WO2023165610A1 - 一种上行信道的冲突处理方法、装置、芯片及模组设备 - Google Patents

一种上行信道的冲突处理方法、装置、芯片及模组设备 Download PDF

Info

Publication number
WO2023165610A1
WO2023165610A1 PCT/CN2023/079619 CN2023079619W WO2023165610A1 WO 2023165610 A1 WO2023165610 A1 WO 2023165610A1 CN 2023079619 W CN2023079619 W CN 2023079619W WO 2023165610 A1 WO2023165610 A1 WO 2023165610A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
uplink channel
uplink
time
physical uplink
Prior art date
Application number
PCT/CN2023/079619
Other languages
English (en)
French (fr)
Inventor
张萌
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023165610A1 publication Critical patent/WO2023165610A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of communications, in particular to a conflict processing method, device, chip and module equipment for uplink channels.
  • a terminal device can only transmit one uplink channel at a time on one component carrier (CC), such as a physical uplink shared channel ( In the case of physical uplink shared channel (PUSCH) or physical uplink control channel (physical uplink control channel, PUCCH), a PUSCH and a PUCCH collision solution.
  • CC component carrier
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink control channel
  • PUCCH collision solution for other scenarios, no solution for collision is provided, for example, no solution is provided for collision between two PUCCHs and PUSCHs when the terminal device transmits two PUCCHs and PUSCHs at the same time.
  • the present application provides a conflict handling method, device, chip and module equipment for uplink channels, and provides solutions for collisions in other scenarios.
  • a conflict handling method for an uplink channel including:
  • the first uplink channel is sent preferentially;
  • the first uplink channel is two physical uplink control channels, and the second uplink channel is a physical uplink shared channel; or,
  • the first uplink channel is a physical uplink shared channel
  • the second uplink channel is two physical uplink control channels.
  • the physical uplink shared channel or the two physical uplink control channels are sent preferentially, avoiding the physical uplink shared channel and the two physical uplink shared channels.
  • the problem of physical uplink control channel collision is solved, and the transmission reliability is improved.
  • the physical uplink shared channel is a repeatedly transmitted physical uplink shared channel, and the repeatedly transmitted physical uplink shared channel is received by one or more sending and receiving points.
  • the physical uplink shared channel is a repeated transmission of the physical uplink shared channel, and the repeated transmission of the physical uplink shared channel is received by one or more sending and receiving points, which is equivalent to avoiding the error received by one or more sending and receiving points.
  • the problem of repeated transmission of the physical uplink shared channel and the collision of two physical uplink control channels improves the transmission reliability.
  • the transmission sequence of the repeatedly transmitted physical uplink shared channel is cyclic mapping or sequential mapping.
  • the physical uplink shared channel can be sent preferentially according to the transmission sequence of cyclic mapping or sequential mapping, which improves the transmission reliability.
  • the two physical uplink control channels are sent through different antenna panels.
  • the two physical uplink control channels can be sent through different antenna panels, thereby improving transmission reliability.
  • the first uplink channel is two physical uplink control channels, and the first uplink channel is sent preferentially, including:
  • Two physical uplink control channels are preferentially sent in the same time unit.
  • the two physical uplink control channels are sent preferentially in the same time unit, avoiding the physical uplink shared channel and the physical uplink shared channel.
  • the problem of collision between two physical uplink control channels improves transmission reliability and transmission efficiency.
  • the second uplink channel is two physical uplink control channels or physical uplink shared channels, and the method further includes:
  • a conflict handling method for an uplink channel including:
  • the first uplink channel is a physical uplink control channel
  • the second uplink channel is two physical uplink shared channels.
  • the uplink control information carried on the first uplink channel is multiplexed on the second uplink channel, or the first uplink channel is sent One uplink channel, and cancel the transmission of the second uplink channel, avoiding the collision between the physical uplink control channel and two physical uplink shared channels, and improving the transmission reliability.
  • the physical uplink control channel is a repeatedly transmitted physical uplink control channel, and the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points.
  • the physical uplink control channel is a repeatedly transmitted physical uplink control channel, and the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points, which is equivalent to avoiding the error received by one or more sending and receiving points.
  • the problem of repeated transmission of the physical uplink control channel and the collision of two physical uplink shared channels improves transmission reliability.
  • the transmission sequence of the repeatedly transmitted physical uplink control channel is cyclic mapping or sequential mapping.
  • the physical uplink control channel can be sent preferentially according to the transmission sequence of cyclic mapping or sequential mapping, which improves the transmission reliability.
  • the two physical uplink shared channels are sent through different antenna panels.
  • the two physical uplink shared channels can be transmitted through different antenna panels, thereby improving transmission reliability.
  • multiplexing the uplink control information carried on the first uplink channel on the second uplink channel includes:
  • the uplink control information carried on the first uplink channel is multiplexed on a physical uplink shared channel with the same antenna panel or beam or the same sending and receiving point.
  • the uplink control information of the first uplink channel is the same as the uplink control information of the two physical uplink shared channels, which avoids the collision of the uplink control information transmission of different uplink channels, that is, avoids the collision between the physical uplink control channel and the two physical uplink shared channels, and improves the transmission reliability. sex.
  • the uplink control information carried on the first uplink channel is multiplexed on a physical uplink shared channel with the same antenna panel or beam or sending and receiving point, so that the uplink control information of the first uplink channel is shared with the antenna panel or beam or sending and receiving points.
  • the uplink control information of a physical uplink shared channel with the same point does not conflict, that is, the problem of collision between the physical uplink control channel transmitted through the same antenna panel or beam and two physical uplink shared channels is avoided, or the problem of being transmitted by the same transmission and reception is avoided.
  • the problem of collision between the physical uplink control channel received by the point and the two physical uplink shared channels improves the transmission reliability.
  • a conflict handling method for an uplink channel including:
  • the first uplink channel and the second uplink channel are sent on the same antenna panel, and the priority of the first uplink channel and the priority of the second uplink channel
  • the levels are the same, send the first uplink channel whose start time of the time-frequency resource is earlier, and cancel the second uplink channel whose start time of the time-frequency resource is later; or,
  • the first uplink channel is sent preferentially;
  • the first uplink channel is a physical uplink control channel for repeated transmission
  • the second uplink channel is two physical uplink control channels
  • the first uplink channel is two physical uplink control channels, and the second uplink channel is a physical uplink control channel for repeated transmission.
  • the transmission priority of the first uplink channel is higher than that of the second uplink channel.
  • the first uplink channel and the second uplink channel are sent on the same antenna panel , and the priority of the first uplink channel is the same as that of the second uplink channel, send the first uplink channel with the earlier time-frequency resource start time, and cancel the second uplink channel with the later time-frequency resource start time channel, which solves the problem of collision between the first uplink channel and the second uplink channel at the antenna panel level, and improves transmission reliability.
  • the first uplink channel is sent preferentially, which avoids the collision between the first uplink channel and the second uplink channel, and improves transmission reliability.
  • the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points.
  • the transmission sequence of the repeatedly transmitted physical uplink control channel is cyclic mapping or sequential mapping.
  • the physical uplink control channel with high priority or early start time of time-frequency resources can be sent according to the transmission order of cyclic mapping or sequential mapping , or give priority to sending the physical uplink control channel, which improves the transmission reliability.
  • the two physical uplink control channels are sent through different antenna panels.
  • the two physical uplink control channels can be sent through different antenna panels, thereby improving transmission reliability.
  • the first uplink channel is two physical uplink control channels, and the first uplink channel is sent preferentially, including:
  • Two physical uplink control channels are preferentially sent in the same time unit.
  • the two physical uplink control channels are sent preferentially in the same time unit, avoiding repeated transmission
  • the physical uplink control channel and two physical uplink control channels collide, and the transmission reliability and transmission efficiency are improved.
  • the second uplink channel is two physical uplink control channels or a physical uplink control channel for repeated transmission. If the first uplink channel is sent preferentially, the method further includes:
  • a conflict handling method for an uplink channel including:
  • the first uplink channel is a physical uplink control channel
  • the second uplink channel is a physical uplink shared channel
  • the two first uplink channels are sent through different antenna panels.
  • the two physical uplink control channels can be sent through different antenna panels, thereby improving transmission reliability.
  • the two second uplink channels are sent through different antenna panels.
  • the two physical uplink shared channels can be transmitted through different antenna panels, thereby improving transmission reliability.
  • an uplink channel conflict processing device includes a determining unit and a sending unit;
  • a determining unit configured to determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel
  • a sending unit configured to preferentially send the first uplink channel when the time-frequency resource of the first uplink channel overlaps with the time-frequency resource of the second uplink channel;
  • the first uplink channel is two physical uplink control channels, and the second uplink channel is a physical uplink shared channel; or,
  • the first uplink channel is a physical uplink shared channel
  • the second uplink channel is two physical uplink control channels.
  • an uplink channel conflict processing device includes a determination unit, a multiplexing unit, and a sending unit;
  • a determining unit configured to determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel
  • a multiplexing unit configured to multiplex the uplink control information carried on the first uplink channel on the second uplink channel when the time-frequency resources of the first uplink channel overlap with the time-frequency resources of the second uplink channel;
  • a sending unit configured to send the first uplink channel and cancel sending the second uplink channel when the time-frequency resources of the first uplink channel overlap with the time-frequency resources of the second uplink channel;
  • the first uplink channel is a physical uplink control channel
  • the second uplink channel is two physical uplink shared channels.
  • an uplink channel conflict processing device the device includes a determining unit and a sending unit;
  • a determining unit configured to determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel
  • a sending unit configured to send the first uplink with high priority when the time-frequency resources of the first uplink channel overlap with the time-frequency resources of the second uplink channel, and the first uplink channel and the second uplink channel are sent on the same antenna panel channel, and cancel sending the second uplink channel with low priority; or,
  • a sending unit configured to transmit the first uplink channel and the second uplink channel on the same antenna panel when the time-frequency resources of the first uplink channel overlap with the time-frequency resources of the second uplink channel, and the priority of the first uplink channel and the priority of the second uplink channel When the priorities of the two uplink channels are the same, send the first uplink channel whose start time of the time-frequency resource is earlier, and cancel the second uplink channel whose start time of the time-frequency resource is later; or,
  • a sending unit configured to preferentially send the first uplink channel when the time-frequency resource of the first uplink channel overlaps with the time-frequency resource of the second uplink channel;
  • the first uplink channel is a physical uplink control channel for repeated transmission
  • the second uplink channel is two physical uplink control channels
  • the first uplink channel is two physical uplink control channels, and the second uplink channel is a physical uplink control channel for repeated transmission.
  • an uplink channel conflict processing device includes a determination unit and a multiplexing unit;
  • a determining unit configured to determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel
  • a multiplexing unit configured to bear
  • the uplink control information carried on the two first uplink channels is multiplexed on the corresponding second uplink channel with the same antenna panel or beam or sending and receiving points;
  • the first uplink channel is a physical uplink control channel
  • the second uplink channel is a physical uplink shared channel
  • a chip including a processor and a communication interface, and the processor is configured to make the chip execute the method according to any one of the first aspect, the second aspect, the third aspect or the fourth aspect.
  • a module device includes a communication module, a power module, a storage module, and a chip, wherein:
  • the power supply module is used to provide power for the module equipment
  • the storage module is used to store data and instructions
  • the communication module is used for internal communication of the module equipment, or for communication between the module equipment and external equipment;
  • the chip is used to execute the method according to any one of the first aspect, the second aspect, the third aspect or the fourth aspect.
  • an uplink channel conflict handling device including a memory and a processor, the memory is used to store a computer program, the computer program includes program instructions, and the processor is configured to call the program instructions to enable the uplink channel conflict handling
  • the device executes the method according to any one of the first aspect, the second aspect, the third aspect or the fourth aspect.
  • a computer-readable storage medium is provided.
  • Computer-readable instructions are stored in the computer-readable medium.
  • the communication device is made to execute the first aspect, the second aspect, and the first aspect. The method of any one of the three aspects or the fourth aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for handling conflicts in an uplink channel provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another uplink channel conflict handling method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flow diagram of another uplink channel conflict handling method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another uplink channel conflict handling method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an uplink channel conflict processing device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another uplink channel conflict processing device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another uplink channel conflict processing device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another uplink channel conflict processing device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another uplink channel conflict processing device provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a module device provided by an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • 5G new radio
  • NR new radio
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application, and the solution in the present application is applicable to the communication system.
  • the communication system may include a network device and at least one terminal device.
  • FIG. 1 takes a communication system including a network device and three terminal devices as an example.
  • Terminal equipment includes equipment that provides voice and/or data connectivity to users.
  • terminal equipment is a device with wireless transceiver capabilities that can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed in On the water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal can be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control (industrial control) , vehicle terminal equipment, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, Wireless terminals in a smart city, wireless terminals in a smart home, wearable terminal devices, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal may sometimes be called terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, terminal equipment, wireless communication equipment device, UE proxy or UE device, etc.
  • Terminals can also be fixed or mobile.
  • the device used to realize the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system or a combined device or component that can realize the function of the terminal device. Can be installed in terminal equipment.
  • the network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and a next-generation base station (next station) in the fifth generation (5th generation, 5G) mobile communication system.
  • generation NodeB, gNB the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • the network device may also be a module or unit that performs some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the function of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part or all of the physical layer.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP.
  • the network equipment may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node.
  • the device for implementing the function of the network device may be the network device itself, or a device capable of supporting the network device to realize the function, such as a chip system or a combined device or component that can realize the function of the access network device,
  • the device can be installed in network equipment.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the time-frequency resources of the physical uplink control channel may include at least one of the following: time domain resources of the physical uplink control channel, and frequency domain resources of the physical uplink control channel.
  • the time-frequency resources of the physical uplink shared channel may include at least one of the following: time domain resources of the physical uplink shared channel, and frequency domain resources of the physical uplink shared channel.
  • the time-frequency resource may include one or more time units.
  • a time unit can be a symbol or several symbols, or a mini-slot (mini-slot), or a slot (slot), or a subframe (subframe), where the duration of a subframe in the time domain
  • the time can be 1 millisecond (ms)
  • a slot consists of 7 or 14 symbols
  • a mini-slot can include at least one symbol (for example, 2 symbols or 7 symbols or 14 symbols, or less than or equal to 14 symbols any number of symbols).
  • a frequency domain resource can be one or more resource blocks (resource block, RB), one or more subcarriers, one or more subbands (subband, SB), one resource block (resource block, RB), or one Resource block group (resource block group, RBG), etc.
  • resource block resource block
  • RBG Resource block group
  • the uplink control information may include hybrid automatic repeat request (hybridautomatic repeat request, HARQ) response information, channel state indicator (channel state indicator, CSI) and scheduling request (scheduling request, SR), etc., wherein the HARQ response information also It may be called HARQ-ACK information.
  • the HARQ response information may be an acknowledgment (acknowledgment, ACK) or a negative acknowledgment (negative acknowledgment, NACK).
  • CSI may include channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI), precoding type indicator (precoding type indication, PTI), rank indicator (rank indicator, RI) and so on.
  • the priority of the uplink control information carried on the physical uplink control channel is: the priority of the acknowledgment (acknowledgment, ACK) is higher than the priority of the SR, and the priority of the SR is higher than the priority of the high priority CSI , the priority of the high-priority CSI is higher than the priority of the low-priority CSI.
  • Repeated transmission means that the network device allocates multiple resources for the terminal device to send the same transport block (TB) in one scheduling.
  • the network device indicates the symbol resource for the first repeated transmission through the time domain resource allocation field in the downlink control information (DCI), and the other signaling indicates the number of repeated transmissions m, which is specified by the protocol or The system presets the time-domain position relationship between the symbol resources used for multiple repeated transmissions, so that the terminal device can determine the time-domain positions of the multiple resources used for repeated transmission of the TB.
  • DCI downlink control information
  • the type of repeated transmission may be repeated transmission between time slots (repetition type A) and repeated transmission within a time slot (repetition type B).
  • the present application provides a method, device, chip and module device for conflict handling of uplink channels.
  • the method, device, chip, and module device for uplink channel conflict handling provided in the embodiments of the present application are further described in detail below.
  • the first uplink channel is two physical uplink control channels
  • the second uplink channel is a physical uplink shared channel
  • the first uplink channel is a physical uplink shared channel
  • the second uplink channel is two physical uplink control channels.
  • channels how to deal with the collision between the first uplink channel and the second uplink channel.
  • two physical uplink control channels may correspond to one uplink scheduling control information, or may correspond to two uplink scheduling control information.
  • FIG. 2 is a schematic flow chart of a method for handling conflicts in an uplink channel provided by an embodiment of the present application.
  • the conflict handling method for the uplink channel includes the following steps 201 - 202 .
  • the subject of execution of the method shown in FIG. 2 may be a terminal device.
  • the execution body of the method shown in FIG. 2 may be a chip in the terminal device.
  • FIG. 2 uses a terminal device as an example to illustrate the execution subject of the method.
  • a terminal device determines time-frequency resources of a first uplink channel and time-frequency resources of a second uplink channel.
  • the first uplink channel is two physical uplink control channels
  • the second uplink channel is a physical uplink shared channel
  • the first uplink channel is a physical uplink shared channel
  • the second uplink channel is two physical uplink control channels.
  • the two physical uplink control channels may be sent through the same antenna panel or different antenna panels, which is not limited here.
  • two physical uplink control channels can be sent simultaneously through different antenna panels.
  • the physical uplink shared channel is a repeatedly transmitted physical uplink shared channel, and the repeatedly transmitted physical uplink shared channel is received by one or more sending and receiving points.
  • the transmission sequence of the repeatedly transmitted physical uplink shared channel is cyclic mapping or sequential mapping.
  • cyclic mapping refers to first performing repeated transmissions of N times for PUSCH, which are received by the first sending and receiving point, and then performing repeated transmissions of N times for the same PUSCH , which is received by the second sending and receiving point, and so on, with the two sending and receiving points alternated until all repeated PUSCH transmissions are completed.
  • the value of N may be 2 or other positive integers.
  • the method of repeatedly sending the PUSCH can also be called sequential mapping.
  • step 201 may include: the terminal device receives first configuration information and second configuration information from the network device, the first configuration information includes configuration information of time-frequency resources of the first uplink channel, and the second configuration information The information includes configuration information of the time-frequency resource of the second uplink channel; the terminal device determines the time-frequency resource of the first uplink channel according to the first configuration information; and the terminal device determines the time-frequency resource of the second uplink channel according to the second configuration information.
  • the configuration information of the time-frequency resource of the physical uplink shared channel includes one or more of the following: frequency hopping, demodulation reference signal (demodulation reference signal, DMRS) configuration, modulation and coding strategy (modulation and coding scheme, MCS) Table configuration, whether it can carry uplink control information (UCI), frequency domain resource allocation type, resource block group (resource block group, RBG) size, open-loop power control status selection, power control p0 parameter, DFT- The s-OFDM function is enabled, the number of hybrid automatic repeat request (HARQ) processes, the number of repetitions, and the rv, period, timer, slot offset, symbol index in the slot, and frequency domain resources under repetition , antenna port, DMRS scrambling sequence index, precoding and stream number indication, SRS resource indication, MCS and transport block size (transport block size, TBS) indication, frequency hopping offset and path loss reference signal.
  • HARQ hybrid automatic repeat request
  • the configuration information of the time-frequency resource of the physical uplink control channel includes at least one of the following: a time offset of the physical uplink control channel, a format of the physical uplink control channel, a period of the physical uplink control channel, and the like.
  • the terminal device preferentially sends the first uplink channel.
  • the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel overlap, which can be understood as: the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel are partially or completely overlapped, and the Do limited.
  • the first uplink channel is two physical uplink control channels
  • the second uplink channel is a physical uplink shared channel.
  • Step 202 may include: the terminal device preferentially sends two physical uplink control channels in the same time unit. That is, it can be seen that when the time-frequency resources of the two physical uplink control channels and the time-frequency resources of the physical uplink shared channel overlap, the two physical uplink control channels are sent preferentially in the same time unit, avoiding the physical uplink shared channel and the physical uplink shared channel. The problem of collision between two physical uplink control channels improves transmission reliability and transmission efficiency.
  • the terminal device preferentially sends two physical uplink control channels in the same time unit, which may include: the terminal device preferentially sends two physical uplink control channels to the network device in the same time unit, and correspondingly, the network device receives two physical uplink control channels from the terminal device. physical uplink control channel.
  • the terminal device may also cancel sending the second uplink channel.
  • the first uplink channel is two physical uplink control channels
  • the second uplink channel is a physical uplink shared channel.
  • This solution may also include: the terminal device cancels sending the physical uplink shared channel.
  • the first uplink channel is a physical uplink shared channel
  • the second uplink channel is two physical uplink control channels.
  • This solution may also include: the terminal device cancels sending the two physical uplink control channels.
  • FIG. 3 is a schematic flowchart of another uplink channel conflict handling method provided by an embodiment of the present application.
  • the conflict handling method for the uplink channel includes the following steps 301 - 302 .
  • the subject of execution of the method shown in FIG. 3 may be a terminal device.
  • the subject of executing the method shown in FIG. 3 may be a chip in the terminal device.
  • FIG. 3 uses a terminal device as an example for execution of the method.
  • a terminal device determines time-frequency resources of a first uplink channel and time-frequency resources of a second uplink channel.
  • step 301 is similar to step 201 in FIG. 2 , and will not be repeated here.
  • the first uplink channel is a physical uplink control channel
  • the second uplink channel is two physical uplink shared channels.
  • the two physical uplink shared channels may be sent through the same antenna panel or different antenna panels, which is not limited here.
  • two physical uplink shared channels can be sent simultaneously through different antenna panels.
  • two physical uplink shared channels may bear different transport blocks, or two physical uplink shared channels may bear the same transport block, which is not limited here.
  • the physical uplink control channel is a repeatedly transmitted physical uplink control channel, and the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points.
  • the transmission order of the repeated transmission of the physical uplink control channel may be cyclic mapping or sequential mapping.
  • the terminal device When the time-frequency resources of the first uplink channel overlap with the time-frequency resources of the second uplink channel, the terminal device multiplexes the uplink control information carried on the first uplink channel on the second uplink channel; or, when the first uplink channel When the time-frequency resource of the uplink channel and the time-frequency resource of the second uplink channel overlap, the terminal device sends the first uplink channel and cancels sending the second uplink channel; or, when the time-frequency resource of the first uplink channel and the second uplink channel When the time-frequency resources overlap, the terminal device sends the second uplink channel and cancels sending the first uplink channel.
  • the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel overlap, which can be understood as: the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel are partially or completely overlapped, and the Do limited.
  • the terminal device multiplexes the uplink control information carried on the first uplink channel on the second uplink channel, including: when two physical uplink shared channels carry the same transport block, the terminal device multiplexes the uplink control information carried on the first uplink channel
  • the uplink control information of the channel is multiplexed on two physical uplink shared channels; or, the terminal device multiplexes the uplink control information carried on the first uplink channel on a physical uplink shared channel with the same antenna panel or beam or sending and receiving points .
  • the uplink control information of the first uplink channel is made the same as the uplink control information of the two physical uplink shared channels, which avoids conflicts in the transmission of uplink control information of different uplink channels, that is, avoids the conflict between the physical uplink control channel and the two physical uplink shared channels.
  • the collision problem of the physical uplink shared channel improves the transmission reliability.
  • the uplink control information of the first uplink channel does not conflict with the uplink control information of a physical uplink shared channel with the same antenna panel or beam or sending and receiving point, that is, the physical uplink control channel and the physical uplink control channel transmitted through the same antenna panel or beam are avoided.
  • the problem of collision between two physical uplink shared channels, or the problem of collision between the same physical uplink control channel received by the sending and receiving point and two physical uplink shared channels is avoided, and the transmission reliability is improved.
  • the first uplink channel is a physical uplink control channel for repeated transmission
  • the second uplink channel is two physical uplink control channels; or, the first uplink channel is two physical uplink control channels, and the second uplink channel is In the case of repeated transmission of the physical uplink control channel, how to deal with the collision between the first uplink channel and the second uplink channel.
  • FIG. 4 is a schematic flowchart of another uplink channel conflict handling method provided by an embodiment of the present application.
  • the conflict handling method for the uplink channel includes the following steps 401 - 402 .
  • the subject of execution of the method shown in FIG. 4 may be a terminal device.
  • the subject of executing the method shown in FIG. 4 may be a chip in the terminal device.
  • FIG. 4 uses a terminal device as an example for an execution body of the method for illustration.
  • the terminal device determines time-frequency resources of a first uplink channel and time-frequency resources of a second uplink channel.
  • step 401 is similar to step 201 in FIG. 2 , and will not be repeated here.
  • the first uplink channel is a physical uplink control channel for repeated transmission
  • the second uplink channel is two physical uplink channels A control channel
  • the first uplink channel is two physical uplink control channels
  • the second uplink channel is a physical uplink control channel for repeated transmission.
  • the two physical uplink control channels may be sent through the same antenna panel or different antenna panels, which is not limited here.
  • two physical uplink control channels can be sent simultaneously through different antenna panels.
  • the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points.
  • the transmission order of the repeated transmission of the physical uplink control channel may be cyclic mapping or sequential mapping.
  • the terminal device sends the first uplink channel with a higher priority , and cancel sending the second uplink channel with low priority; or, when the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel overlap, the first uplink channel and the second uplink channel are sent on the same antenna panel, And when the priority of the first uplink channel is the same as that of the second uplink channel, the terminal device sends the first uplink channel whose time-frequency resource starts earlier, and cancels sending the second uplink channel whose time-frequency resource starts later. an uplink channel; or, when the time-frequency resource of the first uplink channel overlaps with the time-frequency resource of the second uplink channel, the terminal device preferentially sends the first uplink channel.
  • the priority depends on the content carried by the uplink channel, specifically, it can be HARQ-ACK>SR>high priority CSI>low priority CSI.
  • the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel overlap, which can be understood as: the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel are partially or completely overlapped, and the Do limited.
  • the first uplink channel is two physical uplink control channels
  • the second uplink channel is a physical uplink control channel for repeated transmission
  • the terminal device preferentially sends the first uplink channel, including: the terminal device preferentially sends two physical uplink control channels in the same time unit. physical uplink control channel. That is, it can be seen that when the time-frequency resources of the two physical uplink control channels and the time-frequency resources of the repeated transmission of the physical uplink control channel overlap, the two physical uplink control channels are sent preferentially in the same time unit, avoiding repeated transmission
  • the physical uplink control channel and two physical uplink control channels collide, and the transmission reliability and transmission efficiency are improved.
  • the terminal device preferentially sends two physical uplink control channels in the same time unit, which may include: the terminal device preferentially sends two physical uplink control channels to the network device in the same time unit, and correspondingly, the network device receives two physical uplink control channels from the terminal device. physical uplink control channel.
  • the terminal device may also cancel sending the second uplink channel.
  • the first uplink channel is a physical uplink control channel for repeated transmission
  • the second uplink channel is two physical uplink control channels.
  • This solution may also include: the terminal device cancels sending two physical uplink control channels. control channel.
  • the first uplink channel is two physical uplink control channels
  • the second uplink channel is a physical uplink control channel for repeated transmission.
  • This solution may also include: the terminal device cancels sending the physical uplink control channel for repeated transmission. channel.
  • FIG. 5 is a schematic flowchart of another uplink channel conflict handling method provided by an embodiment of the present application.
  • the conflict handling method for the uplink channel includes the following steps 501 - 502 .
  • the method shown in Figure 5 performs
  • the row body can be a terminal device.
  • the execution body of the method shown in FIG. 5 may be a chip in the terminal device.
  • FIG. 5 uses a terminal device as an example for an execution body of the method for illustration.
  • a terminal device determines time-frequency resources of a first uplink channel and time-frequency resources of a second uplink channel.
  • step 501 is similar to step 201 in FIG. 2 , and will not be repeated here.
  • the first uplink channel is a physical uplink control channel
  • the second uplink channel is a physical uplink shared channel.
  • the two first uplink channels are sent through the same antenna panel or different antenna panels, that is, the two physical uplink control channels are sent through the same antenna panel or different antenna panels, which is not limited herein.
  • two physical uplink control channels are sent simultaneously through different antenna panels.
  • the two second uplink channels are sent through the same antenna panel or different antenna panels, that is, the two physical uplink shared channels are sent through the same antenna panel or different antenna panels, which is not limited here.
  • two physical uplink shared channels are sent simultaneously through different antenna panels.
  • the terminal device When the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel overlap, the terminal device multiplexes the uplink control information carried by the two first uplink channels on the same antenna panel or beam or sending and receiving points corresponding to the second uplink channel.
  • the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel overlap, which can be understood as: the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel are partially or completely overlapped, and the Do limited.
  • the terminal device multiplexes the uplink control information carried on the two first uplink channels on the corresponding second uplink channel with the same antenna panel or beam or the same sending and receiving point, for example, it can be understood that: the terminal device will carry the two uplink control information on the two first uplink channels
  • the uplink control information of one physical uplink control channel in the physical uplink control channel is multiplexed on one of the two physical uplink shared channels with the same antenna panel or beam or sending and receiving points, and will be carried on two physical uplink shared channels.
  • the uplink control information of another physical uplink control channel in the control channel is multiplexed on the other physical uplink shared channel of the two physical uplink shared channels with the same antenna panel or beam or the same sending and receiving point.
  • FIG. 6 is a schematic structural diagram of an uplink channel conflict processing device provided by an embodiment of the present application.
  • the uplink channel conflict processing device may be a terminal device or a device (such as a chip) having a terminal device function.
  • the uplink channel conflict processing device 600 may include:
  • the determining unit 601 is configured to determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel; the sending unit 602 is configured to overlap the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel When , the first uplink channel is sent preferentially; wherein, the first uplink channel is two physical uplink control channels, and the second uplink channel is a physical uplink shared channel; or, the first uplink channel is a physical uplink shared channel, and the second uplink channel is Two physical uplink control channels.
  • the physical uplink shared channel is a repeatedly transmitted physical uplink shared channel, and the repeatedly transmitted physical uplink shared channel is received by one or more sending and receiving points.
  • the transmission sequence of the repeatedly transmitted physical uplink shared channel is cyclic mapping or sequential mapping.
  • the two physical uplink control channels are sent through different antenna panels.
  • the first uplink channel is two physical uplink control channels, and when the first uplink channel is sent preferentially, the sending unit 602 is configured to send the two physical uplink control channels preferentially in the same time unit.
  • the second uplink channel is two physical uplink control channels or physical uplink shared channels
  • the sending unit 602 is also configured to cancel sending the second uplink channel.
  • FIG. 7 is a schematic structural diagram of another uplink channel conflict processing device provided by an embodiment of the present application.
  • the uplink channel conflict processing device may be a terminal device or a device (such as a chip) with a terminal device function.
  • the uplink channel conflict processing device 700 may include:
  • the determining unit 701 is configured to determine the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel; the multiplexing unit 702 is configured to determine the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel When overlapping, the uplink control information carried on the first uplink channel is multiplexed on the second uplink channel; or, the sending unit 703 is configured to overlap the time-frequency resources of the first uplink channel and the second uplink channel , the first uplink channel is sent, and the second uplink channel is canceled; wherein, the first uplink channel is a physical uplink control channel, and the second uplink channel is two physical uplink shared channels.
  • the physical uplink control channel is a repeatedly transmitted physical uplink control channel, and the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points.
  • the transmission sequence of the repeatedly transmitted physical uplink control channel is cyclic mapping or sequential mapping.
  • the two physical uplink shared channels are sent through different antenna panels.
  • the multiplexing unit 702 when multiplexing the uplink control information carried on the first uplink channel on the second uplink channel, is configured to, when two physical uplink shared channels carry the same transport block, multiplex the The uplink control information of the first uplink channel is multiplexed on two physical uplink shared channels; or, the uplink control information carried on the first uplink channel is multiplexed on a physical uplink shared channel with the same antenna panel or beam or sending and receiving points superior.
  • FIG. 8 is a schematic structural diagram of another uplink channel conflict processing device provided by an embodiment of the present application.
  • the uplink channel conflict processing device may be a terminal device or a device (such as a chip) with a terminal device function.
  • the uplink channel conflict processing device 800 may include:
  • the determining unit 801 is configured to determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel; the sending unit 802 is configured to overlap the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel , and when the first uplink channel and the second uplink channel are sent on the same antenna panel, send the first uplink channel with high priority, and cancel the second uplink channel with low priority; or, the sending unit 802 is used to The time-frequency resources of the first uplink channel overlap with the time-frequency resources of the second uplink channel, the first uplink channel and the second uplink channel are sent on the same antenna panel, and the priority of the first uplink channel is the same as that of the second uplink channel At the same time, send the first uplink channel whose start time of the time-frequency resource is earlier, and cancel the second uplink channel whose start time of the time-frequency resource is later; When the resources overlap with the time-frequency resources of the second uplink channel, the first uplink channel is sent preferential
  • the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points.
  • the transmission sequence of the repeatedly transmitted physical uplink control channel is cyclic mapping or sequential mapping.
  • the two physical uplink control channels are sent through different antenna panels.
  • the first uplink channel is two physical uplink control channels, and when the first uplink channel is sent preferentially, the sending unit 802 is configured to send the two physical uplink control channels preferentially in the same time unit.
  • the second uplink channel is two physical uplink control channels or a repeatedly transmitted physical uplink control channel. If the first uplink channel is sent preferentially, the sending unit 802 is configured to cancel sending the second uplink channel.
  • FIG. 9 is a schematic structural diagram of another uplink channel conflict processing device provided by an embodiment of the present application.
  • the uplink channel conflict processing device may be a terminal device or a device (such as a chip) having a terminal device function.
  • the uplink channel conflict processing device 900 may include:
  • the determining unit 901 is configured to determine the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel; the multiplexing unit 902 is configured to determine the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel When overlapping, the uplink control information carried on the two first uplink channels is multiplexed on the corresponding second uplink channel with the same antenna panel or beam or sending and receiving points; wherein, the first uplink channel is a physical uplink control channel, and the second uplink channel is a physical uplink control channel.
  • the uplink channel is a physical uplink shared channel.
  • the two first uplink channels are sent through different antenna panels.
  • the two second uplink channels are sent through different antenna panels.
  • the embodiment of the present application also provides a chip, which can execute the relevant steps of the electronic device in the foregoing method embodiments.
  • the chip including processor and communication interface.
  • the processor is configured to cause the chip to perform the following operations: determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel; when the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel When the time-frequency resources of the second uplink channel overlap, the first uplink channel is sent preferentially; wherein, the first uplink channel is two physical uplink control channels, and the second uplink channel is a physical uplink shared channel; or, the first uplink channel is a physical uplink channel The uplink shared channel, the second uplink channel is two physical uplink control channels.
  • the physical uplink shared channel is a repeatedly transmitted physical uplink shared channel, and the repeatedly transmitted physical uplink shared channel is received by one or more sending and receiving points.
  • the transmission sequence of the repeatedly transmitted physical uplink shared channel is cyclic mapping or sequential mapping.
  • the two physical uplink control channels are sent through different antenna panels.
  • the first uplink channel is two physical uplink control channels, and when sending the first uplink channel preferentially, the processor is configured to make the chip perform the following operation: send two physical uplink control channels preferentially in the same time unit channel.
  • the second uplink channel is two physical uplink control channels or a physical uplink shared channel
  • the processor is configured to make the chip perform the following operation: cancel sending the second uplink channel.
  • the processor is configured to enable the chip to perform the following operations: determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel; when the time-frequency resource of the first uplink channel When overlapping with the time-frequency resources of the second uplink channel, multiplexing the uplink control information carried on the first uplink channel on the second uplink channel; or, when the time-frequency resources of the first uplink channel and the second uplink channel When the frequency resources overlap, the first uplink channel is sent, and the second uplink channel is canceled; wherein, the first uplink channel is a physical uplink control channel, and the second uplink channel is two physical uplink shared channels.
  • the physical uplink control channel is a repeatedly transmitted physical uplink control channel, and the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points.
  • the transmission sequence of the repeatedly transmitted physical uplink control channel is cyclic mapping or sequential mapping.
  • the two physical uplink shared channels are sent through different antenna panels.
  • the processing The device is configured to cause the chip to perform the following operations: when two physical uplink shared channels carry the same transport block, multiplex the uplink control information carried on the first uplink channel on the two physical uplink shared channels; or, multiplex the uplink control information carried on the first uplink shared channel; or, The uplink control information carried on the first uplink channel is multiplexed on a physical uplink shared channel with the same antenna panel or beam or sending and receiving points.
  • the processor is configured to cause the chip to perform the following operations: determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel; when the time-frequency resource of the first uplink channel When the time-frequency resource of the second uplink channel overlaps, and the first uplink channel and the second uplink channel are sent on the same antenna panel, the first uplink channel with a high priority is sent, and the second uplink channel with a low priority is canceled; Or, when the time-frequency resources of the first uplink channel and the time-frequency resources of the second uplink channel overlap, the first uplink channel and the second uplink channel are sent on the same antenna panel, and the priority of the first uplink channel and the priority of the second uplink channel When the priority of the time-frequency resource is the same, send the first uplink channel whose start time of the time-frequency resource is early, and cancel the second uplink channel whose start time of the time-frequency resource is late; or, when the time-frequency resource of the first uplink channel and When the time-frequency resource of the
  • the repeatedly transmitted physical uplink control channel is received by one or more sending and receiving points.
  • the transmission sequence of the repeatedly transmitted physical uplink control channel is cyclic mapping or sequential mapping.
  • the two physical uplink control channels are sent through different antenna panels.
  • the first uplink channel is two physical uplink control channels, and when sending the first uplink channel preferentially, the processor is configured to make the chip perform the following operation: send two physical uplink control channels preferentially in the same time unit channel.
  • the second uplink channel is two physical uplink control channels or a physical uplink control channel for repeated transmission. If the first uplink channel is sent preferentially, the processor is configured to make the chip perform the following operations: cancel sending the second uplink channel channel.
  • the processor is configured to cause the chip to perform the following operations: determine the time-frequency resource of the first uplink channel and the time-frequency resource of the second uplink channel; when the time-frequency resource of the first uplink channel When overlapping with the time-frequency resources of the second uplink channel, the uplink control information carried on the two first uplink channels is multiplexed on the corresponding second uplink channel with the same antenna panel or beam or the same sending and receiving point; wherein, the first uplink The channel is a physical uplink control channel, and the second uplink channel is a physical uplink shared channel.
  • the two first uplink channels are sent through different antenna panels.
  • the two second uplink channels are sent through different antenna panels.
  • the above-mentioned chip includes at least one processor, at least one first memory, and at least one second memory; wherein, the aforementioned at least one first memory and the aforementioned at least one processor are interconnected through lines, and the aforementioned first memory stores instructions
  • the aforementioned at least one second memory and the aforementioned at least one processor are interconnected by wires, and the aforementioned second memory stores the data that needs to be stored in the aforementioned method embodiments.
  • each module contained therein may be implemented by means of hardware such as circuits, or at least some of the modules may be implemented by means of software programs, which run on the internal integrated components of the chip.
  • the processor and the remaining (if any) modules can be realized by hardware such as circuits.
  • FIG. 10 is a schematic structural diagram of another uplink channel conflict processing device provided by an embodiment of the present application.
  • the conflict processing device for the uplink channel may be a terminal device or a network device.
  • the apparatus 1000 for conflict processing of an uplink channel may include a memory 1001 and a processor 1002 .
  • a communication interface 1003 is also included.
  • the memory 1001, the processor 1002 and the communication interface 1003 are connected through one or more communication buses. Wherein, the communication interface 1003 is controlled by the processor 1002 for sending and receiving information.
  • the memory 1001 may include read-only memory and random-access memory, and provides instructions and data to the processor 1002 .
  • a portion of memory 1001 may also include non-volatile random access memory.
  • the communication interface 1003 is used to receive or send data.
  • the processor 1002 can be a central processing unit (Central Processing Unit, CPU), and the processor 1002 can also be other general-purpose processors, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC ), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor, and optionally, the processor 1002 may also be any conventional processor. in:
  • the memory 1001 is used for storing program instructions.
  • the processor 1002 is configured to call the program instructions stored in the memory 1001 .
  • the processor 1002 invokes the program instructions stored in the memory 1001 to make the uplink channel conflict handling apparatus 1000 execute the method executed by the terminal device in the above method embodiment.
  • FIG. 11 is a schematic structural diagram of a module device provided by an embodiment of the present application.
  • the module device 1100 can perform related steps of the terminal device or network device in the foregoing method embodiments, and the module device 1100 includes: a communication module 1101 , a power module 1102 , a storage module 1103 and a chip 1104 .
  • the power supply module 1102 is used to provide power for the module equipment; the storage module 1103 is used to store data and instructions; the communication module 1101 is used for internal communication of the module equipment, or for communication between the module equipment and external equipment ;
  • the chip 1104 is used to execute the method executed by the terminal device in the above method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instruction is run on a processor, the method flow of the above-mentioned method embodiment is realized.
  • the embodiment of the present application further provides a computer program product.
  • the computer program product is run on a processor, the method flow of the above method embodiment is realized.
  • each module/unit contained in the product may be a software module/unit, or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit contained in the product may be realized by hardware such as a circuit, or at least part of the modules/units may be realized by a software program, and the software program runs
  • the processor is integrated inside the chip, and the remaining (if any) modules/units can be realized by hardware such as circuits; Circuits and other hardware methods, different modules/units can be located in the same chip module (such as chips, circuit modules etc.) or in different components, or at least some of the modules/units can be realized by means of a software program, which runs on the processor integrated in the chip module, and the remaining (if any) part of the modules/units can be implemented by using circuits, etc.
  • modules/units contained in it can all be realized by hardware such as circuits, and different modules/units can be located in the same component (for example, chip, circuit, etc.) modules, etc.) or in different components, or at least some of the modules/units can be implemented in the form of software programs that run on the processor integrated in the terminal, and the remaining (if any) modules/units can be implemented using hardware such as circuits way to achieve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行信道的冲突处理方法、装置、芯片及模组设备,该方法包括:确定第一上行信道的时频资源和第二上行信道的时频资源;当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;其中,第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道;或,第一上行信道为物理上行共享信道,第二上行信道为多个物理上行控制信道。实施本申请实施例,对于其他场景,提供了发生碰撞的解决方案,如提供了两个物理上行控制信道和物理上行共享信道发生碰撞的解决方案。

Description

一种上行信道的冲突处理方法、装置、芯片及模组设备 技术领域
本发明涉及通信领域,尤其涉及一种上行信道的冲突处理方法、装置、芯片及模组设备。
背景技术
目前的第三代合作伙伴计划(3rd generation partnership project,3GPP)标准中,提供了终端设备在同一时刻在一个成员载波(component carrier,CC)同时只能发送一个上行信道,如物理上行共享信道(physical uplink shared channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH)的情况下,一个PUSCH和一个PUCCH发生碰撞的解决方案。但对于其他场景,未提供发生碰撞的解决方案,如未提供终端设备同时发送两个PUCCH以及同时发送PUSCH的情况下,两个PUCCH和PUSCH发生碰撞的解决方案。
发明内容
本申请提供一种上行信道的冲突处理方法、装置、芯片及模组设备,对于其他场景,提供了发生碰撞的解决方案。
第一方面,提供一种上行信道的冲突处理方法,该方法包括:
确定第一上行信道的时频资源和第二上行信道的时频资源;
当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;
其中,第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道;或,
第一上行信道为物理上行共享信道,第二上行信道为两个物理上行控制信道。
即可以看出,在两个物理上行控制信道的时频资源和物理上行共享信道的时频资源重叠时,优先发送物理上行共享信道或两个物理上行控制信道,避免了物理上行共享信道和两个物理上行控制信道发生碰撞的问题,提高了传输可靠性。
可选的,结合第一方面,物理上行共享信道为重复传输的物理上行共享信道,重复传输的物理上行共享信道由一个或多个发送接收点接收。
即可以看出,物理上行共享信道为重复传输的物理上行共享信道,且重复传输的物理上行共享信道由一个或多个发送接收点接收,相当于避免了由一个或多个发送接收点接收的重复传输物理上行共享信道和两个物理上行控制信道发生碰撞的问题,提高了传输可靠性。
可选的,结合第一方面,若重复传输的物理上行共享信道由多个发送接收点接收,重复传输的物理上行共享信道传输的次序为循环映射或顺序映射。
即可以看出,当重复传输的物理上行共享信道由多个发送接收点接收时,可以依据循环映射或顺序映射的传输次序优先发送物理上行共享信道,提高了传输可靠性。
可选的,结合第一方面,两个物理上行控制信道通过不同的天线面板发送。
即可以看出,两个物理上行控制信道可以通过不同的天线面板发送,进而提高了传输可靠性。
可选的,结合第一方面,第一上行信道为两个物理上行控制信道,优先发送第一上行信道,包括:
在同一时间单元上优先发送两个物理上行控制信道。
即可以看出,在两个物理上行控制信道的时频资源和物理上行共享信道的的时频资源重叠时,在同一时间单元上优先发送两个物理上行控制信道,避免了物理上行共享信道和两个物理上行控制信道发生碰撞的问题,提高了传输可靠性以及传输效率。
可选的,结合第一方面,第二上行信道为两个物理上行控制信道或物理上行共享信道,该方法还包括:
取消发送第二上行信道。
即可以看出,在第一上行信道的时频资源和第二上行信道的时频资源重叠时,取消发送第二上行信道,避免了第一上行信道和第二上行信道发生碰撞的问题,提高了传输可靠性。
第二方面,提供一种上行信道的冲突处理方法,该方法包括:
确定第一上行信道的时频资源和第二上行信道的时频资源;
当第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承载于第一上行信道的上行控制信息复用在第二上行信道上;或,
当第一上行信道的时频资源和第二上行信道的时频资源重叠时,发送第一上行信道,并取消发送第二上行信道;
其中,第一上行信道为物理上行控制信道,第二上行信道为两个物理上行共享信道。
即可以看出,在第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承载于第一上行信道的上行控制信息复用在第二上行信道上,或,发送第一上行信道,并取消发送第二上行信道,避免了物理上行控制信道和两个物理上行共享信道发生碰撞的问题,提高了传输可靠性。
可选的,第二方面,物理上行控制信道为重复传输的物理上行控制信道,重复传输的物理上行控制信道由一个或多个发送接收点接收。
即可以看出,物理上行控制信道为重复传输的物理上行控制信道,且重复传输的物理上行控制信道由一个或多个发送接收点接收,相当于避免了由一个或多个发送接收点接收的重复传输物理上行控制信道和两个物理上行共享信道发生碰撞的问题,提高了传输可靠性。
可选的,第二方面,若重复传输的物理上行控制信道由多个发送接收点接收,重复传输的物理上行控制信道传输的次序为循环映射或顺序映射。
即可以看出,当重复传输的物理上行控制信道由多个发送接收点接收时,可以依据循环映射或顺序映射的传输次序优先发送物理上行控制信道,提高了传输可靠性。
可选的,第二方面,两个物理上行共享信道通过不同的天线面板发送。
即可以看出,两个物理上行共享信道可以通过不同的天线面板发送,进而提高了传输可靠性。
可选的,第二方面,将承载于第一上行信道的上行控制信息复用在第二上行信道上,包括:
当两个物理上行共享信道承载相同的传输块时,将承载于第一上行信道的上行控制信息复用在两个物理上行共享信道上;或,
将承载于第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的一个物理上行共享信道上。
即可以看出,当两个物理上行共享信道承载相同的传输块时,通过将承载于第一上行信道的上行控制信息复用在两个物理上行共享信道上,使得第一上行信道的上行控制信息和两个物理上行共享信道的上行控制信息相同,避免了不同上行信道的上行控制信息传输发生冲突,即避免了物理上行控制信道和两个物理上行共享信道发生碰撞的问题,提高了传输可靠性。或者,将承载于第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的一个物理上行共享信道上,使得第一上行信道的上行控制信息与天线面板或波束或发送接收点相同的一个物理上行共享信道的上行控制信息不冲突,即避免了通过同一天线面板或波束发送的物理上行控制信道和两个物理上行共享信道发生碰撞的问题,或,避免了由同一发送接收点接收的物理上行控制信道和两个物理上行共享信道发生碰撞的问题,提高了传输可靠性。
第三方面,提供一种上行信道的冲突处理方法,该方法包括:
确定第一上行信道的时频资源和第二上行信道的时频资源;
当第一上行信道的时频资源和第二上行信道的时频资源重叠,且第一上行信道和第二上行信道在同一天线面板发送时,发送优先级高的第一上行信道,并取消发送优先级低的第二上行信道;或,
当第一上行信道的时频资源和第二上行信道的时频资源重叠,第一上行信道和第二上行信道在同一天线面板发送,且第一上行信道的优先级和第二上行信道的优先级相同时,发送时频资源的起始时间早的第一上行信道,并取消发送时频资源的起始时间晚的第二上行信道;或,
当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;
其中,第一上行信道为重复传输的物理上行控制信道,第二上行信道为两个物理上行控制信道;或,
第一上行信道为两个物理上行控制信道,第二上行信道为重复传输的物理上行控制信道。
即可以看出,当第一上行信道的时频资源和第二上行信道的时频资源重叠,且第一上行信道和第二上行信道在同一天线面板发送时,发送优先级高的第一上行信道,并取消发送优先级低的第二上行信道;或,当第一上行信道的时频资源和第二上行信道的时频资源重叠,第一上行信道和第二上行信道在同一天线面板发送,且第一上行信道的优先级和第二上行信道的优先级相同时,发送时频资源的起始时间早的第一上行信道,并取消发送时频资源的起始时间晚的第二上行信道,实现了从天线面板层面第一上行信道和第二上行信道发生碰撞的问题,提高了传输可靠性。或,当第一上行信道的时频资源和第二上行信道 的时频资源重叠时,优先发送第一上行信道,避免了第一上行信道和第二上行信道发生碰撞的问题,提高了传输可靠性。
可选的,结合第三方面,重复传输的物理上行控制信道由一个或多个发送接收点接收。
即可以看出,避免了由一个或多个发送接收点接收的重复传输物理上行控制信道和两个物理上行控制信道发生碰撞的问题,提高了传输可靠性。
可选的,结合第三方面,若重复传输的物理上行控制信道由多个发送接收点接收,重复传输的物理上行控制信道传输的次序为循环映射或顺序映射。
即可以看出,当重复传输的物理上行控制信道由多个发送接收点接收时,可以依据循环映射或顺序映射的传输次序发送优先级高或时频资源的起始时间早的物理上行控制信道,或优先发送物理上行控制信道,提高了传输可靠性。
可选的,结合第三方面,两个物理上行控制信道通过不同的天线面板发送。
即可以看出,两个物理上行控制信道可以通过不同的天线面板发送,进而提高了传输可靠性。
可选的,结合第三方面,第一上行信道为两个物理上行控制信道,优先发送第一上行信道,包括:
在同一时间单元上优先发送两个物理上行控制信道。
即可以看出,在两个物理上行控制信道的时频资源和重复传输的物理上行控制信道的的时频资源重叠时,在同一时间单元上优先发送两个物理上行控制信道,避免了重复传输的物理上行控制信道和两个物理上行控制信道发生碰撞的问题,提高了传输可靠性以及传输效率。
可选的,结合第三方面,第二上行信道为两个物理上行控制信道或重复传输的物理上行控制信道,若优先发送第一上行信道,该方法还包括:
取消发送第二上行信道。
即可以看出,在第一上行信道的时频资源和第二上行信道的时频资源重叠时,取消发送第二上行信道,避免了第一上行信道和第二上行信道发生碰撞的问题,提高了传输可靠性。
第四方面,提供一种上行信道的冲突处理方法,该方法包括:
确定第一上行信道的时频资源和第二上行信道的时频资源;
当第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承载于两个第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应第二上行信道上;
其中,第一上行信道为物理上行控制信道,第二上行信道为物理上行共享信道。
即可以看出,当第一上行信道的时频资源和第二上行信道的时频资源重叠时,通过将承载于两个第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应第二上行信道上,使得每个第一上行信道的上行控制信息与天线面板或波束或发送接收点相同的一个物理上行共享信道的上行控制信息不冲突,即避免了通过同一天线面板或波束发送的物理上行控制信道和物理上行共享信道发生碰撞的问题,或,避免了同一发送接收点接收的物理上行控制信道和物理上行共享信道发生碰撞的问题,提高了传输可靠性。
可选的,结合第四方面,两个第一上行信道通过不同的天线面板发送。
即可以看出,两个物理上行控制信道可以通过不同的天线面板发送,进而提高了传输可靠性。
可选的,结合第四方面,两个第二上行信道通过不同的天线面板发送。
即可以看出,两个物理上行共享信道可以通过不同的天线面板发送,进而提高了传输可靠性。
第五方面,提供一种上行信道的冲突处理装置,装置包括确定单元和发送单元;
确定单元,用于确定第一上行信道的时频资源和第二上行信道的时频资源;
发送单元,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;
其中,第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道;或,
第一上行信道为物理上行共享信道,第二上行信道为两个物理上行控制信道。
第六方面,提供一种上行信道的冲突处理装置,装置包括确定单元、复用单元和发送单元;
确定单元,用于确定第一上行信道的时频资源和第二上行信道的时频资源;
复用单元,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承载于第一上行信道的上行控制信息复用在第二上行信道上;或,
发送单元,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,发送第一上行信道,并取消发送第二上行信道;
其中,第一上行信道为物理上行控制信道,第二上行信道为两个物理上行共享信道。
第七方面,提供一种上行信道的冲突处理装置,装置包括确定单元和发送单元;
确定单元,用于确定第一上行信道的时频资源和第二上行信道的时频资源;
发送单元,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠,且第一上行信道和第二上行信道在同一天线面板发送时,发送优先级高的第一上行信道,并取消发送优先级低的第二上行信道;或,
发送单元,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠,第一上行信道和第二上行信道在同一天线面板发送,且第一上行信道的优先级和第二上行信道的优先级相同时,发送时频资源的起始时间早的第一上行信道,并取消发送时频资源的起始时间晚的第二上行信道;或,
发送单元,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;
其中,第一上行信道为重复传输的物理上行控制信道,第二上行信道为两个物理上行控制信道;或,
第一上行信道为两个物理上行控制信道,第二上行信道为重复传输的物理上行控制信道。
第八方面,提供一种上行信道的冲突处理装置,装置包括确定单元和复用单元;
确定单元,用于确定第一上行信道的时频资源和第二上行信道的时频资源;
复用单元,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承 载于两个第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应第二上行信道上;
其中,第一上行信道为物理上行控制信道,第二上行信道为物理上行共享信道。
第九方面,提供一种芯片,包括处理器和通信接口,处理器被配置用于使芯片执行如第一方面、第二方面、第三方面或第四方面中任一项的方法。
第十方面,提供一种模组设备,模组设备包括通信模组、电源模组、存储模组以及芯片,其中:
电源模组用于为模组设备提供电能;
存储模组用于存储数据和指令;
通信模组用于进行模组设备内部通信,或者用于模组设备与外部设备进行通信;
芯片用于执行如第一方面、第二方面、第三方面或第四方面中任一项的方法。
第十一方面,提供一种上行信道的冲突处理装置,包括存储器和处理器,存储器用于存储计算机程序,计算机程序包括程序指令,处理器被配置用于调用程序指令,使上行信道的冲突处理装置执行如第一方面、第二方面、第三方面或第四方面中任一项的方法。
第十二方面,提供一种计算机可读存储介质,计算机存储介质中存储有计算机可读指令,当计算机可读指令在通信装置上运行时,使得通信装置执行第一方面、第二方面、第三方面或第四方面中任一项的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种通信系统的示意图;
图2是本申请实施例提供的一种上行信道的冲突处理方法的流程示意图;
图3是本申请实施例提供的又一种上行信道的冲突处理方法的流程示意图;
图4是本申请实施例提供的又一种上行信道的冲突处理方法的流程示意图;
图5是本申请实施例提供的又一种上行信道的冲突处理方法的流程示意图;
图6是本申请实施例提供的一种上行信道的冲突处理装置的结构示意图;
图7是本申请实施例提供的又一种上行信道的冲突处理装置的结构示意图;
图8是本申请实施例提供的又一种上行信道的冲突处理装置的结构示意图;
图9是本申请实施例提供的又一种上行信道的冲突处理装置的结构示意图;
图10是本申请实施例提供的又一种上行信道的冲突处理装置的结构示意图;
图11是本申请实施例提供的一种模组设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本 申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
需要说明的是,本申请的说明书和权利要求书中及上述附图中的属于“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述以外的顺序实施。此外,术语“包括”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了更好地理解本申请实施例,下面首先对本申请实施例涉及的系统架构进行介绍:
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)以及未来的通信系统等。
图1是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括网络设备和至少一个终端设备,图1以通信系统中包括网络设备和3个终端设备为例。
一、终端设备
终端设备包括向用户提供语音和/或数据连通性的设备,例如终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(VR)终端设备、增强现实(AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设 备、UE代理或UE装置等。终端也可以是固定的或者移动的。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或可实现终端设备功能的组合器件、部件,该装置可以被安装在终端设备中。
二、网络设备
网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等。网络设备也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和媒体接入控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能。有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请实施例中,用于实现网络设备功能的装置可以是网络设备本身,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或可实现接入网设备功能的组合器件、部件,该装置可以被安装在网络设备中。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
为了便于理解本申请实施例提供的方案,下面先对本方案涉及到的名词进行介绍,后续描述中不再重复说明。
一、物理上行控制信道的时频资源可以包括以下至少一项:物理上行控制信道的时域资源、物理上行控制信道的频域资源。同理,物理上行共享信道的时频资源可以包括以下至少一项:物理上行共享信道的时域资源、物理上行共享信道的频域资源。
其中,时频资源可以包括一个或多个时间单位。一个时间单元可以是一个符号或者几个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。
其中,一个频域资源可以是一个或多个资源块(resource block,RB),一个或多个子载波,一个或多个子带(subband,SB),一个资源块(resource block,RB),或一个资源块组(resource block group,RBG)等。其中,一个RB中包含的子载波的数量例如可以为12个。
二、上行控制信息可以包括混合式自动重传请求(hybridautomatic repeat request,HARQ)应答信息、信道状态指示(channel state indicator,CSI)和调度请求(scheduling request,SR)等,其中,HARQ应答信息也可以称为HARQ-ACK信息。HARQ应答信息可以是肯定应答(acknowledgement,ACK),也可以是否定应答(negativeacknowledgement,NACK)。CSI可以包括信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indication,PTI)、秩指示(rank indicator, RI)等。
应理解的,承载于物理上行控制信道的上行控制信息的优先级为:肯定应答(acknowledgement,ACK)的优先级高于SR的优先级,SR的优先级高于高优先级的CSI的优先级,高优先级的CSI的优先级高于低优先级的CSI的优先级。
三、重复传输是指网络设备在一次调度中为终端设备分配多个资源用于发送同一个传输块(transport block,TB)。一种方式是网络设备通过下行控制信息(downlink control information,DCI)中的时域资源分配字段指示第一次重复传输的符号资源,另一信令指示重复传输的次数m,并由协议规定或系统预设用于多次重复传输的符号资源之间的时域位置关系,使终端设备能够确定用于重复传输该TB的多个资源的时域位置。
其中,重复传输的类型可以是时隙间的重复传输(repetition typeA),时隙内的重复传输(repetition type B)。
为了避免信道间的碰撞问题,提高了传输可靠性,本申请提供一种上行信道的冲突处理方法、装置、芯片及模组设备。下面进一步对本申请实施例提供的上行信道的冲突处理方法、装置、芯片及模组设备进行详细描述。
以下结合图2,说明第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道;或,第一上行信道为物理上行共享信道,第二上行信道为两个物理上行控制信道的情况下,第一上行信道和第二上行信道发生碰撞如何处理的问题。可选的,两个物理上行控制信道可以对应一个上行调度控制信息,也可以对应两个上行调度控制信息。
参见图2,图2是本申请实施例提供的一种上行信道的冲突处理方法的流程示意图。如图2所示,该上行信道的冲突处理方法包括如下步骤201~步骤202。图2所示的方法执行主体可以为终端设备。或者,图2所示的方法执行主体可以为终端设备中的芯片。图2以终端设备为方法的执行主体为例进行说明。
201、终端设备确定第一上行信道的时频资源和第二上行信道的时频资源。
其中,第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道;或,第一上行信道为物理上行共享信道,第二上行信道为两个物理上行控制信道。在一可能的实施方式中,两个物理上行控制信道可以通过同一天线面板或不同天线面板发送,在此不做限定。如,两个物理上行控制信道可以通过不同天线面板同时发送。
可选的,物理上行共享信道为重复传输的物理上行共享信道,重复传输的物理上行共享信道由一个或多个发送接收点接收。其中,若重复传输的物理上行共享信道由多个发送接收点接收,重复传输的物理上行共享信道传输的次序为循环映射(cyclic mapping)或顺序映射(sequential mapping)。具体的,以两个发送接收点为例子,循环映射指的是首先针对PUSCH进行次数为N的重复传输,其由第一发送接收点接收,然后再针对同一个PUSCH进行次数为N的重复传输,其由第二发送接收点接收,以此类推,以两个发送收发点为交替,直至完成所有的PUSCH重复发送。其中,N的数值可以是2或者其他正整数。此外,当N=1的时候,该PUSCH重复发送的方法也称可以称为顺序映射。
其中,步骤201具体确定第一上行信道的时频资源和第二上行信道的时频资源的过程与现有方案类似。示例性的,步骤201,可以包括:终端设备从网络设备接收第一配置信息和第二配置信息,第一配置信息包括第一上行信道的时频资源的配置信息,第二配置信 息包括第二上行信道的时频资源的配置信息;终端设备根据第一配置信息确定第一上行信道的时频资源;终端设备根据第二配置信息确定第二上行信道的时频资源。
可选的,物理上行共享信道的时频资源的配置信息包括以下一个或多个:跳频、解调参考信号(demodulation reference signal,DMRS)配置、调制与编码策略(modulation and coding scheme,MCS)表格配置、是否可以携带上行控制信息(uplink control information,UCI)、频域资源分配类型、资源块组(resource block group,RBG)的大小、开环功控状态选择、功控p0参数、DFT-s-OFDM功能开启、混合自动重传请求(hybrid automatic repeat quest,HARQ)进程个数、重复次数以及重复下的rv、周期、定时器、时隙偏移、时隙内符号索引、频域资源、天线端口、DMRS加扰序列索引、预编码以及流数指示、SRS资源指示、MCS以及传输块大小(transport block size,TBS)指示、跳频偏移和路损参考信号。
可选的,物理上行控制信道的时频资源的配置信息包括以下至少一种:物理上行控制信道的时间偏移量、物理上行控制信道的格式、物理上行控制信道的周期等。
202、当第一上行信道的时频资源和第二上行信道的时频资源重叠时,终端设备优先发送第一上行信道。
其中,第一上行信道的时频资源和第二上行信道的时频资源重叠,可以理解为:第一上行信道的时频资源和第二上行信道的时频资源部分或全部重叠,在此不做限定。
可选的,第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道,步骤202,可以包括:终端设备在同一时间单元上优先发送两个物理上行控制信道。即可以看出,在两个物理上行控制信道的时频资源和物理上行共享信道的的时频资源重叠时,在同一时间单元上优先发送两个物理上行控制信道,避免了物理上行共享信道和两个物理上行控制信道发生碰撞的问题,提高了传输可靠性以及传输效率。
其中,终端设备在同一时间单元上优先发送两个物理上行控制信道,可以包括:终端设备在同一时间单元上优先向网络设备发送两个物理上行控制信道,相应的,网络设备从终端设备接收两个物理上行控制信道。
另外,终端设备还可以取消发送第二上行信道。具体的,在一可能的实施方式中,第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道,本方案还可以包括:终端设备取消发送物理上行共享信道。在另一可能的实施方式中,第一上行信道为物理上行共享信道,第二上行信道为两个物理上行控制信道,本方案还可以包括:终端设备取消发送两个物理上行控制信道。即可以看出,在第一上行信道的时频资源和第二上行信道的时频资源重叠时,取消发送第二上行信道,避免了第一上行信道和第二上行信道发生碰撞的问题,提高了传输可靠性。
以下结合图3,说明第一上行信道为物理上行控制信道,第二上行信道为两个物理上行共享信道的情况下,第一上行信道和第二上行信道发生碰撞如何处理的问题。
参见图3,图3是本申请实施例提供的又一种上行信道的冲突处理方法的流程示意图。如图3所示,该上行信道的冲突处理方法包括如下步骤301~步骤302。图3所示的方法执行主体可以为终端设备。或者,图3所示的方法执行主体可以为终端设备中的芯片。图3以终端设备为方法的执行主体为例进行说明。
301、终端设备确定第一上行信道的时频资源和第二上行信道的时频资源。
其中,步骤301与图2中步骤201类似,在此不加赘述。
其中,第一上行信道为物理上行控制信道,第二上行信道为两个物理上行共享信道。在一可能的实施方式中,两个物理上行共享信道可以通过同一天线面板或不同天线面板发送,在此不做限定。如,两个物理上行共享信道可以通过不同天线面板同时发送。
需要说明的,在一可能的实施方式中,两个物理上行共享信道可以承载不同的传输块,或,两个物理上行共享信道可以承载相同的传输块,在此不做限定。
可选的,该物理上行控制信道为重复传输的物理上行控制信道,重复传输的物理上行控制信道由一个或多个发送接收点接收。其中,若重复传输的物理上行控制信道由多个发送接收点接收,重复传输的物理上行控制信道传输的次序可以为循环映射或顺序映射。
302、当第一上行信道的时频资源和第二上行信道的时频资源重叠时,终端设备将承载于第一上行信道的上行控制信息复用在第二上行信道上;或,当第一上行信道的时频资源和第二上行信道的时频资源重叠时,终端设备发送第一上行信道,并取消发送第二上行信道;或,当第一上行信道的时频资源和第二上行信道的时频资源重叠时,终端设备发送第二上行信道,并取消发送第一上行信道。
其中,第一上行信道的时频资源和第二上行信道的时频资源重叠,可以理解为:第一上行信道的时频资源和第二上行信道的时频资源部分或全部重叠,在此不做限定。
可选的,终端设备将承载于第一上行信道的上行控制信息复用在第二上行信道上,包括:当两个物理上行共享信道承载相同的传输块时,终端设备将承载于第一上行信道的上行控制信息复用在两个物理上行共享信道上;或,终端设备将承载于第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的一个物理上行共享信道上。即可以看出,使得第一上行信道的上行控制信息和两个物理上行共享信道的上行控制信息相同,避免了不同上行信道的上行控制信息传输发生冲突,即避免了物理上行控制信道和两个物理上行共享信道发生碰撞的问题,提高了传输可靠性。或者,使得第一上行信道的上行控制信息与天线面板或波束或发送接收点相同的一个物理上行共享信道的上行控制信息不冲突,即避免了通过同一天线面板或波束发送的物理上行控制信道和两个物理上行共享信道发生碰撞的问题,或,避免了同一由发送接收点接收的物理上行控制信道和两个物理上行共享信道发生碰撞的问题,提高了传输可靠性。
以下结合图4,说明第一上行信道为重复传输的物理上行控制信道,第二上行信道为两个物理上行控制信道;或,第一上行信道为两个物理上行控制信道,第二上行信道为重复传输的物理上行控制信道的情况下,第一上行信道和第二上行信道发生碰撞如何处理的问题。
参见图4,图4是本申请实施例提供的又一种上行信道的冲突处理方法的流程示意图。如图4所示,该上行信道的冲突处理方法包括如下步骤401~步骤402。图4所示的方法执行主体可以为终端设备。或者,图4所示的方法执行主体可以为终端设备中的芯片。图4以终端设备为方法的执行主体为例进行说明。
401、终端设备确定第一上行信道的时频资源和第二上行信道的时频资源。
其中,步骤401与图2中步骤201类似,在此不加赘述。
其中,第一上行信道为重复传输的物理上行控制信道,第二上行信道为两个物理上行 控制信道;或,第一上行信道为两个物理上行控制信道,第二上行信道为重复传输的物理上行控制信道。在一可能的实施方式中,两个物理上行控制信道可以通过同一天线面板或不同天线面板发送,在此不做限定。如,两个物理上行控制信道可以通过不同天线面板同时发送。
可选的,重复传输的物理上行控制信道由一个或多个发送接收点接收。其中,若重复传输的物理上行控制信道由多个发送接收点接收,重复传输的物理上行控制信道传输的次序可以为循环映射或顺序映射。
402、当第一上行信道的时频资源和第二上行信道的时频资源重叠,且第一上行信道和第二上行信道在同一天线面板发送时,终端设备发送优先级高的第一上行信道,并取消发送优先级低的第二上行信道;或,当第一上行信道的时频资源和第二上行信道的时频资源重叠,第一上行信道和第二上行信道在同一天线面板发送,且第一上行信道的优先级和第二上行信道的优先级相同时,终端设备发送时频资源的起始时间早的第一上行信道,并取消发送时频资源的起始时间晚的第二上行信道;或,当第一上行信道的时频资源和第二上行信道的时频资源重叠时,终端设备优先发送第一上行信道。
其中,优先级取决于上行信道所称承载的内容,具体来说可以是HARQ-ACK>SR>高优先级CSI>低优先级CSI。
其中,第一上行信道的时频资源和第二上行信道的时频资源重叠,可以理解为:第一上行信道的时频资源和第二上行信道的时频资源部分或全部重叠,在此不做限定。
可选的,第一上行信道为两个物理上行控制信道,第二上行信道为重复传输的物理上行控制信道,终端设备优先发送第一上行信道,包括:终端设备在同一时间单元上优先发送两个物理上行控制信道。即可以看出,在两个物理上行控制信道的时频资源和重复传输的物理上行控制信道的的时频资源重叠时,在同一时间单元上优先发送两个物理上行控制信道,避免了重复传输的物理上行控制信道和两个物理上行控制信道发生碰撞的问题,提高了传输可靠性以及传输效率。
其中,终端设备在同一时间单元上优先发送两个物理上行控制信道,可以包括:终端设备在同一时间单元上优先向网络设备发送两个物理上行控制信道,相应的,网络设备从终端设备接收两个物理上行控制信道。
另外,终端设备还可以取消发送第二上行信道。具体的,在一可能的实施方式中,第一上行信道为重复传输的物理上行控制信道,第二上行信道为两个物理上行控制信道,本方案还可以包括:终端设备取消发送两个物理上行控制信道。在另一可能的实施方式中,第一上行信道为两个物理上行控制信道,第二上行信道为重复传输的物理上行控制信道,本方案还可以包括:终端设备取消发送重复传输的物理上行控制信道。即可以看出,在第一上行信道的时频资源和第二上行信道的时频资源重叠时,取消发送第二上行信道,避免了第一上行信道和第二上行信道发生碰撞的问题,提高了传输可靠性。
以下结合图5,说明第一上行信道为物理上行控制信道,第二上行信道为物理上行共享信道的情况下,第一上行信道和第二上行信道发生碰撞如何处理的问题。
参见图5,图5是本申请实施例提供的又一种上行信道的冲突处理方法的流程示意图。如图5所示,该上行信道的冲突处理方法包括如下步骤501~步骤502。图5所示的方法执 行主体可以为终端设备。或者,图5所示的方法执行主体可以为终端设备中的芯片。图5以终端设备为方法的执行主体为例进行说明。
501、终端设备确定第一上行信道的时频资源和第二上行信道的时频资源。
其中,步骤501与图2中步骤201类似,在此不加赘述。
其中,第一上行信道为物理上行控制信道,第二上行信道为物理上行共享信道。在一可能的实施方式中,两个第一上行信道通过同一天线面板或不同天线面板发送,即两个物理上行控制信道通过同一天线面板或不同天线面板发送,在此不做限定。如,两个物理上行控制信道通过不同天线面板同时发送。在又一可能的实施方式中,两个第二上行信道通过同一天线面板或不同天线面板发送,即两个物理上行共享信道通过同一天线面板或不同天线面板发送,在此不做限定。如,两个物理上行共享信道通过不同天线面板同时发送。
502、当第一上行信道的时频资源和第二上行信道的时频资源重叠时,终端设备将承载于两个第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应第二上行信道上。
其中,第一上行信道的时频资源和第二上行信道的时频资源重叠,可以理解为:第一上行信道的时频资源和第二上行信道的时频资源部分或全部重叠,在此不做限定。
其中,关于终端设备将承载于两个第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应第二上行信道上,例如可以理解为:终端设备将承载于两个物理上行控制信道中的一个物理上行控制信道的上行控制信息复用在天线面板或波束或发送接收点相同的两个物理上行共享信道中的一个物理上行共享信道上,将承载于两个物理上行控制信道中的另一个物理上行控制信道的上行控制信息复用在天线面板或波束或发送接收点相同的两个物理上行共享信道中的另一个物理上行共享信道上。
参见图6,图6是本申请实施例提供的一种上行信道的冲突处理装置的结构示意图,该上行信道的冲突处理装置可以为终端设备或具有终端设备功能的装置(例如芯片)。具体的,如图6所示,上行信道的冲突处理装置600,可以包括:
确定单元601,用于确定第一上行信道的时频资源和第二上行信道的时频资源;发送单元602,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;其中,第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道;或,第一上行信道为物理上行共享信道,第二上行信道为两个物理上行控制信道。
可选的,物理上行共享信道为重复传输的物理上行共享信道,重复传输的物理上行共享信道由一个或多个发送接收点接收。
可选的,若重复传输的物理上行共享信道由多个发送接收点接收,重复传输的物理上行共享信道传输的次序为循环映射或顺序映射。
可选的,两个物理上行控制信道通过不同的天线面板发送。
可选的,第一上行信道为两个物理上行控制信道,在优先发送第一上行信道时,发送单元602,用于在同一时间单元上优先发送两个物理上行控制信道。
可选的,第二上行信道为两个物理上行控制信道或物理上行共享信道,发送单元602,还用于取消发送第二上行信道。
参见图7,图7是本申请实施例提供的又一种上行信道的冲突处理装置的结构示意图,该上行信道的冲突处理装置可以为终端设备或具有终端设备功能的装置(例如芯片)。具体的,如图7所示,上行信道的冲突处理装置700,可以包括:
确定单元701,用于确定第一上行信道的时频资源和第二上行信道的时频资源;复用单元702,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承载于第一上行信道的上行控制信息复用在第二上行信道上;或,发送单元703,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,发送第一上行信道,并取消发送第二上行信道;其中,第一上行信道为物理上行控制信道,第二上行信道为两个物理上行共享信道。
可选的,物理上行控制信道为重复传输的物理上行控制信道,重复传输的物理上行控制信道由一个或多个发送接收点接收。
可选的,若重复传输的物理上行控制信道由多个发送接收点接收,重复传输的物理上行控制信道传输的次序为循环映射或顺序映射。
可选的,两个物理上行共享信道通过不同的天线面板发送。
可选的,在将承载于第一上行信道的上行控制信息复用在第二上行信道上时,复用单元702,用于当两个物理上行共享信道承载相同的传输块时,将承载于第一上行信道的上行控制信息复用在两个物理上行共享信道上;或,将承载于第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的一个物理上行共享信道上。
参见图8,图8是本申请实施例提供的又一种上行信道的冲突处理装置的结构示意图,该上行信道的冲突处理装置可以为终端设备或具有终端设备功能的装置(例如芯片)。具体的,如图8所示,上行信道的冲突处理装置800,可以包括:
确定单元801,用于确定第一上行信道的时频资源和第二上行信道的时频资源;发送单元802,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠,且第一上行信道和第二上行信道在同一天线面板发送时,发送优先级高的第一上行信道,并取消发送优先级低的第二上行信道;或,发送单元802,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠,第一上行信道和第二上行信道在同一天线面板发送,且第一上行信道的优先级和第二上行信道的优先级相同时,发送时频资源的起始时间早的第一上行信道,并取消发送时频资源的起始时间晚的第二上行信道;或,发送单元802,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;其中,第一上行信道为重复传输的物理上行控制信道,第二上行信道为两个物理上行控制信道;或,第一上行信道为两个物理上行控制信道,第二上行信道为重复传输的物理上行控制信道。
可选的,重复传输的物理上行控制信道由一个或多个发送接收点接收。
可选的,若重复传输的物理上行控制信道由多个发送接收点接收,重复传输的物理上行控制信道传输的次序为循环映射或顺序映射。
可选的,两个物理上行控制信道通过不同的天线面板发送。
可选的,第一上行信道为两个物理上行控制信道,在优先发送第一上行信道时,发送单元802,用于在同一时间单元上优先发送两个物理上行控制信道。
可选的,第二上行信道为两个物理上行控制信道或重复传输的物理上行控制信道,若优先发送第一上行信道,发送单元802,用于取消发送第二上行信道。
参见图9,图9是本申请实施例提供的又一种上行信道的冲突处理装置的结构示意图,该上行信道的冲突处理装置可以为终端设备或具有终端设备功能的装置(例如芯片)。具体的,如图9所示,上行信道的冲突处理装置900,可以包括:
确定单元901,用于确定第一上行信道的时频资源和第二上行信道的时频资源;复用单元902,用于当第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承载于两个第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应第二上行信道上;其中,第一上行信道为物理上行控制信道,第二上行信道为物理上行共享信道。
可选的,两个第一上行信道通过不同的天线面板发送。
可选的,两个第二上行信道通过不同的天线面板发送。
本申请实施例还提供了一种芯片,该芯片可以执行前述方法实施例中电子设备的相关步骤。该芯片,包括处理器和通信接口。在一可能的实施方式中,该处理器被配置用于使芯片执行如下操作:确定第一上行信道的时频资源和第二上行信道的时频资源;当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;其中,第一上行信道为两个物理上行控制信道,第二上行信道为物理上行共享信道;或,第一上行信道为物理上行共享信道,第二上行信道为两个物理上行控制信道。
可选的,物理上行共享信道为重复传输的物理上行共享信道,重复传输的物理上行共享信道由一个或多个发送接收点接收。
可选的,若重复传输的物理上行共享信道由多个发送接收点接收,重复传输的物理上行共享信道传输的次序为循环映射或顺序映射。
可选的,两个物理上行控制信道通过不同的天线面板发送。
可选的,第一上行信道为两个物理上行控制信道,在优先发送第一上行信道时,该处理器被配置用于使芯片执行如下操作:在同一时间单元上优先发送两个物理上行控制信道。
可选的,第二上行信道为两个物理上行控制信道或物理上行共享信道,该处理器被配置用于使芯片执行如下操作:取消发送第二上行信道。
在另一可能的实施方式中,该处理器被配置用于使芯片执行如下操作:确定第一上行信道的时频资源和第二上行信道的时频资源;当第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承载于第一上行信道的上行控制信息复用在第二上行信道上;或,当第一上行信道的时频资源和第二上行信道的时频资源重叠时,发送第一上行信道,并取消发送第二上行信道;其中,第一上行信道为物理上行控制信道,第二上行信道为两个物理上行共享信道。
可选的,物理上行控制信道为重复传输的物理上行控制信道,重复传输的物理上行控制信道由一个或多个发送接收点接收。
可选的,若重复传输的物理上行控制信道由多个发送接收点接收,重复传输的物理上行控制信道传输的次序为循环映射或顺序映射。
可选的,两个物理上行共享信道通过不同的天线面板发送。
可选的,在将承载于第一上行信道的上行控制信息复用在第二上行信道上时,该处理 器被配置用于使芯片执行如下操作:当两个物理上行共享信道承载相同的传输块时,将承载于第一上行信道的上行控制信息复用在两个物理上行共享信道上;或,将承载于第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的一个物理上行共享信道上。
在又一可能的实施方式中,该处理器被配置用于使芯片执行如下操作:确定第一上行信道的时频资源和第二上行信道的时频资源;当第一上行信道的时频资源和第二上行信道的时频资源重叠,且第一上行信道和第二上行信道在同一天线面板发送时,发送优先级高的第一上行信道,并取消发送优先级低的第二上行信道;或,当第一上行信道的时频资源和第二上行信道的时频资源重叠,第一上行信道和第二上行信道在同一天线面板发送,且第一上行信道的优先级和第二上行信道的优先级相同时,发送时频资源的起始时间早的第一上行信道,并取消发送时频资源的起始时间晚的第二上行信道;或,当第一上行信道的时频资源和第二上行信道的时频资源重叠时,优先发送第一上行信道;其中,第一上行信道为重复传输的物理上行控制信道,第二上行信道为两个物理上行控制信道;或,第一上行信道为两个物理上行控制信道,第二上行信道为重复传输的物理上行控制信道。
可选的,重复传输的物理上行控制信道由一个或多个发送接收点接收。
可选的,若重复传输的物理上行控制信道由多个发送接收点接收,重复传输的物理上行控制信道传输的次序为循环映射或顺序映射。
可选的,两个物理上行控制信道通过不同的天线面板发送。
可选的,第一上行信道为两个物理上行控制信道,在优先发送第一上行信道时,该处理器被配置用于使芯片执行如下操作:在同一时间单元上优先发送两个物理上行控制信道。
可选的,第二上行信道为两个物理上行控制信道或重复传输的物理上行控制信道,若优先发送第一上行信道,该处理器被配置用于使芯片执行如下操作:取消发送第二上行信道。
在又一可能的实施方式中,该处理器被配置用于使芯片执行如下操作:确定第一上行信道的时频资源和第二上行信道的时频资源;当第一上行信道的时频资源和第二上行信道的时频资源重叠时,将承载于两个第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应第二上行信道上;其中,第一上行信道为物理上行控制信道,第二上行信道为物理上行共享信道。
可选的,两个第一上行信道通过不同的天线面板发送。
可选的,两个第二上行信道通过不同的天线面板发送。
可选的,上述芯片包括至少一个处理器、至少一个第一存储器和至少一个第二存储器;其中,前述至少一个第一存储器和前述至少一个处理器通过线路互联,前述第一存储器中存储有指令;前述至少一个第二存储器和前述至少一个处理器通过线路互联,前述第二存储器中存储前述方法实施例中需要存储的数据。
对于应用于或集成于芯片的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
参见图10,图10是本申请实施例提供的又一种上行信道的冲突处理装置的结构示意图。该上行信道的冲突处理装置可以是终端设备或网络设备。该上行信道的冲突处理装置1000可以包括存储器1001、处理器1002。可选的,还包括通信接口1003。存储器1001、处理器1002和通信接口1003通过一条或多条通信总线连接。其中,通信接口1003受处理器1002的控制用于收发信息。
存储器1001可以包括只读存储器和随机存取存储器,并向处理器1002提供指令和数据。存储器1001的一部分还可以包括非易失性随机存取存储器。
通信接口1003用于接收或发送数据。
处理器1002可以是中央处理单元(Central Processing Unit,CPU),该处理器1002还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,可选的,该处理器1002也可以是任何常规的处理器等。其中:
存储器1001,用于存储程序指令。
处理器1002,用于调用存储器1001中存储的程序指令。
处理器1002调用存储器1001中存储的程序指令,使该上行信道的冲突处理装置1000执行上述方法实施例中终端设备所执行的方法。
参见图11,图11是本申请实施例提供的一种模组设备的结构示意图。该模组设备1100可以执行前述方法实施例中终端设备或网络设备的相关步骤,该模组设备1100包括:通信模组1101、电源模组1102、存储模组1103以及芯片1104。
其中,电源模组1102用于为模组设备提供电能;存储模组1103用于存储数据和指令;通信模组1101用于进行模组设备内部通信,或者用于模组设备与外部设备进行通信;芯片1104用于执行上述方法实施例中终端设备所执行的方法。
需要说明的是,图10和图11对应的实施例中未提及的内容以及各个步骤的具体实现方式可参见图2-图5任一所示实施例以及前述内容,这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同模块/单元可以位于芯片模组的同一件(例如芯片、电路模块 等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些操作可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的操作可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (28)

  1. 一种上行信道的冲突处理方法,其特征在于,所述方法包括:
    确定第一上行信道的时频资源和第二上行信道的时频资源;
    当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,优先发送所述第一上行信道;
    其中,所述第一上行信道为两个物理上行控制信道,所述第二上行信道为物理上行共享信道;或,
    所述第一上行信道为物理上行共享信道,所述第二上行信道为两个物理上行控制信道。
  2. 根据权利要求1所述的方法,其特征在于,所述物理上行共享信道为重复传输的物理上行共享信道,所述重复传输的物理上行共享信道由一个或多个发送接收点接收。
  3. 根据权利要求2所述的方法,其特征在于,若所述重复传输的物理上行共享信道由多个发送接收点接收,所述重复传输的物理上行共享信道传输的次序为循环映射或顺序映射。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,两个所述物理上行控制信道通过不同的天线面板发送。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述第一上行信道为两个物理上行控制信道,所述优先发送所述第一上行信道,包括:
    在同一时间单元上优先发送两个所述物理上行控制信道。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述第二上行信道为两个物理上行控制信道或物理上行共享信道,所述方法还包括:
    取消发送所述第二上行信道。
  7. 一种上行信道的冲突处理方法,其特征在于,所述方法包括:
    确定第一上行信道的时频资源和第二上行信道的时频资源;
    当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,将承载于所述第一上行信道的上行控制信息复用在所述第二上行信道上;或,
    当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,发送所述第一上行信道,并取消发送所述第二上行信道;
    其中,所述第一上行信道为物理上行控制信道,所述第二上行信道为两个物理上行共享信道。
  8. 根据权利要求7所述的方法,其特在于,所述物理上行控制信道为重复传输的物理上行控制信道,所述重复传输的物理上行控制信道由一个或多个发送接收点接收。
  9. 根据权利要求8所述的方法,其特征在于,若所述重复传输的物理上行控制信道由多个发送接收点接收,所述重复传输的物理上行控制信道传输的次序为循环映射或顺序映射。
  10. 根据权利要求9所述的方法,其特征在于,两个所述物理上行共享信道通过不同的天线面板发送。
  11. 根据权利要求7-10任意一项所述的方法,其特征在于,所述将承载于所述第一上行信道的上行控制信息复用在所述第二上行信道上,包括:
    当所述两个物理上行共享信道承载相同的传输块时,将承载于所述第一上行信道的上行控制信息复用在两个所述物理上行共享信道上;或,
    将承载于所述第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的一个所述物理上行共享信道上。
  12. 一种上行信道的冲突处理方法,其特征在于,所述方法包括:
    确定第一上行信道的时频资源和第二上行信道的时频资源;
    当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠,且所述第一上行信道和所述第二上行信道在同一天线面板发送时,发送优先级高的所述第一上行信道,并取消发送优先级低的所述第二上行信道;或,
    当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠,所述第一上行信道和所述第二上行信道在同一天线面板发送,且所述第一上行信道的优先级和所述第二上行信道的优先级相同时,发送时频资源的起始时间早的所述第一上行信道,并取消发送时频资源的起始时间晚的所述第二上行信道;或,
    当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,优先发送所述第一上行信道;
    其中,所述第一上行信道为重复传输的物理上行控制信道,所述第二上行信道为两个物理上行控制信道;或,
    所述第一上行信道为两个物理上行控制信道,所述第二上行信道为重复传输的物理上行控制信道。
  13. 根据权利要求12所述的方法,其特在于,所述重复传输的物理上行控制信道由一个或多个发送接收点接收。
  14. 根据权利要求13所述的方法,其特征在于,若所述重复传输的物理上行控制信道由多个发送接收点接收,所述重复传输的物理上行控制信道传输的次序为循环映射或顺序映射。
  15. 根据权利要求12所述的方法,其特征在于,两个所述物理上行控制信道通过不同的天线面板发送。
  16. 根据权利要求12-15任意一项所述的方法,其特征在于,所述第一上行信道为两个物理上行控制信道,所述优先发送所述第一上行信道,包括:
    在同一时间单元上优先发送两个所述物理上行控制信道。
  17. 根据权利要求12-15任意一项所述的方法,其特征在于,所述第二上行信道为两个物理上行控制信道或重复传输的物理上行控制信道,若优先发送所述第一上行信道,所述方法还包括:
    取消发送所述第二上行信道。
  18. 一种上行信道的冲突处理方法,其特征在于,所述方法包括:
    确定第一上行信道的时频资源和第二上行信道的时频资源;
    当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,将承载于两个所述第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应所述第二上行信道上;
    其中,所述第一上行信道为物理上行控制信道,所述第二上行信道为物理上行共享信道。
  19. 根据权利要求18所述的方法,其特征在于,两个所述第一上行信道通过不同的天线面板发送。
  20. 根据权利要求18或19所述的方法,其特征在于,两个所述第二上行信道通过不同的天线面板发送。
  21. 一种上行信道的冲突处理装置,其特征在于,所述装置包括确定单元和发送单元;
    所述确定单元,用于确定第一上行信道的时频资源和第二上行信道的时频资源;
    所述发送单元,用于当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,优先发送所述第一上行信道;
    其中,所述第一上行信道为两个物理上行控制信道,所述第二上行信道为物理上行共享信道;或,
    所述第一上行信道为物理上行共享信道,所述第二上行信道为两个物理上行控制信道。
  22. 一种上行信道的冲突处理装置,其特征在于,所述装置包括确定单元、复用单元和发送单元;
    所述确定单元,用于确定第一上行信道的时频资源和第二上行信道的时频资源;
    所述复用单元,用于当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,将承载于所述第一上行信道的上行控制信息复用在所述第二上行信道上;或,
    所述发送单元,用于当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,发送所述第一上行信道,并取消发送所述第二上行信道;
    其中,所述第一上行信道为物理上行控制信道,所述第二上行信道为两个物理上行共享信道。
  23. 一种上行信道的冲突处理装置,其特征在于,所述装置包括确定单元和发送单元;
    所述确定单元,用于确定第一上行信道的时频资源和第二上行信道的时频资源;
    所述发送单元,用于当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠,且所述第一上行信道和所述第二上行信道在同一天线面板发送时,发送优先级高的所述第一上行信道,并取消发送优先级低的所述第二上行信道;或,
    所述发送单元,用于当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠,所述第一上行信道和所述第二上行信道在同一天线面板发送,且所述第一上行信道的优先级和所述第二上行信道的优先级相同时,发送时频资源的起始时间早的所述第一上 行信道,并取消发送时频资源的起始时间晚的所述第二上行信道;或,
    所述发送单元,用于当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,优先发送所述第一上行信道;
    其中,所述第一上行信道为重复传输的物理上行控制信道,所述第二上行信道为两个物理上行控制信道;或,
    所述第一上行信道为两个物理上行控制信道,所述第二上行信道为重复传输的物理上行控制信道。
  24. 一种上行信道的冲突处理装置,其特征在于,所述装置包括确定单元和复用单元;
    所述确定单元,用于确定第一上行信道的时频资源和第二上行信道的时频资源;
    所述复用单元,用于当所述第一上行信道的时频资源和所述第二上行信道的时频资源重叠时,将承载于两个所述第一上行信道的上行控制信息复用在天线面板或波束或发送接收点相同的对应所述第二上行信道上;
    其中,所述第一上行信道为物理上行控制信道,所述第二上行信道为物理上行共享信道。
  25. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器被配置用于使所述芯片执行如权利要求1~20中任一项所述的方法。
  26. 一种模组设备,其特征在于,所述模组设备包括通信模组、电源模组、存储模组以及芯片,其中:
    所述电源模组用于为所述模组设备提供电能;
    所述存储模组用于存储数据和指令;
    所述通信模组用于进行模组设备内部通信,或者用于所述模组设备与外部设备进行通信;
    所述芯片用于执行如权利要求1~20中任一项所述的方法。
  27. 一种上行信道的冲突处理装置,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,使所述上行信道的冲突处理装置执行如权利要求1~20中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得所述通信装置执行权利要求1~20中任一项所述的方法。
PCT/CN2023/079619 2022-03-04 2023-03-03 一种上行信道的冲突处理方法、装置、芯片及模组设备 WO2023165610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210213630.1 2022-03-04
CN202210213630.1A CN116761267A (zh) 2022-03-04 2022-03-04 一种上行信道的冲突处理方法、装置、芯片及模组设备

Publications (1)

Publication Number Publication Date
WO2023165610A1 true WO2023165610A1 (zh) 2023-09-07

Family

ID=87883092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079619 WO2023165610A1 (zh) 2022-03-04 2023-03-03 一种上行信道的冲突处理方法、装置、芯片及模组设备

Country Status (2)

Country Link
CN (1) CN116761267A (zh)
WO (1) WO2023165610A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702768A (zh) * 2018-04-24 2018-10-23 北京小米移动软件有限公司 调度请求传输方法及装置和资源分配方法及装置
WO2019024938A1 (zh) * 2017-08-04 2019-02-07 维沃移动通信有限公司 数据传输方法、终端及基站
CN110859008A (zh) * 2018-08-24 2020-03-03 维沃移动通信有限公司 一种上行信息的发送方法及终端
CN113939023A (zh) * 2020-07-13 2022-01-14 维沃移动通信有限公司 一种冲突处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024938A1 (zh) * 2017-08-04 2019-02-07 维沃移动通信有限公司 数据传输方法、终端及基站
CN108702768A (zh) * 2018-04-24 2018-10-23 北京小米移动软件有限公司 调度请求传输方法及装置和资源分配方法及装置
CN110859008A (zh) * 2018-08-24 2020-03-03 维沃移动通信有限公司 一种上行信息的发送方法及终端
CN113939023A (zh) * 2020-07-13 2022-01-14 维沃移动通信有限公司 一种冲突处理方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On scheduling request overlapping with UL-SCH", 3GPP TSG-RAN WG2 #104 TDOC R2-1817177, 1 November 2018 (2018-11-01), XP051481095 *
LENOVO, MOTOROLA MOBILITY: "Remaining issues on UCI multiplexing on PUCCH", 3GPP TSG RAN WG1 MEETING #93 R1-1806336, 20 May 2018 (2018-05-20), XP051441541 *

Also Published As

Publication number Publication date
CN116761267A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN109392152B (zh) 通信方法和通信装置
CN110249671B (zh) 在无线通信系统中发送物理上行共享信道的方法及其设备
CN111587605B (zh) 用于保持针对非许可无线频谱的信道占用率的上行链路信道调度
CN110621075B (zh) 一种传输数据的方法和装置
CN111213416A (zh) 无线网络中上行链路控制信令资源的动态管理
CN114531734B (zh) 信息传输方法及相关装置
WO2020198952A1 (en) Method and apparatus for harq-ack codebook reduction
JP2022500960A (ja) 無線通信ネットワークにおける通信のためのデバイスおよび方法
CA3131039A1 (en) Information transmission method, terminal device, and network device
CA3115860C (en) Wireless communication method and device
US20150264700A1 (en) Uplink mu-mimo method and system
CN113678558B (zh) 信息传输方法及相关装置
WO2018126960A1 (zh) 通信方法、网络侧设备和终端设备
WO2019096058A1 (zh) 传输控制信息的方法、终端设备和网络设备
EP3386254B1 (en) Cross-carrier scheduling methods, and apparatuses
CN111585707A (zh) 一种反馈信息发送方法及装置
EP4087292B1 (en) Sidelink data transmission method and terminal device
CN115315978A (zh) 在nr v2x中执行拥塞控制的方法和装置
CN111757519B (zh) 通信方法和通信装置
CN113271179A (zh) 混合自动重传请求确认码本的反馈方法及装置
WO2023165610A1 (zh) 一种上行信道的冲突处理方法、装置、芯片及模组设备
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
CN115379500B (zh) 信息反馈方法和相关设备
CN115715479A (zh) Nr v2x中确定与侧链路传输相关的功率的方法和装置
WO2021088041A1 (zh) 上行数据传输方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763008

Country of ref document: EP

Kind code of ref document: A1