WO2023165328A1 - 洗衣机的脱水控制方法、装置、洗衣机及存储介质 - Google Patents

洗衣机的脱水控制方法、装置、洗衣机及存储介质 Download PDF

Info

Publication number
WO2023165328A1
WO2023165328A1 PCT/CN2023/075981 CN2023075981W WO2023165328A1 WO 2023165328 A1 WO2023165328 A1 WO 2023165328A1 CN 2023075981 W CN2023075981 W CN 2023075981W WO 2023165328 A1 WO2023165328 A1 WO 2023165328A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
washing machine
eccentricity
dehydration
load weight
Prior art date
Application number
PCT/CN2023/075981
Other languages
English (en)
French (fr)
Inventor
吴玄玄
柯文静
方强
魏延羽
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210204851.2A external-priority patent/CN114541090B/zh
Priority claimed from CN202210203742.9A external-priority patent/CN114541085A/zh
Priority claimed from CN202210203741.4A external-priority patent/CN114541084B/zh
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2023165328A1 publication Critical patent/WO2023165328A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/48Preventing or reducing imbalance or noise

Definitions

  • the present disclosure relates to the technical field of washing machines, and in particular to a dehydration control method and device for a washing machine, a washing machine and a storage medium.
  • washing machines With the improvement of people's living standards, washing machines have gradually entered thousands of households to provide convenience for people's lives.
  • the washing machine will generate relatively severe vibration and loud noise during the dehydration process at high speed, which will not only affect the service life of the washing machine, but also Affect the user's product experience.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent. Therefore, the first object of the present disclosure is to propose a dehydration control method of a washing machine, which can prevent the uneven distribution of clothes from causing the washing machine to generate more violent vibration and loud noise during the dehydration process, thereby achieving the purpose of prolonging the life of the washing machine.
  • a second object of the present disclosure is to propose a computer-readable storage medium.
  • a third object of the present disclosure is to propose a washing machine.
  • the fourth object of the present disclosure is to provide a dehydration control device for a washing machine.
  • the embodiment of the first aspect of the present disclosure proposes a dehydration control method of a washing machine, the method comprising: determining the load weight value and the eccentricity detection value of the washing machine; when the load weight value is less than or equal to a preset When the load weight threshold is set, determine the load weight interval where the load weight value is located, and determine the eccentricity protection value according to the load weight interval where the load weight value is located; when the eccentricity detection value is less than or equal to the eccentricity protection value , controlling the washing machine to perform a dehydration action.
  • the load weight interval can be determined according to the load weight value of the washing machine, and the corresponding eccentricity protection value can be determined according to the load weight interval, and then when the eccentricity detection value is not greater than the eccentricity protection value, the washing machine can be controlled Dehydration is carried out to prevent the uneven distribution of clothes from causing the washing machine to produce more severe vibrations and loud noises during the dehydration process, thereby achieving the effect of prolonging the service life of the washing machine and improving the user's product experience.
  • the embodiment of the second aspect of the present disclosure proposes a computer-readable storage medium, on which is stored a dehydration control program of a washing machine.
  • a method for controlling dehydration of a washing machine is described.
  • the load weight interval can be determined according to the load weight value of the washing machine, and the corresponding eccentricity protection value can be determined according to the load weight interval, and then when the eccentricity detection value is not greater than the eccentricity protection value, the washing machine can be controlled Dehydration is carried out to prevent the uneven distribution of clothes from causing the washing machine to produce more severe vibrations and loud noises during the dehydration process, thereby achieving the effect of prolonging the service life of the washing machine and improving the user's product experience.
  • the embodiment of the third aspect of the present disclosure provides a washing machine, which includes a memory, a processor, and a dehydration control program of the washing machine stored in the memory and operable on the processor, and the processor executes the dehydration control program of the washing machine.
  • a washing machine which includes a memory, a processor, and a dehydration control program of the washing machine stored in the memory and operable on the processor, and the processor executes the dehydration control program of the washing machine.
  • the embodiment of the fourth aspect of the present disclosure provides a dehydration control device for a washing machine, the device includes: a first determination module, configured to determine the load weight value and eccentricity detection value of the washing machine; the second determination module A module, configured to determine the load weight interval where the load weight value is located when the load weight value is less than or equal to a preset load weight threshold, and determine the eccentricity protection value according to the load weight interval where the load weight value is located;
  • the first control module is configured to control the washing machine to perform a dehydration action when the eccentricity detection value is less than or equal to the eccentricity protection value.
  • the load weight interval can be determined according to the load weight value of the washing machine, and the corresponding eccentricity protection value can be determined according to the load weight interval, and then when the eccentricity detection value is not greater than the eccentricity protection value, the washing machine can be controlled Dehydration is carried out to prevent the uneven distribution of clothes from causing the washing machine to produce more severe vibrations and loud noises during the dehydration process, thereby achieving the effect of prolonging the service life of the washing machine and improving the user's product experience.
  • FIG. 1 is a schematic flowchart of a method for controlling dehydration of a washing machine according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of operation logic of a dehydration motor of a dehydration control method of a washing machine according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of operation logic of a dehydration motor of a dehydration control method of a washing machine according to another embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of operation logic of a dehydration motor of a dehydration control method of a washing machine according to another embodiment of the present disclosure.
  • FIG. 10 is a structural block diagram of a washing machine according to an embodiment of the present disclosure.
  • Fig. 11 is a structural block diagram of a dehydration control device of a washing machine according to an embodiment of the present disclosure
  • Fig. 12 is a schematic flowchart of a method for controlling dehydration of a washing machine according to an embodiment of the present disclosure
  • Fig. 13 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • Fig. 14 is a schematic diagram of the operation logic of the dehydration motor of the dehydration control method of the washing machine according to an embodiment of the present disclosure
  • Fig. 15 is a structural block diagram of a power harvesting module of a washing machine according to an embodiment of the present disclosure
  • Fig. 16 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • Fig. 17 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure.
  • Fig. 18 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • Fig. 19 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure.
  • Fig. 20 is a schematic diagram of operation logic of the dehydration motor of the dehydration control method of the washing machine according to another embodiment of the present disclosure
  • Fig. 21 is a schematic diagram of the operation logic of the dehydration motor of the dehydration control method of the washing machine according to another embodiment of the present disclosure.
  • Fig. 22 is a schematic diagram of the operation logic of the dehydration motor of the dehydration control method of the washing machine according to another embodiment of the present disclosure.
  • Fig. 23 is a schematic flowchart of a method for controlling dehydration of a washing machine according to an embodiment of the present disclosure
  • 24 is a schematic diagram of a mass eccentric distribution plane according to an embodiment of the present disclosure.
  • Fig. 25 is a schematic diagram of a mass eccentric distribution plane according to another embodiment of the present disclosure.
  • Fig. 26 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • Fig. 27 is a schematic flowchart of a load eccentricity detection method of a washing machine according to another embodiment of the present disclosure.
  • Fig. 28 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure
  • Fig. 29 is a schematic diagram of a mass eccentric distribution plane according to another embodiment of the present disclosure.
  • FIG. 30 is a schematic flowchart of a method for controlling dehydration of a washing machine according to another embodiment of the present disclosure.
  • Fig. 31 is a schematic diagram of a mass eccentric distribution plane according to another embodiment of the present disclosure.
  • the dehydration control method of the washing machine in the embodiment of the present application includes the following steps:
  • the load weight interval can be determined according to the load weight value of the washing machine, and the corresponding eccentricity protection value can be determined according to the load weight interval, and then when the eccentricity detection value is not greater than the eccentricity protection value, the washing machine can be controlled Dehydration is carried out to prevent the uneven distribution of clothes from causing the washing machine to produce more severe vibrations and loud noises during the dehydration process, thereby achieving the effect of prolonging the service life of the washing machine and improving the user's product experience.
  • the washing machine may include a drum washing machine or a pulsator washing machine.
  • the washing machine may include a dehydration motor and an inner tub.
  • a plurality of lifting ribs and a plurality of drainage holes may be arranged on the inner tub.
  • the dehydration motor can drive the inner tub to accelerate to exceed the critical speed.
  • the clothes in the inner tub keep rolling with the rotation of the lifting ribs, and finally cling to the wall of the inner tub under the action of centripetal force, and rotate synchronously with the inner tub, no relative movement occurs, and then the dehydration motor drives the inner tub to keep
  • the rotation speed is constant and the rotation is continued to set the time. Within the set time, the water on the clothes in the inner tub can be discharged through the drain holes of the inner tub, thereby dehydrating the clothes.
  • the dehydration motor may comprise a variable frequency motor.
  • the variable frequency motor can include functions of intelligent distributed shaking and dispersion, intelligent perception of eccentricity, and intelligent perception of clothing load weight.
  • the eccentricity detection value and load weight value of the clothes of the whole machine can be determined more accurately through the frequency conversion motor and related control algorithms. Therefore, it is beneficial to more reasonably control the dehydration action of the washing machine according to the eccentricity detection value and the load weight value, so as to improve the vibration and noise generated during the dehydration process of the washing machine.
  • the use of frequency conversion motors does not require additional detection sensors, which can avoid the need for additional detection sensors.
  • the detection sensor results in an increase in cost.
  • the load weight value can be understood as the value obtained by converting the actual weight of the clothes in the inner tub of the washing machine according to the first ratio.
  • the first conversion ratio is 1:10, that is, when the actual weight of the clothes in the washing machine tub is 1 kg, the load weight value is 10; when the actual weight of the clothes in the washing machine tub is 15 kg, the load weight value The value is 150.
  • the eccentricity detection value can be understood as the value obtained by converting the eccentric mass caused by the uneven distribution of the clothes in the inner tub of the washing machine according to the second ratio.
  • the second conversion ratio is 10:1, that is, when the eccentric mass is 100 g, the eccentric detection value is 10; when the eccentric mass is 400 g, the eccentric detection value is 40.
  • the preset load weight threshold can be understood as a critical value of the load weight value used to measure whether the dehydration action can be performed.
  • the washing machine is controlled to stop, and when the speed of the dehydration motor drops to 0, the washing machine is restarted and the clothes are shaken, and the clothes are shaken again.
  • Step S11 and compare the magnitude relationship between the preset load weight threshold and the re-detected load weight value. It can be understood that the shaking of the clothes is realized by the rotation of the dehydration motor.
  • the washing machine is controlled to perform steps S13 and S15.
  • the preset load weight threshold is 254, and the load weight range includes (0, 30), (30, 90), (90, 150) and (150, 254).
  • a plurality of load weight intervals of the washing machine can be determined in advance, and the eccentricity protection value of each load weight interval is calibrated, and then the first corresponding relationship between the load weight interval and the eccentricity protection value is established and stored, so that after the load weight value is determined, the The corresponding eccentricity protection value is quickly determined through the first corresponding relationship.
  • the first corresponding relationship between the load weight range and the eccentricity protection value of all models of washing machines can be collected together, that is, the second corresponding relationship of model-load weight range-eccentricity protection value can be generated.
  • the second corresponding relationship of model-load weight range-eccentric protection value can be stored in the cloud, and the washing machine can communicate with the cloud and obtain the second corresponding relationship from the cloud to directly determine the eccentric protection value corresponding to the load weight value locally in the washing machine; It can also communicate with the cloud and upload its own model and load weight value to the cloud, and the cloud determines the eccentricity protection value corresponding to the load weight value according to the second correspondence and sends it to the washing machine.
  • the eccentricity protection value can be understood as the critical value of the eccentricity detection value used to measure whether to perform the dehydration action. Dehydration can only be performed when the load weight value and eccentricity detection value are both less than or equal to the corresponding critical value. It can be understood that when both the load weight value and the eccentricity detection value are less than the corresponding critical values, the clothes in the inner tub of the washing machine are basically evenly distributed. At this time, dehydration is performed, and the vibration generated by the washing machine is relatively slight and the noise is relatively small.
  • clothings can be understood as clothing with liquid attached, specifically, the “clothes” of the present disclosure can be clothing with detergent and water attached after washing, or it can be rinsed. Afterwards, there is basically no detergent attached to the clothes but water is attached to them, or the clothes attached to water or other liquids that are directly placed in the inner tub of the washing machine by the user.
  • the dehydration action corresponds to the main dehydration program.
  • Performing the dehydration action can be understood as starting the main dehydration program, the washing machine officially starts dehydration and quickly removes most of the water attached to the clothes in a short time.
  • the dehydration action for example, in steps S11 and S13, although the water on the clothes will also decrease to a certain extent, the dehydration has not officially started.
  • step S13 the method further includes:
  • the rotational speed of the dehydration motor can be changed through a frequency converter of the dehydration motor.
  • the rotational speed change may include decelerating first, and then accelerating after the decelerated rotational speed rotates at a constant speed for a third preset time.
  • the eccentricity detection and judgment is to determine the eccentricity detection value, and judge the relationship between the determined eccentricity detection value and the eccentricity protection value.
  • the eccentricity protection value is determined to be 50 in advance according to the load weight value, and when the eccentricity detection value does not exceed 50, the direct control The washing machine performs dehydration; when the eccentricity detection value exceeds 50, change the rotation speed of the dehydration motor, determine the eccentricity detection value again, and judge whether to execute the dehydration action.
  • the method before step S17, the method further includes:
  • the washing machine is restarted to shake the clothes to change the distribution of the clothes in the inner tub of the washing machine, thereby re-judging the load weight value and Eccentricity detection and judgment.
  • the number of times of eccentricity detection and judgment is increased, so that the dehydration achievement rate of the whole machine can be improved.
  • the preset value can be preset for different models of washing machines.
  • the relationship between the eccentricity protection value and the eccentricity detection value is judged multiple times. protection value, then immediately stop the eccentricity detection and judgment and execute step S15; if it is judged that the eccentricity detection value exceeds the eccentricity protection value for many times, then execute step S21 and re-enter step S11.
  • the number of judgments can be counted, so as to facilitate determining whether the number of judgments exceeds a preset value.
  • step S17 is executed.
  • the preset value is 3. After the eccentricity protection value is determined according to the load weight value, if the judgment result of the first eccentricity detection judgment is that the eccentricity detection value exceeds the eccentricity protection value, the dehydration motor is controlled to change the speed, and the second Determine the eccentricity detection value for the second time, and count as 1; since 1 is not greater than 3, compare the size of the eccentricity detection value determined for the second time with the eccentricity protection value, if the judgment result of the second eccentricity detection judgment is still that the eccentricity detection value exceeds eccentricity protection value, then control the dehydration motor to change the speed, determine the eccentricity detection value for the third time, and count as 2; since 2 is not greater than 3, compare the size of the eccentricity detection value determined for the third time with the eccentricity protection value, if the third The judgment result of the second eccentricity detection judgment is still that the eccentricity detection value exceeds the eccentricity protection value, then the dehydration motor is controlled to change the speed, the eccentricity detection value is determined for the fourth time, and the number of times is
  • the dehydration motor is controlled to change the speed, and the eccentricity protection value is determined for the fifth time and the number of times is 4. Since 4 is greater than 3, at this time, no longer compare the eccentricity detection value and the eccentricity protection value determined for the fifth time, directly control the dehydration motor to stop rotating, and re-enable the dehydration motor after the dehydration motor stops, so as to clean the clothes Perform jitter, and re-determine the eccentricity detection value and load weight value after jitter.
  • step S11 includes:
  • S113 When controlling the speed of the dehydration motor to decrease to the third preset speed and maintaining the operation of the dehydration motor at the third preset speed, determine the speed fluctuation value of the dehydration motor in the process of maintaining the third preset speed, and according to the speed fluctuation value Determine the eccentricity detection value.
  • the load weight value is determined according to the current integral value during the accelerated rotation stage of the dehydration motor, and the eccentricity detection value is determined according to the rotational speed fluctuation value during the constant speed rotation stage of the dehydration motor.
  • the current integral value is collected, and the load weight value corresponding to the current integral value is determined by looking up a table. The larger the current integral value, the greater the load weight value.
  • the deviation between the speed feedback value and the speed setting value is calculated, and the speed fluctuation value is determined according to the deviation, and then obtained according to the speed fluctuation value obtained in the uniform rotation stage and the accelerated rotation stage.
  • the current integral value and the pre-built mass eccentricity distribution plane are used to calculate the corresponding eccentricity detection value through linear interpolation.
  • Figure 5 is the operation logic diagram of the dehydration motor, in the example shown in Figure 5, the first preset speed and the third preset speed are equal and both are w1, the second preset speed is w2, from It can be seen from the change of the speed in the B+C time period that the speed of the dehydration motor is uniformly accelerated from the first preset speed w1 to the second preset speed w2 according to the first acceleration. In this uniform acceleration stage, the load weight value is determined.
  • the rotation speed of the speed is uniformly decelerated from the second preset rotation speed w2 to the third preset rotation speed w1, and maintained at the third preset rotation speed w1, and the eccentricity detection value is determined in this constant speed stage, wherein the magnitude of the first acceleration and The magnitude of the second acceleration is substantially equal, and the direction of the first acceleration is opposite to that of the second acceleration.
  • the method before step S111, the method further includes:
  • the rotation speed of the dehydration motor is firstly increased to the fourth preset rotation speed, and then increased from the fourth preset rotation speed to the first preset rotation speed, thereby avoiding the direct increase of the rotation speed of the dehydration motor from 0 to the first preset rotation speed.
  • the inner tub of the washing machine violently hits the outer tub of the washing machine.
  • the fourth preset rotation speed is smaller than the first preset rotation speed.
  • the dehydration motor is controlled to increase from 0 rotation speed to the fourth preset rotation speed w3 according to the preset third acceleration, and the dehydration motor is controlled
  • the fourth predetermined speed w3 increases to the first predetermined speed w1 according to a predetermined fourth acceleration.
  • the third acceleration is equal to The fourth acceleration, in this way, simplifies the control logic of the dehydration motor.
  • the fourth acceleration is greater than the third acceleration.
  • the first preset time and the second preset time can be set according to the model and performance requirements of the washing machine.
  • step S17 includes: controlling the rotation speed of the dehydration motor to decrease from the third preset rotation speed to the fifth preset rotation speed, and maintaining the dehydration motor to run at the fifth preset rotation speed for a third preset time, Control the dehydration motor to accelerate to the sixth preset speed, and maintain the dehydration motor to run at the sixth preset speed.
  • the clothes in the inner tub of the washing machine can be shaken further, which is conducive to the uniform distribution of the clothes, thereby helping to reduce the eccentric mass caused by the uneven distribution of the clothes in the inner tub of the washing machine, and reduce the eccentricity detection value.
  • the eccentricity detection value is greater than the eccentricity protection value, the eccentric mass caused by the uneven distribution of the clothes in the inner tub of the washing machine is relatively large.
  • the inner tub of the washing machine may collide with the outer tub of the washing machine, which may damage the washing machine. Therefore, by changing the acceleration, first reduce the speed of the dehydration motor and then increase the speed of the dehydration motor to shake the clothes safely and effectively.
  • the fifth preset rotation speed is greater than 0, so as to ensure that the dehydration motor does not stop, prevent the dehydration motor from consuming a lot of time in the process of restarting, and shorten the overall time required for dehydration of clothes.
  • the third preset rotation speed is equal to the sixth preset rotation speed.
  • the third preset speed is equal to the sixth preset speed and both are w1, and the fifth preset speed is w4. It can be seen from the change that when the eccentricity detection value is greater than the eccentricity protection value, the speed of the dehydration motor is controlled to decelerate uniformly from w1 to w4, and after the dehydration motor is maintained at the speed w4 for the third preset time, the dehydration motor is controlled to accelerate uniformly to the speed w1 , and keep the dehydration motor running at the speed w1 to determine the eccentricity detection value again.
  • the third preset rotation speed may be 90 rpm. In another example, the third preset rotation speed may be 100 rpm.
  • first preset rotation speed, the second preset rotation speed, the third preset rotation speed, the fourth preset rotation speed, the fifth preset rotation speed and the sixth preset rotation speed can all be based on the washing machine model, load weight value, Performance requirements and the like are set in advance.
  • the dehydration control method of the washing machine includes the following steps:
  • S311 controlling the dehydration motor to shake the clothes in the inner tub of the washing machine
  • step S313 Determine whether the load weight value X does not exceed the preset load weight threshold M, if not, stop the machine and return to step S310, if yes, enter step S314;
  • S318 Control the speed of the dehydration motor to decrease from the third preset speed to the fifth preset speed, and after maintaining the dehydration motor to run at the fifth preset speed for a third preset time, control the dehydration motor to accelerate to the sixth preset speed, And maintain the dehydration motor to run at the sixth preset speed, when the dehydration motor maintains the sixth preset speed, determine the speed fluctuation value of the dehydration motor in the process of maintaining the sixth preset speed, and determine the eccentricity again according to the speed fluctuation value detection value;
  • the dehydration control method of the washing machine includes the following steps:
  • S27 Determine a second detected eccentricity value of the washing machine, and when the second detected eccentricity value is less than or equal to the second eccentricity value, control the dehydration motor so that the washing machine performs dehydration.
  • the acceleration curve and the first eccentricity value can be determined according to the initial load weight value of the washing machine, and the dehydration motor can be controlled according to the acceleration curve to shake the clothes, and the first detection eccentricity value can be determined.
  • the washing machine When the detected eccentric value is less than or equal to the first eccentric value, control the washing machine to carry out weighing detection, obtain the load weighing value, and determine the second eccentric value according to the load weighing value, so that when the obtained second detected eccentric value is less than or equal to the second
  • the dehydration motor is controlled to perform dehydration, so that different acceleration curves and first eccentric values are selected based on different initial load weight values, which helps to improve the success rate of dehydration of the whole machine.
  • the washing machine mainly performs the dehydration control of the clothes according to the sensed detection eccentricity value and the load weighing value.
  • a fixed acceleration curve is used to shake the clothes. It is not conducive to the uniform shaking of the clothes, resulting in an increase in the number of eccentric quality inspections; at the same time, the clothing can not be effectively distributed in the washing machine through a shaking operation.
  • the eccentric value is still relatively large, and the clothes need to be shaken repeatedly according to the fixed acceleration curve, which greatly increases the number of dehydration attempts, resulting in a delay in dehydration.
  • the washing machine may include a drum washing machine or a pulsator washing machine.
  • the washing machine may include a dehydration motor and an inner tub.
  • a plurality of lifting ribs and a plurality of drainage holes may be arranged on the inner tub.
  • the dehydration motor can drive the inner tub to accelerate to exceed the critical speed.
  • the clothes in the inner tub will continue to roll with the rotation of the lifting ribs, and finally cling to the inner tub wall under the action of centripetal force , and rotate synchronously with the inner tub, no relative movement occurs, and then the dehydration motor drives the inner tub to keep the speed constant and continue to rotate for a set time. Thereby dehydration of clothes is realized.
  • the dehydration motor may comprise a variable frequency motor.
  • the variable frequency motor can include the function of intelligent distribution and shaking, the function of intelligent perception of eccentricity, and the function of intelligent perception of the load weight of clothes.
  • the detection eccentricity value and load weighing value of the whole machine can be determined more accurately. , so that it is beneficial to more reasonably control the dehydration of the washing machine according to the detected eccentric value and the load weighing value, so as to improve the vibration and noise generated during the dehydration process of the washing machine.
  • the use of frequency conversion motors does not require additional detection sensors, which can avoid the need for additional detection sensors.
  • the detection sensor results in an increase in cost.
  • the initial load weight value can be understood as a value obtained by converting the roughly estimated mass of the laundry in the inner tub of the washing machine according to the first ratio.
  • the first conversion ratio is 1:10, that is, when the roughly estimated mass of the laundry in the washing machine tub is 1 kg, the load weighing value is 10; when the roughly estimated mass of the laundry in the washing machine tub is 15 kg , the load weighing value is 150.
  • the acceleration curve may include multiple different acceleration values, and the shaking of the clothes according to the acceleration curve can better ensure that the clothes are evenly distributed in the inner tub of the washing machine. It can be understood that when the clothes are shaken, if the same acceleration value is used to control the dehydration motor to rotate at a uniform speed, the clothes will quickly stick to the wall of the drum and rotate synchronously with the inner drum of the washing machine, which is not conducive to the uniform shaking of the clothes; Each acceleration value controls the dehydration motor to rotate uniformly, so that the clothes of different fabrics can be unfolded in different rotation stages, which is conducive to the uniform shaking of the clothes.
  • the acceleration is set to 8rpm/s when the rotation speed is 40rpm-70rpm, and the acceleration value is set to 15rpm/s when the rotation speed is 70rpm-90rpm.
  • the first eccentricity value can be understood as a threshold value for judging whether weighing detection can be performed. Pre-calibrate the more appropriate acceleration curves and the best first eccentricity values corresponding to different initial load weight values, that is, pre-set a variety of acceleration curves and multiple first eccentric values, so that after the initial load weight value is determined, it can be accurately and quickly Accurately determine the corresponding acceleration curve and the first eccentricity detection value, realize the uniform distribution of clothes through one shaking operation, reduce the number of dehydration attempts, and complete dehydration in time.
  • the load weighing value can be understood as the value obtained by converting the actual weight of the clothes in the inner tub of the washing machine according to the first ratio.
  • the first conversion ratio is 1:10, that is, when the actual weight of the laundry in the washing machine tub is 1 kg, the load weighing value is 10; when the actual weight of the laundry in the washing machine tub is 15 kg, the load The weighing value is 150.
  • the first detection eccentricity value and the second detection eccentricity value can be understood as the values obtained by converting the eccentric mass generated by the uneven distribution of clothes in the inner tub of the washing machine according to the second ratio, wherein the first detection eccentricity value is a roughly estimated value, and the second detection eccentricity value Second, the detection eccentric value is an accurately calculated value.
  • the second conversion ratio is 10:1, that is, when the eccentric mass is 100 g, the eccentric detection value is 10; when the eccentric mass is 400 g, the eccentric detection value is 40.
  • the second eccentric value can be understood as a critical value of the second detected eccentric value used to measure whether dehydration is performed.
  • clothings can be understood as clothing with liquid attached, specifically, the “clothes” of the present disclosure can be clothing with detergent and water attached after washing, or it can be rinsed. Afterwards, there is basically no detergent attached to the clothes but water is attached to them, or the clothes attached to water or other liquids that are directly placed in the inner tub of the washing machine by the user.
  • step S27 the dehydration corresponds to the main dehydration program.
  • Dehydration can be understood as starting the main dehydration program, the washing machine officially starts dehydration and quickly removes most of the water attached to the clothes in a short time.
  • step S21, step S23 and step S25 although the water on the clothes will also be reduced to a certain extent, dehydration has not officially started.
  • step S21 includes:
  • S211 Determine the average power during the acceleration process of the dehydration motor, and determine the initial load weight value according to the average power.
  • Figure 14 is the operation logic diagram of the dehydration motor
  • Figure 15 is a structural block diagram of the power acquisition module of the washing machine, it can be seen from the time period A+B that firstly, the dehydration motor uses It can run, and the dehydration motor acceleration starting point is determined through the angle observation module, and then in the process of uniform acceleration of the dehydration motor speed from 0 to the first speed W1, the power value within the preset time period is collected, and the power value within the preset time period is calculated.
  • the average power of the clothes is carried out to the power identification module to identify the load weight of the whole machine, and then the initial load weight value of the clothes is obtained through linearization fitting, and the acceleration curve and the first eccentricity value are determined according to the initial load weight value.
  • step S23 includes:
  • the first detection eccentricity value can be roughly determined.
  • step S21 also includes determining the preset eccentricity detection speed according to the initial load weight value.
  • pre-calibrating the corresponding relationship between different initial load weight values and the preset eccentricity detection speed can be an initial load
  • the weight value corresponds to a preset eccentric detection speed, or multiple initial load weight values correspond to a preset eccentric detection speed, so that the preset eccentric detection speed corresponding to the current initial load weight value can be determined according to the corresponding relationship.
  • the washing machine when the first detected eccentric value is greater than the first eccentric value, the washing machine is controlled to stop, and the dehydration motor is controlled to restart and accelerate, so as to re-determine the first detected eccentric value.
  • weighing protection is performed by comparing the magnitude relationship between the first detected eccentricity value and the first eccentricity value. It can be understood that the weighing detection is carried out in the acceleration section of the dehydration motor. When the first detected eccentricity value is greater than the first eccentricity value, the clothes in the inner tub of the washing machine are not evenly distributed. Risk of bucket knocking, which not only creates severe noise, but also detracts from the overall lifespan of the washing machine.
  • step S25 includes:
  • S253 Determine the second eccentricity value according to the load weight interval where the load weighing value is located.
  • step S21 also includes determining the preset weighing detection speed according to the initial load weight value. Please refer to FIG. 14 again. It can be seen from the time period E that when the first detection eccentricity value is less than or equal to the first eccentricity value, control the dehydration The speed of the motor is uniformly accelerated from the preset eccentricity detection speed w2 to the preset weighing detection speed w3, and the weighing detection is carried out in this uniform acceleration section to determine the load weighing value.
  • the preset load weight threshold can be understood as a critical value of the load weighing value used to measure whether dehydration can be performed.
  • a plurality of load weight intervals of the washing machine can be determined in advance, and the second eccentric value of each load weight interval is calibrated, and then the first corresponding relationship between the load weight interval and the second eccentric value is established and stored, so as to determine the load weighing
  • the corresponding second eccentricity value can be quickly determined through the first correspondence relationship.
  • the first correspondence between the load weight intervals and the second eccentricity values of all models of washing machines can be collected together, that is, the second correspondence between the model-load weight interval-the second eccentricity value can be generated.
  • the second corresponding relationship of model-load weight interval-second eccentricity value can be stored in the cloud, and the washing machine can communicate with the cloud and obtain the second corresponding relationship from the cloud to directly determine the second eccentricity corresponding to the load weighing value locally on the washing machine value; the washing machine can also communicate with the cloud and upload its own model and load weighing value to the cloud, and the cloud determines the second eccentric value corresponding to the load weighing value according to the second correspondence and sends it to the washing machine.
  • the preset load weight threshold is 254, and the load weight range includes (0, 30), (30, 90), (90, 150) and (150, 254).
  • Dehydration can only be performed when the load weighing value and the second detected eccentricity value are both less than or equal to the corresponding critical value. It can be understood that when the load weighing value and the second detection eccentricity value are both less than the corresponding critical value, the clothes in the inner tub of the washing machine are basically in a state of uniform distribution. At this time, when dehydration is performed, the vibration generated by the washing machine is relatively slight and the noise emitted is relatively low. Small.
  • the washing machine when the load weighing value is greater than the preset load weight threshold, the washing machine is controlled to stop, and the dehydration motor is returned to be controlled to restart and accelerate, so as to regain the load weighing value.
  • step S27 includes:
  • the second detected eccentricity value is determined according to the rotation speed fluctuation value during the constant speed rotation stage of the dehydration motor.
  • the current integral value is collected, and the load weight value corresponding to the current integral value is determined by looking up a table. The larger the current integral value, the greater the load weight value.
  • the deviation between the speed feedback value and the speed setting value is calculated, and the speed fluctuation value is determined according to the deviation, and then according to the speed fluctuation value obtained in the uniform rotation stage and the current obtained in the acceleration rotation stage.
  • the integral value and the pre-constructed mass eccentricity distribution plane are used to calculate the corresponding second detection eccentricity value through linear interpolation.
  • the preset speed is w2. It can be seen from the time period E that after obtaining the load weighing value, the speed of the dehydration motor is controlled to decelerate from w3 to w2 and maintain at the speed of w2 Run, determine the second detection eccentricity value in this stage of constant speed rotation.
  • the washing machine when the second detected eccentric value is greater than the second eccentric value, the washing machine is controlled to stop, and the acceleration curve and the first eccentric value are re-determined according to the load weighing value until the second detected eccentric value is re-determined Less than or equal to the second eccentricity value.
  • the second eccentricity value is determined to be 50 according to the load weighing value in advance, and when the second detected eccentric value does not exceed 50, the washing machine is directly controlled to perform dehydration; when the second detected eccentric value exceeds 50, the washing machine is controlled to stop, And re-determine the acceleration curve and the first eccentricity value according to the load weighing value, until the re-determined second detected eccentricity value is less than or equal to the second eccentricity value.
  • the dehydration control method of the washing machine includes the following steps:
  • S412 Select the acceleration curve and the first eccentricity value P according to the initial load weight value
  • step S413 Calculate the first detected eccentricity value Y in the constant speed section, judge whether the first detected eccentricity value Y is less than or equal to the first eccentricity value P, if not, stop the machine and return to step S410, the rotational speed of the dehydration motor changes as shown in Figure 20, If so, enter step S414;
  • step S414 Calculate the load weighing value Q in the uniform acceleration section, judge whether the load weighing value Q is less than or equal to the preset load weight threshold M, if not, stop the machine and return to step S410, if yes, enter step S415;
  • step S416 Calculate the second detected eccentric value R in the constant speed section, judge whether the second detected eccentric value R is less than or equal to the second eccentric value N, if not, stop the machine and return to step S410, the rotational speed of the dehydration motor changes as shown in Figure 21, If so, enter step S417;
  • S417 Control the dehydration motor to rotate at a high speed to perform dehydration, and the rotation speed of the dehydration motor changes as shown in FIG. 22 .
  • the method of the embodiment of the present application further includes the following steps:
  • S31 Construct the mass eccentric distribution plane of the washing machine, and divide the mass eccentric distribution plane into a plurality of rectangular areas according to the equal load line and the equal eccentric line;
  • S35 Determine a rectangular area to be detected from a plurality of rectangular areas according to the first rotational speed fluctuation value and the first current integral value;
  • S37 Determine the constant speed fluctuation line and the constant current integration line of the rectangular area to be detected according to the first speed fluctuation value and the first current integration value, and perform load eccentricity detection according to the constant speed fluctuation line and the constant current integration line.
  • the load eccentricity detection method of the washing machine based on the mass eccentricity distribution plane of the constructed washing machine, the first rotational speed fluctuation value and the first current integral value, the load eccentricity in the inner tub of the washing machine can be accurately sensed, and mechanical sensors can be saved cost. It can be understood that in related technologies, the distribution of clothes in the inner tub of the washing machine is eccentric, and following the rotation of the inner tub will cause speed fluctuations.
  • the rotational speed fluctuation value decreases with the increase of the load-sharing mass, and increases with the increase of the load eccentricity value; the current integral value increases with the increase of the load-sharing mass, and increases with the increase of the load eccentricity value increases with the increase.
  • the washing machine may include a drum washing machine or a pulsator washing machine.
  • the washing machine may include a dehydration motor and an inner tub.
  • a plurality of lifting ribs and a plurality of drainage holes may be arranged on the inner tub.
  • the dehydration motor can drive the inner drum to accelerate to exceed the critical speed.
  • the clothes in the inner tub keep rolling with the rotation of the lifting ribs, and finally cling to the wall of the inner tub under the action of centripetal force, and rotate synchronously with the inner tub, no relative movement occurs, and then the dehydration motor drives the inner tub to maintain the rotating speed Keep the same and continue to rotate for a set time period.
  • the water on the clothes in the inner tub can be discharged through the drain hole of the inner tub, thereby dehydrating the clothes.
  • the mass eccentricity distribution plane can be understood as a coordinate plane formed by taking the average load mass as the y-axis and the load eccentricity value as the x-axis.
  • the weight of equal load can be understood as the uniform distribution of clothes in the inner tub of the washing machine. Taking the three areas of the washing machine tub as an example, uniform eccentric load blocks are used to simulate the mass distribution of the laundry load of the whole machine.
  • the load eccentricity value can be understood as the eccentricity caused by the uneven distribution of clothes in the inner tub of the washing machine, and the load eccentricity value is used to simulate the eccentricity of the clothes.
  • the equal load line can be understood as the line perpendicular to the y-axis in the mass eccentric distribution plane, and the average load mass of any two points on the equal load line is equal.
  • Isoeccentric line can be understood as a line perpendicular to the x-axis in the mass eccentric distribution plane, and the load eccentricity values of any two points on the isoeccentric line are equal.
  • the mass eccentric distribution plane is divided into multiple rectangular areas according to the equal load line and the equal eccentric line, that is, the mass eccentric distribution plane can include multiple preset and known load-sharing masses and load eccentricity values, and a load-sharing mass and A load eccentric value forms a vertex, and each vertex corresponds to a set of speed fluctuation values and current integral values.
  • the speed fluctuation values corresponding to different vertices can be the same or different, and the current integral values corresponding to different vertices can be the same or different.
  • the combination of speed fluctuation value-current integral value corresponding to the top is different.
  • the current integral value and rotational speed fluctuation value corresponding to each vertex can be determined by means of data simulation and/or bench test.
  • the average load mass includes 3m0kg, 3m1kg, 3m2kg, 3m3kg, 3m4kg, 3m5kg, 3m6kg
  • the load eccentricity value includes 0g, 200g, 400g, 600g, 800g, 1000g, 1200g, 1400g, 1600g
  • the divided mass eccentricity The distribution plane is shown in Figure 24.
  • the four vertices P 1 (X 1 , Y 1 ), P 2 (X 2 , Y 2 ), P 3 (X 3 , The coordinates of Y 3 ) and P 4 (X 4 , Y 4 ) are known, and the second current integral value and the second rotational speed fluctuation value corresponding to the coordinates of the four vertices of each rectangular area are known, namely The second current integral value J 1 and the second rotational speed fluctuation value SF 1 corresponding to point P 1 are known, the second current integral value J 2 and the second rotational speed fluctuation value SF 2 corresponding to point P 2 are known, The second current integral value J 3 and the second rotational speed fluctuation value SF 3 corresponding to point P 3 are known, and the second current integral value J 4 and second rotational speed fluctuation value SF 4 corresponding to point P 4 are known.
  • the corresponding first intersection point P is in the rectangular area to be detected in the mass eccentric distribution plane, and then combined with the information of the four vertices of the area to be detected, the first rotational speed fluctuation value and the first current integral value, the fourth point is calculated through four-point positioning interpolation.
  • the dehydration motor is enabled to run, and the determination of the acceleration starting point of the dehydration motor is obtained through the angle observation module, and then, during the uniform acceleration of the dehydration motor speed to the first speed, the torque calculation module obtains The first current integral value, when the dehydration motor maintains the second rotational speed at a constant speed, obtains the first rotational speed fluctuation value through the rotational speed regulator, and finally, combines the information of the four vertices of the area to be detected, the first rotational speed fluctuation value and the first current Integral value, the load eccentricity value of the washing machine is obtained through four-point positioning interpolation calculation.
  • step S35 since the second rotational speed fluctuation value decreases with the increase of the average load mass and increases with the increase of the load eccentricity value, therefore, in the rectangular area S, SF 2 >SF 1 , SF 4 >SF 3 , SF 2 >SF 4 , SF 1 >SF 3 , that is, the value range of the second speed fluctuation value in the rectangular area S is [SF 3 , SF 2 ];
  • the mass increases, and increases with the increase of the load eccentricity value, therefore, in the rectangular area S, J 2 >J 1 , J 4 >J 3 , J 4 >J 2 , J 3 >J 1 , that is, the value range of the second current integral value in the rectangular area S is [J 1 , J 4 ].
  • the first rotational speed fluctuation value sf 0 and the first current integral value j 0 collected at a certain moment satisfy J 1 ⁇ J ⁇ J 4 , SF 3 ⁇ sf ⁇ SF 2 , then the first rotational speed at that time can be determined
  • the first intersection point P corresponding to the fluctuation value sf 0 and the first current integral value j 0 is in the rectangular area S, that is, the rectangular area S is a rectangular area to be detected.
  • the load-sharing mass superimposes the load eccentricity value to form an equal-speed fluctuation line, and the constant-speed fluctuation The speed fluctuation values at any two points on the line are equal. Since the second current integral value increases with the increase of the load-sharing mass, and increases with the increase of the load eccentricity value, the load-sharing mass superimposes the load eccentricity value to form an equal-current integral line, and any The current integral values at the two points are equal.
  • Load eccentricity detection can be understood as detecting laundry The load eccentric value corresponding to the clothes in the machine.
  • clothings can be understood as clothes with liquid attached, specifically, “clothes” in the present invention can be clothes with detergent and water attached to them after washing, or they can be rinsed. Afterwards, there is basically no detergent attached to the clothes but water is attached to them, or the clothes attached to water or other liquids that are directly placed in the inner tub of the washing machine by the user.
  • step S37 includes:
  • S371 Determine the coordinates of the first intersection point between the constant speed fluctuation line and the constant current integral line
  • S373 Determine the load eccentricity value of the washing machine according to the coordinates of the first intersection point.
  • the load eccentricity value of the washing machine is determined by the coordinates of the first intersection of the constant rotational speed fluctuation line and the equal current integral line.
  • the constant speed fluctuation line is not parallel to the equal current integration line, there is a first intersection point between the constant speed fluctuation line where the first speed fluctuation value is located and the isocurrent integration line where the first current integration value is located, and the first intersection point is unique,
  • the x-axis component of the first intersection point is the load eccentricity value of the washing machine corresponding to the first rotational speed fluctuation value and the first current integral value.
  • the coordinates of the first intersection point are determined, the coordinates of the first intersection point, the first rotational speed fluctuation value and the first current integral value are correlated to obtain updated data, and the updated data is used to update the mass eccentricity distribution plane, further Divide the rectangular area in the mass eccentric distribution plane to improve the known data in the mass eccentric distribution plane, so that when the same first speed fluctuation value and first current integral value are detected next time, the load eccentricity of the corresponding washing machine can be quickly determined value and weight sharing.
  • step S371 includes:
  • S3711 Determine the coordinates of four intersections between the constant speed fluctuation line and the constant current integral line and the rectangular area to be detected;
  • S3713 Calculate the coordinates of the first intersection point according to the coordinates of the four intersection points.
  • the coordinates of the first intersection point are accurately calculated.
  • the constant speed fluctuation line is not parallel to any equal load line, and the constant speed fluctuation line is not parallel to any isoeccentric line, the constant speed fluctuation line intersects the border of the rectangular area to be detected at two intersection points, instead of Multiple intersections.
  • the equal current integral line is not parallel to any equal load line, and the equal current integral line is not parallel to any equal eccentric line, the equal current integral line intersects the border of the rectangular area to be detected at two intersections instead of multiple intersections .
  • the equal current integral line intersects the border of the rectangular area to be detected at the second intersection point A 1 (x 1 , y 1 ) and the third intersection point A 2 (x 2 , x 2 ), and the constant speed fluctuation line intersects the border of the rectangular area to be detected
  • the frame of the detected rectangular area intersects at the fourth intersection point B 3 (x 3 , y 3 ) and the fifth intersection point B 4 (x 4 , y 4 ).
  • the current integral values corresponding to the first intersection point P(x, y), the second intersection point A 1 (x 1 , y 1 ) and the third intersection point A 2 (x 2 , y 2 ) are the detected first
  • the current integral value, the rotational speed fluctuation values corresponding to the first intersection point P(x, y), the fourth intersection point B 3 (x 3 , y 3 ) and the fifth intersection point B 4 (x 4 , y 4 ) are all detected A speed fluctuation value.
  • the coordinates of the first intersection point are calculated according to the following formula: Formula 1), Formula (2), where x is the x-axis component of the first intersection point, y is the y-axis component of the first intersection point, x 1 , x 2 , x 3 and x 4 are constant speed fluctuation lines and equal current integral lines respectively.
  • x-axis components of the four intersection points of the rectangular area to be detected y 1 , y 2 , y 3 and y 4 are the y-axis components of the four intersection points of the constant speed fluctuation line and the equal current integral line respectively with the rectangular area to be detected.
  • formula (1) can be understood as an equation of an equal-current integral line
  • formula (2) can be understood as an equation of a constant-speed fluctuation line.
  • step S3711 includes:
  • S37111 Determine the four vertex coordinates of the rectangular area to be detected
  • S37113 Calculate four intersection point coordinates according to the first rotational speed fluctuation value, the first current integral value, the four vertex coordinates, and the second rotational speed fluctuation value and the second current integral value respectively corresponding to the four vertex coordinates.
  • the coordinates of the four intersections of the constant rotational speed fluctuation line and the constant current integration line with the rectangular region to be detected can be calculated according to the known data of the region to be detected.
  • y 0, which can be equivalent to a straight line, a straight line
  • step S371 includes: determining the four simplified intersection coordinates of the constant speed fluctuation line and the equal current integral line and the rectangular area to be detected respectively; calculating the first simplified intersection coordinates according to the four simplified intersection coordinates; Simplify the intersection coordinates to calculate the first intersection coordinates.
  • determining the four simplified intersection coordinates of the constant speed fluctuation line and the equal current integral line and the rectangular area to be detected respectively includes: determining the four simplified vertex coordinates of the rectangular area to be detected, and determining the length and width intervals of the rectangular area to be detected; Four simplified intersection point coordinates are calculated according to the first rotational speed fluctuation value, the first current integral value, the length-width interval, and the second rotational speed fluctuation value and the second current integral value respectively corresponding to the four simplified vertex coordinates.
  • the absolute value of the difference between the x-axis components of two vertices whose connection line is parallel to the x-axis in the rectangular area to be detected is used as the long interval of the rectangular area to be detected, and the connection line in the rectangular area to be detected is parallel to the y-axis
  • the absolute value of the difference between the y-axis components of the two vertices of is used as the wide interval of the rectangular area to be detected.
  • the first vertex P 1 (X 1 , Y 1 ) of the rectangular area to be detected can be used as the origin to establish a Cartesian coordinate system, the coordinate value increases towards the bottom of the xy coordinate plane, and the coordinate value increases towards the right side of the xy coordinate plane, Thereby realizing the simplification of each point in Fig. 7, the coordinates of each point after simplification are shown in Fig.
  • the four simplified vertices of the rectangular area to be detected are respectively P 1 (0, 0), P 2 (X, 0), P 2 (X, 0), P 3 (0, Y) and P 4 (X, Y), that is, X 1 and X 3 are simplified to 0, X 2 and X 4 are simplified to X, Y 1 and Y 2 are simplified to 0, Y 3 and Y 4 are simplified is Y; the four simplified intersection points of the equal speed fluctuation line and the equal current integral line and the rectangular area to be detected are A 1 (0, y 5 ), A 2 (X, y 6 ), B 3 (x 7 , 0 ) and B 4 (x 8 , Y), that is, x 1 is simplified to 0, x 2 is simplified to X, x 3 is simplified to x 7 , x 4 is simplified to x 8 , y 1 is simplified to y 5 , and y 2 is simplified to y 6 , y 3 is simplified to 0, and y 4 is simplified to Y 4
  • the coordinates of P 1 on the x-sf plane are (0, SF 1 )
  • the coordinates of B 3 on the x-sf plane are (x 7 , sf 0 )
  • P 2 The coordinates in the x-sf plane are (X, SF 2 )
  • the coordinates of P 1 , B 3 and P 2 in the x-sf plane are respectively substituted into the above formula (4), and three equations are obtained, and the three equations are subtracted in pairs and passed through available after conversion Formula (7), similarly can be obtained
  • Formula (8) since X, SF 1 , SF 2 , SF 3 , SF 4 and sf 0 are all known quantities, the values of x 7 and x 8 can be obtained through formula (7) and formula (8).
  • the coordinates of P 1 on the jy plane are (J 1 , 0), the coordinates of A 1 on the jy plane are (j 0 , y 5 ), and P 3 is on the jy plane
  • the coordinates are (J 3 , Y).
  • the coordinates of the first intersection point are determined according to the coordinates of the first simplified intersection point P 0 (x 0 , y 0 ) and the coordinates of the origin used in the simplified coordinates before simplification. Taking the origin used for simplification of coordinates as P 1 as an example, the coordinates of P 1 before simplification are (X 1 , Y 1 ), then the coordinates of the first intersection point P can be determined as (x 0 +X 1 , y 0 +Y 1 ), that is, the load eccentricity detection result at this time is x 0 +X 1 .
  • the method further includes: performing load weight detection according to the constant speed fluctuation line and the constant current integration line .
  • the load weight in the inner tub of the washing machine can be accurately sensed, and the cost of mechanical sensors can be saved.
  • the detection of the load weight can be understood as detection of the load-sharing weight corresponding to the clothes in the washing machine.
  • the y-axis component of the first intersection point can be the load-sharing mass of the washing machine corresponding to the first rotational speed fluctuation value and the first current integral value.
  • the embodiments of the present disclosure also propose a computer-readable storage medium, on which is stored a dehydration control program of the washing machine, and when the dehydration control program of the washing machine is executed by a processor, the washing machine in any of the above embodiments can be realized method of dehydration control.
  • the load weight interval can be determined according to the load weight value of the washing machine, and the corresponding eccentricity protection value can be determined according to the load weight interval, and then when the eccentricity detection value is not greater than the eccentricity protection value, the washing machine can be controlled Dehydration is carried out to prevent the uneven distribution of clothes from causing the washing machine to produce more severe vibrations and loud noises during the dehydration process, thereby achieving the effect of prolonging the service life of the washing machine and improving the user's product experience.
  • FIG. 10 is a schematic structural view of a washing machine according to an embodiment of the present disclosure.
  • the washing machine 100 proposed by the present disclosure includes a memory 102, a processor 104, and a dehydration control program 106 of the washing machine stored on the memory 102 and operable on the processor 104, and the processor 104 executes the dehydration control program of the washing machine At 106, implement the dehydration control method of the washing machine in any one of the above embodiments.
  • the load weight interval can be determined according to the load weight value of the washing machine, and the corresponding eccentricity protection value can be determined according to the load weight interval, and then when the eccentricity detection value is not greater than the eccentricity protection value, the washing machine can be controlled to perform dehydration to prevent
  • the uneven distribution of clothes causes the washing machine to produce more violent vibration and loud noise during the dehydration process, thereby achieving the effect of prolonging the service life of the washing machine and improving the user's product experience.
  • processor 104 executes the program, the following steps can be implemented:
  • Fig. 11 is a schematic structural diagram of a dehydration control device of a washing machine according to an embodiment of the present disclosure.
  • the dehydration control device 200 for a washing machine proposed in the present disclosure includes a first determination module 22 , a second determination module 24 and a first control module 26 .
  • the first determination module 22 is used for determining the load weight value and the eccentricity detection value of the washing machine.
  • the second determination module 24 is used to determine the load weight range where the load weight value is when the load weight value is less than or equal to the preset load weight threshold, and determine the eccentricity protection value according to the load weight range where the load weight value is.
  • the first control module 26 is used to control the washing machine to perform dehydration when the eccentricity detection value is less than or equal to the eccentricity protection value.
  • the load weight range can be determined according to the load weight value of the washing machine, and the corresponding eccentricity protection value can be determined according to the load weight range, and then when the eccentricity detection value is not greater than the eccentricity protection value, control
  • the washing machine is dehydrated to prevent the uneven distribution of clothes from causing the washing machine to generate more severe vibration and loud noise during the dehydration process, thereby achieving the effect of prolonging the service life of the washing machine and improving the user's product experience.
  • the dehydration control device 200 further includes a second control module, and the second control module is used to control the rotation speed of the dehydration motor of the washing machine to change when the eccentricity detection value is greater than the eccentricity protection value, so as to re-perform the eccentricity detection judge.
  • the dehydration control device 200 further includes a third determination module and a third control module, the third determination module is used to determine the number of times to re-perform eccentricity detection and judgment, and the third control module is used to When the value is set, the washing machine is controlled to stop, so that the washing machine can restart and shake the clothes.
  • the first determination module 22 includes a weighing detection unit and an eccentricity detection unit.
  • the weighing detection unit is used to control the washing machine to carry out weighing detection to obtain the load weight value during the process of increasing the rotation speed of the dehydration motor of the washing machine from the first preset rotation speed to the second preset rotation speed.
  • the eccentric detection unit is used to control the speed of the dehydration motor to decrease to the third preset speed and maintain the dehydration motor to run at the third preset speed, determine the speed fluctuation value of the dehydration motor during the operation process of maintaining the third preset speed, and according to The rotational speed fluctuation value determines the eccentricity detection value.
  • the first determination module 22 includes a control unit, and the control unit is used to control the dehydration motor to accelerate to the fourth preset speed when the dehydration motor starts and accelerates, and maintain the dehydration motor to rotate at the fourth preset speed. After the rotation speed runs for a first preset time, the dehydration motor is controlled to accelerate to the first preset rotation speed, and the dehydration motor is maintained to run at the first preset rotation speed for a second preset time.
  • the second control module is also used to control the speed of the dehydration motor to decrease from the third preset speed to the fifth preset speed, and maintain the dehydration motor to run the third preset speed at the fifth preset speed. After a period of time, control the dehydration motor to accelerate to the sixth preset speed, and maintain the dehydration motor to run at the sixth preset speed.
  • the third preset rotation speed is equal to the sixth preset rotation speed.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • first and second used in the embodiments of the present disclosure are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance, or implicitly indicating number of technical features. Therefore, the features defined in terms of “first”, “second” and other terms in the embodiments of the present disclosure may explicitly or implicitly indicate that at least one of the features is included in the embodiment.
  • the word “plurality” means at least two or two or more, such as two, three, four, etc., unless otherwise specifically defined in the embodiments.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

一种洗衣机的脱水控制方法、装置、洗衣机及存储介质,洗衣机的脱水控制方法包括:确定洗衣机的负载重量值和偏心检测值;在负载重量值小于等于预设负载重量阈值时,确定负载重量值所处的负载重量区间,并根据负载重量值所处的负载重量区间确定偏心保护值;在偏心检测值小于等于偏心保护值时,控制洗衣机执行脱水动作。能够防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。

Description

洗衣机的脱水控制方法、装置、洗衣机及存储介质
相关申请的交叉引用
本公开要求于2022年03月03日提交的申请号为202210203742.9,名称为“洗衣机的脱水控制方法、装置、洗衣机及存储介质”的中国专利申请的优先权,2022年03月03日提交的申请号为202210203741.4,名称为“洗衣机的脱水控制方法、装置、洗衣机及存储介质”的中国专利申请的优先权,以及2022年03月03日提交的申请号为202210204851.2,名称为“洗衣机的负载偏心检测方法、装置、洗衣机及介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及洗衣机技术领域,尤其涉及一种洗衣机的脱水控制方法、装置、洗衣机及存储介质。
背景技术
随着人们生活水平的提高,洗衣机逐渐走进千家万户,为人们的生活提供便利。在相关技术中,如果洗衣机桶内的衣物分布不均匀,在高速运转进行脱水的过程中,洗衣机会产生较剧烈的震动和较大的噪音,这样不仅会影响洗衣机的整机使用寿命,还会影响用户的产品使用体验。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种洗衣机的脱水控制方法,该方法能够防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。
本公开的第二个目的在于提出一种计算机可读存储介质。
本公开的第三个目的在于提出一种洗衣机。
本公开的第四个目的在于提出一种洗衣机的脱水控制装置。
为达上述目的,本公开第一方面实施例提出了一种洗衣机的脱水控制方法,所述方法包括:确定所述洗衣机的负载重量值和偏心检测值;在所述负载重量值小于等于预设负载重量阈值时,确定所述负载重量值所处的负载重量区间,并根据所述负载重量值所处的负载重量区间确定偏心保护值;在所述偏心检测值小于等于所述偏心保护值时,控制所述洗衣机执行脱水动作。
根据本公开实施例的洗衣机的脱水控制方法,能够根据洗衣机的负载重量值确定负载重量区间,并根据负载重量区间确定对应的偏心保护值,进而在偏心检测值不大于偏心保护值时,控制洗衣机进行脱水,防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。
为达上述目的,本公开第二方面实施例提出了一种计算机可读存储介质,其上存储有洗衣机的脱水控制程序,该洗衣机的脱水控制程序被处理器执行时实现上述任一实施例的洗衣机的脱水控制方法。
根据本公开实施例的计算机可读存储介质,能够根据洗衣机的负载重量值确定负载重量区间,并根据负载重量区间确定对应的偏心保护值,进而在偏心检测值不大于偏心保护值时,控制洗衣机进行脱水,防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。
为达上述目的,本公开第三方面实施例提出了一种洗衣机,该洗衣机包括存储器、处理器及存储在存储器上并可在处理器上运行的洗衣机的脱水控制程序,所述处理器执行所述洗衣机的脱水控制程序时,实现上述任一实施例的洗衣机的脱水控制方法。
为达上述目的,本公开第四方面实施例提出了一种洗衣机的脱水控制装置,所述装置包括:第一确定模块,用于确定所述洗衣机的负载重量值和偏心检测值;第二确定模块,用于在所述负载重量值小于等于预设负载重量阈值时,确定所述负载重量值所处的负载重量区间,并根据所述负载重量值所处的负载重量区间确定偏心保护值;第一控制模块,用于在所述偏心检测值小于等于所述偏心保护值时,控制所述洗衣机执行脱水动作。
根据本公开实施例的洗衣机的脱水控制装置,能够根据洗衣机的负载重量值确定负载重量区间,并根据负载重量区间确定对应的偏心保护值,进而在偏心检测值不大于偏心保护值时,控制洗衣机进行脱水,防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例的洗衣机的脱水控制方法的流程示意图;
图2是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图3是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图4是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图5是根据本公开一个实施例的洗衣机的脱水控制方法的脱水电机的运行逻辑示意图;
图6是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图7是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图8是根据本公开另一个实施例的洗衣机的脱水控制方法的脱水电机的运行逻辑示意图;
图9是根据本公开另一个实施例的洗衣机的脱水控制方法的脱水电机的运行逻辑示意图;
图10是根据本公开一个实施例的洗衣机的结构框图;
图11是根据本公开一个实施例的洗衣机的脱水控制装置的结构框图;
图12是根据本公开一个实施例的洗衣机的脱水控制方法的流程示意图;
图13是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图14是根据本公开一个实施例的洗衣机的脱水控制方法的脱水电机的运行逻辑示意图;
图15是根据本公开一个实施例的洗衣机的功率采集模块的结构框图;
图16是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图17是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图18是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图19是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图20是根据本公开另一个实施例的洗衣机的脱水控制方法的脱水电机的运行逻辑示意图;
图21是根据本公开另一个实施例的洗衣机的脱水控制方法的脱水电机的运行逻辑示意图;
图22是根据本公开另一个实施例的洗衣机的脱水控制方法的脱水电机的运行逻辑示意图;
图23是根据本公开一个实施例的洗衣机的脱水控制方法的流程示意图;
图24是根据本公开一个实施例的质量偏心分布平面的示意图;
图25是根据本公开另一个实施例的质量偏心分布平面的示意图;
图26是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图27是根据本公开另一个实施例的洗衣机的负载偏心检测方法的流程示意图;
图28是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图29是根据本公开另一个实施例的质量偏心分布平面的示意图;
图30是根据本公开另一个实施例的洗衣机的脱水控制方法的流程示意图;
图31是根据本公开另一个实施例的质量偏心分布平面的示意图。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为清楚说明本公开实施例的洗衣机的脱水控制方法、装置、洗衣机及存储介质,下面结合图1所示的洗衣机的脱水控制方法的流程示意图进行描述。如图1所示,本申请实施例的洗衣机的脱水控制方法包括以下步骤:
S11:确定洗衣机的负载重量值和偏心检测值;
S13:在负载重量值小于等于预设负载重量阈值时,确定负载重量值所处的负载重量区间,并根据负载重量值所处的负载重量区间确定偏心保护值;
S15:在偏心检测值小于等于偏心保护值时,控制洗衣机执行脱水动作。
根据本公开实施例的洗衣机的脱水控制方法,能够根据洗衣机的负载重量值确定负载重量区间,并根据负载重量区间确定对应的偏心保护值,进而在偏心检测值不大于偏心保护值时,控制洗衣机进行脱水,防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。
具体地,洗衣机可包括滚筒洗衣机或波轮洗衣机。洗衣机可包括脱水电机和内桶。内桶上可设置有多个提升筋和多个排水孔。当洗衣机执行脱水动作时,脱水电机可驱动内桶加速至超过临界转速,在此 过程中,内桶中的衣物随着提升筋的旋转而不断翻滚,最终在向心力的作用下紧贴在内桶的桶壁上,并与内桶同步旋转,不再发生相对运动,进而脱水电机驱动内桶保持转速不变并继续旋转设定时间,在设定时间内,内桶中的衣物上的水可通过内桶的排水孔排出,从而实现对衣物进行脱水。
在某些实施例中,脱水电机可包括变频电机。可以理解,变频电机可包括智能分布抖散功能、智能感知偏心大小功能和智能感知衣服负载重量功能,通过变频电机和相关控制算法可以较精确地确定整机衣物的偏心检测值和负载重量值,从而有利于根据偏心检测值和负载重量值更加合理地控制洗衣机执行脱水动作,以改善洗衣机脱水过程中产生的振动和发出的噪音。相比于相关技术中在洗衣机中增设速度传感器、位移传感器等检测传感器,并通过分析检测传感器输出的信号确定负载重量值和偏心检测值的方式,采用变频电机无需增设检测传感器,能够避免因增设检测传感器而导致成本增加。
负载重量值,可以理解为,洗衣机内桶中衣物的实际质量按照第一比例换算得到的数值。在一个例子中,换算的第一比例为1:10,即当洗衣机内桶中衣物的实际质量为1公斤时,负载重量值为10;当洗衣机内桶中衣物的实际质量为15公斤时,负载重量值为150。
偏心检测值,可以理解为,洗衣机内桶中衣物分布不均匀产生的偏心质量按照第二比例换算得到的数值。在一个例子中,换算的第二比例为10:1,即当偏心质量为100g时,偏心检测值为10;当偏心质量为400g时,偏心检测值为40。
预设负载重量阈值,可以理解为,用于衡量能否执行脱水动作的负载重量值的临界数值。在某些实施例中,在负载重量值大于预设负载重量阈值时,控制洗衣机停机,在脱水电机的转速降至0时重新启动洗衣机并进行衣物抖散,在衣物抖散的过程中再次执行步骤S11,并比较预设负载重量阈值和重新检测到的负载重量值的大小关系。可以理解,衣物抖散通过脱水电机的旋转实现,在衣物抖散的过程中,衣物上的一部分水会在离心力的作用下通过洗衣机内桶的排水孔排出,从而使得重新检测到的负载重量值小于在先检测到的负载重量值。当负载重量值不大于预设负载重量阈值时,控制洗衣机执行步骤S13和步骤S15。在一个例子中,预设负载重量阈值为254,负载重量区间包括(0,30)、(30,90)、(90,150)和(150,254)。
可以预先确定洗衣机的多个负载重量区间,并对每个负载重量区间的偏心保护值进行标定,然后建立并存储负载重量区间与偏心保护值的第一对应关系,以便在确定负载重量值之后能够通过第一对应关系快速确定对应的偏心保护值。考虑到洗衣机的型号众多,可以预先按照洗衣机的型号进行分类,确定每一型号的洗衣机的多个负载重量区间,并对每一型号洗衣机的每个负载重量区间的偏心保护值进行标定,然后建立并存储每一型号洗衣机的负载重量区间与偏心保护值的第一对应关系。可以将所有型号的洗衣机的负载重量区间与偏心保护值的第一对应关系汇总在一起,即生成型号-负载重量区间-偏心保护值的第二对应关系。可以将型号-负载重量区间-偏心保护值的第二对应关系存储在云端,洗衣机可与云端进行通信并从云端获取第二对应关系以在洗衣机本地直接确定负载重量值对应的偏心保护值;洗衣机也可与云端进行通信并将自身型号和负载重量值上传至云端,由云端根据第二对应关系确定负载重量值对应的偏心保护值并发送至洗衣机。
偏心保护值,可以理解为,用于衡量是否执行脱水动作的偏心检测值的临界数值。当负载重量值和偏心检测值均小于等于相应的临界数值时,才可以进行脱水。可以理解,当负载重量值和偏心检测值均小于相应的临界数值时,洗衣机内桶中的衣物基本处于分布均匀的状态,此时进行脱水,洗衣机产生的震动比较轻微、发出的噪音比较小。
需要指出的是,在本公开的描述中,“衣物”可以理解为附着有液体的衣物,具体地,本公开的“衣物”可以是洗涤过后附着有洗涤剂和水的衣物,也可以是漂洗过后基本无洗涤剂附着而有水附着的衣物,也可以是用户直接放置在洗衣机内桶中的附着有水或其他液体的衣物。
需要指出的是,脱水动作与主脱程序相对应。执行脱水动作,可以理解为,启动主脱程序,洗衣机正式开始脱水并在短时间内快速脱去衣物上附着的绝大部分水。在执行脱水动作之前,例如在步骤S11和步骤S13中,虽然衣物上的水也会在一定程度上减少,但是并未正式开始脱水。
请参阅图2,在本公开的一些实施例中,在步骤S13之后,方法还包括:
S17:在偏心检测值大于偏心保护值时,控制洗衣机的脱水电机进行转速变化,以便重新进行偏心检测判断。
如此,通过改变脱水电机的转速,调整洗衣机中衣物的分布情况,改变重新检测到的偏心检测值,从而便于再次尝试执行脱水动作。
具体地,可以通过脱水电机的变频器改变脱水电机的转速。转速变化可包括先减速,以减速后的转速匀速转动第三预设时间之后再加速。偏心检测判断,即确定偏心检测值,并判断确定的偏心检测值与偏心保护值的大小关系。
在一个例子中,预先根据负载重量值确定偏心保护值为50,在偏心检测值不超过50时,直接控制 洗衣机进行脱水;在偏心检测值超过50时,改变脱水电机的转速,再次确定偏心检测值,并判断是否执行脱水动作。
请参阅图3,在本公开的一些实施例中,在步骤S17之前,方法还包括:
S19:确定重新进行偏心检测判断的次数;
S21:在次数大于预设值时,控制洗衣机停机,以便洗衣机重新启动并进行衣物抖散。
如此,在预设值的次数内检测到的偏心检测值始终大于偏心保护值时,重启洗衣机以对衣物进行抖散,以改变洗衣机内桶中的衣物的分布情况,从而重新进行负载重量值判断和偏心检测判断。同时,在本实施例的脱水控制方法中,增加偏心检测判断的次数,能够提高整机脱水达成率。
具体地,预设值可针对不同型号的洗衣机预先进行设置。在某些实施例中,在根据负载重量值确定偏心保护值之后,多次判断偏心保护值与偏心检测值的大小关系,在多次判断过程中,若任意一次判断出偏心检测值不超过偏心保护值,则立即停止偏心检测判断并执行步骤S15;若多次均判断出偏心检测值超过偏心保护值,则执行步骤S21,并重新进入步骤S11。在多次判断过程中,可对判断的次数进行统计,从而便于确定判断的次数是否超过预设值。在多次判断过程中,若次数不大于预设值且判断出偏心检测值超过偏心保护值,则执行步骤S17。
在一个例子中,预设值为3,在根据负载重量值确定偏心保护值之后,若第一次偏心检测判断的判断结果为偏心检测值超过偏心保护值,则控制脱水电机改变转速,第二次确定偏心检测值,并计次数为1;由于1不大于3,比较第二次确定的偏心检测值与偏心保护值的大小,若第二次偏心检测判断的判断结果仍为偏心检测值超过偏心保护值,则控制脱水电机改变转速,第三次确定偏心检测值,并计次数为2;由于2不大于3,比较第三次确定的偏心检测值与偏心保护值的大小,若第三次偏心检测判断的判断结果仍为偏心检测值超过偏心保护值,则控制脱水电机改变转速,第四次确定偏心检测值,并计次数为3;由于3不大于3,比较第四次确定的偏心检测值与偏心保护值的大小,若第四次偏心检测判断的判断结果仍为偏心检测值超过偏心保护值,则控制脱水电机改变转速,第五次确定偏心保护值并计次数为4,由于4大于3,此时不再比较第五次确定的偏心检测值与偏心保护值的大小,直接控制脱水电机停止转动,并在脱水电机停止转动之后重新使脱水电机使能运转,以对衣物进行抖散,并重新确定抖散后的偏心检测值和负载重量值。
请参阅图4,在本公开的一些实施例中,步骤S11包括:
S111:在洗衣机的脱水电机的转速从第一预设转速上升到第二预设转速的过程中,控制洗衣机进行称重检测,获得负载重量值;
S113:控制脱水电机的转速降低至第三预设转速并维持脱水电机以第三预设转速运行时,确定脱水电机在维持第三预设转速运行过程中的转速波动值,并根据转速波动值确定偏心检测值。
如此,在脱水电机的加速旋转阶段根据电流积分值确定负载重量值,在脱水电机的匀速旋转阶段根据转速波动值确定偏心检测值。
具体地,在脱水电机加速旋转的过程中,采集电流积分值,通过查表确定电流积分值对应的负载重量值,电流积分值越大,负载重量值越大。在脱水电机以第三预设转速匀速旋转的过程中,计算转速反馈值与转速设定值的偏差,并根据偏差确定转速波动值,进而根据匀速旋转阶段获得的转速波动值、加速旋转阶段获得的电流积分值和预先构建的质量偏心分布平面,通过线性插值计算对应的偏心检测值。
请结合图5,图5为脱水电机的运行逻辑图,在图5所示的例子中,第一预设转速与第三预设转速相等且均为w1,第二预设转速为w2,从B+C时间段内的转速变化可以看出,脱水电机的转速按照第一加速度从第一预设转速w1匀加速至第二预设转速w2,在此匀加速阶段确定负载重量值,脱水电机的转速按照第二加速度从第二预设转速w2匀减速至第三预设转速w1,并维持在第三预设转速w1,在此匀速阶段确定偏心检测值,其中,第一加速度的大小和第二加速度的大小基本相等,第一加速度的方向和第二加速度的方向相反。
请参阅图6,在本公开的一些实施例中,在步骤S111之前,方法还包括:
S115:在脱水电机启动并加速时,控制脱水电机加速至第四预设转速,并维持脱水电机以第四预设转速运行第一预设时间后,控制脱水电机加速至第一预设转速,并维持脱水电机以第一预设转速运行第二预设时间。
如此,通过设置转速台阶的方式,使得脱水电机的转速先增加到第四预设转速,再从第四预设转速增加至第一预设转速,从而避免脱水电机的转速从0直接增加到第一预设转速的过程中出现洗衣机内桶剧烈撞击洗衣机外桶的情况。
具体地,第四预设转速小于第一预设转速。请再次结合图5,从A时间段内的转速变化可以看出,在某些实施例中,控制脱水电机按照预设的第三加速度从0转速增加到第四预设转速w3,控制脱水电机按照预设的第四加速度从第四预设转速w3增加到第一预设转速w1。在某些实施例中,第三加速度等于 第四加速度,如此,简化脱水电机的控制逻辑。在某些实施例中,第四加速度大于第三加速度,如此,在脱水电机的转速从0增加到第四预设转速w3再从第四预设转速w3增加到第一预设转速w1的过程中,有利于不同布料的衣物展开,便于衣物脱水。可以理解,如果脱水电机始终按照某一固定的加速度进行加速,那么洗衣机内的衣物会迅速紧贴在桶壁上并与洗衣机内桶保持同步旋转,这样不利于衣物抖散,不利于衣物在内桶中均匀分布,不利于衣物脱水。
第一预设时间和第二预设时间可根据洗衣机的型号、性能需求等进行设置。
在本公开的一些实施例中,步骤S17包括:控制脱水电机的转速从第三预设转速降低至第五预设转速,并维持脱水电机以第五预设转速运行第三预设时间后,控制脱水电机加速至第六预设转速,并维持脱水电机以第六预设转速运行。
如此,能够进一步对洗衣机内桶中的衣物进行抖散,有利于衣物均匀分布,从而有利于减小洗衣机内桶中衣物分布不均匀产生的偏心质量,减小偏心检测值。可以理解,当偏心检测值大于偏心保护值时,由于洗衣机内桶中衣物分布不均匀产生的偏心质量较大,如果此时仍然通过改变加速度继续增加脱水电机的转速的方式对衣物进行抖散,那么洗衣机内桶可能与洗衣机外桶发生碰撞,存在损坏洗衣机的风险,因此,通过改变加速度先降低脱水电机的转速再增加脱水电机的转速的方式安全有效地对衣物进行抖散。
具体地,在脱水电机维持第六预设转速运行时,确定脱水电机在维持第六预设转速运行过程中的转速波动值,并根据转速波动值再次确定偏心检测值。
在某些实施例中,第五预设转速大于0,如此,保证脱水电机不停机,防止脱水电机重新启动过程中耗费大量时间,缩短衣物脱水整体所需时间。
在本公开的一些实施例中,第三预设转速与第六预设转速相等。
具体地,请再次结合图5,在图5所示的例子中,第三预设转速与第六预设转速相等且均为w1,第五预设转速为w4,从D时间段内的转速变化可以看出,在偏心检测值大于偏心保护值时,控制脱水电机的转速从w1匀减速至w4,并维持脱水电机以转速w4运行第三预设时间后,控制脱水电机匀加速至转速w1,并维持脱水电机以转速w1运行,以再次确定偏心检测值。
在一个例子中,第三预设转速可为90rpm。在另一个例子中,第三预设转速可为100rpm。
需要指出的是,第一预设转速、第二预设转速、第三预设转速、第四预设转速、第五预设转速和第六预设转速均可根据洗衣机型号、负载重量值、性能需求等预先进行设置。
请结合图7,在一个例子中,洗衣机的脱水控制方法包括以下步骤:
S310:控制脱水电机使能运转;
S311:控制脱水电机对洗衣机内桶中的衣物进行抖散;
S312:在脱水电机匀加速段计算负载重量值X,并在匀速段计算偏心检测值Y;
S313:判断负载重量值X是否不超过预设负载重量阈值M,若否,则停机并返回步骤S310,若是,则进入步骤S314;
S314:根据负载重量值X确定偏心保护值Q;
S315:预设重新进行偏心检测判断的次数i为0;
S316:判断偏心检测值Y是否不超过偏心保护值Q,若是,则进入步骤S317,若否,则进入步骤S318;
S317:控制脱水电机高速旋转进行脱水,脱水电机的转速变化如图8所示;
S318:控制脱水电机的转速从第三预设转速降低至第五预设转速,并维持脱水电机以第五预设转速运行第三预设时间后,控制脱水电机加速至第六预设转速,并维持脱水电机以第六预设转速运行,在脱水电机维持第六预设转速运行时,确定脱水电机在维持第六预设转速运行过程中的转速波动值,并根据转速波动值再次确定偏心检测值;
S319:将重新进行偏心检测判断的次数i增加1;
S320:判断重新进行偏心检测判断的次数i是否不超过预设值N,若是,则返回步骤S316,若否,则停机并返回步骤S310,脱水电机的转速变化如图9所示。
需要指出的是,上述所提到的具体数值只为了作为例子详细说明本公开的实施,而不应理解为对本公开的限制。在其它例子或实施方式或实施例中,可根据本公开来选择其它数值,在此不作具体限定。
如图12所示,本申请实施例的洗衣机的脱水控制方法包括以下步骤:
S21:在脱水电机启动并加速时,确定洗衣机的初始负载重量值,并根据初始负载重量值确定加速度曲线和第一偏心值;
S23:根据加速度曲线对脱水电机进行控制,以进行衣物抖散,并确定洗衣机的第一检测偏心值;
S25:在第一检测偏心值小于等于第一偏心值时,控制洗衣机进行称重检测,获得负载称重值,并根 据负载称重值确定第二偏心值;
S27:确定洗衣机的第二检测偏心值,并在第二检测偏心值小于等于第二偏心值时,控制脱水电机以使洗衣机进行脱水。
根据本公开实施例的洗衣机的脱水控制方法,能够根据洗衣机的初始负载重量值确定加速度曲线和第一偏心值,根据加速度曲线控制脱水电机进行衣物抖散,并确定第一检测偏心值,在第一检测偏心值小于等于第一偏心值时,控制洗衣机进行称重检测,获得负载称重值,并根据负载称重值确定第二偏心值,以在获得的第二检测偏心值小于等于第二偏心值时控制脱水电机进行脱水,从而基于不同初始负载重量值选择不同的加速度曲线和第一偏心值,有助于提高整机脱水成功率。
可以理解,在相关技术中,洗衣机主要根据感知到的检测偏心值和负载称重值进行衣物的脱水控制,但是,在确定检测偏心值的过程中,仅采用一种固定的加速度曲线进行衣物抖散,不利于衣物的均匀抖散,导致偏心质量检测的次数增多;同时,通过一次衣物抖散操作不能够有效地使得衣物在洗衣机内桶中分布均匀,在一次衣物抖散操作之后,洗衣机的检测偏心值仍然较大,进而需要按照该固定的加速度曲线反复进行衣物抖散,极大增加脱水尝试次数,导致脱水延时。
具体地,洗衣机可包括滚筒洗衣机或波轮洗衣机。洗衣机可包括脱水电机和内桶。内桶上可设置有多个提升筋和多个排水孔。当洗衣机进行脱水时,脱水电机可驱动内桶加速至超过临界转速,在此过程中,内桶中的衣物随着提升筋的旋转而不断翻滚,最终在向心力的作用下紧贴在内桶的桶壁上,并与内桶同步旋转,不再发生相对运动,进而脱水电机驱动内桶保持转速不变并继续旋转设定时长,在设定时长内,内桶中的衣物上的水可通过内桶的排水孔排出,从而实现对衣物进行脱水。
在某些实施例中,脱水电机可包括变频电机。可以理解,变频电机可包括智能分布抖散功能、智能感知偏心大小功能和智能感知衣服负载重量功能,通过变频电机和相关控制算法可以较精确地确定整机衣物的检测偏心值和负载称重值,从而有利于根据检测偏心值和负载称重值更加合理地控制洗衣机进行脱水,以改善洗衣机脱水过程中产生的振动和发出的噪音。相比于相关技术中在洗衣机中增设速度传感器、位移传感器等检测传感器,并通过分析检测传感器输出的信号确定负载重量值和检测偏心值的方式,采用变频电机无需增设检测传感器,能够避免因增设检测传感器而导致成本增加。
初始负载重量值,可以理解为,洗衣机内桶中衣物的粗略估计质量按照第一比例换算得到的数值。在一个例子中,换算的第一比例为1:10,即当洗衣机内桶中衣物的粗略估计质量为1公斤时,负载称重值为10;当洗衣机内桶中衣物的粗略估计质量为15公斤时,负载称重值为150。
加速度曲线可包括多个不同的加速度值,根据加速度曲线进行衣物抖散,能够更好地保证衣物在洗衣机内桶中分布均匀。可以理解,在进行衣物抖散时,如果采用同一加速度值控制脱水电机进行匀加速旋转,那么衣物会快速贴在桶壁上并与洗衣机内桶同步旋转,不利于衣物均布抖散;如果采用多个加速度值分别控制脱水电机进行匀加速旋转,那么不同布料的衣物可以在不同旋转阶段展开,从而有利于衣物均布抖散。在一个例子中,当初始负载重量值在35至90之间时,在转速为40rpm-70rpm设置加速度为8rpm/s,在转速为70rpm-90rpm设置加速度值为15rpm/s。
第一偏心值,可以理解为,用于判断能否进行称重检测的阈值。预先标定不同初始负载重量值对应的较合适的加速度曲线和最佳的第一偏心值,即预先设置多种加速度曲线和多个第一偏心值,从而在确定初始负载重量值之后,能够准确快速地确定对应的加速度曲线和第一偏心检测值,实现通过一次抖散操作使得衣物均匀分布,减少脱水尝试次数,及时完成脱水。
负载称重值,可以理解为,洗衣机内桶中衣物的实际质量按照第一比例换算得到的数值。在一个例子中,换算的第一比例为1:10,即当洗衣机内桶中衣物的实际质量为1公斤时,负载称重值为10;当洗衣机内桶中衣物的实际质量为15公斤时,负载称重值为150。
第一检测偏心值和第二检测偏心值,可以理解为,洗衣机内桶中衣物分布不均匀产生的偏心质量按照第二比例换算得到的数值,其中,第一检测偏心值为粗略估计的数值,第二检测偏心值为准确计算的数值。在一个例子中,换算的第二比例为10:1,即当偏心质量为100g时,偏心检测值为10;当偏心质量为400g时,偏心检测值为40。
第二偏心值,可以理解为,用于衡量是否进行脱水的第二检测偏心值的临界数值。
需要指出的是,在本公开的描述中,“衣物”可以理解为附着有液体的衣物,具体地,本公开的“衣物”可以是洗涤过后附着有洗涤剂和水的衣物,也可以是漂洗过后基本无洗涤剂附着而有水附着的衣物,也可以是用户直接放置在洗衣机内桶中的附着有水或其他液体的衣物。
需要指出的是,步骤S27中,脱水与主脱程序相对应。进行脱水,可以理解为,启动主脱程序,洗衣机正式开始脱水并在短时间内快速脱去衣物上附着的绝大部分水。在进行脱水之前,例如在步骤S21、步骤S23和步骤S25中,虽然衣物上的水也会在一定程度上减少,但是并未正式开始脱水。
请参阅图13,在本公开的一些实施例中,步骤S21包括:
S211:确定脱水电机加速过程中的平均功率,根据平均功率确定初始负载重量值。
如此,能够粗略估计洗衣机的初始负载重量值。
具体地,请结合图14和图15,其中,图14为脱水电机的运行逻辑图,图15为洗衣机的功率采集模块的结构框图,从时间段A+B可以看出,首先,脱水电机使能运转,通过角度观测模块获得脱水电机加速起点判定,然后在脱水电机的转速从0匀加速至第一转速W1的过程中,采集预设时间段内的功率值,并计算预设时间段内的平均功率,进行功率识别模块,辨识出整机负载重量,然后通过线性化拟合,得到衣物的初始负载重量值,并根据初始负载重量值确定加速度曲线和第一偏心值。
请参阅图16,在本公开的一些实施例中,步骤S23包括:
S231:在脱水电机进入匀速段时,确定脱水电机的转速波动值,并根据转速波动值确定第一检测偏心值。
如此,能够粗略地确定第一检测偏心值。
具体地,步骤S21还包括根据初始负载重量值确定预设偏心检测转速,在某些实施方式中,预先标定不同初始负载重量值和预设偏心检测转速之间的对应关系,可以是一个初始负载重量值对应一个预设偏心检测转速,也可以是多个初始负载重量值对应一个预设偏心检测转速,从而能够根据该对应关系确定与当前的初始负载重量值相对应的预设偏心检测转速。
请再次结合图14,从时间段A+B可以看出,在脱水电机的转速从0匀加速至第一转速w1,控制脱水电机维持第一转速w1运行第一预设时长后,根据加速度曲线和预设偏心检测转速w2控制脱水电机从第一转速w1匀加速至预设偏心检测转速w2,从时间段C+D可以看出,控制脱水电机维持预设偏心检测转速w2运行,并在匀速段确定脱水电机的转速波动值,并根据转速波动值确定第一检测偏心值。
在本公开的一些实施例中,在第一检测偏心值大于第一偏心值时,控制洗衣机停机,并返回控制脱水电机重新启动并加速,以便重新确定第一检测偏心值。
如此,通过比较第一检测偏心值与第一偏心值的大小关系,进行称重保护。可以理解,称重检测在脱水电机的加速段进行,当第一检测偏心值大于第一偏心值时,洗衣机内桶中的衣物分布较不均匀,此时如果继续加速进一步进行称重检测,可能产生撞桶风险,这样不仅会产生严重的噪音,还会有损洗衣机的整体使用寿命。
具体地,可以通过设置脱水电机0转速实现控制洗衣机停机。
请参阅图17,在本公开的一些实施例中,步骤S25包括:
S251:在负载称重值小于等于预设负载重量阈值时,确定负载称重值所处的负载重量区间;
S253:根据负载称重值所处的负载重量区间确定第二偏心值。
如此,在负载称重值小于等于预设负载重量阈值时,进一步确定第二偏心值,有利于保证脱水成功率。
具体地,步骤S21还包括根据初始负载重量值确定预设称重检测转速,请再次结合图14,从时间段E可以看出,在第一检测偏心值小于等于第一偏心值时,控制脱水电机的转速从预设偏心检测转速w2匀加速至预设称重检测转速w3,并在此匀加速段进行称重检测,确定负载称重值。
预设负载重量阈值,可以理解为,用于衡量能否进行脱水的负载称重值的临界数值。
可以预先确定洗衣机的多个负载重量区间,并对每个负载重量区间的第二偏心值进行标定,然后建立并存储负载重量区间与第二偏心值的第一对应关系,以便在确定负载称重值之后能够通过第一对应关系快速确定对应的第二偏心值。考虑到洗衣机的型号众多,可以预先按照洗衣机的型号进行分类,确定每一型号的洗衣机的多个负载重量区间,并对每一型号洗衣机的每个负载重量区间的第二偏心值进行标定,然后建立并存储每一型号洗衣机的负载重量区间与第二偏心值的第一对应关系。可以将所有型号的洗衣机的负载重量区间与第二偏心值的第一对应关系汇总在一起,即生成型号-负载重量区间-第二偏心值的第二对应关系。可以将型号-负载重量区间-第二偏心值的第二对应关系存储在云端,洗衣机可与云端进行通信并从云端获取第二对应关系以在洗衣机本地直接确定负载称重值对应的第二偏心值;洗衣机也可与云端进行通信并将自身型号和负载称重值上传至云端,由云端根据第二对应关系确定负载称重值对应的第二偏心值并发送至洗衣机。
在一个例子中,预设负载重量阈值为254,负载重量区间包括(0,30)、(30,90)、(90,150)和(150,254)。
当负载称重值和第二检测偏心值均小于等于相应的临界数值时,才可以进行脱水。可以理解,当负载称重值和第二检测偏心值均小于相应的临界数值时,洗衣机内桶中的衣物基本处于分布均匀的状态,此时进行脱水,洗衣机产生的震动比较轻微、发出的噪音比较小。
在本公开的一些实施例中,在负载称重值大于预设负载重量阈值时,控制洗衣机停机,并返回控制脱水电机重新启动并加速,以便重新获得负载称重值。
如此,在加速过程中,衣物上的一部分水会在离心力的作用下通过洗衣机内桶的排水孔排出,从而使得重新检测到的负载称重值小于在先检测到的负载称重值。
请参阅图18,在本公开的一些实施例中,步骤S27包括:
S271:在获得负载称重值后,控制脱水电机的转速降低至预设转速并维持脱水电机以预设转速运行,并根据脱水电机的转速波动值确定第二检测偏心值。
如此,在脱水电机的匀速旋转阶段根据转速波动值确定第二检测偏心值。
具体地,在脱水电机加速旋转的过程中,采集电流积分值,通过查表确定电流积分值对应的负载重量值,电流积分值越大,负载重量值越大。在脱水电机以预设转速匀速旋转的过程中,计算转速反馈值与转速设定值的偏差,并根据偏差确定转速波动值,进而根据匀速旋转阶段获得的转速波动值、加速旋转阶段获得的电流积分值和预先构建的质量偏心分布平面,通过线性插值计算对应的第二检测偏心值。
请再次结合图14,在一个例子中,预设转速为w2,从时间段E可以看出,在获得负载称重值后,控制脱水电机的转速从w3匀减速至w2,并维持在w2转速运行,在此匀速旋转阶段确定第二检测偏心值。
在本公开的一些实施例中,在第二检测偏心值大于第二偏心值时,控制洗衣机停机,并根据负载称重值重新确定加速度曲线和第一偏心值,直至重新确定第二检测偏心值小于等于第二偏心值。
如此,通过重启脱水电机,调整洗衣机中衣物的分布情况及负载的重量,从而便于再次尝试进行脱水。
在一个例子中,预先根据负载称重值确定第二偏心值为50,在第二检测偏心值不超过50时,直接控制洗衣机进行脱水;在第二检测偏心值超过50时,控制洗衣机停机,并根据负载称重值重新确定加速度曲线和第一偏心值,直至重新确定第二检测偏心值小于等于第二偏心值。
请结合图19,在一个例子中,洗衣机的脱水控制方法包括以下步骤:
S410:控制脱水电机使能运转;
S411:确定初始负载重量值;
S412:根据初始负载重量值选择加速度曲线和第一偏心值P;
S413:在匀速段计算第一检测偏心值Y,判断第一检测偏心值Y是否小于等于第一偏心值P,若否,则停机并返回步骤S410,脱水电机的转速变化如图20所示,若是,则进入步骤S414;
S414:在匀加速段计算负载称重值Q,判断负载称重值Q是否小于等于预设负载重量阈值M,若否,则停机并返回步骤S410,若是,则进入步骤S415;
S415:根据负载称重值Q确定第二偏心值N;
S416:在匀速段计算第二检测偏心值R,判断第二检测偏心值R是否小于等于第二偏心值N,若否,则停机并返回步骤S410,脱水电机的转速变化如图21所示,若是,则进入步骤S417;
S417:控制脱水电机高速旋转进行脱水,脱水电机的转速变化如图22所示。
如图23所示,本申请实施例的方法还包括以下步骤:
S31:构建洗衣机的质量偏心分布平面,并根据等均载线和等偏心线将质量偏心分布平面划分为多个矩形区域;
S33:获取洗衣机的脱水电机在匀速段的第一转速波动值和在匀加速段的第一电流积分值;
S35:根据第一转速波动值和第一电流积分值,从多个矩形区域中确定待检测矩形区域;
S37:根据第一转速波动值和第一电流积分值确定待检测矩形区域的等转速波动线和等电流积分线,并根据等转速波动线和等电流积分线进行负载偏心检测。
根据本发明实施例的洗衣机的负载偏心检测方法,基于构建的洗衣机的质量偏心分布平面、第一转速波动值和第一电流积分值,能够精确感知洗衣机内桶中的负载偏心情况,能够节省机械传感器成本。可以理解,在相关技术中,衣物在洗衣机内桶中的分布存在偏心,跟随内桶旋转将引起转速波动,当均载质量一定时,负载偏心值越大,转速波动值越大,因此可建立匀速过程中转速波动值与负载偏心值的对应关系,通过转速波动值反推偏心质量值;同时,根据电机运动方程可知,均载质量与整个洗衣机旋转系统的惯量呈正相关关系,因此可建立匀加速过程中电流积分值与均载质量的对应关系,通过电流积分值反推均载质量。进一步地,转速波动值随着均载质量的增大而减小,随着负载偏心值的增大而增大;电流积分值随着均载质量的增大而增大,随着负载偏心值的增大而增大。
具体地,洗衣机可包括滚筒洗衣机或波轮洗衣机。洗衣机可包括脱水电机和内桶。内桶上可设置有多个提升筋和多个排水孔。当洗衣机进行脱水时,脱水电机可驱动内桶加速至超过临界转速,在此过程 中,内桶中的衣物随着提升筋的旋转而不断翻滚,最终在向心力的作用下紧贴在内桶的桶壁上,并与内桶同步旋转,不再发生相对运动,进而脱水电机驱动内桶保持转速不变并继续旋转设定时长,在设定时长内,内桶中的衣物上的水可通过内桶的排水孔排出,从而实现对衣物进行脱水。
在步骤S31中,质量偏心分布平面,可以理解为,以均载质量为y轴、负载偏心值为x轴形成的坐标平面。均载质量,可以理解为,洗衣机内桶中衣物均匀分布的质量,以洗衣机桶三个区为例,使用均匀的偏载块模拟整机衣物负载的质量分布。负载偏心值,可以理解为,洗衣机内桶中衣物不均匀分布部分产生的偏心,使用负载偏心值模拟衣物偏心。
等均载线,可以理解为,质量偏心分布平面中与y轴垂直的线,等均载线上任意两点的均载质量相等。等偏心线,可以理解为,质量偏心分布平面中与x轴垂直的线,等偏心线上任意两点的负载偏心值相等。待检测矩形区域的四个顶点中,若两个顶点的连线与y轴垂直,则这两个顶点的均载质量相等;若两个顶点的连线与x轴垂直,则这两个顶点的负载偏心值相等。
根据等均载线和等偏心线将质量偏心分布平面划分为多个矩形区域,即质量偏心分布平面可包括多个预设的、已知的均载质量和负载偏心值,一个均载质量和一个负载偏心值组成一个顶点,每个顶点均对应一组转速波动值和电流积分值,不同顶点对应的转速波动值可相同也可不同,不同顶点对应的电流积分值可相同也可不同,不同顶点对应的转速波动值-电流积分值的组合不同。可以通过数据仿真和/或台架试验等方式确定每一顶点对应的电流积分值和转速波动值。在一个例子中,均载质量包括3m0kg、3m1kg、3m2kg、3m3kg、3m4kg、3m5kg、3m6kg,负载偏心值包括0g、200g、400g、600g、800g、1000g、1200g、1400g、1600g,划分后的质量偏心分布平面如图24所示。
请结合图25,在划分后的质量偏心分布平面中,每个矩形区域S的四个顶点P1(X1,Y1)、P2(X2,Y2)、P3(X3,Y3)和P4(X4,Y4)的坐标是已知的,并且每个矩形区域的四个顶点的坐标对应的第二电流积分值和第二转速波动值是已知的,即P1点对应的第二电流积分值J1和第二转速波动值SF1是已知的,P2点对应的第二电流积分值J2和第二转速波动值SF2是已知的,P3点对应的第二电流积分值J3和第二转速波动值SF3是已知的,P4点对应的第二电流积分值J4和第二转速波动值SF4是已知的。可以理解,在基于质量偏心分布平面进行负载偏心检测时,若某一时刻采集到的第一转速波动值和第一电流积分值与质量偏心分布平面里某一顶点的第二电流积分值和第二转速波动值均相等,则可以直接将该顶点的x轴分量作为该时刻的负载偏心值,可以直接将该顶点的y轴分量作为该时刻的均载质量;若某一时刻采集到的第一转速波动值和第一电流积分值与质量偏心分布平面里全部顶点的第二电流积分值和第二转速波动值均不同时相等,则根据第一转速波动值和第一电流积分值确定其对应的第一交点P在质量偏心分布平面中的待检测矩形区域,然后结合待检测区域的四个顶点的信息、第一转速波动值和第一电流积分值,通过四点定位插值计算出第一交点P的x轴分量和y轴分量,并将第一交点P的x轴分量作为洗衣机的负载偏心值,将第一交点P的y轴分量作为洗衣机的均载质量。
进一步地,请结合图26,首先,脱水电机使能运转,通过角度观测模块获得脱水电机加速起点判定,然后,在脱水电机的转速匀加速至第一转速的过程中,通过转矩计算模块获取第一电流积分值,在脱水电机保持第二转速匀速转动时,通过转速调节器获取第一转速波动值,最后,结合待检测区域的四个顶点的信息、第一转速波动值和第一电流积分值,通过四点定位插值计算得到洗衣机的负载偏心值。
在步骤S35中,由于第二转速波动值随着均载质量的增大而减小,随着负载偏心值的增大而增大,因此,在矩形区域S中,SF2>SF1、SF4>SF3、SF2>SF4、SF1>SF3,即矩形区域S中第二转速波动值的取值范围是[SF3,SF2];由于第二电流积分值随着均载质量的增大而增大,随着负载偏心值的增大而增大,因此,在矩形区域S中,J2>J1,J4>J3,J4>J2,J3>J1,即矩形区域S中第二电流积分值的取值范围是[J1,J4]。从而,若某一时刻采集到的第一转速波动值sf0和第一电流积分值j0满足J1≤J≤J4,SF3≤sf≤SF2,则可确定该时刻的第一转速波动值sf0和第一电流积分值j0对应的第一交点P在矩形区域S中,即该矩形区域S为待检测矩形区域。
进一步地,由于第二转速波动值随着均载质量的增大而减小,随着负载偏心值的增大而增大,均载质量叠加负载偏心值可以形成等转速波动线,等转速波动线上任意两点的转速波动值相等。由于第二电流积分值随着均载质量的增大而增大,随着负载偏心值的增大而增大,均载质量叠加负载偏心值可以形成等电流积分线,等电流积分线上任意两点的电流积分值相等。负载偏心检测,可以理解为,检测洗衣 机中衣物所对应的负载偏心值。
需要指出的是,在本发明的描述中,“衣物”可以理解为附着有液体的衣物,具体地,本发明的“衣物”可以是洗涤过后附着有洗涤剂和水的衣物,也可以是漂洗过后基本无洗涤剂附着而有水附着的衣物,也可以是用户直接放置在洗衣机内桶中的附着有水或其他液体的衣物。
请参阅图27,在本发明的一些实施例中,步骤S37包括:
S371:确定等转速波动线与等电流积分线之间的第一交点坐标;
S373:根据第一交点坐标确定洗衣机的负载偏心值。
如此,通过等转速波动线和等电流积分线的交点的第一交点坐标确定出洗衣机的负载偏心值。具体地,由于等转速波动线与等电流积分线不平行,第一转速波动值所在的等转速波动线与第一电流积分值所在的等电流积分线存在第一交点,且第一交点唯一,第一交点的x轴分量即为第一转速波动值和第一电流积分值对应的洗衣机的负载偏心值。
在某些实施例中,在确定第一交点坐标之后,将第一交点坐标、第一转速波动值和第一电流积分值进行关联以获得更新数据,并利用更新数据更新质量偏心分布平面,进一步划分质量偏心分布平面中的矩形区域,以完善质量偏心分布平面中的已知数据,便于下次检测到相同的第一转速波动值和第一电流积分值时,快速确定对应的洗衣机的负载偏心值和均载质量。
请参阅图28,在本发明的一些实施例中,步骤S371包括:
S3711:确定等转速波动线和等电流积分线分别与待检测矩形区域的四个交点坐标;
S3713:根据四个交点坐标计算第一交点坐标。
如此,通过四点定位的方法,准确计算出第一交点坐标。具体地,由于等转速波动线与任一等均载线不平行,等转速波动线与任一等偏心线不平行,等转速波动线与待检测矩形区域的边框相交于两个交点,而不是多个交点。由于等电流积分线与任一等均载线不平行,等电流积分线与任一等偏心线不平行,等电流积分线与待检测矩形区域的边框相交于两个交点,而不是多个交点。
请结合图29,等电流积分线与待检测矩形区域的边框相交于第二交点A1(x1,y1)和第三交点A2(x2,x2),等转速波动线与待检测矩形区域的边框相交于第四交点B3(x3,y3)和第五交点B4(x4,y4)。可以理解,第一交点P(x,y)、第二交点A1(x1,y1)和第三交点A2(x2,y2)对应的电流积分值均为检测到的第一电流积分值,第一交点P(x,y)、第四交点B3(x3,y3)和第五交点B4(x4,y4)对应的转速波动值均为检测到的第一转速波动值。
在本发明的一些实施例中,根据以下公式计算第一交点坐标:公式(1),公式(2),其中,x为第一交点的x轴分量,y为第一交点的y轴分量,x1、x2、x3和x4为等转速波动线和等电流积分线分别与待检测矩形区域的四个交点的x轴分量,y1、y2、y3和y4为等转速波动线和等电流积分线分别与待检测矩形区域的四个交点的y轴分量。
具体地,公式(1)可以理解为等电流积分线方程,公式(2)可以理解为等转速波动线方程,通过联合等电流积分线方程和等转速波动线方程构造插值函数,采用公式(1)减去公式(2),可得到公式(3),因此,在确定等电流积分线与待检测矩形区域的第二交点A1(x1,y1)和第三交点A2(x2,x2),以及确定等转速波动线与待检测矩形区域的第四交点B3(x3,y3)和第五交点B4(x4,y4)之后,将四个交点的坐标带入公式(3)即可得到第一交点的x轴分量,进而将第一交点的x轴分量带入公式(1)或公式(2)即可得到第一交点的y轴分量,从而确定出第一交点坐标。
请参阅图30,在本发明的一些实施例中,步骤S3711包括:
S37111:确定待检测矩形区域的四个顶点坐标;
S37113:根据第一转速波动值、第一电流积分值、四个顶点坐标以及四个顶点坐标分别对应的第二转速波动值和第二电流积分值计算四个交点坐标。
如此,能够根据待检测区域的已知数据计算等转速波动线和等电流积分线分别与待检测矩形区域的四个交点坐标。具体地,在本发明的一些实施例中,根据以下公式计算四个交点坐标:sf=k1x+b1公式(4),j=k2y+b2公式(5),其中,sf为转速波动值,x为每个点的x轴分量,j为电流积分值,y为每个点的y轴分量,k1和k2为系数,b1和b2为截距。
可以理解,在等均载线上,转速波动值随着负载偏心值(x)线性增加,即偏导数为常数sf=g(x,y)|y=0,可以等效为一条直线,直线方程为:sf=g’(x)=k1x+b1。同理,在等偏心线上,电流积分值随着均载质量(y)线性增加,即偏导数为常数j=f(x,y)|x=0,可以等效为一条直线,直线方程为:j=f’(y)=k2y+b2
请再次结合图29,根据上述公式(4)可知,P1在x-sf平面的坐标为(X1,SF1),B3在x-sf平面的坐标为(x3,sf0),P2在x-sf平面的坐标为(X2,SF2),由于P1、B3和P2位于x-sf平面的同一直线上,且X1、SF1、X2、SF2和sf0均为已知量,因此将P1、B3和P2在x-sf平面中的坐标分别代入上述公式(4)即可确定x3,同理可确定x4。又y3等于Y1,y4等于Y3,且Y1和Y3均为已知量,因此,可确定第四交点B3和第五交点B4的坐标。
相似地,根据上述公式(5)可知,P1在j-y平面的坐标为(J1,Y1),A1在j-y平面的坐标为(j0,y1),P3在j-y平面的坐标为(J3,Y3),由于P1、A1和P3位于j-y平面的同一直线上,且J1、Y1、J3、Y3和j0均为已知量,因此将P1、A1和P3在j-y平面的坐标分别代入上述公式(5)即可确定y1,同理可确定y2。又x1等于X1,x2等于X2,且X1和X2均为已知量,因此,可确定第二交点A1和第三交点A2的坐标。
在某些实施例中,步骤S371包括:确定等转速波动线和等电流积分线分别与待检测矩形区域的四个简化交点坐标;根据四个简化交点坐标计算第一简化交点坐标;根据第一简化交点坐标计算第一交点坐标。其中,确定等转速波动线和等电流积分线分别与待检测矩形区域的四个简化交点坐标,包括:确定待检测矩形区域的四个简化顶点坐标,并确定待检测矩形区域的长宽间隔;根据第一转速波动值、第一电流积分值、长宽间隔以及四个简化顶点坐标分别对应的第二转速波动值和第二电流积分值计算四个简化交点坐标。
如此,使得运算更加简便,节省算力。具体地,将待检测矩形区域中连线与x轴平行的两个顶点的x轴分量的差值的绝对值作为待检测矩形区域的长间隔,将待检测矩形区域中连线与y轴平行的两个顶点的y轴分量的差值的绝对值作为待检测矩形区域的宽间隔。以图29为例,可以将|X1-X2|或|X3-X4|作为待检测矩形区域的长间隔X,可以将|Y1-Y2|或|Y3-Y4|作为待检测矩形区域的长间隔Y。
进一步地,可以待检测矩形区域的第一顶点P1(X1,Y1)为原点建立笛卡尔坐标系,坐标值向xy坐标平面的下方递增,坐标值向xy坐标平面的右侧递增,从而实现对图7中各个点的简化,简化后各点的坐标如图31所示,待检测矩形区域的四个简化顶点分别为P1(0,0)、P2(X,0)、P3(0,Y)和P4(X,Y),即X1和X3简化为0,X2和X4简化为X,Y1和Y2简化为0,Y3和Y4简化为Y;等转速波动线和等电流积分线分别与待检测矩形区域的四个简化交点分别为A1(0,y5)、A2(X,y6)、B3(x7,0)和B4(x8,Y),即x1简化为0,x2简化为X,x3简化为x7,x4简化为x8,y1简化为y5,y2简化为y6,y3简化为0,y4简化为Y。
根据四个简化交点坐标对上述公式(3)进行简化,可以得到:公式(6),因此在确定x7、x8、y5和y6之后即可获得第一简化交点坐标。
根据四个简化顶点坐标和上述公式(4)可知,P1在x-sf平面的坐标为(0,SF1),B3在x-sf平面的坐标为(x7,sf0),P2在x-sf平面的坐标为(X,SF2),由于P1、B3和P2位于x-sf平面的同一直线,将P1、B3和P2在x-sf平面中的坐标分别代入上述公式(4),得到三个方程,三个方程两两相减并经过 换算后可得公式(7),同理可得公式(8),由于X、SF1、SF2、SF3、SF4和sf0均为已知量,因此,可以通过公式(7)和公式(8)获得x7和x8的数值。
根据四个简化顶点坐标和上述公式(5)可知,P1在j-y平面的坐标为(J1,0),A1在j-y平面的坐标为(j0,y5),P3在j-y平面的坐标为(J3,Y),由于P1、A1和P3位于j-y平面的同一直线,将P1、A1和P3在j-y平面的坐标分别代入上述公式(5),得到三个方程,三个方程两两相减并经过换算后可得公式(9),同理可得公式(10),由于Y、J1、J2、J3、J4和j0均为已知量,因此,可以通过公式(9)和公式(10)获得y5和y6的数值。
在确定x7、x8、y5和y6之后,将x7、x8、y5和y6代入上述公式(6)即可获得第一简化交点P0的坐标分量x0,进而确定第一简化交点P0的坐标分量y0
根据第一简化交点坐标P0(x0,y0)和简化坐标时采用的原点的简化前的坐标确定第一交点坐标。以简化坐标时采用的原点为P1为例,P1简化前的坐标为(X1,Y1),则可确定第一交点P的坐标为(x0+X1,y0+Y1),即此时负载偏心检测结果为x0+X1
在本公开的一些实施例中,在步骤S37的“确定待检测矩形区域的等转速波动线和等电流积分线”之后,方法还包括:根据等转速波动线和等电流积分线进行负载重量检测。
如此,基于构建的洗衣机的质量偏心分布平面、第一转速波动值和第一电流积分值,能够精确感知洗衣机内桶中的负载重量情况,能够节省机械传感器成本。具体地,负载重量检测,可以理解为,检测洗衣机中衣物所对应的均载质量。在确定等转速波动线与等电流积分线之间的第一交点坐标之后,可以将第一交点的y轴分量即为第一转速波动值和第一电流积分值对应的洗衣机的均载质量。
需要指出的是,上述所提到的具体数值只为了作为例子详细说明本公开的实施,而不应理解为对本公开的限制。在其它例子或实施方式或实施例中,可根据本公开来选择其它数值,在此不作具体限定。
为了实现上述实施例,本公开实施例还提出了一种计算机可读存储介质,其上存储有洗衣机的脱水控制程序,该洗衣机的脱水控制程序被处理器执行时实现上述任一实施例的洗衣机的脱水控制方法。
根据本公开实施例的计算机可读存储介质,能够根据洗衣机的负载重量值确定负载重量区间,并根据负载重量区间确定对应的偏心保护值,进而在偏心检测值不大于偏心保护值时,控制洗衣机进行脱水,防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。
在一个例子中,在处理器执行该程序的情况下,能够实现以下步骤:
S11:确定洗衣机的负载重量值和偏心检测值;
S13:在负载重量值小于等于预设负载重量阈值时,确定负载重量值所处的负载重量区间,并根据负载重量值所处的负载重量区间确定偏心保护值;
S15:在偏心检测值小于等于偏心保护值时,控制洗衣机执行脱水动作。
需要指出的是,上述对脱水控制方法的实施方式和有益效果的解释说明,也适应本公开的计算机可读介质,为避免冗余,在此不作详细展开。
为了实现上述实施例,本公开实施例还提出一种洗衣机,该洗衣机可实现上述任一实施例的控制方法。图10是根据本公开一个实施例的洗衣机的结构示意图。如图10所示,本公开提出的洗衣机100包括存储器102、处理器104及存储在存储器102上并可在处理器104上运行的洗衣机的脱水控制程序106,处理器104执行洗衣机的脱水控制程序106时,实现上述任一实施例的洗衣机的脱水控制方法。
根据本公开实施例的洗衣机,能够根据洗衣机的负载重量值确定负载重量区间,并根据负载重量区间确定对应的偏心保护值,进而在偏心检测值不大于偏心保护值时,控制洗衣机进行脱水,防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。
在一个例子中,在处理器104执行该程序的情况下,能够实现以下步骤:
S11:确定洗衣机的负载重量值和偏心检测值;
S13:在负载重量值小于等于预设负载重量阈值时,确定负载重量值所处的负载重量区间,并根据负载重量值所处的负载重量区间确定偏心保护值;
S15:在偏心检测值小于等于偏心保护值时,控制洗衣机执行脱水动作。
需要指出的是,上述对脱水控制方法的实施方式和有益效果的解释说明,也适应本公开的洗衣机100,为避免冗余,在此不作详细展开。
为了实现上述实施例,本公开实施例还提出一种洗衣机的脱水控制装置,该控制装置可实现上述任一实施例的控制方法。图11是根据本公开一个实施例的洗衣机的脱水控制装置的结构示意图。如图11所示,本公开提出的洗衣机的脱水控制装置200包括第一确定模块22、第二确定模块24和第一控制模块26。第一确定模块22用于确定洗衣机的负载重量值和偏心检测值。第二确定模块24用于在负载重量值小于等于预设负载重量阈值时,确定负载重量值所处的负载重量区间,并根据负载重量值所处的负载重量区间确定偏心保护值。第一控制模块26用于在偏心检测值小于等于偏心保护值时,控制洗衣机执行脱水动作。
根据本公开实施例的洗衣机的脱水控制装置200,能够根据洗衣机的负载重量值确定负载重量区间,并根据负载重量区间确定对应的偏心保护值,进而在偏心检测值不大于偏心保护值时,控制洗衣机进行脱水,防止衣物分布不均匀导致洗衣机在脱水的过程中产生较剧烈的震动和较大的噪音,从而达到延长洗衣机的整机使用寿命和改善用户的产品使用体验的效果。
在本公开的一些实施例中,脱水控制装置200还包括第二控制模块,第二控制模块用于在偏心检测值大于偏心保护值时,控制洗衣机的脱水电机进行转速变化,以便重新进行偏心检测判断。
在本公开的一些实施例中,脱水控制装置200还包括第三确定模块和第三控制模块,第三确定模块用于确定重新进行偏心检测判断的次数,第三控制模块用于在次数大于预设值时,控制洗衣机停机,以便洗衣机重新启动并进行衣物抖散。
在本公开的一些实施例中,第一确定模块22包括称重检测单元和偏心检测单元。称重检测单元用于在洗衣机的脱水电机的转速从第一预设转速上升到第二预设转速的过程中,控制洗衣机进行称重检测,获得负载重量值。偏心检测单元用于控制脱水电机的转速降低至第三预设转速并维持脱水电机以第三预设转速运行时,确定脱水电机在维持第三预设转速运行过程中的转速波动值,并根据转速波动值确定偏心检测值。
在本公开的一些实施例中,第一确定模块22包括控制单元,控制单元用于在脱水电机启动并加速时,控制脱水电机加速至第四预设转速,并维持脱水电机以第四预设转速运行第一预设时间后,控制脱水电机加速至第一预设转速,并维持脱水电机以第一预设转速运行第二预设时间。
在本公开的一些实施例中,第二控制模块还用于控制脱水电机的转速从第三预设转速降低至第五预设转速,并维持脱水电机以第五预设转速运行第三预设时间后,控制脱水电机加速至第六预设转速,并维持脱水电机以第六预设转速运行。
在本公开的一些实施例中,第三预设转速与第六预设转速相等。
需要指出的是,上述对脱水控制方法的实施方式和有益效果的解释说明,也适应本公开的脱水控制装置200,为避免冗余,在此不作详细展开。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的 具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
此外,本公开实施例中所使用的“第一”、“第二”等术语,仅用于描述目的,而不可以理解为指示或者暗示相对重要性,或者隐含指明本实施例中所指示的技术特征数量。由此,本公开实施例中限定有“第一”、“第二”等术语的特征,可以明确或者隐含地表示该实施例中包括至少一个该特征。在本公开的描述中,词语“多个”的含义是至少两个或者两个及以上,例如两个、三个、四个等,除非实施例中另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (25)

  1. 洗衣机的脱水控制方法,包括:
    确定所述洗衣机的负载重量值和偏心检测值;
    在所述负载重量值小于等于预设负载重量阈值时,确定所述负载重量值所处的负载重量区间,并根据所述负载重量值所处的负载重量区间确定偏心保护值;
    在所述偏心检测值小于等于所述偏心保护值时,控制所述洗衣机执行脱水动作。
  2. 根据权利要求1所述的方法,其中,在所述根据所述负载重量值所处的负载重量区间确定偏心保护值之后,所述方法还包括:
    在所述偏心检测值大于所述偏心保护值时,控制所述洗衣机的脱水电机进行转速变化,以便重新进行偏心检测判断。
  3. 根据权利要求2所述的方法,其中,在控制所述脱水电机进行转速变化之前,所述方法还包括:
    确定重新进行偏心检测判断的次数;
    在所述次数大于预设值时,控制所述洗衣机停机,以便所述洗衣机重新启动并进行衣物抖散。
  4. 根据权利要求1-3中任一项所述的方法,其中,确定所述洗衣机的负载重量值和偏心检测值,包括:
    在所述洗衣机的脱水电机的转速从第一预设转速上升到第二预设转速的过程中,控制所述洗衣机进行称重检测,获得所述负载重量值;
    控制所述脱水电机的转速降低至第三预设转速并维持所述脱水电机以所述第三预设转速运行时,确定所述脱水电机在维持所述第三预设转速运行过程中的转速波动值,并根据所述转速波动值确定所述偏心检测值。
  5. 根据权利要求4所述的方法,其中,在所述洗衣机的脱水电机的转速从第一预设转速上升到第二预设转速之前,所述方法还包括:
    在所述脱水电机启动并加速时,控制所述脱水电机加速至第四预设转速,并维持所述脱水电机以所述第四预设转速运行第一预设时间后,控制所述脱水电机加速至所述第一预设转速,并维持所述脱水电机以所述第一预设转速运行第二预设时间。
  6. 根据权利要求4或5所述的方法,其中,在所述偏心检测值大于所述偏心保护值时,控制所述洗衣机的脱水电机进行转速变化,包括:
    控制所述脱水电机的转速从所述第三预设转速降低至第五预设转速,并维持所述脱水电机以所述第五预设转速运行第三预设时间后,控制所述脱水电机加速至第六预设转速,并维持所述脱水电机以所述第六预设转速运行。
  7. 根据权利要求6所述的方法,其中,所述第三预设转速与所述第六预设转速相等。
  8. 根据权利要求1所述的方法,其中,还包括:
    在脱水电机启动并加速时,确定所述洗衣机的初始负载重量值,并根据所述初始负载重量值确定加速度曲线和第一偏心值;
    根据所述加速度曲线对所述脱水电机进行控制,以进行衣物抖散,并确定所述洗衣机的第一检测偏心值;
    在所述第一检测偏心值小于等于所述第一偏心值时,控制所述洗衣机进行称重检测,获得负载称重值,并根据所述负载称重值确定第二偏心值;
    确定所述洗衣机的第二检测偏心值,并在所述第二检测偏心值小于等于所述第二偏心值时,控制所述脱水电机以使所述洗衣机进行脱水。
  9. 根据权利要求8所述的方法,其中,确定所述洗衣机的初始负载重量值,包括:
    确定所述脱水电机加速过程中的平均功率,根据所述平均功率确定所述初始负载重量值。
  10. 根据权利要求8或9所述的方法,其中,确定所述洗衣机的第一检测偏心值,包括:
    在所述脱水电机进入匀速段时,确定所述脱水电机的转速波动值,并根据所述转速波动值确定所述第一检测偏心值。
  11. 根据权利要求8-10中任一项所述的方法,其中,在所述第一检测偏心值大于所述第一偏心值时,控制所述洗衣机停机,并返回控制所述脱水电机重新启动并加速,以便重新确定所述第一检测偏心值。
  12. 根据权利要求8-11中任一项所述的方法,其中,根据所述负载称重值确定第二偏心值,包括:
    在所述负载称重值小于等于预设负载重量阈值时,确定所述负载称重值所处的负载重量区间;
    根据所述负载称重值所处的负载重量区间确定所述第二偏心值。
  13. 根据权利要求12所述的方法,其中,在所述负载称重值大于预设负载重量阈值时,控制所述洗衣机停机,并返回控制所述脱水电机重新启动并加速,以便重新获得所述负载称重值。
  14. 根据权利要求8-13中任一项所述的方法,其中,确定所述洗衣机的第二检测偏心值,包括:
    在获得所述负载称重值后,控制所述脱水电机的转速降低至预设转速并维持所述脱水电机以所述预设转速运行,并根据所述脱水电机的转速波动值确定所述第二检测偏心值。
  15. 根据权利要求8-14中任一项所述的方法,其中,在所述第二检测偏心值大于所述第二偏心值时,控制所述洗衣机停机,并根据所述负载称重值重新确定加速度曲线和第一偏心值,直至重新确定所述第二检测偏心值小于等于所述第二偏心值。
  16. 根据权利要求1所述的方法,其中,还包括:
    构建所述洗衣机的质量偏心分布平面,并根据等均载线和等偏心线将所述质量偏心分布平面划分为多个矩形区域;
    获取所述洗衣机的脱水电机在匀速段的第一转速波动值和在匀加速段的第一电流积分值;
    根据所述第一转速波动值和所述第一电流积分值,从多个矩形区域中确定待检测矩形区域;
    根据所述第一转速波动值和所述第一电流积分值确定所述待检测矩形区域的等转速波动线和等电流积分线,并根据所述等转速波动线和等电流积分线进行负载偏心检测。
  17. 根据权利要求16所述的方法,其中,根据所述等转速波动线和等电流积分线进行负载偏心检测,包括:
    确定所述等转速波动线与所述等电流积分线之间的第一交点坐标;
    根据所述第一交点坐标确定所述洗衣机的负载偏心值。
  18. 根据权利要求17所述的方法,其中,确定所述等转速波动线与所述等电流积分线之间的第一交点坐标,包括:
    确定所述等转速波动线和所述等电流积分线分别与所述待检测矩形区域的四个交点坐标;
    根据所述四个交点坐标计算所述第一交点坐标。
  19. 根据权利要求18所述的方法,其中,确定所述等转速波动线和所述等电流积分线分别与所述待检测矩形区域的四个交点坐标,包括:
    确定所述待检测矩形区域的四个顶点坐标;
    根据所述第一转速波动值、所述第一电流积分值、所述四个顶点坐标以及所述四个顶点坐标分别对应的第二转速波动值和第二电流积分值计算所述四个交点坐标。
  20. 根据权利要求19所述的方法,其中,根据以下公式计算所述四个交点坐标:
    sf=k1x+b1,j=k2y+b2,其中,sf为转速波动值,x为每个点的x轴分量,j为电流积分值,y为每个点的y轴分量,k1和k2为系数,b1和b2为截距。
  21. 根据权利要求18-20中任一项所述的方法,其中,根据以下公式计算所述第一交点坐标:
    其中,x为第一交点的x轴分量,y为第一交点的y轴分量,x1、x2、x3和x4为所述等转速波动线和所述等电流积分线分别与所述待检测矩形区域的四个交点的x轴分量,y1、y2、y3和y4为所述等转速波动线和所述等电流积分线分别与所述待检测矩形区域的四个交点的y轴分量。
  22. 根据权利要求16-21中任一项所述的方法,其中,在确定所述待检测矩形区域的等转速波动线和等电流积分线之后,所述方法还包括:
    根据所述等转速波动线和等电流积分线进行负载重量检测。
  23. 计算机可读存储介质,其上存储有洗衣机的脱水控制程序,该洗衣机的脱水控制程序被处理器执行时实现权利要求1-22中任一项所述的洗衣机的脱水控制方法。
  24. 洗衣机,包括存储器、处理器及存储在存储器上并可在处理器上运行的洗衣机的脱水控制程序,所述处理器执行所述洗衣机的脱水控制程序时,实现权利要求1-22中任一项所述的洗衣机的脱水控制方法。
  25. 洗衣机的脱水控制装置,包括:
    第一确定模块,用于确定所述洗衣机的负载重量值和偏心检测值;
    第二确定模块,用于在所述负载重量值小于等于预设负载重量阈值时,确定所述负载重量值所处的负载重量区间,并根据所述负载重量值所处的负载重量区间确定偏心保护值;
    第一控制模块,用于在所述偏心检测值小于等于所述偏心保护值时,控制所述洗衣机执行脱水动作。
PCT/CN2023/075981 2022-03-03 2023-02-14 洗衣机的脱水控制方法、装置、洗衣机及存储介质 WO2023165328A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210204851.2 2022-03-03
CN202210203741.4 2022-03-03
CN202210203742.9 2022-03-03
CN202210204851.2A CN114541090B (zh) 2022-03-03 2022-03-03 洗衣机的负载偏心检测方法、装置、洗衣机及介质
CN202210203742.9A CN114541085A (zh) 2022-03-03 2022-03-03 洗衣机的脱水控制方法、装置、洗衣机及存储介质
CN202210203741.4A CN114541084B (zh) 2022-03-03 2022-03-03 洗衣机的脱水控制方法、装置、洗衣机及介质

Publications (1)

Publication Number Publication Date
WO2023165328A1 true WO2023165328A1 (zh) 2023-09-07

Family

ID=87882892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075981 WO2023165328A1 (zh) 2022-03-03 2023-02-14 洗衣机的脱水控制方法、装置、洗衣机及存储介质

Country Status (1)

Country Link
WO (1) WO2023165328A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120117735A1 (en) * 2010-11-16 2012-05-17 Bsh Home Appliances Corporation System for and method of detecting imbalance of a laundry machine
CN107949671A (zh) * 2016-05-31 2018-04-20 Lg电子株式会社 衣物处理设备的控制方法
CN109468800A (zh) * 2018-12-11 2019-03-15 佛山市顺德海尔电器有限公司 洗涤设备的脱水转速控制方法
CN113005714A (zh) * 2021-02-24 2021-06-22 海信(山东)冰箱有限公司 滚筒洗衣机的脱水控制方法、介质及滚筒洗衣机
CN114541090A (zh) * 2022-03-03 2022-05-27 广东威灵电机制造有限公司 洗衣机的负载偏心检测方法、装置、洗衣机及介质
CN114541085A (zh) * 2022-03-03 2022-05-27 广东威灵电机制造有限公司 洗衣机的脱水控制方法、装置、洗衣机及存储介质
CN114541084A (zh) * 2022-03-03 2022-05-27 广东威灵电机制造有限公司 洗衣机的脱水控制方法、装置、洗衣机及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120117735A1 (en) * 2010-11-16 2012-05-17 Bsh Home Appliances Corporation System for and method of detecting imbalance of a laundry machine
CN107949671A (zh) * 2016-05-31 2018-04-20 Lg电子株式会社 衣物处理设备的控制方法
CN109468800A (zh) * 2018-12-11 2019-03-15 佛山市顺德海尔电器有限公司 洗涤设备的脱水转速控制方法
CN113005714A (zh) * 2021-02-24 2021-06-22 海信(山东)冰箱有限公司 滚筒洗衣机的脱水控制方法、介质及滚筒洗衣机
CN114541090A (zh) * 2022-03-03 2022-05-27 广东威灵电机制造有限公司 洗衣机的负载偏心检测方法、装置、洗衣机及介质
CN114541085A (zh) * 2022-03-03 2022-05-27 广东威灵电机制造有限公司 洗衣机的脱水控制方法、装置、洗衣机及存储介质
CN114541084A (zh) * 2022-03-03 2022-05-27 广东威灵电机制造有限公司 洗衣机的脱水控制方法、装置、洗衣机及介质

Similar Documents

Publication Publication Date Title
KR102405502B1 (ko) 의류처리장치의 운행제어방법, 시스템, 의류처리장치 및 저장매체
CN106436172B (zh) 洗衣机及其的不平衡检测方法和装置
KR102652592B1 (ko) 세탁기 및 세탁기의 제어방법
US11149372B2 (en) Washing machine
JP2002530169A (ja) 洗濯槽のアンバランスを検出する方法及び装置
JP2018512250A (ja) 洗濯機の制御方法及び洗濯機
CN107099973B (zh) 洗衣机桶体的不平衡检测方法、洗衣机及存储介质
CN105821621A (zh) 一种洗衣机脱水前的衣物自动分散方法和系统
KR20200095997A (ko) 세탁기 및 세탁기의 제어방법
MX2010010369A (es) Control de vibracion de dispositivo de lavado de ropa.
WO2023165328A1 (zh) 洗衣机的脱水控制方法、装置、洗衣机及存储介质
KR20050012524A (ko) 드럼 세탁기의 탈수 제어 방법
KR102604224B1 (ko) 세탁기 제어방법
CN114541090B (zh) 洗衣机的负载偏心检测方法、装置、洗衣机及介质
CN106400391A (zh) 一种脱水平衡调节方法、装置及洗衣机
CN107059335A (zh) 洗衣机桶体的不平衡检测方法、洗衣机及存储介质
CN114541085A (zh) 洗衣机的脱水控制方法、装置、洗衣机及存储介质
JP2018520814A (ja) ドラム式洗濯機、そのアンバランス検出方法及び装置
CN113235267A (zh) 一种洗衣机脱水控制方法、装置及洗衣机
CN107099972A (zh) 波轮洗衣机的不平衡检测方法、波轮洗衣机及存储介质
CN114541084B (zh) 洗衣机的脱水控制方法、装置、洗衣机及介质
CN110016784B (zh) 洗衣机的控制方法及装置
CN112095286A (zh) 衣物处理装置及其运行控制方法、系统、及存储介质
WO2014186992A1 (zh) 串激电机滚筒洗衣机对衣物重量进行判断的方法
CN111118820A (zh) 一种滚筒洗衣机偏心检测方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762729

Country of ref document: EP

Kind code of ref document: A1