WO2023165614A1 - Acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin et procédé de traitement thermique et procédé de production d'acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin - Google Patents

Acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin et procédé de traitement thermique et procédé de production d'acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin Download PDF

Info

Publication number
WO2023165614A1
WO2023165614A1 PCT/CN2023/079637 CN2023079637W WO2023165614A1 WO 2023165614 A1 WO2023165614 A1 WO 2023165614A1 CN 2023079637 W CN2023079637 W CN 2023079637W WO 2023165614 A1 WO2023165614 A1 WO 2023165614A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
strength
corrosion
steel
long
Prior art date
Application number
PCT/CN2023/079637
Other languages
English (en)
Chinese (zh)
Inventor
杨志强
汪开忠
胡芳忠
王自敏
陈世杰
吴林
杨少朋
金国忠
Original Assignee
马鞍山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马鞍山钢铁股份有限公司 filed Critical 马鞍山钢铁股份有限公司
Publication of WO2023165614A1 publication Critical patent/WO2023165614A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the invention belongs to the technical field of alloy steel, and relates to a long-life, high-strength, high-strength, corrosion-resistant subsea tree valve body steel, a heat treatment method and a production method thereof.
  • my country is the second largest country in oil consumption and the third largest in natural gas consumption.
  • the country vigorously develops domestic oil and gas drilling and production, especially intensifying the development of deep sea oil and gas resources.
  • my country's current land oil and gas drilling depth has exceeded 7300 meters, and offshore oil and gas drilling depth is close to 3000 meters.
  • the Christmas tree is an essential device for oil and gas exploitation.
  • the Christmas trees used in my country are all imported, which seriously affects the safety of oil and gas in my country.
  • the Christmas tree is composed of multiple modules (valve bodies), which have high requirements on the strength and toughness of materials. In particular, subsea trees have higher requirements for low temperature toughness and corrosion resistance.
  • the valve body of the Christmas tree is usually made of 4130 steel, but with the deterioration of the oil and gas production environment, 4130 cannot meet the requirements of the underwater Christmas tree.
  • Patent CN 102839331 A discloses a high-toughness corrosion-resistant steel and its manufacturing method, which are used to manufacture the Christmas tree body.
  • the Cr content is as high as 12-14%
  • the yield strength of the material is ⁇ 517MPa
  • the impact energy at -46°C is ⁇ 27J.
  • This patent has high Cr content, high cost, although the yield strength is increased to 517MPa, it is still low, and the low temperature toughness is poor, and the toughness will be insufficient in a stricter low temperature environment.
  • Patent CN 112281069 A discloses a production method of 8630 super-long forgings for deep-sea oil tree equipment. Using the forging process of this patent, the yield strength of the obtained material is ⁇ 580MPa, and the impact energy at -29°C is ⁇ 30J. The low-temperature toughness of the material is relatively high. Low.
  • the object of the present invention is to provide a long-life, high-strength, high - strength, corrosion-resistant steel for underwater Christmas tree valve body and its heat treatment method and production method.
  • 230J the corrosion rate in seawater environment is ⁇ 0.07mm/a
  • its fatigue strength after 2 ⁇ 107 cycles of corrosion in seawater environment is ⁇ 350MPa, which can meet the use requirements of Christmas trees in more severe seawater environments, and is suitable for manufacturing underwater Christmas tree valve body.
  • a long-life, high-strength, high-strength, corrosion-resistant steel for underwater Christmas tree valve bodies including the following chemical components in weight percentages: C 0.22%-0.28%, Si 0.15%-0.35%, Mn 1.1%-1.4%, Cr 1.3%- 1.5%, Mo 0.5% ⁇ 0.6%, Ni 0.30% ⁇ 0.40%, Cu 0.30% ⁇ 0.50%, Al 0.015% ⁇ 0.035%, P ⁇ 0.015%, S ⁇ 0.015%, N ⁇ 0.0080%, O ⁇ 0.004% , and the rest are Fe and other unavoidable impurities;
  • A 457 ⁇ (C-0.077 ⁇ Cr)+45 ⁇ Cr+80 ⁇ Si+50 ⁇ Mn+10 ⁇ Mo+96 ⁇ Cu, 230% ⁇ A ⁇ 275%;
  • D 30 ⁇ Ni+20 ⁇ Mo+16 ⁇ Cu+22 ⁇ Mn-12 ⁇ Si ⁇ Mn+28 ⁇ C-10 ⁇ C ⁇ Mn, D ⁇ 52.5%, preferably D is 53-65%;
  • X 26 ⁇ Cu+4 ⁇ Ni+1.2 ⁇ Cr-1.5 ⁇ Si-7 ⁇ Cu ⁇ Ni-5 ⁇ Mn, X ⁇ 5.4%, preferably X is 5.5-7.5%.
  • the present invention performs the following controls:
  • C is the cheapest strengthening element in steel. For every increase of 0.1% solid solution C, the strength can be increased by about 450MPa. C and the alloying elements in the steel form precipitated phases to play a role in precipitation strengthening. C can significantly improve the hardenability, and make the core of the valve body of the large-scale Christmas tree obtain a martensitic structure. However, as its content increases, the plasticity and toughness decrease, and high C content is harmful to corrosion performance, so the C content is controlled at 0.22% to 0.28%.
  • Si is an effective solid-solution strengthening element in steel, which improves the strength and hardness of steel. Si can play a role in deoxidation during steelmaking and is a commonly used deoxidizer. However, Si is easy to segregate to austenite grain boundaries, which reduces the bonding force of grain boundaries and causes brittleness. In addition, Si is easy to cause element segregation in steel. Therefore, the Si content is controlled at 0.15% to 0.35%.
  • Mn can play a role in solid solution strengthening, and its solid solution strengthening ability is weaker than that of Si.
  • Mn is an austenite stabilizing element that can significantly improve the hardenability of steel and reduce decarburization of steel.
  • the combination of Mn and S can prevent Hot brittleness caused by S. But excessive Mn will reduce the plasticity of steel. Therefore, the Mn content is controlled at 1.1% to 1.4%.
  • Cr is a carbide forming element. Cr can improve the hardenability and strength of steel, but it is easy to cause temper brittleness. Cr can improve the oxidation resistance and corrosion resistance of steel, but when the Cr content is too high, it will increase the crack sensitivity. Cr content should be controlled at 1.3% to 1.5%.
  • Mo is mainly to improve the hardenability and heat resistance of steel. Mo solidly dissolved in the matrix can maintain a high stability of the steel structure during tempering, and can effectively reduce impurities such as P, S and As. The elements segregate at the grain boundaries, thereby improving the toughness of the steel and reducing temper brittleness. Mo reduces the stability of M 7 C 3 , and when the Mo content is high, acicular Mo 2 C will be formed, which will lead to a decrease in the Mo content of the matrix. Mo can improve the strength of steel through the joint action of solid solution strengthening and precipitation strengthening, and can also change the toughness of steel by changing the precipitation of carbides. Therefore, Mo is controlled at 0.5% to 0.6%.
  • Ni can form an infinitely soluble solid solution with Fe. It is an austenite stabilizing element. It has the effect of expanding the phase area, increasing the stability of supercooled austenite, shifting the C curve to the right, and improving the hardenability of steel. Ni can refine the width of the martensite lath and improve the strength. Ni can significantly reduce the ductile-brittle transition temperature of steel and improve low-temperature toughness. The Ni content is controlled at 0.30% to 0.40%.
  • Cu expands the austenite phase region.
  • Cu simple substance can be used as the second phase to significantly improve the strength, and can improve the tempering stability and strength of the structure. But if Cu is too high, it will cause Cu to be brittle. Therefore, the Cu content is controlled at 0.30% to 0.50%.
  • Al is the main deoxidizer in steelmaking. Al combines with N to form fine and dispersed AlN, and maintains a coherent relationship with the matrix, which can strengthen and refine the structure, and can increase the fatigue crack initiation and propagation resistance. , thereby increasing the durability of the steel. Al content is controlled at 0.015% to 0.035%.
  • T.O forms oxide inclusions in steel, control T.O ⁇ 0.0040%; N can form fine precipitated phase refinement structure with nitride forming elements in steel, so N is controlled within 0.0080%.
  • the main precipitated phase is the precipitated phase of Cr.
  • Cr consumes C to form carbides, and on the other hand, Cr can be dissolved into the matrix to improve the strength. This is related to the content of Cr and C in the steel type.
  • the C consumed by the formation of precipitates in the steel is 0.077 ⁇ Cr.
  • the solid solution C content should be C-0.077 ⁇ Cr.
  • the contribution coefficients of these five elements to the strength are 45, 80, 50, 10, and 96, respectively.
  • Ni is an element that can improve toughness at present, and Mo is beneficial to improve tempering stability, thereby improving the toughness of steel.
  • Cu can precipitate fine nano-copper precipitates in steel, thereby improving the toughness of steel. Therefore, the contribution coefficients of the above three elements to toughness are 30, 20, and 16, respectively.
  • Mn can promote the selection of steel in the phase transformation, so that the microstructure is finer and the toughness is improved, but the segregation of Si and Mn leads to the decrease of toughness, so the contribution of Mn to toughness has its own contribution, and there is an interaction with Si and Mn , so the coefficients are 22 and -12 respectively.
  • C content on toughness also has two sides. On the one hand, it promotes phase transformation refinement and improves toughness. On the one hand, it interacts with Mn to promote the hardening of steel, resulting in lower toughness. Therefore, C contributes independently to toughness, and there is an interaction with C and Mn, so the coefficients are 28 and -10, respectively. Because P and S in the steel are also harmful to the toughness of the steel, but because the present invention has set the maximum content limit for the content of P and S, the harm of P and S to the toughness is not considered. Toughness Determination Factor of Steel
  • the ratio of Si, Mn, Cu, Ni, and Cr needs to be limited, and the coefficient is 26 because Cu can improve the strength and significantly improve the corrosion resistance.
  • Si and Mn will aggravate segregation, cause microstructure inhomogeneity and reduce erosion performance, so the coefficients are -1.5 and -5, respectively.
  • Ni can improve stacking faults, significantly improve low-temperature toughness, and can passivate metals to improve erosion performance, so the coefficient of Ni is 4.
  • Cr can strengthen the passivation film on the steel surface, so the coefficients are 1.2 respectively.
  • the metallographic structure of the long-life, high-strength, toughness and corrosion-resistant subsea oil tree valve body steel is tempered sorbite, and the grain size is 20-25 ⁇ m.
  • the tensile strength at the 1/4 thickness of the steel valve body is 860-920MPa, the yield strength is 690-740MPa, -46°C KV 2 is 230-260J, A is 20-24%, Z is 70-75%; in seawater environment
  • the fatigue strength after medium corrosion 2 ⁇ 10 7 cycles is 350 ⁇ 375MPa.
  • the heat treatment method of the long-life, high-strength, toughness and corrosion-resistant underwater Christmas tree valve body steel provided by the present invention comprises the following steps:
  • Ladder quenching Heat the valve body of the Christmas tree to 900-940°C, keep it warm, and then water-cool it; then heat it to 840-880°C, keep it warm, and then water-cool it; the wall of the underwater Christmas tree valve body is thicker, and quench it through steps It can ensure that the material has a fine martensitic structure, which is conducive to strength and toughness.
  • the grain size and martensite of the steel are refined; during the second quenching, due to the refinement of the structure before heating, it is beneficial to the nucleation of the grains and the grain refinement; the temperature during the second quenching is lower than The first quenching temperature can ensure that the austenite grains are not coarsened, and after quenching, the grains and martensite variants will increase, and the microstructure will be refined, which is conducive to improving the strength, toughness and corrosion fatigue life;
  • the heating rate is 50-110° C./h
  • S is the valve body wall thickness in mm
  • the unit of t1 is min.
  • the above-mentioned heating rate can ensure that the temperature at different positions of the valve body is close; if the heating rate is too fast, the temperature gradient at different positions of the valve body will increase, which will increase the internal stress and increase the risk of cracks; Risk of tempering reactions, resulting in uncontrolled precipitated phase types and contents.
  • the holding time is the key to controlling the content and size of the precipitated phase. If the holding time is too short, the precipitated phase will be less and the beneficial effect will be reduced. If the holding time is too long, the precipitated phase will increase, but the size of the precipitated phase will increase, which will reduce the dispersed distribution of the precipitated phase. effect. Excessively large precipitates also increase the risk of internal microcracks.
  • the water cooling is all cooled to below 100°C.
  • the tempering parameters directly determine the mechanical properties and corrosion fatigue properties of the final product. If the tempering parameter is too large, the softening effect of the material will be large, resulting in a large decrease in the strength of the material and the strength cannot be guaranteed. It will also cause the size of the precipitate to be too large, weaken the precipitation strengthening effect, and increase the risk of microcracks in the steel and reduce the toughness. If the tempering parameter is small, the strength of the material will be insufficiently softened, the structural stress and internal stress will be large, and the toughness and corrosion fatigue performance will be reduced.
  • the production method of the long-life, high-strength, toughness and corrosion-resistant underwater Christmas tree valve body steel comprises the following steps: electric arc furnace or converter smelting ⁇ LF furnace refining ⁇ RH or VD vacuum degassing ⁇ round billet continuous casting ⁇ Round billet heating ⁇ forging into a valve body ⁇ heat treatment ⁇ machining ⁇ packaging and storage, wherein the heat treatment is carried out by the above heat treatment method.
  • the diameter of the round billet is ⁇ 380mm ⁇ 700mm.
  • the machining steps specifically include: rough turning of the valve body ⁇ flaw detection ⁇ finish turning of the valve body ⁇ grinding ⁇ flaw detection.
  • the present invention has the following beneficial effects:
  • the long-life, high-strength, corrosion-resistant steel for the valve body of the underwater Christmas tree provided by the present invention, by controlling the composition and dosage of the chemical components in the steel, makes its performance meet the requirements of the underwater Christmas tree in harsh environments;
  • Ni, Mo, Cu, Mn, Si and C in the long-life, high-strength, corrosion-resistant, corrosion-resistant subsea oil tree valve body steel satisfies 30 ⁇ Ni+20 ⁇ Mo+16 ⁇ Cu+ 22 ⁇ Mn-12 ⁇ Si ⁇ Mn+28 ⁇ C-10 ⁇ C ⁇ Mn ⁇ 74.5% to ensure the low temperature toughness of the subsea tree valve body;
  • the heat treatment of the long-life, high-strength, corrosion-resistant, corrosion-resistant underwater tree valve body steel provided by the present invention adopts a step quenching+tempering process for heat treatment, and controls the heating temperature and holding time during the tempering treatment to ensure water quality.
  • the overall performance of the steel used for the valve body of the lower Christmas tree can meet the needs of the underwater Christmas tree in harsh environments.
  • Fig. 1 is the metallographic structure diagram of the steel for subsea tree valve body in embodiment 3;
  • FIG. 2 is a metallographic structure diagram of the steel used for the subsea tree valve body in Comparative Example 2.
  • FIG. 2 is a metallographic structure diagram of the steel used for the subsea tree valve body in Comparative Example 2.
  • the invention provides a long-life, high-strength, high-strength, corrosion-resistant steel for underwater Christmas tree valve body, which includes the following chemical components in weight percentage: C 0.22%-0.28%, Si 0.15%-0.35%, Mn 1.1%-1.4%, Cr 1.3% ⁇ 1.5%, Mo 0.5% ⁇ 0.6%, Ni 0.30% ⁇ 0.40%, Cu 0.30% ⁇ 0.50%, Al 0.015% ⁇ 0.035%, P ⁇ 0.015%, S ⁇ 0.015%, N ⁇ 0.0080%, O ⁇ 0.004%, the rest is Fe and other unavoidable impurities;
  • A 457 ⁇ (C-0.077 ⁇ Cr)+45 ⁇ Cr+80 ⁇ Si+50 ⁇ Mn+10 ⁇ Mo+96 ⁇ Cu, 230% ⁇ A ⁇ 275%;
  • the production method of the long-life, high-strength, high-strength, corrosion-resistant, and corrosion-resistant underwater Christmas tree valve body steel comprises the following steps: electric arc furnace or converter smelting ⁇ LF furnace refining ⁇ RH or VD vacuum degassing ⁇ round billet continuous casting ⁇ round billet heating ⁇ Forging into valve body ⁇ heat treatment ⁇ machining ⁇ packaging and storage.
  • Oxygen is fixed before tapping, and steel is left in the tapping process to avoid slag;
  • Vacuum degassing pure degassing time ⁇ 15 minutes, to ensure [H] content ⁇ 1.5ppm after vacuum treatment, to avoid white spots in the steel, causing hydrogen embrittlement;
  • the target temperature of the molten steel in the tundish is controlled at 10-40°C above the liquidus temperature, and the round billet of ⁇ 380mm ⁇ 700mm is continuously cast.
  • Forging route round billet heating ⁇ forging ⁇ slow cooling.
  • Valve body heat treatment trolley furnace heating ⁇ heat preservation ⁇ quenching ⁇ trolley furnace heating ⁇ heat preservation ⁇ quenching ⁇ tempering ⁇ heat preservation ⁇ water cooling.
  • Machining route rough turning of valve body ⁇ flaw detection ⁇ fine turning of valve body ⁇ grinding ⁇ flaw detection.
  • Heat treatment is carried out according to the following steps:
  • the performance testing method of the long-life, high-strength, corrosion-resistant subsea tree valve body steel prepared by the above process is as follows:
  • Table 2 shows the heat treatment process parameters of the long-life, high-strength, corrosion-resistant subsea tree valve body steel in each embodiment and comparative example.
  • Table 3 shows the test results of the mechanical properties of the long-life, high-strength, corrosion-resistant steel for subsea tree valve bodies in each of the examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

La présente invention concerne un acier résistant à la corrosion haute ténacité à longue durée de vie pour une vanne d'arbre de Noël sous-marin et un procédé de traitement thermique et un procédé de production pour ledit acier résistant à la corrosion haute ténacité à longue durée de vie pour la vanne d'arbre de Noël sous-marin. L'acier pour la vanne d'arbre de Noël sous-marin comprend principalement les composants suivants : C, Si, Mn, Cr, Mo, Ni, Cu et Al. Les compositions des composants chimiques de l'acier et les relations et le contenu des composants sont contrôlés, de façon que la résistance à la traction à 1/4 d'épaisseur de la vanne en acier pour la vanne d'arbre de Noël sous-marin soit supérieure ou égale à 860 MPa, la limite élastique soit supérieure ou égale à 690 MPa, la valeur KV2 à -46 °C soit supérieure ou égale à 230 J, A soit supérieur ou égal à 20 % et Z soit supérieur ou égal à 70 % ; le taux de corrosion dans un environnement d'eau de mer soit inférieur ou égal à 0,07 mm/a ; la résistance à la fatigue soit supérieure ou égale à 350 MPa après 2 * 107 semaines de corrosion dans un environnement d'eau de mer ; et que la performance de l'acier puisse répondre aux exigences d'un arbre de Noël sous-marin dans un environnement sévère.
PCT/CN2023/079637 2022-03-04 2023-03-03 Acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin et procédé de traitement thermique et procédé de production d'acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin WO2023165614A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210209972.6 2022-03-04
CN202210209972.6A CN114561593B (zh) 2022-03-04 2022-03-04 一种长寿命高强韧耐腐蚀水下采油树阀体用钢及其热处理方法和生产方法

Publications (1)

Publication Number Publication Date
WO2023165614A1 true WO2023165614A1 (fr) 2023-09-07

Family

ID=81717441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079637 WO2023165614A1 (fr) 2022-03-04 2023-03-03 Acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin et procédé de traitement thermique et procédé de production d'acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin

Country Status (2)

Country Link
CN (1) CN114561593B (fr)
WO (1) WO2023165614A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117512429A (zh) * 2024-01-05 2024-02-06 上海开维喜阀门有限公司 一种lc1阀门铸件铸造方法
CN117778889A (zh) * 2024-01-06 2024-03-29 五洲阀门股份有限公司 一种阀门用合金材料及阀体生产工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561593B (zh) * 2022-03-04 2022-11-08 马鞍山钢铁股份有限公司 一种长寿命高强韧耐腐蚀水下采油树阀体用钢及其热处理方法和生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948538A (zh) * 2006-11-03 2007-04-18 天津钢管集团有限公司 抗硫化氢应力腐蚀的石油钢管及其制造方法
CN101440460A (zh) * 2008-12-10 2009-05-27 山东墨龙石油机械股份有限公司 一种抗硫化氢腐蚀用中高强度油套管及其制造方法
CN101892443A (zh) * 2010-07-09 2010-11-24 天津钢管集团股份有限公司 屈服强度170~180ksi钢级的高强高韧性石油套管及其制造方法
CN102199730A (zh) * 2010-03-23 2011-09-28 宝山钢铁股份有限公司 140ksi以上钢级耐硫化氢腐蚀无缝油套管及其制造方法
US20180291475A1 (en) * 2015-06-18 2018-10-11 Baoshan Iron & Steel Co., Ltd. Ultra-high strength and ultra-high toughness casing steel, oil casing, and manufacturing method thereof
CN113493882A (zh) * 2021-07-08 2021-10-12 马鞍山钢铁股份有限公司 一种具有优异抗点蚀能力的高疲劳寿命弹簧用钢及其热处理方法和生产方法
CN114561593A (zh) * 2022-03-04 2022-05-31 马鞍山钢铁股份有限公司 一种长寿命高强韧耐腐蚀水下采油树阀体用钢及其热处理方法和生产方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866199B (zh) * 2014-03-24 2016-06-08 济钢集团有限公司 一种用于海洋能源设备的钢板及其制备工艺
CN108624809B (zh) * 2017-03-24 2020-07-28 宝山钢铁股份有限公司 优良的耐海水腐蚀、抗疲劳性能及抗环境脆性的超高强度钢板及其制造方法
CN108914005B (zh) * 2018-08-10 2020-11-10 宝武集团鄂城钢铁有限公司 一种屈服强度>460MPa的低温韧性优异的特厚耐腐蚀钢板及其生产方法
CN109518087B (zh) * 2018-12-17 2021-06-25 苏州孚杰机械有限公司 用于低温低合金高强度耐腐蚀的油田阀体及其锻造工艺
CN110629102B (zh) * 2019-10-16 2021-04-27 宝武集团鄂城钢铁有限公司 一种580MPa级低应力腐蚀敏感性海洋工程用钢及其生产方法
CN113322420A (zh) * 2020-02-28 2021-08-31 宝山钢铁股份有限公司 一种具有优异低温冲击韧性的控制屈强比钢及其制造方法
CN111440998B (zh) * 2020-04-30 2021-07-06 鞍钢股份有限公司 一种耐海水腐蚀无缝钢管及其制造方法
CN111876665B (zh) * 2020-06-19 2021-11-02 马鞍山钢铁股份有限公司 一种低成本、耐低温、高强度深海采油树设备连接器用钢及其热处理工艺
CN111676425B (zh) * 2020-08-12 2021-11-02 宝武集团鄂城钢铁有限公司 一种极限低温下韧性优疲劳性强的桥梁钢及其制造方法
CN111979492B (zh) * 2020-09-11 2021-08-27 马鞍山钢铁股份有限公司 一种高强韧抗疲劳含钒铌高铁车轴钢及其热处理方法
CN113046635B (zh) * 2021-03-05 2022-07-26 天津理工大学 一种高强韧耐腐蚀海洋工程用钢及其制造方法
CN113462980B (zh) * 2021-07-01 2022-06-03 中信金属股份有限公司 一种低温环境下耐腐蚀高强高韧铸造节点用钢及其制备方法
CN113817964B (zh) * 2021-08-27 2022-06-14 马鞍山钢铁股份有限公司 一种含Cu高耐冲击腐蚀压裂泵阀体用钢及其热处理方法
CN113832396B (zh) * 2021-08-27 2022-04-26 马鞍山钢铁股份有限公司 一种长寿命适用于非常规油气作业压裂泵阀体用钢及其锻造方法
CN113862767A (zh) * 2021-08-30 2021-12-31 东方电气(广州)重型机器有限公司 一种奥氏体不锈钢的电解腐蚀方法及其应用
CN113913695B (zh) * 2021-10-13 2022-10-18 鞍钢股份有限公司 耐腐蚀抗疲劳水下油气采输用管线钢及其生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948538A (zh) * 2006-11-03 2007-04-18 天津钢管集团有限公司 抗硫化氢应力腐蚀的石油钢管及其制造方法
CN101440460A (zh) * 2008-12-10 2009-05-27 山东墨龙石油机械股份有限公司 一种抗硫化氢腐蚀用中高强度油套管及其制造方法
CN102199730A (zh) * 2010-03-23 2011-09-28 宝山钢铁股份有限公司 140ksi以上钢级耐硫化氢腐蚀无缝油套管及其制造方法
CN101892443A (zh) * 2010-07-09 2010-11-24 天津钢管集团股份有限公司 屈服强度170~180ksi钢级的高强高韧性石油套管及其制造方法
US20180291475A1 (en) * 2015-06-18 2018-10-11 Baoshan Iron & Steel Co., Ltd. Ultra-high strength and ultra-high toughness casing steel, oil casing, and manufacturing method thereof
CN113493882A (zh) * 2021-07-08 2021-10-12 马鞍山钢铁股份有限公司 一种具有优异抗点蚀能力的高疲劳寿命弹簧用钢及其热处理方法和生产方法
CN114561593A (zh) * 2022-03-04 2022-05-31 马鞍山钢铁股份有限公司 一种长寿命高强韧耐腐蚀水下采油树阀体用钢及其热处理方法和生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117512429A (zh) * 2024-01-05 2024-02-06 上海开维喜阀门有限公司 一种lc1阀门铸件铸造方法
CN117512429B (zh) * 2024-01-05 2024-03-15 上海开维喜阀门有限公司 一种lc1阀门铸件铸造方法
CN117778889A (zh) * 2024-01-06 2024-03-29 五洲阀门股份有限公司 一种阀门用合金材料及阀体生产工艺

Also Published As

Publication number Publication date
CN114561593A (zh) 2022-05-31
CN114561593B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2023165614A1 (fr) Acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin et procédé de traitement thermique et procédé de production d'acier résistant à la corrosion haute ténacité à longue durée de vie pour vanne d'arbre de noël sous-marin
CN103667953B (zh) 一种低环境裂纹敏感性超高强韧性海洋系泊链钢及其制造方法
JP6415453B2 (ja) 高耐食性高強度のAl含有耐候性鋼板及びその製造方法
CN100455692C (zh) 一种高强度耐候钢的生产方法
CN109161791A (zh) 具有优良低温韧性的690MPa级别船舶及海洋工程用钢及其制造方法
CN103938110B (zh) 海洋工程用fq70级超高强特厚钢板及其制造方法
CN102102163B (zh) 一种马氏体不锈钢及其制造方法
CN101775559B (zh) 一种易焊接高强度高韧性的船板钢及生产工艺
CN109082591A (zh) 125ksi抗硫化氢应力腐蚀高强油套管用钢及其制备工艺
CN109136737A (zh) 一种抗拉强度1100MPa级超高强韧钢及其制造方法
WO2023165617A1 (fr) Acier à haute résistance et haute ténacité à longue durée de vie et épaisseur de paroi ≥ 600 mm pour corps de vanne d'arbre de noël sous-marin et procédé de traitement thermique et procédé de production associés
CN104294153B (zh) 一种耐碱性腐蚀锚链钢及生产方法
CN106086642B (zh) 一种200mm厚抗氢致开裂压力容器钢板及其制造方法
CN104131218A (zh) 一种特高铬铸铁及其制备方法
CN103882312B (zh) 低成本高韧性-140℃低温用钢板的制造方法
WO2020211137A1 (fr) Acier de chaîne d'amarrage marine à haute résistance r6 applicable à un corps flottant à protection cathodique à positionnement amarré par ancre et sa chaîne d'amarrage
CN103882346A (zh) R4级系泊链用钢及其制备方法
CN111850399B (zh) 具有良好耐磨性耐蚀塑料模具钢及其制备方法
CN108315652B (zh) 低成本高淬透性hb450级中厚板耐磨钢板及制造方法
KR20230172017A (ko) 고입열 용접이 가능한 해양공학용 내식성 고강도 강판 및 이의 제조 방법
WO2023160613A1 (fr) Acier de chaîne d'amarrage et son procédé de production, et chaîne d'amarrage et son procédé de production
CN107557662A (zh) 调质型800MPa级低成本易焊接厚钢板及其生产方法
CN105296855A (zh) 可大线能量焊接的海洋平台用钢板及制备方法
WO2023165611A1 (fr) Acier pour corps de vanne d'arbre de noël résistant à la corrosion à ténacité élevée fondus à un rapport de déchets élevé et procédé de traitement thermique et procédé de production associés
CN115044838A (zh) 一种复合强化型超高强韧马氏体不锈钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763012

Country of ref document: EP

Kind code of ref document: A1