 ° C. The GPC chart of the obtained active ester resin (6) is shown in FIG. 6, the 13C-NMR is shown in FIG. 7, and the MS is shown in FIG. The content of the ester compound (AC) in the active ester resin (6) calculated from the area ratio in the GPC chart was 31.3%, and the weight average molecular weight (Mw) was 971.

比較製造例1 活性エステル樹脂(1’)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ジシクロペンタジエンとフェノールとの付加反応物(水酸基当量165g/当量、軟化点85℃)165質量部、1−ナフトール72質量部、及びトルエン630質量部を仕込み、系内を減圧窒素置換しながら溶解させた。次いで、イソフタル酸クロライド152質量部を仕込み、系内を減圧窒素置換しながら溶解させた。窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液300質量部を3時間かけて滴下した。滴下終了後、そのまま1時間撹拌を続けて反応させた。反応終了後、反応混合物を静置して分液し、水層を取り除いた。残った有機層に水を加えて約15分間撹拌混合した後、混合物を静置して分液し、水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した後、加熱減圧条件下でトルエン等を留去し、活性エステル樹脂(1’)を得た。活性エステル樹脂(1’)の官能基当量は223g/当量、JIS K7234に基づいて測定した軟化点は150℃であった。
Comparative Production Example 1 Production of Active Ester Resin (1 ′) Addition reaction product of dicyclopentadiene and phenol (hydroxyl equivalent 165 g / equivalent) to a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer , Softening point 85 ° C.) 165 parts by mass, 72 parts by mass of 1-naphthol, and 630 parts by mass of toluene were charged and dissolved in the system while substituting with nitrogen under reduced pressure. Next, 152 parts by mass of isophthalic acid chloride was charged, and the system was dissolved while substituting with nitrogen under reduced pressure. While performing nitrogen gas purging, the inside of the system was controlled to 60 ° C. or less, and 300 parts by mass of 20% aqueous sodium hydroxide solution was added dropwise over 3 hours. After completion of dropping, the reaction was continued for 1 hour with stirring. After completion of the reaction, the reaction mixture was allowed to stand for liquid separation, and the aqueous layer was removed. After adding water to the remaining organic layer and stirring and mixing for about 15 minutes, the mixture was allowed to stand and liquid-separated, and the aqueous layer was removed. This operation was repeated until the pH of the aqueous layer became 7, and then toluene and the like were distilled off under heating and reduced pressure conditions to obtain an active ester resin (1 ′). The functional group equivalent of the active ester resin (1 ′) was 223 g / equivalent, and the softening point measured based on JIS K7234 was 150 ° C.

比較製造例2 活性エステル樹脂(2’)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにフェノールノボラック樹脂(DIC社製「フェノライトTD−2131」、軟化点80℃、水酸基当量104)104質量部とメチルイソブチルケトン612質量部を仕込み、系内を減圧窒素置換し溶解させた。次いで、イソフタル酸クロライド10.1質量部を仕込み、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液21.0質量部を1時間かけて滴下した。更に1時間撹拌を続けた後、塩化ベンゾイル133.5質量部を仕込み、窒素ガスパージを実施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液189.0質量部を4時間かけて滴下した。滴下終了後、更に1時間撹拌を続けた。反応終了後、静置分液して水層を取り除いた。残った有機層に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のPHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し、減圧脱水でメチルイソブチルケトンを除去し、活性エステル樹脂(2’)を得た。この活性エステル樹脂(2’)の官能基当量は204g/当量、JIS K7234に基づいて測定した軟化点は92℃であった。
Comparative Production Example 2 Production of Active Ester Resin (2 ′) Phenol novolac resin (“Phenolite TD-2131” manufactured by DIC, softening point) on a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer At 80 ° C., 104 parts by mass of hydroxyl equivalent 104) and 612 parts by mass of methyl isobutyl ketone were charged, and the system was purged with nitrogen under reduced pressure to dissolve. Next, 10.1 parts by mass of isophthalic acid chloride was charged, and the inside of the system was controlled to 60 ° C. or lower while performing nitrogen gas purge, and 21.0 parts by mass of a 20% aqueous sodium hydroxide solution was added dropwise over 1 hour. After further stirring for 1 hour, 133.5 parts by mass of benzoyl chloride was charged and the inside of the system was controlled to 60 ° C. or lower while carrying out a nitrogen gas purge, so that 189.0 parts by mass of 20% aqueous sodium hydroxide solution was reduced to 4%. It was added dropwise over time. After completion of the dropwise addition, stirring was continued for another hour. After completion of the reaction, the mixture was left to separate and the aqueous layer was removed. Water was added to the remaining organic layer, and the mixture was stirred and mixed for about 15 minutes. The mixture was allowed to stand and liquid layer was removed. This operation was repeated until the pH of the aqueous layer became 7. Thereafter, water was removed by decanter dehydration, and methyl isobutyl ketone was removed by vacuum dehydration to obtain an active ester resin (2 ′). The functional group equivalent of this active ester resin (2 ′) was 204 g / equivalent, and the softening point measured based on JIS K7234 was 92 ° C.

実施例7〜12及び比較例1、2
下記表1に示す割合で各成分を配合し、硬化性樹脂組成物を得た。得られた硬化性樹脂組成物について、下記要領で硬化収縮率、硬化物における誘電率と誘電正接値を測定した。結果を表1に示す。
Examples 7 to 12 and Comparative Examples 1 and 2
Each component was mix | blended in the ratio shown in following Table 1, and curable resin composition was obtained. About the obtained curable resin composition, the cure shrinkage rate and the dielectric constant and dielectric loss tangent value in the cured product were measured in the following manner. The results are shown in Table 1.

硬化収縮率の測定
トランスファー成形機(コータキ精機株式会社製「KTS−15−1.5C」)を用いて、金型温度154℃、成形圧力9.8MPa、硬化時間600秒の条件下で、硬化性樹脂組成物を注入成形して、縦110mm、横12.7mm、厚さ1.6mmの成形物を得た。次いで、得られた成形物を175℃で5時間硬化させた後、室温(25℃)で24時間以上放置し、これを試験片とした。試験片の室温での縦方向寸法、金型の154℃での縦方向内寸法をそれぞれ測定し、下記式にて硬化収縮率を算出した。
硬化収縮率(%)={(金型の154℃での縦方向内寸法)−(試験片の室温での縦方向寸法)}/(金型の154℃での縦方向内寸法)×100(%)
Measurement of curing shrinkage Curing was performed using a transfer molding machine (“KTS-15-1.5C” manufactured by Kotaki Seiki Co., Ltd.) under conditions of a mold temperature of 154 ° C., a molding pressure of 9.8 MPa, and a curing time of 600 seconds. The resin composition was injection molded to obtain a molded product having a length of 110 mm, a width of 12.7 mm, and a thickness of 1.6 mm. Next, the obtained molded product was cured at 175 ° C. for 5 hours, and then allowed to stand at room temperature (25 ° C.) for 24 hours or more to obtain a test piece. The vertical dimension at room temperature of the test piece and the internal dimension in the vertical direction at 154 ° C. of the mold were measured, and the cure shrinkage rate was calculated by the following formula.
Curing shrinkage rate (%) = {(internal dimension at 154 ° C. of mold) − (longitudinal dimension of test piece at room temperature)} / (internal dimension of mold at 154 ° C.) × 100 (%)

誘電率・誘電正接の測定
硬化収縮率の測定と同様にして試験片を作製した。加熱真空乾燥後、23℃、湿度50%の室内に24時間保管した試験片について、アジレント・テクノロジー株式会社製ネットワークアナライザ「E8362C」を用い、空洞共振法にて、1GHzでの誘電率・誘電正接を測定した。
Measurement of dielectric constant and dielectric loss tangent A test piece was prepared in the same manner as the measurement of curing shrinkage. Dielectric constant / dielectric loss tangent at 1 GHz using a cavity resonance method for a test piece stored for 24 hours in a room at 23 ° C. and 50% humidity after heating and vacuum drying using a network analyzer “E8362C” manufactured by Agilent Technologies, Inc. Was measured.

Figure 2018009129
Figure 2018009129

エポキシ樹脂(*):ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850−S」、エポキシ当量188g/当量) Epoxy resin (*): bisphenol A type epoxy resin (“EPICLON 850-S” manufactured by DIC Corporation, epoxy equivalent 188 g / equivalent)

Claims (6)

分子構造中にフェノール性水酸基を一つ有する化合物(A)、フェノール性水酸基含有化合物(b1)とジビニル化合物(b2)とを必須の反応原料とするフェノール性水酸基含有樹脂(B)、及び芳香族ポリカルボン酸又はその酸ハロゲン化物(C)を必須の反応原料とすることを特徴とする活性エステル樹脂。 Compound (A) having one phenolic hydroxyl group in the molecular structure, phenolic hydroxyl group-containing resin (B) using phenolic hydroxyl group-containing compound (b1) and divinyl compound (b2) as essential reaction materials, and aromatic An active ester resin comprising a polycarboxylic acid or an acid halide (C) thereof as an essential reaction raw material. 前記フェノール性水酸基含有樹脂(B)が、フェノール性水酸基含有化合物(b1)が下記構造式(2)
Figure 2018009129
[式中Xは下記構造式(X−1)〜(X−4)の何れかで表される構造部位である。
Figure 2018009129
(式中Rはそれぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかであり、iは0又は1〜4の整数である。Yは炭素原子数1〜4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは1〜4の整数である。)]
で表される構造部位(α)で結節された分子構造を有する請求項1記載の活性エステル樹脂。
The phenolic hydroxyl group-containing resin (B) and the phenolic hydroxyl group-containing compound (b1) are represented by the following structural formula (2).
Figure 2018009129
[Wherein X is a structural moiety represented by any of the following structural formulas (X-1) to (X-4).
Figure 2018009129
(In the formula, each R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group, and i is an integer of 0 or 1 to 4. Y is the number of carbon atoms. Any one of an alkylene group of 1-4, an oxygen atom, a sulfur atom, and a carbonyl group, j is an integer of 1-4)
The active ester resin according to claim 1, which has a molecular structure knotted at a structural site (α) represented by:
請求項1又は2に記載の活性エステル樹脂と、硬化剤とを含有する硬化性樹脂組成物。 A curable resin composition comprising the active ester resin according to claim 1 or 2 and a curing agent. 請求項3記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to claim 3. 請求項3記載の硬化性組成物を用いてなるプリント配線基板。 A printed wiring board using the curable composition according to claim 3. 請求項3記載の硬化性組成物を用いてなる半導体封止材料。 A semiconductor sealing material comprising the curable composition according to claim 3.
JP2016140418A 2016-07-15 2016-07-15 Active ester resin and its cured product Active JP6862701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016140418A JP6862701B2 (en) 2016-07-15 2016-07-15 Active ester resin and its cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016140418A JP6862701B2 (en) 2016-07-15 2016-07-15 Active ester resin and its cured product

Publications (2)

Publication Number Publication Date
JP2018009129A true JP2018009129A (en) 2018-01-18
JP6862701B2 JP6862701B2 (en) 2021-04-21

Family

ID=60993692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016140418A Active JP6862701B2 (en) 2016-07-15 2016-07-15 Active ester resin and its cured product

Country Status (1)

Country Link
JP (1) JP6862701B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494470A (en) * 2017-03-24 2019-11-22 Dic株式会社 Polyester resin and its solidfied material
WO2020059625A1 (en) * 2018-09-18 2020-03-26 Dic株式会社 Phenol compound, active ester resin, production method for active ester resin, thermosetting resin composition, and cured product of thermosetting resin composition
JPWO2020059624A1 (en) * 2018-09-18 2021-09-09 Dic株式会社 Monofunctional phenol compound, active ester resin and its production method, thermosetting resin composition and its cured product
WO2023089998A1 (en) * 2021-11-18 2023-05-25 Dic株式会社 Curable composition, cured product thereof, prepreg, circuit board, build-up film, semiconductor sealing material and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165317A1 (en) * 2011-05-27 2012-12-06 Dic株式会社 Active ester resin, method for producing same, thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
JP2015174986A (en) * 2014-03-18 2015-10-05 Dic株式会社 Active ester resin, epoxy resin composition, hardened product of the composition, prepreg, circuit board and build-up film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165317A1 (en) * 2011-05-27 2012-12-06 Dic株式会社 Active ester resin, method for producing same, thermosetting resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
US20140151094A1 (en) * 2011-05-27 2014-06-05 Dic Corporation Active ester resin, method for producing the same, thermosetting resin composition, cured product of the thermosetting resin composition, semiconductor encapsulating material, pre-preg, circuit board, and build-up film
JP2015174986A (en) * 2014-03-18 2015-10-05 Dic株式会社 Active ester resin, epoxy resin composition, hardened product of the composition, prepreg, circuit board and build-up film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494470A (en) * 2017-03-24 2019-11-22 Dic株式会社 Polyester resin and its solidfied material
WO2020059625A1 (en) * 2018-09-18 2020-03-26 Dic株式会社 Phenol compound, active ester resin, production method for active ester resin, thermosetting resin composition, and cured product of thermosetting resin composition
KR20210046039A (en) * 2018-09-18 2021-04-27 디아이씨 가부시끼가이샤 Phenolic compound, active ester resin and its manufacturing method, and thermosetting resin composition and cured product thereof
JPWO2020059624A1 (en) * 2018-09-18 2021-09-09 Dic株式会社 Monofunctional phenol compound, active ester resin and its production method, thermosetting resin composition and its cured product
JPWO2020059625A1 (en) * 2018-09-18 2021-10-07 Dic株式会社 Phenolic compounds, active ester resins and methods for producing them, and thermosetting resin compositions and cured products thereof.
JP7120315B2 (en) 2018-09-18 2022-08-17 Dic株式会社 Phenolic compound, active ester resin and method for producing the same, and thermosetting resin composition and cured product thereof
JP7129016B2 (en) 2018-09-18 2022-09-01 Dic株式会社 Monofunctional phenolic compound, active ester resin and method for producing the same, and thermosetting resin composition and cured product thereof
KR102583421B1 (en) 2018-09-18 2023-09-26 디아이씨 가부시끼가이샤 Raw material composition for producing active ester resin, active ester resin and method for producing the same, and thermosetting resin composition and cured product thereof
WO2023089998A1 (en) * 2021-11-18 2023-05-25 Dic株式会社 Curable composition, cured product thereof, prepreg, circuit board, build-up film, semiconductor sealing material and semiconductor device
JP7327706B1 (en) * 2021-11-18 2023-08-16 Dic株式会社 Curable composition, cured product thereof, prepreg, circuit board, build-up film, semiconductor sealing material, and semiconductor device

Also Published As

Publication number Publication date
JP6862701B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6270092B1 (en) Active ester resin composition and cured product thereof
JP6304465B1 (en) Active ester composition and cured product thereof
JP6332720B1 (en) Active ester resin and its cured product
JPWO2018173500A1 (en) Active ester composition
JP2021059738A (en) Active ester compound
JP6862701B2 (en) Active ester resin and its cured product
JP6432808B2 (en) Epoxy resin and its cured product
JP6332719B1 (en) Active ester resin and its cured product
TWI776008B (en) Polyester resin and its hardened product
JP7276665B2 (en) Active ester composition and semiconductor encapsulation material
JP6332721B1 (en) Active ester resin and its cured product
JPWO2018173499A1 (en) Polyester resin and its cured product

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250