WO2023165469A1 - 一种多糖缀合物止血材料及其制备方法和应用 - Google Patents

一种多糖缀合物止血材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023165469A1
WO2023165469A1 PCT/CN2023/078719 CN2023078719W WO2023165469A1 WO 2023165469 A1 WO2023165469 A1 WO 2023165469A1 CN 2023078719 W CN2023078719 W CN 2023078719W WO 2023165469 A1 WO2023165469 A1 WO 2023165469A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysaccharide
acid
functional substance
water
edc
Prior art date
Application number
PCT/CN2023/078719
Other languages
English (en)
French (fr)
Inventor
窦红静
曾屹嵘
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2023165469A1 publication Critical patent/WO2023165469A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/08Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0015Medicaments; Biocides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/23Carbohydrates
    • A61L2300/232Monosaccharides, disaccharides, polysaccharides, lipopolysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/418Agents promoting blood coagulation, blood-clotting agents, embolising agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding

Definitions

  • the present application relates to the field of biomedical materials, in particular to a polysaccharide conjugate hemostatic material and its preparation method and application.
  • Hemorrhage is one of the main causes of death of trauma victims, among which hemorrhage is responsible for 90.9% of preventable war trauma deaths. Therefore, realizing rapid and efficient hemostasis after traumatic bleeding is of great significance to improving the survival rate of bleeding patients and the treatment rate on the battlefield.
  • the preparation method of the hemostatic material it can be divided into two categories: one is the composite hemostatic material prepared by the physical blending method; the other is the conjugated hemostatic material prepared by the chemical covalent bond grafting method.
  • composite hemostatic materials prepared by physical blending are widely used because of their simple process and rapid mass production, and polysaccharide-based composite hemostatic materials are the main ones.
  • Polysaccharides are polysaccharide polymeric carbohydrates composed of sugar chains bound by glycosidic bonds and at least more than 10 monosaccharides. It is extracted and processed from living organisms and has good biocompatibility. And because its sugar ring contains a large number of functional groups such as hydroxyl, amino (such as chitosan), carboxyl (such as sodium alginate, hyaluronic acid, etc.), it has good water solubility and can be quickly absorbed in the blood A large amount of water, so it is widely used in the preparation of various hemostatic materials.
  • the current polysaccharide-based composite hemostatic materials are mainly chitosan composited with various inorganic hemostatic materials, such as: chitosan sponge composited with zeolite, dextran sponge composited with carbon nanotubes, etc. Although they showed a good hemostatic effect, their hemostatic performance was unstable due to the inhomogeneous and uncontrollable physical blending degree of polysaccharides and inorganic materials during the preparation process.
  • Polysaccharide conjugates refer to compounds formed by covalently linking polysaccharides with biomolecules such as proteins, polypeptides, lipids, nucleic acids, antibodies, and other small molecules.
  • the method of chemical grafting can quantitatively and controllably graft small hemostatic function molecules on the polysaccharide backbone, and the polysaccharide conjugate can be regulated by changing the number of hemostatic function small molecules grafted on the polysaccharide main chain. Hemostatic properties for stable, fast and efficient hemostasis.
  • the existing polysaccharide conjugate hemostatic materials mainly promote the gelation of blood through physical and chemical interactions with a single component of blood (mainly blood cells, plasma proteins and water). It has disadvantages such as long action time and slow time to promote blood gelation, and the formed blood gel has weak mechanical properties and is not It can realize stable, rapid and efficient hemostasis.
  • the application provides a hydrophilic-hydrophobic co-grafted polysaccharide conjugate hemostatic material and a preparation method thereof, including the preparation of a hydrophobically modified polysaccharide material, and the preparation of a hydrophilic-hydrophobic co-grafted polysaccharide conjugate hemostatic material. preparation.
  • the first aspect of the present application provides a method for preparing a polysaccharide conjugate hemostatic material, comprising the following steps: Step 1, dissolving the water-soluble polysaccharide in the first solvent to obtain the first solution, adding hydrophobic functional substances and the second A reaction activator, grafting the hydrophobic functional substance on the main chain of the water-soluble polysaccharide through amidation reaction, and preparing a hydrophobically modified polysaccharide through precipitation, washing and drying;
  • Step 2 dissolving the hydrophobically modified polysaccharide in a second solvent to obtain a second solution, adding a hydrophilic functional substance and a second reaction activator, and grafting the hydrophilic functional substance on the On the main chain of the hydrophobically modified polysaccharide, after dialysis and freeze-drying, a hydrophilic-hydrophobic co-grafted polysaccharide conjugate hemostatic material is obtained;
  • the first reaction activator and/or the second reaction activator are selected from 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysuccinimide sulfonic acid sodium salt (NHS), hydroxybenzotriazole (HOBT), 4-dimethylaminopyridine (DMAP) and 1,3-dicyclohexylcarbodiimide (DCC) one or more; the first reaction activator and the second reaction activator are the same or different;
  • EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
  • NHS N-hydroxysuccinimide sulfonic acid sodium salt
  • HOBT hydroxybenzotriazole
  • DMAP 4-dimethylaminopyridine
  • DCC 1,3-dicyclohexylcarbodiimide
  • the hydrophobic functional substance is selected from n-octanoic acid, dodecanoic acid, hexadecanoic acid, octanoic anhydride, dodecanoic anhydride, palmitic anhydride, n-octylamine, n-dodecylamine, n-hexadecanylamine, n-octadecylamine, oil One or more of acid and oleylamine;
  • the hydrophilic functional substance is selected from 3,4-dihydroxyphenylpropionic acid, 3,4,5-trihydroxybenzoic acid, 4-carboxyphenylboronic acid, dopamine hydrochloride and 3-aminophenylboronic acid one or more of salts.
  • the water-soluble polysaccharide described in step 1 is selected from chitosan, hydroxymethyl chitosan, carboxypropyl chitosan, chitosan oligosaccharide, sodium alginate, hyaluronic acid and aminodextran one or more of .
  • the solution concentration of the water-soluble polysaccharide in step 1 is 0.1 mg/mL-100 mg/mL.
  • the molar ratio of the water-soluble polysaccharide to the hydrophobic functional substance in step 1 is 1:0.1-1:10.
  • the molar ratio of the water-soluble polysaccharide in step 1 to the reaction activator is 1:0.1-1:10.
  • the molar ratio of the hydrophobically modified polysaccharide to the hydrophilic functional substance in step 2 is 1:0.1-1:10.
  • the molar ratio of the hydrophobically modified polysaccharide to the reaction activator in step 2 is 1:0.1-1:10.
  • At least one of the first solvents is selected from hydrochloric acid, acetic acid, ethanol and deionized water.
  • At least one of the second solvents is selected from hydrochloric acid, acetic acid and deionized water.
  • the first reaction activator and/or the second reaction activator are EDC and NHS, EDC and HOBT, EDC and DMAP, DCC and HOBT, EDC, or DCC, more preferably EDC and NHS.
  • step 2 before adding the hydrophilic functional substance and the second reaction activator in step 2, a step of blowing nitrogen into the second solution is also included.
  • step of adjusting pH after feeding nitrogen gas is also included.
  • the second aspect of the present application provides a polysaccharide conjugate hemostatic material prepared by the above method, including a water-soluble polysaccharide, a hydrophobic functional substance and a hydrophilic functional substance, wherein the hydrophobic functional substance and the hydrophilic The water-based functional substance is co-grafted on the main chain of the water-soluble polysaccharide.
  • the water-soluble polysaccharide is selected from one or more of chitosan, hydroxymethyl chitosan, carboxypropyl chitosan, chitooligosaccharide, sodium alginate, hyaluronic acid and aminodextran kind.
  • the hydrophobic functional substance is selected from n-octanoic acid, dodecanoic acid, hexadecanoic acid, octanoic anhydride, dodecanoic anhydride, palmitic anhydride, n-octylamine, n-dodecylamine, n-hexadecylamine, n-octadecane One or more of amines, oleic acid and oleylamine.
  • the hydrophilic functional substance is selected from 3,4-dihydroxyphenylpropionic acid, 3,4,5-trihydroxybenzoic acid, 4-carboxyphenylboronic acid, dopamine hydrochloride and 3-aminophenyl One or more of borate hydrochlorides.
  • the third aspect of the present application provides the application of the above-mentioned polysaccharide conjugate hemostatic material in the preparation of hemostatic agent.
  • hemostatic dosage forms of the hemostat include, but are not limited to, powder, sponge, bandage, gauze, gel, and spray.
  • the polysaccharide conjugate hemostatic material has physical and chemical interactions with whole blood components.
  • said whole blood components include blood cells, plasma proteins and water.
  • the polysaccharide conjugate hemostatic and quick-setting material of the present application can have physical and chemical interactions with the whole blood components (blood cells, plasma protein and water) through the synergistic effect of hydrophilicity and hydrophobicity, so as to promote the rapid gelation of the whole blood components within 10s, greatly
  • the action time between the hemostatic material and blood components is shortened, the speed of the hemostatic material to promote blood gelation is accelerated in magnitude, and the mechanical properties of the formed blood gel are greatly improved.
  • the polysaccharide conjugate hemostatic material of the present application can be prepared through a two-step amidation reaction, and the preparation method is simple and fast, which is conducive to large-scale production and application.
  • the hydrophilic-hydrophobic synergistic, blood-gelling-promoting polysaccharide hemostatic material prepared by the present application can be widely used as a raw material in the preparation of various hemostatic formulations (such as: powder, sponge, bandage, gauze, gel and spray, etc.), and is used in military
  • various hemostatic formulations such as: powder, sponge, bandage, gauze, gel and spray, etc.
  • the rapid hemostasis field such as medicine and medicine has broad application prospect.
  • Fig. 1 is a schematic diagram of the preparation method of a preferred embodiment of the present application
  • Fig. 2 is a schematic diagram of the coagulation mechanism of a preferred embodiment of the present application.
  • Fig. 3 is an in vivo hemostasis experiment diagram of a rabbit liver hemorrhage model of a preferred embodiment of the present application.
  • the application first grafts hydrophobic groups on the main chain of polysaccharide macromolecules through amidation reaction to obtain hydrophobic polysaccharide macromolecules, and then grafts hydrophilic groups on the hydrophobic polysaccharide macromolecules through amidation reaction.
  • a polysaccharide conjugate hemostatic and quick-setting material is obtained on the main chain of the permanent polysaccharide macromolecule.
  • the polysaccharide conjugate hemostatic and quick-setting material prepared by the present application can interact with the whole blood components (blood cells, plasma proteins) through the strong hydrophilic and hydrophobic synergy mediated by the hydrophilic and hydrophobic functional groups grafted on the main chain of the polysaccharide macromolecule. and water) have physical and chemical effects (as shown in Figure 2), thereby achieving rapid blood gelation.
  • chitosan 2 g was dissolved in 100 mL of 0.2M acetic acid, and 100 mL of ethanol was added, followed by 364 uL of caprylic anhydride, and 2.38 g of EDC and 1.43 g of NHS were added. React overnight, add 3mL of 5M sodium hydroxide to adjust the pH to 10, filter and wash 5 times with water and ethanol, and dry in a vacuum oven to obtain hydrophobically modified chitosan;
  • the in vivo hemostatic performance of the hydrophilic-hydrophobic co-grafted chitosan conjugate hemostatic and quick-setting material prepared in Example 2 was tested by a rabbit liver hemorrhage model.
  • the chitosan conjugate hemostatic quick-setting material prepared in Example 2 was ground into powder to prepare the chitosan conjugate hemostatic powder.
  • a biopsy puncture device with a diameter of 5 mm was used to penetrate the liver of rabbits. After bleeding for 5 seconds, chitosan conjugate hemostatic powder was spread on the surface of the wound, and the bleeding at the wound was observed every 10 seconds.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种多糖缀合物止血材料、制备方法及其应用,通过向水溶性多糖溶液中加入疏水性功能物质和反应活化剂,通过酰胺化反应将疏水性功能物质接枝在水溶性多糖的主链上,经过沉淀、洗涤和干燥制得疏水改性的多糖;再将疏水改性的多糖溶解,加入亲水性功能物质和反应活化剂,通过酰胺化反应将亲水性功能物质接枝在疏水改性的多糖的主链上,经过透析和冻干,制得亲疏水共接枝的多糖缀合物止血材料。本申请可以通过亲疏水协同作用与血液全组分发生物理化学作用,促使血液全组分在10s内快速胶凝,增强了材料的止血效果。

Description

一种多糖缀合物止血材料及其制备方法和应用 技术领域
本申请涉及生物医用材料领域,尤其涉及一种多糖缀合物止血材料及其制备方法和应用。
背景技术
出血是造成创伤者死亡的主要原因之一,其中大出血是造成可预防性战创伤死亡的90.9%。因此,实现创伤流血后的快速高效止血对提高流血者生存率和战场救治率具有极其重大的意义。
按照止血材料的制备方法可以将其分为两大类:一是通过物理共混法制备的复合止血材料;二是通过化学共价键接枝法制备的缀合物止血材料。目前,通过物理共混法制备的复合止血材料以其工艺简单、可快速实现大批量生产的特点被广泛使用,且其中主要以多糖基复合止血材料为主。
多糖是由糖苷键结合的糖链,至少要超过10个的单糖组成的聚合糖高分子碳水化合物。其是从生物体内提取加工得到的,具有良好的生物相容性。且由于其糖环上含有大量的羟基、氨基(如:壳聚糖)、羧基(如:海藻酸钠、透明质酸等)等功能基团,其具有良好的水溶性,能够快速吸收血液中的大量水分,从而被广泛的用于制备各类止血材料当中。
目前的多糖基复合止血材料主要以壳聚糖复合各类无机止血材料为主,如:复合沸石的壳聚糖海绵,复合碳纳米管的葡聚糖海绵等。他们虽然展现了不俗的止血效果,但是由于制备过程中多糖和无机材料的物理共混程度不均一、不可控,导致其止血性能不稳定。
然而,对于多糖缀合物止血材料可以完美避开这个缺陷。多糖缀合物是指多糖与蛋白质、多肽、脂质、核酸和抗体等生物分子以及其它小分子以共价键相互连结而形成的化合物。通过化学接枝的方法可以定量、可控的将止血功能小分子接枝在多糖主链上,并可以通过改变接枝在多糖主链上的止血功能小分子的数量进而调控多糖缀合物的止血性能,实现稳定、快速且高效的止血。
现有的多糖缀合物止血材料主要是通过与血液(以血细胞、血浆蛋白和水为主)的单一组分发生物理化学作用进而促使血液凝胶化,存在多糖缀合物止血材料与血液的作用时间长、促血液胶凝的时间慢等缺点,且形成的血液凝胶机械性能较弱,并不 能实现稳定、快速且高效的止血。
因此,本领域的技术人员致力于开发一种针对血液中的主要成分设计的多糖缀合物止血材料,从而快速促血液胶凝化。
发明内容
为实现上述目的,本申请提供了一种亲疏水共接枝的多糖缀合物止血材料及其制备方法,包括疏水改性多糖材料的制备、亲疏水共接枝的多糖缀合物止血材料的制备。
本申请的第一个方面提供了一种多糖缀合物止血材料的制备方法,包括以下步骤:步骤1、将水溶性多糖溶解于第一溶剂中得到第一溶液,加入疏水性功能物质和第一反应活化剂,通过酰胺化反应将所述疏水性功能物质接枝在所述水溶性多糖的主链上,经过沉淀、洗涤和干燥制得疏水改性的多糖;
步骤2、将所述疏水改性的多糖溶解于第二溶剂中得到第二溶液,加入亲水性功能物质和第二反应活化剂,通过酰胺化反应将所述亲水性功能物质接枝在所述疏水改性的多糖的主链上,经过透析和冻干,制得亲疏水共接枝的多糖缀合物止血材料;
其中,所述第一反应活化剂和/或所述第二反应活化剂选自1-乙基-3-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺磺酸钠盐(NHS)、羟基苯并三唑(HOBT)、4-二甲氨基吡啶(DMAP)和1,3-二环己基碳二亚胺(DCC)中的一种或多种;所述第一反应活化剂和所述第二反应活化剂相同或不相同;
所述疏水性功能物质选自正辛酸、十二酸、十六酸、辛酸酐、十二酸酐、十六酸酐、正辛胺、正十二胺、正十六胺、正十八胺、油酸和油胺中的一种或多种;
所述亲水性功能物质选自3,4-二羟基苯基丙酸、3,4,5-三羟基苯甲酸、4-羧基苯硼酸、多巴胺盐酸盐和3-氨基苯基硼酸盐酸盐中的一种或多种。
优选地,其中,步骤1中所述水溶性多糖选自壳聚糖、羟甲基壳聚糖、羧丙基壳聚糖、壳寡糖、海藻酸钠、透明质酸和氨基葡聚糖中的一种或多种。
优选地,步骤1中所述水溶性多糖的溶液浓度为0.1mg/mL-100mg/mL。
优选地,步骤1中所述水溶性多糖与所述疏水性功能物质的摩尔比为1:0.1-1:10。
优选地,步骤1中的所述水溶性多糖与所述反应活化剂的摩尔比为1:0.1-1:10。
优选地,步骤2中所述疏水改性的多糖与所述亲水性功能物质的摩尔比为1:0.1-1:10。
优选地,步骤2中的所述疏水改性的多糖与所述反应活化剂的摩尔比为1:0.1-1:10。
优选地,所述第一溶剂中的至少一种选自盐酸、乙酸、乙醇和去离子水。
优选地,所述第二溶剂中的至少一种选自盐酸、乙酸和去离子水。
优选地,所述第一反应活化剂和/或所述第二反应活化剂为EDC和NHS,EDC和HOBT,EDC和DMAP,DCC和HOBT,EDC,或DCC,更优选为EDC和NHS。
进一步地,步骤2中在加入所述亲水性功能物质和所述第二反应活化剂之前,还包括在所述第二溶液中通入氮气的步骤。
进一步地,还包括在通入氮气后调节pH的步骤。
本申请第二方面提供了一种由上述方法制备得到的多糖缀合物止血材料,包括水溶性多糖、疏水性功能物质和亲水性功能物质,其中,所述疏水性功能物质和所述亲水性功能物质共接枝在所述水溶性多糖的主链上。
优选地,所述水溶性多糖选自壳聚糖、羟甲基壳聚糖、羧丙基壳聚糖、壳寡糖、海藻酸钠、透明质酸和氨基葡聚糖中的一种或多种。
优选地,所述疏水性功能物质选自正辛酸、十二酸、十六酸、辛酸酐、十二酸酐、十六酸酐、正辛胺、正十二胺、正十六胺、正十八胺、油酸和油胺中的一种或多种。
优选地,所述亲水性功能物质选自3,4-二羟基苯基丙酸、3,4,5-三羟基苯甲酸、4-羧基苯硼酸、多巴胺盐酸盐和3-氨基苯基硼酸盐酸盐中的一种或多种。
本申请的第三方面提供了上述多糖缀合物止血材料在止血剂制备中的应用。
优选地,所述止血剂的止血剂型包括但不限于粉末、海绵、绷带、纱布、凝胶和喷雾。
优选地,所述多糖缀合物止血材料与血液全组分发生物理化学作用。
优选地,所述血液全组分包括血细胞、血浆蛋白和水。
本申请至少具有以下有益的技术效果:
1、本申请的多糖缀合物止血速凝材料可以通过亲疏水协同作用与血液全组分(血细胞、血浆蛋白和水)发生物理化学作用,促使血液全组分在10s内快速胶凝,大大缩短了止血材料与血液组份的作用时间,量级式的加快了止血材料促血液胶凝的速度,并且极大地提高了所形成的血液凝胶的机械性能。
2、本申请的多糖缀合物止血材料通过两步酰胺化反应即可制得,制备方法简单且快速,有利于大规模生产和应用。
3、本申请制备的亲疏水协同、促血液胶凝的多糖止血材料可作为原材料广泛用于多种止血剂型(如:粉末、海绵、绷带、纱布、凝胶和喷雾等)的制备,在军用和医用等快速止血领域具有广泛的应用前景。
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
附图说明
图1是本申请的一个较佳实施方式的制备方法示意图;
图2是本申请的一个较佳实施方式的凝血机理示意图;
图3是本申请的一个较佳实施例的兔肝脏出血模型的体内止血实验图。
具体实施方式
以下参考说明书附图介绍本申请的多个优选实施例,使其技术内容更加清楚和便于理解。本申请可以通过许多不同形式的实施例来得以体现,本申请的保护范围并非仅限于文中提到的实施例。
如图1所示,本申请先通过酰胺化反应将疏水基团接枝在多糖大分子的主链上,得到疏水性多糖大分子,然后再通过酰胺化反应将亲水基团接枝在疏水性多糖大分子的主链上,得到多糖缀合物止血速凝材料。
本申请制备得到的多糖缀合物止血速凝材料,其可以通过接枝在多糖大分子的主链上的亲疏水官能团介导的强亲疏水协同作用,与血液全组分(血细胞、血浆蛋白和水)发生物理化学作用(如图2所示),从而实现快速促血液胶凝化。
实施例1
将2g壳聚糖溶解在100mL的0.2M的乙酸中,并加入100mL乙醇,随后加入364uL的辛酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入3mL的5M的氢氧化钠将pH调至10,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的壳聚糖;
将2g疏水改性的壳聚糖溶解在100mL的0.2M的乙酸中,通氮气10分钟,将pH调节至5.0,随后依次加入1.19g的3,4-二羟基苯基丙酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的壳聚糖缀合物止血速凝材料;
实施例2
将2g壳聚糖溶解在100mL的0.2M的乙酸中,并加入100mL乙醇,加热至45℃,随后加入0.2g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入3mL的5M的氢氧化钠将pH调至10,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的壳聚糖;
将2g疏水改性的壳聚糖溶解在100mL的0.2M的乙酸中,通氮气10分钟,将pH调节至5.0,随后依次加入1.19g的3,4-二羟基苯基丙酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的壳聚糖缀合物止血速凝材料;
实施例3
将2g壳聚糖溶解在100mL的0.2M的乙酸中,并加入100mL乙醇,加热至65℃,随后加入0.154g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入3mL的5M的氢氧化钠将pH调至10,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的壳聚糖;
将2g疏水改性的壳聚糖溶解在100mL的0.2M的乙酸中,通氮气10分钟,将pH 调节至5.0,随后依次加入1.19g的3,4-二羟基苯基丙酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的壳聚糖缀合物止血速凝材料;
实施例4
将2g壳聚糖溶解在100mL的0.2M的乙酸中,并加入100mL乙醇,加热至65℃,随后加入0.154g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入3mL的5M的氢氧化钠将pH调至10,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的壳聚糖;
将2g疏水改性的壳聚糖溶解在100mL的0.2M的乙酸中,通氮气10分钟,将pH调节至5.0,随后依次加入1.17g的3,4,5-三羟基苯甲酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的壳聚糖缀合物止血速凝材料;
实施例5
将2g壳聚糖溶解在100mL的0.2M的乙酸中,并加入100mL乙醇,加热至65℃,随后加入0.154g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入3mL的5M的氢氧化钠将pH调至10,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的壳聚糖;
将2g疏水改性的壳聚糖溶解在100mL的0.2M的乙酸中,通氮气10分钟,将pH调节至5.0,随后依次加入1.03g的4-羧基苯硼酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的壳聚糖缀合物止血速凝材料;
实施例6
将2g壳聚糖溶解在100mL的0.2M的乙酸中,并加入100mL乙醇,加热至65℃,随后加入0.154g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入3mL的5M的氢氧化钠将pH调至10,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的壳聚糖;
将2g疏水改性的壳聚糖溶解在100mL的0.2M的乙酸中,通氮气10分钟,将pH调节至5.0,随后依次加入1.17g的3,4,5-三羟基苯甲酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的壳聚糖缀合物止血速凝材料;
实施例7
将2g氨基葡聚糖溶解在50mL的去离子水中,并加入50mL乙醇,将pH调节为5.0,随后加入364uL的辛酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的氨基葡聚糖;
将2g疏水改性的氨基葡聚糖溶解在50mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入1.19g的3,4-二羟基苯基丙酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的氨基葡聚糖缀合物止血速凝材料;
实施例8
将2g氨基葡聚糖溶解在50mL的去离子水中,并加入50mL乙醇,加热至45℃,将pH调节为5.0,随后加入0.2g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的按年级葡聚糖;
将2g疏水改性的氨基葡聚糖溶解在50mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入1.19g的3,4-二羟基苯基丙酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的氨基葡聚糖缀合物止血速凝材料;
实施例9
将2g氨基葡聚糖溶解在50mL的去离子水中,并加入50mL乙醇,加热至65℃,将pH调节为5.0,随后加入0.154g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的氨基葡聚糖;
将2g疏水改性的氨基葡聚糖溶解在50mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入1.19g的3,4-二羟基苯基丙酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的氨基葡聚糖缀合物止血速凝材料;
实施例10
将2g氨基葡聚糖溶解在50mL的去离子水中,并加入50mL乙醇,加热至45℃,将pH调节为5.0,随后加入0.2g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的氨基葡聚糖;
将2g疏水改性的氨基葡聚糖溶解在50mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入1.17g的3,4,5-三羟基苯甲酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的氨基葡聚糖缀合物止血速凝材料;
实施例11
将2g氨基葡聚糖溶解在50mL的去离子水中,并加入50mL乙醇,加热至45℃,将pH调节为5.0,随后加入0.2g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏 水改性的氨基葡聚糖;
将2g疏水改性的氨基葡聚糖溶解在50mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入1.02g的4-羧基苯硼酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的氨基葡聚糖缀合物止血速凝材料;
实施例12
将2g氨基葡聚糖溶解在50mL的去离子水中,并加入50mL乙醇,加热至65℃,将pH调节为5.0,随后加入0.154g的十二酸酐,并加入2.38g的EDC和1.43g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的氨基葡聚糖;
将2g疏水改性的氨基葡聚糖溶解在50mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入1.19g的3,4-二羟基苯基丙酸、2.38g的EDC和1.43g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的氨基葡聚糖缀合物止血速凝材料;
实施例13
将2g透明质酸溶解在50mL的去离子水中,并加入50mL乙醇,将pH调节为5.0,随后加入219uL的正辛胺,并加入1.02g的EDC和0.61g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的透明质酸;
将2g疏水改性的透明质酸溶解在50mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入0.5g的多巴胺盐酸盐、1.02g的EDC和0.61g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的透明质酸缀合物止血速凝材料;
实施例14
将2g透明质酸溶解在50mL的去离子水中,并加入50mL乙醇,将pH调节为5.0,随后加入219uL的正辛胺,并加入1.02g的EDC和0.61g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的透明质酸;
将2g疏水改性的透明质酸溶解在50mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入0.46g的3-氨基苯基硼酸盐酸盐、1.02g的EDC和0.61g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的透明质酸缀合物止血速凝材料;
实施例15
将2g透明质酸溶解在50mL的去离子水中,并加入50mL乙醇,将pH调节为5.0,随后加入219uL的正辛胺,并加入1.02g的EDC和0.61g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的透明质酸;
将1g疏水改性的透明质酸溶解在50mL的去离子水中,通氮气10分钟,将pH 调节至5.0,随后依次加入0.5g的多巴胺盐酸盐、1.02g的EDC和0.61g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的透明质酸缀合物止血速凝材料;
实施例16
将2g海藻酸钠溶解在100mL的去离子水中,并加入100mL乙醇,随后加入837uL的正辛胺,将pH调为3.4,并加入1.94g的EDC和1.16g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的海藻酸钠;
将1g疏水改性的海藻酸钠溶解在100mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入0.96g的多巴胺盐酸盐、1.94g的EDC和1.16g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的海藻酸钠缀合物止血速凝材料;
实施例17
将2g海藻酸钠溶解在100mL的去离子水中,并加入100mL乙醇,随后加入837uL的正辛胺,将pH调为3.4,并加入1.94g的EDC和1.16g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的海藻酸钠;
将1g疏水改性的海藻酸钠溶解在100mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入0.88g的3-氨基苯基硼酸盐酸盐、1.94g的EDC和1.16g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的海藻酸钠缀合物止血速凝材料;
实施例18
将2g海藻酸钠溶解在100mL的去离子水中,并加入100mL乙醇,随后加入837uL的正辛胺,将pH调为3.4,并加入1.94g的EDC和1.16g的NHS。反应过夜,加入过量丙酮沉淀,过滤并用水和乙醇洗涤5次,真空烘箱烘干,得到疏水改性的海藻酸钠;
将2g疏水改性的海藻酸钠溶解在100mL的去离子水中,通氮气10分钟,将pH调节至5.0,随后依次加入0.96g的多巴胺盐酸盐、1.94g的EDC和1.16g的NHS,反应过夜,用酸化的去离子水透析3天,冻干,得到亲疏水共接枝的海藻酸钠缀合物止血速凝材料;
实施例19
通过家兔肝脏出血模型测试实施例2中所制备的亲疏水共接枝的壳聚糖缀合物止血速凝材料的体内止血性能。将实施例2中所制备的壳聚糖缀合物止血速凝材料碾碎成粉末状,制得壳聚糖缀合物止血粉末。使用直径为5mm活检穿刺器贯穿家兔肝脏,出血5s后将壳聚糖缀合物止血粉末铺撒至伤口表面,在每隔10s观察伤口处的流血情况。实验结果表面,壳聚糖缀合物止血粉末可以在10s内实现家兔肝脏贯穿出血模型的成功止血(如图3所示)。
以上详细描述了本申请的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本申请的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本申请的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (20)

  1. 一种多糖缀合物止血材料的制备方法,包括以下步骤:
    步骤1、将水溶性多糖溶解于第一溶剂中得到第一溶液,加入疏水性功能物质和第一反应活化剂,通过酰胺化反应将所述疏水性功能物质接枝在所述水溶性多糖的主链上,经过沉淀、洗涤和干燥制得疏水改性的多糖;
    步骤2、将所述疏水改性的多糖溶解于第二溶剂中得到第二溶液,加入亲水性功能物质和第二反应活化剂,通过酰胺化反应将所述亲水性功能物质接枝在所述疏水改性的多糖的主链上,经过透析和冻干,制得亲疏水共接枝的多糖缀合物止血材料;
    其中,所述第一反应活化剂和/或所述第二反应活化剂选自1-乙基-3-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺磺酸钠盐(NHS)、羟基苯并三唑(HOBT)、4-二甲氨基吡啶(DMAP)和1,3-二环己基碳二亚胺(DCC)中的一种或多种;所述第一反应活化剂和所述第二反应活化剂相同或不相同;
    所述疏水性功能物质选自正辛酸、十二酸、十六酸、辛酸酐、十二酸酐、十六酸酐、正辛胺、正十二胺、正十六胺、正十八胺、油酸和油胺中的一种或多种;
    所述亲水性功能物质选自3,4-二羟基苯基丙酸、3,4,5-三羟基苯甲酸、4-羧基苯硼酸、多巴胺盐酸盐和3-氨基苯基硼酸盐酸盐中的一种或多种。
  2. 根据权利要求1所述的制备方法,其中,步骤1中所述水溶性多糖选自壳聚糖、羟甲基壳聚糖、羧丙基壳聚糖、壳寡糖、海藻酸钠、透明质酸和氨基葡聚糖中的一种或多种。
  3. 根据权利要求1所述的制备方法,其中,步骤1中所述水溶性多糖的溶液浓度为0.1mg/mL-100mg/mL。
  4. 根据权利要求1所述的制备方法,其中,步骤1中所述水溶性多糖与所述疏水性功能物质的摩尔比为1:0.1-1:10。
  5. 根据权利要求1所述的制备方法,其中,步骤1中的所述水溶性多糖与所述反应活化剂的摩尔比为1:0.1-1:10。
  6. 根据权利要求1所述的制备方法,其中,步骤2中所述疏水改性的多糖与所述亲水性功能物质的摩尔比为1:0.1-1:10。
  7. 根据权利要求1所述的制备方法,其中,步骤2中的所述疏水改性的多糖与所述反应活化剂的摩尔比为1:0.1-1:10。
  8. 根据权利要求1所述的制备方法,其中,所述第一溶剂中的至少一种选自盐酸、乙酸,乙醇和去离子水。
  9. 根据权利要求1所述的制备方法,其中,所述第二溶剂中的至少一种选自盐酸、乙酸和去离子水。
  10. 根据权利要求1所述的制备方法,其中,所述第一反应活化剂和/或所述第二反应活化剂为EDC和NHS,EDC和HOBT,EDC和DMAP,DCC和HOBT,EDC,或DCC。
  11. 根据权利要求1所述的制备方法,其中,所述第一反应活化剂和/或所述第二反应活化剂为EDC和NHS。
  12. 一种多糖缀合物止血材料,包括水溶性多糖、疏水性功能物质和亲水性功能物质,其中,所述疏水性功能物质和所述亲水性功能物质共接枝在所述水溶性多糖的主链上;
    其中,所述多糖缀合物止血材料通过以下方法制备得到:
    步骤1、将水溶性多糖溶解于第一溶剂中得到第一溶液,加入疏水性功能物质和第一反应活化剂,通过酰胺化反应将所述疏水性功能物质接枝在所述水溶性多糖的主链上,经过沉淀、洗涤和干燥制得疏水改性的多糖,
    步骤2、将所述疏水改性的多糖溶解于第二溶剂中得到第二溶液,加入亲水性功能物质和第二反应活化剂,通过酰胺化反应将所述亲水性功能物质接枝在所述疏水改性的多糖的主链上,经过透析和冻干,制得亲疏水共接枝的多糖缀合物止血材料;
    其中,所述第一反应活化剂和/或所述第二反应活化剂选自1-乙基-3-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺磺酸钠盐(NHS)、羟基苯并三唑(HOBT)、4-二甲氨基吡啶(DMAP)和1,3-二环己基碳二亚胺(DCC)中的一种或多种;所述第一反应活化剂和所述第二反应活化剂相同或不相同;
    所述疏水性功能物质选自正辛酸、十二酸、十六酸、辛酸酐、十二酸酐、十六酸酐、正辛胺、正十二胺、正十六胺、正十八胺、油酸和油胺中的一种或多种;
    所述亲水性功能物质选自3,4-二羟基苯基丙酸、3,4,5-三羟基苯甲酸、4-羧基苯硼酸、多巴胺盐酸盐和3-氨基苯基硼酸盐酸盐中的一种或多种。
  13. 根据权利要求12所述的多糖缀合物止血材料,其中,所述水溶性多糖选自壳聚糖、羟甲基壳聚糖、羧丙基壳聚糖、壳寡糖、海藻酸钠、透明质酸和氨基葡聚糖中的一种或多种。
  14. 根据权利要求12所述的多糖缀合物止血材料,其中,步骤1中所述水溶性多糖与所述疏水性功能物质的摩尔比为1:0.1-1:10。
  15. 根据权利要求12所述的多糖缀合物止血材料,其中,步骤2中所述疏水改性的多糖与所述亲水性功能物质的摩尔比为1:0.1-1:10。
  16. 根据权利要求12所述的多糖缀合物止血材料,其中,所述第一溶剂中的至少一种选自盐酸、乙酸,乙醇和去离子水。
  17. 根据权利要求12所述的多糖缀合物止血材料,其中,所述第二溶剂中的至少一种选自盐酸、乙酸和去离子水。
  18. 根据权利要求12所述的多糖缀合物止血材料,其中,所述第一反应活化剂和 /或所述第二反应活化剂为EDC和NHS,EDC和HOBT,EDC和DMAP,DCC和HOBT,EDC,或DCC。
  19. 根据权利要求12所述的多糖缀合物止血材料,其中,所述第一反应活化剂和/或所述第二反应活化剂为EDC和NHS。
  20. 一种止血剂,包括如权利要求12所述的多糖缀合物止血材料,所述止血剂的止血剂型包括粉末、海绵、绷带、纱布、凝胶和喷雾。
PCT/CN2023/078719 2022-03-02 2023-02-28 一种多糖缀合物止血材料及其制备方法和应用 WO2023165469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210197690.9 2022-03-02
CN202210197690.9A CN114569781B (zh) 2022-03-02 2022-03-02 一种多糖缀合物止血材料、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2023165469A1 true WO2023165469A1 (zh) 2023-09-07

Family

ID=81776077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078719 WO2023165469A1 (zh) 2022-03-02 2023-02-28 一种多糖缀合物止血材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114569781B (zh)
WO (1) WO2023165469A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114569781B (zh) * 2022-03-02 2022-10-04 上海交通大学 一种多糖缀合物止血材料、制备方法及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050243A (zh) * 2007-05-10 2007-10-10 复旦大学 一种两亲性壳聚糖衍生物及其制备方法和在药剂学中的应用
CN101074271A (zh) * 2006-05-19 2007-11-21 齐长有 两亲性壳聚糖衍生物的制备和应用
CN101775082A (zh) * 2010-02-09 2010-07-14 中国药科大学 基于两性离子的电荷反转型壳聚糖衍生物及其在药剂中的应用
CN104013990A (zh) * 2014-06-18 2014-09-03 海南建科药业有限公司 具有儿茶酚基改性的壳聚糖及其制成的生物医学材料
US20140378413A1 (en) * 2010-12-15 2014-12-25 Agratech International, Inc. Hemostatic agents and methods of use
CN108976317A (zh) * 2018-06-29 2018-12-11 中国科学院兰州化学物理研究所 一种壳聚糖生物大分子及其制备方法和应用
CN114533943A (zh) * 2022-03-08 2022-05-27 上海长征医院 一种速效止血海绵及其制备方法
CN114533942A (zh) * 2022-02-25 2022-05-27 上海交通大学 一种多糖止血材料和制备方法及其应用
CN114569781A (zh) * 2022-03-02 2022-06-03 上海交通大学 一种多糖缀合物止血材料、制备方法及其应用
CN114569782A (zh) * 2022-03-09 2022-06-03 上海长征医院 一种止血速凝喷雾剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102309761A (zh) * 2010-06-30 2012-01-11 中国科学院大连化学物理研究所 一种不带电两亲性壳聚糖纳米药物载体及其制备和应用
CN104225614B (zh) * 2014-09-22 2016-11-30 北京航空航天大学 同载亲疏水生物分子的壳聚糖接枝聚乳酸复合微球及其制备方法
JP2017202033A (ja) * 2016-05-09 2017-11-16 国立研究開発法人物質・材料研究機構 多糖止血剤
CN106496357B (zh) * 2016-10-27 2019-02-19 山东师范大学 一种o-季铵盐-n-烷基化壳聚糖及其制备方法与应用
CN117343213A (zh) * 2017-04-13 2024-01-05 美杜拉公司 可变尺寸的疏水改性聚合物
CN109053928A (zh) * 2018-05-30 2018-12-21 中国科学院兰州化学物理研究所 一种基于改性壳聚糖的生物大分子及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074271A (zh) * 2006-05-19 2007-11-21 齐长有 两亲性壳聚糖衍生物的制备和应用
CN101050243A (zh) * 2007-05-10 2007-10-10 复旦大学 一种两亲性壳聚糖衍生物及其制备方法和在药剂学中的应用
CN101775082A (zh) * 2010-02-09 2010-07-14 中国药科大学 基于两性离子的电荷反转型壳聚糖衍生物及其在药剂中的应用
US20140378413A1 (en) * 2010-12-15 2014-12-25 Agratech International, Inc. Hemostatic agents and methods of use
CN104013990A (zh) * 2014-06-18 2014-09-03 海南建科药业有限公司 具有儿茶酚基改性的壳聚糖及其制成的生物医学材料
CN108976317A (zh) * 2018-06-29 2018-12-11 中国科学院兰州化学物理研究所 一种壳聚糖生物大分子及其制备方法和应用
CN114533942A (zh) * 2022-02-25 2022-05-27 上海交通大学 一种多糖止血材料和制备方法及其应用
CN114569781A (zh) * 2022-03-02 2022-06-03 上海交通大学 一种多糖缀合物止血材料、制备方法及其应用
CN114533943A (zh) * 2022-03-08 2022-05-27 上海长征医院 一种速效止血海绵及其制备方法
CN114569782A (zh) * 2022-03-09 2022-06-03 上海长征医院 一种止血速凝喷雾剂及其制备方法

Also Published As

Publication number Publication date
CN114569781A (zh) 2022-06-03
CN114569781B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
Thambi et al. Stimuli‐sensitive injectable hydrogels based on polysaccharides and their biomedical applications
Seidi et al. Chitosan-based blends for biomedical applications
Zhang et al. Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications
Pushpamalar et al. Biodegradable polysaccharides for controlled drug delivery
Abandansari et al. In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells
Eslahi et al. Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: Tunable thermosensitivity, biodegradability and mechanical durability
Jayakumar et al. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications
RU2230073C2 (ru) Способ поперечного сшивания карбоксилированных полисахаридов
Qiao et al. Preparation of printable double-network hydrogels with rapid self-healing and high elasticity based on hyaluronic acid for controlled drug release
Mourya et al. Carboxymethyl chitosan and its applications
Cimen et al. Injectable and self-healable pH-responsive gelatin–PEG/laponite hybrid hydrogels as long-acting implants for local cancer treatment
AU773826B2 (en) Hyaluronic acid gel composition, process for producing the same, and medical material containing the same
CN107281549B (zh) 与多糖交联的蛋白质的制备和/或制剂
WO2023165469A1 (zh) 一种多糖缀合物止血材料及其制备方法和应用
CN107441551B (zh) 一种碳纳米管增强的可注射抗菌导电纳米复合止血晶胶敷料及其制备方法和应用
Phuong et al. The chemistry and engineering of mussel-inspired glue matrix for tissue adhesive and hemostatic
WO2010099818A1 (en) Thermoreversible polysaccharide hydrogel
CN110603043B (zh) 可变尺寸的疏水改性聚合物
WO2020106703A1 (en) Methods and compositions for achieving hemostasis and stable blood clot formation
Hossain et al. Fundamentals of chitosan for biomedical applications
CN105801870B (zh) 一种聚唾液酸-透明质酸复合凝胶的制备方法及所得产品和应用
Farrukh et al. Synthesis and applications of carbohydrate-based hydrogels
Patil et al. Crosslinking of polysaccharides: methods and applications
CN114533942B (zh) 一种多糖止血材料和制备方法及其应用
Vu et al. The effect of molecular weight and chemical structure of cross-linkers on the properties of redox-responsive hyaluronic acid hydrogels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762868

Country of ref document: EP

Kind code of ref document: A1