WO2023165388A1 - 一种深度生物脱氮强化及内分泌干扰毒性削减的方法 - Google Patents

一种深度生物脱氮强化及内分泌干扰毒性削减的方法 Download PDF

Info

Publication number
WO2023165388A1
WO2023165388A1 PCT/CN2023/077626 CN2023077626W WO2023165388A1 WO 2023165388 A1 WO2023165388 A1 WO 2023165388A1 CN 2023077626 W CN2023077626 W CN 2023077626W WO 2023165388 A1 WO2023165388 A1 WO 2023165388A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
toxicity
releasing
bioreactor
effluent
Prior art date
Application number
PCT/CN2023/077626
Other languages
English (en)
French (fr)
Inventor
黄辉
金丽丽
胡俊
任洪强
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2023165388A1 publication Critical patent/WO2023165388A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/12Inert solids used as ballast for improving sedimentation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the technical field of advanced sewage treatment, in particular to a method for strengthening deep biological denitrification and reducing toxicity of endocrine disturbance.
  • the low carbon and nitrogen ratio in the secondary biochemical tail water is the key to its denitrification ability.
  • the anoxic environment in the biological denitrification process Less effective at reducing endocrine disrupting toxicity. Therefore, it is of great significance to reduce the toxicity of endocrine disruption and the deep removal of total nitrogen in the secondary tail water by strengthening the biological deep denitrification process.
  • the industry mainly solves it by directly adding carbon sources at the water inlet or adding carbon-releasing materials in the reactor. Since carbon sources are directly added at the water inlet, continuous Dosing increases the operating cost. Therefore, research on stable carbon-releasing materials has become a frontier hotspot in the industry.
  • the patent of the present invention provides a method for deep biological denitrification enhancement and endocrine disruption toxicity reduction.
  • the encapsulation method is used to synthesize micro-oxygen-secreting carbon-releasing granular materials, which are applied in bioreactors.
  • the oxygen-releasing and carbon-releasing performance of the material can strengthen the reduction of endocrine-disrupting toxicity and the removal of total nitrogen in the secondary biochemical tail water by the bioreactor, and has broad market application prospects.
  • the technical solution of the present invention is: a method for deep biological denitrification enhancement and endocrine disruption toxicity reduction, comprising the following steps:
  • the mass concentration of polyvinyl alcohol is 4 to 10 wt%
  • the mass concentration of sodium carboxymethyl cellulose is 1 to 4 wt%
  • the hard The mass concentration of fatty acid is 1-2wt%.
  • the mass ratio of quartz sand and nano-calcium peroxide is 1:1-2, wherein polyvinyl alcohol is used as a skeleton material, sodium carboxymethyl cellulose is used as a binder, stearic acid is used as a buffer and a stabilizer and the prepared Nano-calcium peroxide is used as an oxygen-releasing material, and quartz sand is used to increase the material density, so that the prepared micro-oxygen-releasing carbon-releasing particles have high mechanical strength and are not easy to break, and can better achieve the effect of slow-release oxygen and organic carbon.
  • the bioreactor is an anoxic or anaerobic bioreactor, including but not limited to a denitrification biofilter, which provides an anoxic environment for the biological denitrification process, thereby improving the denitrification process. nitrogen effect.
  • the bioreactor operates in a downflow mode, the operating temperature is 10-35°C, the TN of the influent is not higher than 30mg/L, and the endocrine disrupting toxicity of the influent is not higher than 20ng- E2/L, by strictly controlling the reaction conditions of the bioreactor, can increase the internal microbial activity and improve the denitrification effect of sewage.
  • step S2 the dosage of micro-oxygen-breathing carbon-releasing particles and the operating conditions of the reactor are carried out according to the following scheme:
  • the position where the micro-oxygen-secreting and carbon-releasing particles are added to the bioreactor is: at 1/5 to 1/3 of the height of the entire packing layer, by limiting the height of the packing layer, the distance between the water body and the packing layer Micro-oxygen and carbon-releasing particles are in full contact to improve the treatment effect.
  • the time for adding the micro-oxygen-secreting carbon-releasing particles is: according to the characteristics of the effluent water quality of the bioreactor, dosing is performed every 10-20 days.
  • the filler of the bioreactor includes one or more of ceramsite, quartz sand and volcanic rock.
  • the sewage is treated by the bioreactor in the step S3, it can be further treated by electrocoagulation precipitation.
  • power on for 5 minutes and then boost the voltage at a boost rate of 1V/min until the voltage reaches 6-8V, so that the metabolites of biological treatment will be aggregated and precipitated, and the final discharge or reuse of higher effluent water quality will be achieved.
  • the present invention at first utilizes the reaction of calcium sulfate and hydrogen peroxide solution under alkaline conditions to prepare nano calcium peroxide oxygen-releasing material, then polyvinyl alcohol is used as skeleton material, and sodium carboxymethyl cellulose is used as binding agent , stearic acid is used as a buffer and stabilizer, and the prepared nano-calcium peroxide is used as an oxygen-releasing material, and quartz sand is used to increase the material density, and micro-oxygen-releasing carbon-releasing particles are prepared by encapsulation.
  • micro-oxygen-releasing carbon-releasing particles to the bioreactor in a targeted manner, build a micro-oxygen-releasing carbon-releasing layer inside the bioreactor, and then start the reactor to use the slow-released oxygen to promote Aerobic microorganisms reduce the endocrine disrupting toxicity in sewage, and the released organic carbon strengthens the deep removal of total nitrogen in sewage.
  • the technology is novel and has broad application prospects in the advanced treatment of secondary biochemical tail water.
  • the method for preparing micro-oxygen-releasing carbon-releasing particles disclosed by the present invention has easy-to-obtain raw materials, simple operation methods, mild reaction conditions, and the use of spherical templates for granulation, and the particle size of the particles can be adjusted according to actual needs.
  • the prepared micro Oxygen-releasing carbon-releasing particles can realize the effect of slow-release oxygen and organic carbon at the same time in water, and have little effect on the pH of water body.
  • Fig. 1 is the preparation flowchart of the micro-secretion oxygen release carbon particle material of the present invention
  • Fig. 2 is the physical figure of nano calcium peroxide of the present invention
  • Fig. 3 is the physical figure of the micro-secretion oxygen release carbon particle of the present invention.
  • Fig. 4 is the schematic diagram of the application of the micro-secretion of oxygen and release of carbon in the bioreactor of the present invention
  • Fig. 5 is a scheme diagram of the present invention in different application scenarios
  • SR-nCP is micro-oxygen-secreting carbon-releasing particles
  • EV is the effective volume of the bioreactor.
  • the method of this embodiment is used to treat the secondary biochemical tail water of a municipal sewage plant, and the water quality of the secondary biochemical tail water: the COD concentration is 45-60 mg/L, the TN concentration is 20-30 mg/L, and the endocrine disrupting toxicity is 10 ⁇ 20ng-E2/L, pH 6.5 ⁇ 8.0, temperature 25°C ⁇ 30°C.
  • a method for deep biological denitrification enhancement and endocrine disruption toxicity reduction comprising the following steps:
  • S2 According to the water quality characteristics of the sewage, add micro-breeding oxygen-releasing carbon particles in a targeted manner to build a micro-breeding carbon-releasing layer inside the bioreactor.
  • the added mass accounts for 2.5wt% of the effective volume of the reactor.
  • the position of the oxygen-releasing carbon particles is at 1/3 of the height of the entire packing layer, and the micro-oxygen-releasing carbon particles are added every 10 days;
  • the inoculated sludge used is taken from the anoxic pool sludge of the municipal sewage treatment plant, and the MLSS concentration is 3800mg/L.
  • the hydraulic retention time of the bioreactor is 6h
  • ceramsite is selected as the filler of the bioreactor
  • the bioreactor adopts downflow operation
  • the operating temperature is 10°C
  • the TN of the influent is not higher than 30mg/L
  • the endocrine disrupting toxicity of the influent Not higher than 20ng-E2/L.
  • a method for deep biological denitrification enhancement and endocrine disruption toxicity reduction comprising the following steps:
  • micro-secretory oxygen-releasing carbon particles are added in a targeted manner to build a micro-secretion carbon-releasing layer inside the bioreactor.
  • the added mass accounts for 2.8wt% of the effective volume of the reactor.
  • Oxygen-releasing carbon particles are located at 1/4 of the height of the entire packing layer, and are added every 15 days;
  • the inoculated sludge used is taken from the anoxic pool sludge of the municipal sewage treatment plant, and the MLSS concentration is 3800mg/L.
  • the hydraulic retention time of the bioreactor is 7h, ceramsite is selected as the filler of the bioreactor, the bioreactor adopts downflow operation, the operating temperature is 25°C, the TN of the influent is not higher than 30mg/L, and the endocrine disrupting toxicity of the influent Not higher than 20ng-E2/L.
  • a method for deep biological denitrification enhancement and endocrine disruption toxicity reduction comprising the following steps:
  • S2 According to the water quality characteristics of the sewage, add micro-oxygen-breeding carbon-releasing particles in a targeted manner, and build a micro-breathing oxygen-releasing carbon layer inside the bioreactor.
  • the added mass accounts for 3wt% of the effective volume of the reactor.
  • the position of the carbon release particles is at 1/5 of the height of the entire packing layer, and it is added every 20 days;
  • the inoculated sludge used is taken from the anoxic pool sludge of the municipal sewage treatment plant, and the MLSS concentration is 3800mg/L.
  • the hydraulic retention time of the bioreactor is 8h
  • ceramsite is selected as the filler of the bioreactor
  • the bioreactor adopts downflow operation
  • the operating temperature is 35°C
  • the TN of the influent is not higher than 30mg/L
  • the endocrine disrupting toxicity of the influent Not higher than 20ng-E2/L.
  • This embodiment is basically the same as Embodiment 2, the difference is:
  • S3 Use the film-inoculation method to start the film-hanging process, and then introduce the sewage into the bioreactor for operation.
  • the inoculation sludge used is taken from the anoxic pool sludge of the municipal sewage treatment plant, and the MLSS concentration is about 3800mg/L , set the hydraulic retention time of the reactor to 5h, choose ceramsite as the filler of the bioreactor, and the reactor adopts downflow operation;
  • the enhanced reactor has effluent TN ⁇ 10mg/L, and the removal rate has increased by 58.28%, and the enhanced reactor can reduce the endocrine-disrupting toxicity by more than 95%, and the effluent endocrine-disrupting toxicity Less than 1.0ng-E2/L.
  • This embodiment is basically the same as Embodiment 2, the difference is:
  • S3 Use the film-inoculation method to start the film-forming process, and then introduce the sewage into the bioreactor for operation.
  • the inoculum sludge used is taken from the anoxic pool sludge of the municipal sewage treatment plant, and the MLSS concentration is about 3800mg/L.
  • the hydraulic retention time of the reactor is 3h, ceramsite is selected as the filler of the bioreactor, and the reactor adopts downflow operation;
  • the enhanced reactor has effluent TN ⁇ 15mg/L, and the removal rate is increased by 25.77%, and the enhanced reactor can reduce the toxicity of endocrine disruption by more than 95%. Compared with that, the reduction rate is increased by 20%, and the endocrine disrupting toxicity of effluent is lower than 1.0ng-E2/L.
  • Embodiment 4 is basically the same as Embodiment 4, the difference is:
  • step S2 the dosage of micro-oxygen-secreting carbon-releasing particles and the operating conditions of the reactor are carried out according to the following scheme:
  • Embodiment 6 is basically the same as Embodiment 6, the difference is:
  • the sewage After the sewage is treated by the bioreactor in step S3, it can be further treated by electrocoagulation precipitation.
  • the specific process is: add the effluent from the bioreactor to the electrocoagulation precipitation equipment, and under the condition of a DC electric field with a voltage of 3V, energize After treatment for 5 minutes, the boosting operation is carried out at a boosting rate of 1V/min until the voltage reaches 8V, so that the metabolites of biological treatment are agglomerated and precipitated, and the final discharge or reuse of higher effluent water quality is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供了一种深度生物脱氮强化及内分泌干扰毒性削减的方法,属于污水深度处理技术领域。首先利用硫酸钙在碱性条件下和过氧化氢溶液的反应来制备纳米过氧化钙释氧材料,然后将聚乙烯醇作为骨架材料,羧甲基纤维素钠作为粘合剂,硬脂酸作为缓冲剂和稳定剂以及制备的纳米过氧化钙作为释氧材料,并使用石英砂增加材料密度,采用包封法制备得到微泌氧释碳颗粒。根据水质特征及出水要求,针对性地向生物反应器中加入微泌氧释碳颗粒,然后进行反应器的启动运行,利用缓释的氧气促进好氧微生物对污水中内分泌干扰毒性的削减,释放的有机碳强化污水中总氮的深度去除,技术新颖,在二级生化尾水深度处理中具有广阔的应用前景。

Description

一种深度生物脱氮强化及内分泌干扰毒性削减的方法 技术领域
本发明属于污水深度处理技术领域,具体是一种深度生物脱氮强化及内分泌干扰毒性削减的方法。
背景技术
传统污水处理厂对内分泌干扰毒性并不能特异性高效削减,使得二级生化尾水中仍然具有内分泌干扰毒性,因此逐渐成为我国污水处理及再生水安全回用过程中应优先削减的一类毒性。此外,近年来我国污水氮排放的标准越来越严格,传统污水处理厂采用二级生化工艺进行脱氮已不能满足日益严格的排放要求,往往需要增加三级处理工艺来进行深度脱氮。生物反硝化深度脱氮技术由于较强的脱氮能力而被广泛应用,其中,二级生化尾水中碳氮比较低是影响其脱氮能力的关键,同时,生物反硝化过程中的缺氧环境对内分泌干扰毒性的削减效果不佳。因此,通过强化生物深度脱氮过程实现对二级尾水中内分泌干扰毒性削减和总氮深度去除具有重要意义。
针对目前二级生化尾水碳氮比较低的问题,行业内主要通过在进水处直接添加碳源或在反应器中添加释碳材料来解决,由于在进水处直接添加碳源,需要持续投加,增加了运行成本,因此,开展稳定释碳材料的研究成为行业内的前沿热点。此外,由于污水中造成内分泌干扰毒性的物质主要是好氧生物降解,而生物反硝化脱氮过程需要的是缺氧环境,因此,向生物反应器中加入适量释氧药剂来创造微氧环境,是平衡内分泌干扰毒性削减和总氮深度去除时微生物所需氧气的一个可行的方法。近年来,过氧化钙(CaO2)作为一种释氧材料在水处理中应用的研究逐渐见诸报道,但是,如果直接投加,会带来氧气释放过快,自由基含量快速增加,pH急剧升高等问题,因此,开展缓释过氧化钙材料的研究具有重要意义。
发明内容
针对上述存在的问题,本发明专利提供了一种深度生物脱氮强化及内分泌干扰毒性削减的方法,采用包封法合成了微泌氧释碳颗粒材料,将其应用在生物反应器中,利用材料的释氧释碳性能,可强化生物反应器对二级生化尾水中内分泌干扰毒性的削减和总氮的去除,具有广阔的市场应用前景。
本发明的技术方案是:一种深度生物脱氮强化及内分泌干扰毒性削减的方法,包括以下步骤:
S1、微泌氧释碳颗粒的制备
S1-1、称量硫酸钙粉末加入到去离子水中,分散均匀,再向其中加入1M的氢氧化钾溶液,配成含有硫酸钙粉末的碱性悬浊液,其中,硫酸钙和去离子水的质量比为1:5~15,氢氧化钾溶液和去离子水的体积比为1:1~5,上述过程的反应方程式为:
CaSO4+H2O2→CaO2+H2SO4
H2SO4+KOH→K2SO4+H2O
S1-2、室温条件下,使用机械搅拌器对上述碱性悬浊液进行剧烈搅拌,同时向碱性悬浊液中缓慢加入质量分数为30%的过氧化氢溶液,充分反应2h,生成沉淀物,其中,过氧化氢和悬浊液中硫酸钙的摩尔比为1:5~10;
S1-3、首先,将上述沉淀物使用去离子水洗涤三次,再用无水乙醇洗涤三次,然后,在60~80℃的条件下烘干24~48h,得到纳米过氧化钙释氧材料,并保存在密封干燥的环境中,待用;
S1-4、称量聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中,在90℃~100℃的条件下加热2~3h使其溶解,得到胶状物质,然后称量上述纳米过氧化钙释氧材料和石英砂,加入到胶状物质中,混合搅拌均匀,得到混合胶状物质;
S1-5、将上述混合胶状物质加入到球形硅胶模具中,待其冷却后,将模具放入-80~-20℃条件下冷冻交联12~16h,解冻后再冷冻,进行多次重复,将冷冻交联后的球形颗粒浸渍在备好的质量分数为3~6%的CaCl2的饱和硼酸溶液中,化学交联12~16h,再在60~80℃件下烘干24~48h,即得到微泌氧释碳颗粒;
S2:根据污水的水质特征,针对性的加入微泌氧释碳颗粒,在生物反应器内部构建微泌氧释碳层;
S3、采用接种挂膜法或自然挂膜法进行挂膜启动,然后将污水引入生物反应器,进行稳定运行。
进一步地,聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中之后,聚乙烯醇质量浓度为4~10wt%,羧甲基纤维素钠质量浓度为1~4wt%,硬脂酸质量浓度为1~2wt%,纳米过氧化钙释氧材料和石英砂加入到胶状物质中之后,纳米过氧化钙在所述胶状物质中的质量浓度为5~15wt%,加入的石英砂和纳米过氧化钙的质量比为1:1~2,其中,将聚乙烯醇作为骨架材料,羧甲基纤维素钠作为粘合剂,硬脂酸作为缓冲剂和稳定剂以及制备的纳米过氧化钙作为释氧材料,并使用石英砂增加材料密度,使制备的微泌氧释碳颗粒机械强度大,不易破碎,能够更好的实现缓释氧气和有机碳的效果。
进一步地,所述步骤S2中,所述的生物反应器为缺氧或厌氧生物反应器,包括但不限于反硝化生物滤池,为生物反硝化脱氮过程提供缺氧环境,从而提高脱氮效果。
进一步地,所述步骤S2中,所述的生物反应器为降流式方式运行,运行温度为10~35℃,进水TN不高于30mg/L,进水内分泌干扰毒性不高于20ng-E2/L,通过严格控制生物反应器的反应条件,能够增加内部微生物活性,提高污水脱氮效果。
进一步地,所述步骤S2中,微泌氧释碳颗粒投加量及反应器运行条件按如下方案进行:
S2-1、当进水C/N≤2,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<15mg/L时,选择方案Ⅰ,即投加的SR-nCP材料/生物反应器容积=2.5~3wt%,反应器HRT设置2~4h;
S2-2、当进水C/N≤2,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<10mg/L时,选择方案Ⅱ,即投加的SR-nCP材料/生物反应器容积=2.5~3wt%,反应器HRT设置4~6h;
S2-3、当进水C/N≤2,出水内分泌干扰毒性<0.4ng-E2/L且出水TN<5mg/L时,选择方案Ⅲ,即投加的SR-nCP材料/生物反应器容积=2.5~3wt%,反应器HRT设置6~8h;
S2-4、当进水2<C/N<5,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<15mg/L时,选择方案Ⅵ,即投加的SR-nCP材料/生物反应器容积=1.5~2wt%,反应器HRT设置2~4h;
S2-5、当进水2<C/N<5,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<10mg/L时,选择方案Ⅴ,即投加的SR-nCP材料/生物反应器容积=1.5~2wt%,反应器HRT设置4~6h;
S2-6、当进水2<C/N<5,出水内分泌干扰毒性<0.4ng-E2/L且出水TN<10mg/L时,选择方案Ⅳ,即投加的SR-nCP材料/生物反应器容积=1.5~2wt%,反应器HRT设置6~8h。
进一步地,所述步骤S2中微泌氧释碳颗粒加入生物反应器的位置为:在整个填料层高度的1/5~1/3处,通过限定填料层的高度,使水体与填料层的微泌氧释碳颗粒充分接触,提高处理效果。
进一步地,所述步骤S2中微泌氧释碳颗粒加入的时间为:根据生物反应器的出水水质特征,每隔10~20d进行投加一次。
进一步地,所述的生物反应器的填料包括陶粒、石英砂和火山岩的一种或多种。
进一步地,污水经所述步骤S3中生物反应器处理后,可进一步采用电聚结沉淀处理,具体过程为:将生物反应器出水添加至电聚结沉淀设备中,并在电压为3V的直流电场条件下,通电处理5min,然后,以1V/min的升压速率进行升压运行,直至电压达到6-8V,使生物处理代谢产物团聚沉淀,实现更高出水水质最终外排或回用。
相对于现有技术,本发明的有益效果是:
(1)本发明首先利用硫酸钙在碱性条件下和过氧化氢溶液的反应来制备纳米过氧化钙释氧材料,然后将聚乙烯醇作为骨架材料,羧甲基纤维素钠作为粘合剂,硬脂酸作为缓冲剂和稳定剂以及制备的纳米过氧化钙作为释氧材料,并使用石英砂增加材料密度,采用包封法制备得到微泌氧释碳颗粒。根据水质特征及出水要求,针对性地向生物反应器中加入微泌氧释碳颗粒,在生物反应器内部构建微泌氧释碳层,然后进行反应器的启动运行,利用缓释的氧气促进好氧微生物对污水中内分泌干扰毒性的削减,释放的有机碳强化污水中总氮的深度去除,技术新颖,在二级生化尾水深度处理中具有广阔的应用前景。
(2)本发明公开的微泌氧释碳颗粒制备方法,原料易得,操作方法简单,反应条件温和,且应用球形模板造粒,可根据实际需要来调整颗粒的粒径大小,制备的微泌氧释碳颗粒在水中可同时实现缓释氧气和有机碳的效果,且对水体pH的影响较小。
附图说明
图1是本发明的微泌氧释碳颗粒材料制备流程图;
图2是本发明的纳米过氧化钙的实物图;
图3是本发明的微泌氧释碳颗粒的实物图;
图4是本发明的微泌氧释碳颗粒材料在生物反应器中的应用示意图;
图5是本发明在不同应用场景中的方案图;
其中,SR-nCP为微泌氧释碳颗粒,EV为生物反应器有效容积。
具体实施方式
为了进一步了解本发明的内容,以下通过实施例对本发明作详细说明。
利用本实施例的方法处理某市政污水厂二级生化尾水,且该二级生化尾水的水质情况:COD浓度为45~60mg/L,TN浓度为20~30mg/L,内分泌干扰毒性为10~20ng-E2/L,pH为6.5~8.0,温度为25℃~30℃。
实施例1
一种深度生物脱氮强化及内分泌干扰毒性削减的方法,包括以下步骤:
S1、微泌氧释碳颗粒的制备
S1-1、称量硫酸钙粉末加入到去离子水中,分散均匀,再向其中加入1M的氢氧化钾溶液,配成含有硫酸钙粉末的碱性悬浊液,其中,硫酸钙和去离子水的质量比为1:5,氢氧化钾溶液和去离子水的体积比为1:1;
S1-2、室温条件下,使用机械搅拌器对上述碱性悬浊液进行剧烈搅拌,同时向碱性悬浊液中缓慢加入质量分数为30%的过氧化氢溶液,充分反应2h,生成沉淀物,其中,过氧化氢和悬浊液中硫酸钙的摩尔比为1:5;
S1-3、首先,将上述沉淀物使用去离子水洗涤三次,再用无水乙醇洗涤三次,然后,在60℃的条件下烘干48h,得到纳米过氧化钙释氧材料,并保存在密封干燥的环境中,待用;
S1-4、称量聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中,在90℃的条件下加热2h使其溶解,得到胶状物质,然后称量上述纳米过氧化钙释氧材料和石英砂,加入到胶状物质中,混合搅拌均匀,得到混合胶状物质,其中,聚乙烯醇质量浓度为4wt%,羧甲基纤维素钠质量浓度为1wt%,硬脂酸质量浓度为1wt%,纳米过氧化钙释氧材料和石英砂加入到胶状物质中之后,纳米过氧化钙在所述胶状物质中的质量浓度为5wt%,加入的石英砂和纳米过氧化钙的质量比为1:1;
S1-5、将上述混合胶状物质加入到球形硅胶模具中,待其冷却后,将模具放入-20℃条件下冷冻交联16h,解冻后再冷冻,进行多次重复,将冷冻交联后的球形颗粒浸渍在备好的质量分数为3%的CaCl2的饱和硼酸溶液中,化学交联12h,再在60℃件下烘干48h,即得到微泌氧释碳颗粒;
S2:根据污水的水质特征,针对性的加入微泌氧释碳颗粒,在生物反应器内部构建微泌氧释碳层,其加入的质量占反应器有效容积的2.5wt%,加入的微泌氧释碳颗粒位置在整个填料层高度的1/3处,且微泌氧释碳颗粒每隔10d进行投加一次;
S3、采用接种挂膜法进行挂膜启动,然后将污水引入生物反应器,进行稳定运行,所用的接种污泥取自市政污水处理厂缺氧池污泥,且MLSS浓度为3800mg/L,设置生物反应器水力停留时间为6h,选择陶粒作为生物反应器的填料,生物反应器采用降流式运行,其运行温度为10℃,进水TN不高于30mg/L,进水内分泌干扰毒性不高于20ng-E2/L。
实施例2
一种深度生物脱氮强化及内分泌干扰毒性削减的方法,包括以下步骤:
S1、微泌氧释碳颗粒的制备
S1-1、称量硫酸钙粉末加入到去离子水中,分散均匀,再向其中加入1M的氢氧化钾溶液,配成含有硫酸钙粉末的碱性悬浊液,其中,硫酸钙和去离子水的质量比为1:10,氢氧化钾溶液和去离子水的体积比为1:2.5;
S1-2、室温条件下,使用机械搅拌器对上述碱性悬浊液进行剧烈搅拌,同时向碱性悬浊液中缓慢加入质量分数为30%的过氧化氢溶液,充分反应2h,生成沉淀物,其中,过氧化氢和悬浊液中硫酸钙的摩尔比为1:8;
S1-3、首先,将上述沉淀物使用去离子水洗涤三次,再用无水乙醇洗涤三次,然后,在70℃的条件下烘干32h,得到纳米过氧化钙释氧材料,并保存在密封干燥的环境中,待用;
S1-4、称量聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中,在95℃的条件下加热2.5h使其溶解,得到胶状物质,然后称量上述纳米过氧化钙释氧材料和石英砂,加入到胶状物质中,混合搅拌均匀,得到混合胶状物质,其中,聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中之后,聚乙烯醇质量浓度为6wt%,羧甲基纤维素钠质量浓度为2wt%,硬脂酸质量浓度为1.5wt%,纳米过氧化钙释氧材料和石英砂加入到胶状物质中之后,纳米过氧化钙在所述胶状物质中的质量浓度为8wt%,加入的石英砂和纳米过氧化钙的质量比为1:1.5;
S1-5、将上述混合胶状物质加入到球形硅胶模具中,待其冷却后,将模具放入-60℃条件下冷冻交联14h,解冻后再冷冻,进行多次重复,将冷冻交联后的球形颗粒浸渍在备好的质量分数为4.5%的CaCl2的饱和硼酸溶液中,化学交联14h,再在70℃件下烘干32h,即得到微泌氧释碳颗粒;
S2:根据污水的水质特征,针对性的加入微泌氧释碳颗粒,在生物反应器内部构建微泌氧释碳层,其加入的质量占反应器有效容积的2.8wt%,加入的微泌氧释碳颗粒位置在整个填料层高度的1/4处,每隔15d进行投加一次;
S3、采用接种挂膜法进行挂膜启动,然后将污水引入生物反应器,进行稳定运行,所用的接种污泥取自市政污水处理厂缺氧池污泥,且MLSS浓度为3800mg/L,设置生物反应器水力停留时间为7h,选择陶粒作为生物反应器的填料,生物反应器采用降流式运行,其运行温度为25℃,进水TN不高于30mg/L,进水内分泌干扰毒性不高于20ng-E2/L。
实施例3
一种深度生物脱氮强化及内分泌干扰毒性削减的方法,包括以下步骤:
S1、微泌氧释碳颗粒的制备
S1-1、称量硫酸钙粉末加入到去离子水中,分散均匀,再向其中加入1M的氢氧化钾溶液,配成含有硫酸钙粉末的碱性悬浊液,其中,硫酸钙和去离子水的质量比为1:15,氢氧化钾溶液和去离子水的体积比为1:5;
S1-2、室温条件下,使用机械搅拌器对上述碱性悬浊液进行剧烈搅拌,同时向碱性悬浊液中缓慢加入质量分数为30%的过氧化氢溶液,充分反应2h,生成沉淀物,其中,过氧化氢和悬浊液中硫酸钙的摩尔比为1:10;
S1-3、首先,将上述沉淀物使用去离子水洗涤三次,再用无水乙醇洗涤三次,然后,在60℃的条件下烘干24h,得到纳米过氧化钙释氧材料,并保存在密封干燥的环境中,待用;
S1-4、称量聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中,在100℃的条件下加热3h使其溶解,得到胶状物质,然后称量上述纳米过氧化钙释氧材料和石英砂,加入到胶状物质中,混合搅拌均匀,得到混合胶状物质,其中,聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中之后,聚乙烯醇质量浓度为10wt%,羧甲基纤维素钠质量浓度为4wt%,硬脂酸质量浓度为2wt%,纳米过氧化钙释氧材料和石英砂加入到胶状物质中之后,纳米过氧化钙在所述胶状物质中的质量浓度为15wt%,加入的石英砂和纳米过氧化钙的质量比为1:2;
S1-5、将上述混合胶状物质加入到球形硅胶模具中,待其冷却后,将模具放入-80℃条件下冷冻交联12h,解冻后再冷冻,进行多次重复,将冷冻交联后的球形颗粒浸渍在备好的质量分数为6%的CaCl2的饱和硼酸溶液中,化学交联16h,再在80℃件下烘干48h,即得 到微泌氧释碳颗粒;
S2:根据污水的水质特征,针对性的加入微泌氧释碳颗粒,在生物反应器内部构建微泌氧释碳层,其加入的质量占反应器有效容积的3wt%,加入的微泌氧释碳颗粒位置在整个填料层高度的1/5处,每隔20d进行投加一次;
S3、采用接种挂膜法进行挂膜启动,然后将污水引入生物反应器,进行稳定运行,所用的接种污泥取自市政污水处理厂缺氧池污泥,且MLSS浓度为3800mg/L,设置生物反应器水力停留时间为8h,选择陶粒作为生物反应器的填料,生物反应器采用降流式运行,其运行温度为35℃,进水TN不高于30mg/L,进水内分泌干扰毒性不高于20ng-E2/L。
实施例4
本实施例与实施例2基本相同,不同之处在于:
S3:采用接种挂膜法进行挂膜启动,然后将污水引入生物反应器,进行运行,其中,所用的接种污泥取自市政污水处理厂缺氧池污泥,且MLSS浓度为3800mg/L左右,设置反应器水力停留时间为5h,选择陶粒作为生物反应器的填料,反应器采用降流式运行;
运行过程中,强化型反应器与普通反应器相比,出水TN<10mg/L,去除率提高58.28%,且强化型反应器对内分泌干扰毒性的削减率可达95%以上,出水内分泌干扰毒性低于1.0ng-E2/L。
实施例5
本实施例与实施例2基本相同,不同之处在于:
S3:采用接种挂膜法进行挂膜启动,然后将污水引入生物反应器,进行运行,所用的接种污泥取自市政污水处理厂缺氧池污泥,且MLSS浓度为3800mg/L左右,设置反应器水力停留时间为3h,选择陶粒作为生物反应器的填料,反应器采用降流式运行;
运行过程中,强化型反应器与普通反应器相比,出水TN<15mg/L,去除率提高25.77%,且强化型反应器对内分泌干扰毒性的削减率可达95%以上,与普通反应器相比,削减率提高20%,出水内分泌干扰毒性低于1.0ng-E2/L。
实施例6
本实施例与实施例4基本相同,不同之处在于:
所述步骤S2中,微泌氧释碳颗粒投加量及反应器运行条件按如下方案进行:
S2-1、当进水C/N≤2,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<15mg/L时,选择方案Ⅰ,即投加的SR-nCP材料/生物反应器容积=3wt%,反应器HRT设置4h;
S2-2、当进水C/N≤2,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<10mg/L时,选择方案Ⅱ,即投加的SR-nCP材料/生物反应器容积=3wt%,反应器HRT设置6h;
S2-3、当进水C/N≤2,出水内分泌干扰毒性<0.4ng-E2/L且出水TN<5mg/L时,选择方案Ⅲ,即投加的SR-nCP材料/生物反应器容积=3wt%,反应器HRT设置8h;
S2-4、当进水2<C/N<5,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<15mg/L时,选择方案Ⅵ,即投加的SR-nCP材料/生物反应器容积=2wt%,反应器HRT设置4h;
S2-5、当进水2<C/N<5,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<10mg/L时,选择方案Ⅴ,即投加的SR-nCP材料/生物反应器容积=2wt%,反应器HRT设置6h;
S2-6、当进水2<C/N<5,出水内分泌干扰毒性<0.4ng-E2/L且出水TN<10mg/L时,选择方案Ⅳ,即投加的SR-nCP材料/生物反应器容积=2wt%,反应器HRT设置8h。
实施例7
本实施例与实施例6基本相同,不同之处在于:
污水经步骤S3中生物反应器处理后,可进一步采用电聚结沉淀处理,具体过程为:将生物反应器出水添加至电聚结沉淀设备中,并在电压为3V的直流电场条件下,通电处理5min,然后,以1V/min的升压速率进行升压运行,直至电压达到8V,使生物处理代谢产物团聚沉淀,实现更高出水水质最终外排或回用。

Claims (8)

  1. 一种深度生物脱氮强化及内分泌干扰毒性削减的方法,其特征在于,包括以下步骤:
    S1、微泌氧释碳颗粒的制备
    S1-1、称量硫酸钙粉末加入到去离子水中,分散均匀,再向其中加入1M的氢氧化钾溶液,配成含有硫酸钙粉末的碱性悬浊液,其中,硫酸钙和去离子水的质量比为1:5~15,氢氧化钾溶液和去离子水的体积比为1:1~5;
    S1-2、室温条件下,使用机械搅拌器对上述碱性悬浊液进行剧烈搅拌,同时向碱性悬浊液中缓慢加入质量分数为30%的过氧化氢溶液,充分反应2h,生成沉淀物,其中,过氧化氢和悬浊液中硫酸钙的摩尔比为1:5~10;
    S1-3、首先,将上述沉淀物使用去离子水洗涤三次,再用无水乙醇洗涤三次,然后,在60~80℃的条件下烘干24~48h,得到纳米过氧化钙释氧材料,并保存在密封干燥的环境中,待用;
    S1-4、称量聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中,在90℃~100℃的条件下加热2~3h使其溶解,得到胶状物质,然后称量上述纳米过氧化钙释氧材料和石英砂,加入到胶状物质中,混合搅拌均匀,得到混合胶状物质;
    S1-5、将上述混合胶状物质加入到球形硅胶模具中,待其冷却后,将模具放入-80~-20℃条件下冷冻交联12~16h,解冻后再冷冻,进行多次重复,将冷冻交联后的球形颗粒浸渍在备好的质量分数为3~6%的CaCl2的饱和硼酸溶液中,化学交联12~16h,再在60~80℃件下烘干24~48h,即得到微泌氧释碳颗粒;
    S2:根据污水的水质特征,针对性的加入微泌氧释碳颗粒,在生物反应器内部构建微泌氧释碳层;
    S3、采用接种挂膜法或自然挂膜法进行挂膜启动,然后将污水引入生物反应器,进行稳定运行;
    所述步骤S2中,所述的生物反应器为缺氧或厌氧生物反应器。
  2. 根据权利要求1所述的一种深度生物脱氮强化及内分泌干扰毒性削减的方法,其特征在于,所述步骤S1-4中,聚乙烯醇、羧甲基纤维素钠和硬脂酸加入到去离子水中之后,聚乙烯醇质量浓度为4~10wt%,羧甲基纤维素钠质量浓度为1~4wt%,硬脂酸质量浓度为1~2wt%,纳米过氧化钙释氧材料和石英砂加入到胶状物质中之后,纳米过氧化钙在所述胶状物质中的质量浓度为5~15wt%,加入的石英砂和纳米过氧化钙的质量比为1:1~2。
  3. 根据权利要求1所述的一种深度生物脱氮强化及内分泌干扰毒性削减的方法,其特征在于,所述步骤S2中,所述的生物反应器为降流式方式运行,运行温度为10~35℃,进水TN不高于30mg/L,进水内分泌干扰毒性不高于20ng-E2/L。
  4. 根据权利要求1所述的一种深度生物脱氮强化及内分泌干扰毒性削减的方法,其特征在于,所述步骤S2中,微泌氧释碳颗粒投加量及反应器运行条件按如下方案进行:
    S2-1、当进水C/N≤2,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<15mg/L时,选择方案Ⅰ,即投加的微泌氧释碳颗粒/生物反应器容积=2.5~3wt%,反应器HRT设置2~4h;
    S2-2、当进水C/N≤2,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<10mg/L时,选择方案Ⅱ,即投加的微泌氧释碳颗粒/生物反应器容积=2.5~3wt%,反应器HRT设置4~6h;
    S2-3、当进水C/N≤2,出水内分泌干扰毒性<0.4ng-E2/L且出水TN<5mg/L时,选择方案Ⅲ,即投加的微泌氧释碳颗粒/生物反应器容积=2.5~3wt%,反应器HRT设置6~8h;
    S2-4、当进水2<C/N<5,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<15mg/L时,选择方案Ⅵ,即投加的微泌氧释碳颗粒/生物反应器容积=1.5~2wt%,反应器HRT设置2~4h;
    S2-5、当进水2<C/N<5,出水内分泌干扰毒性<1.0ng-E2/L且出水TN<10mg/L时,选择方案Ⅴ,即投加的微泌氧释碳颗粒/生物反应器容积=1.5~2wt%,反应器HRT设置4~6h;
    S2-6、当进水2<C/N<5,出水内分泌干扰毒性<0.4ng-E2/L且出水TN<10mg/L时,选择方案Ⅳ,即投加的微泌氧释碳颗粒/生物反应器容积=1.5~2wt%,反应器HRT设置6~8h。
  5. 根据权利要求1所述的一种深度生物脱氮强化及内分泌干扰毒性削减的方法,其特征在于,所述步骤S2中微泌氧释碳颗粒加入生物反应器的位置为:在整个填料层高度的1/5~1/3处。
  6. 根据权利要求1所述的一种深度生物脱氮强化及内分泌干扰毒性削减的方法,其特征在于,所述步骤S2中微泌氧释碳颗粒加入的时间为:根据生物反应器的出水水质特征,每隔10~20d进行投加一次。
  7. 根据权利要求1所述的一种深度生物脱氮强化及内分泌干扰毒性削减的方法,其特征在于,所述的生物反应器的填料包括陶粒、石英砂和火山岩的一种或多种。
  8. 根据权利要求1所述的一种深度生物脱氮强化及内分泌干扰毒性削减的方法,其特征在于,污水经所述步骤S3中生物反应器处理后,采用电聚结沉淀处理,具体过程为:将生物反应器出水添加至电聚结沉淀设备中,并在电压为3V的直流电场条件下,通电处理5min,然后,以1V/min的升压速率进行升压运行,直至电压达到6-8V,使生物处理代谢产物团聚沉淀,实现更高出水水质最终外排或回用。
PCT/CN2023/077626 2022-03-01 2023-02-22 一种深度生物脱氮强化及内分泌干扰毒性削减的方法 WO2023165388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210194760.5A CN114455704B (zh) 2022-03-01 2022-03-01 一种深度生物脱氮强化及内分泌干扰毒性削减的方法
CN202210194760.5 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023165388A1 true WO2023165388A1 (zh) 2023-09-07

Family

ID=81415127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077626 WO2023165388A1 (zh) 2022-03-01 2023-02-22 一种深度生物脱氮强化及内分泌干扰毒性削减的方法

Country Status (4)

Country Link
US (1) US11753319B2 (zh)
JP (1) JP7178534B1 (zh)
CN (1) CN114455704B (zh)
WO (1) WO2023165388A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455704B (zh) * 2022-03-01 2022-12-27 南京大学 一种深度生物脱氮强化及内分泌干扰毒性削减的方法
CN116621320B (zh) * 2023-04-03 2023-11-07 江苏金山环保科技有限公司 一种利用蓝藻制备生物复合碳源及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2111081A1 (en) * 1991-06-21 1993-01-07 Stephen Koenigsberg Use of metallic peroxides in bioremediation
CN102690012A (zh) * 2011-03-21 2012-09-26 中国地质大学(北京) 一种解决亚硝酸盐积累的地下水硝酸盐污染生物修复方法
CN108793428A (zh) * 2018-06-27 2018-11-13 郑州大学 一种复合缓释碳源的制备方法
CN109896722A (zh) * 2019-04-12 2019-06-18 河南工程学院 一种用于污泥深度脱水的球状纳米过氧化钙制备方法
CN113072277A (zh) * 2021-03-28 2021-07-06 中工建设集团(福建)有限公司 一种基于过氧化钙类技术去除污染底泥降解有机物的方法
CN114105331A (zh) * 2021-11-29 2022-03-01 广东省环境科学研究院 一种过氧化钙复合缓释剂的制备方法及应用
CN114455704A (zh) * 2022-03-01 2022-05-10 南京大学 一种深度生物脱氮强化及内分泌干扰毒性削减的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160483B1 (en) * 2000-11-27 2007-01-09 Eric Christian Hince Solid-chemical composition for the non-exothermic chemical oxidation and aerobic bioremediation of environmental contaminants
CN101591065A (zh) * 2008-05-27 2009-12-02 宋乾武 污水双生物膜深度处理工艺
CN101628774B (zh) * 2009-08-06 2012-05-09 北京师范大学 一种升流式滤层-浮床净水装置
CN102491502B (zh) * 2011-12-19 2014-02-26 南京大学 一种地下水修复用缓释氧材料及其制备方法
CN103880145B (zh) * 2012-12-19 2016-04-20 同济大学 利用过氧化钙氧化去除污水及污泥中内分泌干扰物的方法
CN103964565B (zh) * 2014-04-03 2015-08-05 北京工业大学 一种以淀粉和聚乙烯醇为基材的缓释碳源滤料的制备方法
CN104031949A (zh) * 2014-06-10 2014-09-10 同济大学 一种提高剩余活性污泥厌氧发酵产酸质量及乙酸比例的方法
CN104445641B (zh) * 2014-12-08 2016-05-04 天津市创嘉生物技术有限公司 一种用于水处理的复合微生物缓释片及其制备方法
CN105984957A (zh) * 2016-01-22 2016-10-05 安徽建筑大学 一种氨氮废水的人工湿地处理方法
CN107555607B (zh) * 2017-08-21 2020-10-27 吴杨 一种生物复合增氧剂及其制备方法
CN107473377A (zh) * 2017-10-12 2017-12-15 喻昌勇 一种同步反硝化反应器
CN108642092B (zh) * 2018-05-04 2022-03-04 江南大学 一种强化抗生素厌氧降解的方法
CN109468307A (zh) * 2018-11-01 2019-03-15 上海水源地建设发展有限公司 固定化微生物颗粒及其制备方法和用固定化微生物颗粒高效治理黑臭水体的方法
CN110862150A (zh) * 2019-12-10 2020-03-06 浙江永续环境工程有限公司 一种应用污水处理复合菌剂的污水处理方法
CN111099744A (zh) * 2019-12-18 2020-05-05 安徽麓瑞科技有限公司 一种水产养殖用复合型水质改良剂及其制备方法
CN214115278U (zh) * 2020-11-27 2021-09-03 同济大学 一种利用生物质固体碳源强化反硝化污水处理装置
CN114906945A (zh) * 2021-02-08 2022-08-16 中国石油化工股份有限公司 一种缓释氧材料及其制备方法和应用
CN113173650A (zh) * 2021-04-28 2021-07-27 华中科技大学 一种复合微生物菌剂耦合过氧化钙处理化粪池污水的方法
CN113511723B (zh) * 2021-07-16 2022-07-26 南京大学 一种新型LDHs基缓释碳源填料的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2111081A1 (en) * 1991-06-21 1993-01-07 Stephen Koenigsberg Use of metallic peroxides in bioremediation
CN102690012A (zh) * 2011-03-21 2012-09-26 中国地质大学(北京) 一种解决亚硝酸盐积累的地下水硝酸盐污染生物修复方法
CN108793428A (zh) * 2018-06-27 2018-11-13 郑州大学 一种复合缓释碳源的制备方法
CN109896722A (zh) * 2019-04-12 2019-06-18 河南工程学院 一种用于污泥深度脱水的球状纳米过氧化钙制备方法
CN113072277A (zh) * 2021-03-28 2021-07-06 中工建设集团(福建)有限公司 一种基于过氧化钙类技术去除污染底泥降解有机物的方法
CN114105331A (zh) * 2021-11-29 2022-03-01 广东省环境科学研究院 一种过氧化钙复合缓释剂的制备方法及应用
CN114455704A (zh) * 2022-03-01 2022-05-10 南京大学 一种深度生物脱氮强化及内分泌干扰毒性削减的方法

Also Published As

Publication number Publication date
JP2023127526A (ja) 2023-09-13
JP7178534B1 (ja) 2022-11-28
CN114455704B (zh) 2022-12-27
CN114455704A (zh) 2022-05-10
US11753319B2 (en) 2023-09-12
US20230202887A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2023165388A1 (zh) 一种深度生物脱氮强化及内分泌干扰毒性削减的方法
JP6734901B2 (ja) スポンジ鉄及び活性汚泥を用いた汚水からの窒素とリンの除去装置及び方法
CN102674530B (zh) 用于去除水中氨氮的悬浮型电生物填料及制备方法和应用
WO2020211729A1 (zh) 一种同步强化产酸与除磷的污泥厌氧发酵处理方法
CN102531276A (zh) 纳米曝气微电解结合分子筛处理有机污水的方法和装置
CN112852888B (zh) 一种提高甲醇甲烷发酵活性的方法及其应用
CN107552052B (zh) 一种难降解有机废水的处理方法
CN110407334B (zh) 一种吸附硝酸根离子同步反硝化脱氮生物填料的制备与应用
CN111498991B (zh) 一种促进厌氧颗粒污泥增殖与活性提高的方法
CN116715345A (zh) 基于硫磺黄铁矿耦合填料自养反硝化生物反应器及应用
CN108946957B (zh) 一种将聚氨酯与水滑石复合提取短链脂肪酸制备缓释碳源的方法
CN113860488B (zh) 一种厌氧氨氧化菌颗粒培养方法及装置
CN111499143B (zh) 一种污泥厌氧发酵过程同步强化产酸与去除难降解有机副产物的方法
CN112960796A (zh) 废水中磺胺二甲基嘧啶的去除方法
CN112723523A (zh) 一种基于复合硫组分无碳源同步脱氮除磷填料及制备方法与应用
CN111875052A (zh) 一种蒙脱石-硫铁矿复合生物载体材料及其制备方法和应用方法
CN114620826B (zh) 废水脱氮用铁碳耦合生物颗粒载体材料及制备方法
CN116477815B (zh) 一种生活污水的处理方法
CN114716013B (zh) 一种接种厌氧氨氧化细菌的方法
CN117865340A (zh) 一种富硫聚合物脱氮生物填料及其制备方法和应用
WO2024045346A1 (zh) 一种缺氧池强化脱氮悬浮填料及其制备方法
CN116589081A (zh) 一种除磷脱氮复合填料及其制备方法与在水处理中的应用
CN117185476A (zh) 一种利用废弃吸附材料为原料的水质净化填料及制备方法
CN116589087A (zh) 基于投加发酵污泥实现pna与pda深度脱氮除磷的装置和方法
CN115385534A (zh) 一种利用阳离子交换树脂强化剩余污泥厌氧发酵产氢方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762788

Country of ref document: EP

Kind code of ref document: A1