WO2023163208A1 - 保圧装置、射出装置および樹脂材料の射出方法 - Google Patents

保圧装置、射出装置および樹脂材料の射出方法 Download PDF

Info

Publication number
WO2023163208A1
WO2023163208A1 PCT/JP2023/007274 JP2023007274W WO2023163208A1 WO 2023163208 A1 WO2023163208 A1 WO 2023163208A1 JP 2023007274 W JP2023007274 W JP 2023007274W WO 2023163208 A1 WO2023163208 A1 WO 2023163208A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
holding
plunger
injection
passage
Prior art date
Application number
PCT/JP2023/007274
Other languages
English (en)
French (fr)
Inventor
浩 堀篭
Original Assignee
日精エー・エス・ビー機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日精エー・エス・ビー機械株式会社 filed Critical 日精エー・エス・ビー機械株式会社
Publication of WO2023163208A1 publication Critical patent/WO2023163208A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/53Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to a pressure holding device, an injection device, and a resin material injection method.
  • an injection apparatus for injection-molding a resin material a process of measuring the resin material, a process of injecting and filling the resin material into a mold, and a holding pressure process are successively performed in sequence.
  • an injection apparatus provided with a pressure holding device having a plunger that advances and retreats independently of the injection screw (see, for example, Patent Documents 1 to 4).
  • the molding cycle of the injection-molded product can be shortened by advancing the plunger of the pressure-holding device to hold the pressure of the injection-molded product while performing the metering process with the injection screw.
  • the pressure holding device stops pressurizing the resin, retracts the plunger, and depressurizes the resin (depressurization/release). If the pressure release of the resin is insufficient, the nozzle clogs in the hot runner, and stringiness (gate Problems such as defective molding caused by insufficient solidification of the part may occur.
  • the retraction amount of the plunger of the pressure holding device at the time of depressurization fluctuates greatly according to the internal volume of the resin passage of the hot runner.
  • the internal volume of the hot runner resin passage varies depending on the gate structure, such as the valve gate type and the open gate type, and the specifications of the resin passage according to the production volume of the injection molded product.
  • the internal volume of the pressure holding passage is increased as described above in a pressure holding device that fills the pressure holding passage with resin by retracting the plunger in a free state during injection, the amount of injection and filling of the resin in the pressure holding device is wasted. , and the effect of shortening the molding cycle may decrease. Furthermore, increasing the internal volume of the pressure holding passage also increases the size of the pressure holding device, which can lead to an increase in device cost.
  • the present invention has been made in view of such problems, and while maintaining the effect of shortening the molding cycle and maintaining the quality of injection molded products, it is possible to appropriately perform pressure release after holding pressure for various molds. It is an object of the present invention to provide a pressure holding device capable of
  • the pressure retention device includes a pressure retention plunger having a first engagement member fixed to its outer periphery, which advances and retreats in a pressure retention passage, a pressure retention piston which drives the pressure retention plunger, and a stopper member which regulates the amount of retraction of the pressure retention plunger. , provided.
  • the stopper member has a second engagement member that engages with the first engagement member, and a drive member that advances and retracts the second engagement member in a direction that intersects the moving direction of the holding pressure plunger.
  • the second engaging member restricts the retraction amount of the pressure holding plunger at the first position where it engages with the first engaging member.
  • the second engaging member moves from the first position to the retracted second position to release the restriction on the retraction amount of the pressure holding plunger.
  • a pressure holding device that can appropriately perform depressurization after holding pressure for various molds while maintaining the effect of shortening the molding cycle and the quality of injection-molded products.
  • FIG. 4 is a diagram showing a state at the start of injection in the injection device of the present embodiment;
  • FIG. 4 is a diagram showing a state before starting pressure holding in the injection device of the present embodiment;
  • It is a figure which shows the state of depressurization in the injection apparatus of this embodiment.
  • It is a figure which shows the resin discharge state of the pressure holding path in the injection apparatus of this embodiment.
  • It is a figure which shows the retracted state of the stopper member in a pressure holding
  • It is a figure which shows the molding flow in the injection molding apparatus containing the injection apparatus of this embodiment.
  • 1 to 4 show an example of an injection device 1 having a pressure holding device 3 of this embodiment.
  • 5 to 7 show an example of the pressure holding device 3 of this embodiment.
  • the injection device 1 of the present embodiment is applied, for example, to supply a resin material to a mold of an injection molding device that manufactures bottomed cylindrical resin preforms.
  • the above preform is applied, for example, to blow molding of a resin container.
  • the injection device 1 is a hot parison method (one-stage method) in which the resin container is blow-molded by utilizing the heat (internal heat) at the time of injection molding without cooling the preform to room temperature. (also referred to as) blow molding machine.
  • a configuration in which a hot runner is provided between the injection device 1 and the mold is preferable.
  • an injection nozzle (described later) abuts a sprue (resin introduction port) 51 of the hot runner 50 , and a cavity of a mold (a mold for injection molding) 60 is injected through a resin path in the hot runner 50 .
  • the configuration is such that a molten resin material is introduced into (the molding space).
  • the injection device 1 includes an injection cylinder 11, an injection screw 12, an injection nozzle 13, a drive cylinder (drive actuator) 14, a rotating mechanism (not shown), and a shutoff device 2. and a pressure retaining device 3 .
  • a hopper for supplying the resin material, a driving device for rotating the injection screw 12, and the like are provided on the rear side of the injection device 1 (opposite side of the injection nozzle).
  • FIGS. 1 to 4 are overhead views (top views) of an injection device 1 mounted on a machine base of various molding machines.
  • the pressure holding device 3 is arranged on the upper side of the injection cylinder 11, the pressure holding device 3 rises directly in front of the mold, and workability such as molding deteriorates. Therefore, it is preferable that the pressure holding device 3 is arranged substantially horizontally on the lateral side (side surface side) of the injection cylinder 11 . Similarly, the blocking device 2 is also preferably arranged substantially horizontally on the lateral side of the injection cylinder 11 .
  • An injection screw 12 is rotatably supported (held) inside the injection cylinder 11 .
  • the injection screw 12 can move forward and backward with respect to the injection cylinder 11 by the operation of the driving cylinder 14 .
  • a hopper (not shown) for supplying the resin material is connected to the injection cylinder 11, and the resin material is supplied to the inside of the injection cylinder 11 from the hopper.
  • the injection cylinder 11 is set to a temperature higher than the melting point of the resin material in order to melt the solid resin material contained between the inner wall of the injection cylinder 11 and the groove of the injection screw 12 .
  • a screw head 12a is provided at the tip of the injection screw 12.
  • the injection screw 12 rotates to heat the solid resin material inside the injection cylinder 11 to melt it (plasticize the resin material).
  • the injection screw 12 retreats while filling (charging) the molten resin material in front of the screw head 12a.
  • the drive cylinder 14 advances the injection screw 12 in a non-rotating state, thereby injecting the molten resin material.
  • An injection cylinder head 15 is provided at the tip of the injection cylinder 11 (the side facing the hot runner 50).
  • a resin passage 4 is formed inside the injection cylinder head 15 , and an injection nozzle 13 is connected to the tip of the injection cylinder head 15 .
  • the injection nozzle 13 is connected to the sprue 51 of the hot runner 50 .
  • the resin path 4 communicates with a cavity (molding space) of a mold 60 for injection molding via a resin path (runner) inside the hot runner 50 .
  • a blocking device 2 is arranged between the injection screw 12 of the injection cylinder head 15 and the injection nozzle 13 .
  • a holding pressure passage 5 communicating with the resin passage 4 is branched.
  • the pressure holding passage 5 is formed so as to be inclined rearward (to the right in the figure) with respect to the resin passage 4 (or the front of the hot runner 50), and the end opposite to the resin passage 4 is connected to the pressure holding device 3. It is connected.
  • the pressure of the resin filled in the cavity of the mold 60 can be retained by driving the pressure retaining device 3 through the resin path of the hot runner 50 and the resin in the pressure retaining paths 5 and 4 .
  • the blocking device 2 includes a blocking plunger 21 that advances and retreats in a direction orthogonal to the resin passage 4 (vertical direction in the drawing) to block the resin passage 4, and a blocking cylinder ( It has a shut-off actuator) 22 .
  • the shut-off cylinder 22 is connected to the injection cylinder 11 (specifically, the injection cylinder head 15), and the piston rod 22a connected to the shut-off plunger 21 can advance and retreat inside the cylinder barrel (cylinder tube) 22b via the piston 22c. supported by
  • the piston rod 22a moves back and forth within the blocking cylinder 22.
  • the blocking plunger 21 connected to the piston rod 22a advances and retreats with respect to the resin passage 4.
  • the shut-off plunger 21 advances toward the resin passage 4, thereby closing the resin passage 4 on the front side (hot runner 50 side) of the screw head 12a and disconnecting the injection nozzle 13. blocked.
  • the shutoff plunger 21 retreats from the resin passage 4 , so that the resin passage 4 on the front side of the screw head 12 a is connected to the injection nozzle 13 .
  • the tip of the pressure holding device 3 is connected between the injection nozzle 13 of the injection cylinder head 15 and the blocking device 2 .
  • the pressure holding device 3 includes a pressure holding device tip member (pressure holding path forming member) 31 connected to the injection cylinder 11 (specifically, the injection cylinder head 15), and a pressure holding device It has a plunger (holding pressure plunger) 32 and a holding pressure cylinder (holding pressure actuator, holding pressure cylinder) 33 .
  • the pressure holding plunger 32 has a front end portion 32a that advances and retreats along the cylindrical pressure holding device front end portion 31 and the pressure holding passage 5 of the cylinder head 15 in the axial direction (horizontal direction in FIGS. 5 and 6).
  • the holding pressure cylinder 33 is fixed to the first holding member 39a, and the pressure holding device tip member 31 is fixed to the second holding member 39b.
  • the first holding member 39 a and the second holding member 39 b are connected via a plurality of struts 34 . Note that the pressure holding device tip member 31 and the second holding member 39b may be integrated.
  • the holding pressure cylinder 33 is connected to the tip portion 31 of the holding pressure device via a plurality of columns 34 extending in the axial direction. Inside the pressure holding cylinder 33, a piston rod 33a connected (coupled) to the end side of the pressure holding plunger 32 is axially supported so as to move back and forth via a piston 33c.
  • a pressing force is applied to the piston rod 33a of the pressure holding plunger 32, and a pressure oil discharge path to the cylinder barrel 33b of the pressure holding piston 33 is opened. , the pressing force of the holding pressure cylinder 33 to the holding pressure plunger 32 is released (released).
  • the holding pressure cylinder 33 applies a pressing force until the holding pressure plunger 32 moves to the forward end of the holding pressure passage 5 , the tip portion 32 a of the holding pressure plunger 32 protrudes into the resin passage 4 . Further, when the pressing force of the pressure holding cylinder 33 is released, the resin material from the resin passage 4 pushes the tip portion 32a of the pressure holding plunger 32 and the pressure holding plunger 32 retreats. As a result, the resin material is introduced from the resin passage 4 into the pressure holding passage 5, and the pressure holding passage 5 is filled (charged) with the resin material.
  • the portion of the pressure holding device 3 where the column 34 is arranged constitutes a plunger exposed portion 3a where the pressure holding plunger 32 is exposed to the outside.
  • the plunger exposed portion 3a of the pressure holding device 3 is provided with a potentiometer (linear potentiometer, linear sensor, position detecting device for the pressure holding plunger 32) 35, a stopper member 40, and a convex member (flange-shaped member) 47. ing.
  • the potentiometer 35 has a shaft 35a, a sensor body 35b, and a position detection plate 35c, and detects the axial position of the holding pressure plunger 32.
  • a shaft 35 a of the potentiometer 35 is mounted parallel to the holding pressure plunger 32 and the strut 34 .
  • the position detection plate 35c is fixed to the holding pressure plunger 32 and has the shaft 35a inserted therethrough. As the holding pressure plunger 32 moves, the position detection plate 35c moves along the shaft 35a.
  • the sensor main body 35b detects the position of the position detection plate 35c on the shaft 35a and outputs a signal indicating the axial position of the holding pressure plunger 32. As shown in FIG.
  • the stopper member 40 is attached to a predetermined position of the plunger exposed portion 3a via a frame 37 fixed to the pressure holding cylinder 33 (specifically, the first holding member 39a).
  • the stopper member 40 has an air cylinder 41 , a connecting member 42 , a pair of rod members 43 and a stopper body 44 .
  • the air cylinder 41 is sandwiched between a first mounting plate 45 fixed to the pedestal 37 and a second mounting plate 46 .
  • a rod 41 a of the air cylinder 41 passes through the second mounting plate 46 and extends away from the holding pressure plunger 32 .
  • the tip of the rod 41 a of the air cylinder 41 and one end of each rod member 43 are connected by a connecting member 42 extending parallel to the second mounting plate 46 .
  • Each rod member 43 penetrates the first mounting plate 45 and the second mounting plate 46 and extends in a direction intersecting (or perpendicular to) the extending direction of the holding pressure plunger 32 .
  • a stopper body 44 extending parallel to the first mounting plate 45 is attached to the other end of each rod member 43 so as to face the holding pressure plunger 32 .
  • the stopper body 44 is an example of a second engagement member, and can move between a first position protruded toward the pressure holding plunger 32 and a second position retreated from the pressure holding plunger 32 by expansion and contraction of the rod 41 a of the air cylinder 41 . can be switched.
  • the convex member 47 is an example of a first engaging member, and is provided on the holding pressure plunger 32 or the piston rod 33a. Preferably, the convex member 47 is provided at the connection position between the pressure holding plunger 32 and the piston rod 33a (a position substantially on the distal end side of the pressure holding plunger 32).
  • the cross-sectional area of the convex member 47 is formed larger than the cross-sectional area of the holding pressure plunger 32 and the piston rod 33a. Therefore, the convex member 47 can interfere with the stopper body 44 that has moved (protruded) toward the holding pressure plunger 32 side.
  • the position detection plate 35c is preferably connected to a portion of the convex member 47 that does not interfere with the stopper member 44 (for example, a position opposite to the position where the stopper member 40 is provided).
  • the connecting member 42 moves away from the second mounting plate 46 (downward in the drawing). Then, the stopper body 44 integrated with the connecting member 42 via the rod member 43 also moves away from the pressure maintaining plunger 32 , and the stopper body 44 moves to the second position where it is retracted from the pressure maintaining plunger 32 . As shown in FIGS. 5 and 7, the stopper body 44 at the second position is located farther from the holding pressure plunger 32 than the end of the convex member 47 and is fixed to the holding pressure plunger 32 or the piston rod 33a. It allows the axial movement of the convex member 47 which is in contact with.
  • the connecting member 42 moves toward the second mounting plate 46 (upward in the figure).
  • the stopper body 44 integrated with the connecting member 42 via the rod member 43 also moves in the direction approaching the pressure maintaining plunger 32, and the stopper body 44 moves to the first position protruding toward the pressure maintaining plunger 32.
  • the stopper body 44 at the first position is positioned to interfere with the convex member 47 .
  • the stopper body 44 at the first position engages with the convex member 47 when the pressure holding plunger 32 retreats from the forward end, thereby restricting the amount of retreat of the pressure holding plunger 32 .
  • the position of the stopper member 40 in the axial direction of the pressure holding plunger 32 is determined according to the filling amount of the resin material in the pressure holding passage 5 .
  • FIG. FIG. 1 shows the state of the injection device 1 at the start of injection.
  • the breaking device 2 in FIG. 1 is in an open state in which the breaking plunger 21 is retracted from the resin passage 4 .
  • the pressing force of the pressure holding piston 33 is released, and the pressure holding plunger 32 is in a state in which it can move freely in the axial direction. Therefore, the tip portion 32a of the holding pressure plunger 32 can be retracted from the forward end position.
  • the position detection plate 35c of the pressure holding plunger 32 is positioned closer to the pressure holding path 5 than the position of the stopper member 40. It is in the protruding first position.
  • securing of the necessary molten resin material (weighing process, charging) is completed in one injection operation.
  • the driving cylinder 14 advances the injection screw 12 in a non-rotating state, thereby injecting the molten resin material from the injection nozzle 13 into the mold 60 through the hot runner 50 (injection process).
  • the resin in the resin passage 4 flows into the pressure maintaining passage 5, the pressure maintaining plunger 32 is pushed back (that is, pushed toward the pressure maintaining cylinder 33), and the pressure maintaining resin material is filled in the pressure maintaining passage 5.
  • the amount (volume, weight) of the pressure-holding resin material weighed (filled) as described above is determined by the amount of the resin material (thermoplastic resin) introduced into the mold 60 during the secondary pressure-holding step (described later). It corresponds at least to the amount it cools and shrinks in contact with the mold 60 .
  • the pressure holding pressure plunger 32 Since the pressure holding plunger 32 is in a free state, the pressure holding pressure plunger 32 retreats in the pressure holding passage 5 due to the pressing force of the resin flowing from the resin passage 4. However, as shown in FIG. By engaging with the stopper body 44 at the position, the holding pressure plunger 32 stops and does not retract any further. Thereby, the pressure keeping device 3 can fill the pressure keeping passage 5 with an appropriate amount of resin material for keeping pressure.
  • the driving position (pressurized state) of the driving cylinder 14 is maintained for a predetermined time.
  • the resin material of the resin passage 4 is introduced into the cavity of the mold 60, and the pressure of the resin material in the cavity is held (primary pressure holding step).
  • the blocking plunger 21 of the blocking device 2 moves forward toward the resin passage 4, and the blocking device 2 is closed.
  • the pressure retention plunger 32 is pressurized by driving the pressure retention cylinder 33 .
  • an appropriate amount of resin for holding pressure is additionally introduced into the cavity, and the pressure of the resin material in the cavity is held (secondary pressure holding). process).
  • the drive cylinder 14 is decompressed and the injection screw 12 rotates and retreats, allowing the resin to be injected next.
  • the material weighing process is started.
  • the internal volume of the pressure holding passage (separated by the resin passage inside the hot runner 50, the pressure holding passage 5, and the cut-off plunger 21) when the resin material for holding pressure (specifically, for secondary pressure holding) is filled is Compared to the total volume of the space of the resin passage 4 on the front side (hot runner 50 side), the internal volume of the pressure holding passage becomes larger during depressurization, and the resin can be sufficiently depressurized.
  • the holding pressure process a high pressure is applied to the molten resin material, so the resin material is introduced into the cavity of the mold 60 in a slightly compressed state (with a slightly reduced volume) compared to the injection process. Therefore, the volume of the resin material increases during depressurization, and the longer the resin path inside the hot runner 50 and the greater the total volume of the resin path, the greater the volume of the resin material during depressurization.
  • the retraction amount of 32 becomes large.
  • the capacity of the resin passage internal volume of the pressure holding passage
  • the total volume of the resin path can be increased during pressure release compared to the injection process, and the amount of movement of the pressure holding plunger 32 can be increased.
  • the subsequent depressurization of the resin material can be sufficiently performed.
  • the blocking plunger 21 of the blocking device 2 retreats from the resin passage 4, and the space on the side of the injection screw 12 and the resin passage 4 are connected again.
  • the holding pressure cylinder 33 applies a pressing force to the holding pressure plunger 32 again, and advances the holding pressure plunger 32 until the tip portion 32 a protrudes into the resin passage 4 .
  • the resin material in the holding pressure passage 5 is discharged to the resin passage 4 .
  • the stopper member 40 of the pressure retaining device 3 switches to the first position state in which the stopper body 44 protrudes with respect to the pressure retaining plunger 32 . As described above, the operation of the injection device 1 for one cycle is completed.
  • FIG. 8 is a diagram showing a molding flow in an injection molding device including the injection device of this embodiment.
  • the mold 60 is closed (S1).
  • the injection device 1 is in the state at the start of injection shown in FIG. 1, and the injection device 1 has completed securing the necessary molten resin material (weighing process, charging) in one injection operation.
  • the injection screw 12 is advanced in a non-rotating state by the driving cylinder 14, and the molten resin material is injected from the injection nozzle 13 into the mold 60 via the hot runner 50.
  • the resin in the resin passage 4 flows into the holding pressure passage 5, the holding pressure plunger 32 is pushed back, and the holding pressure passage 5 is filled with the holding pressure resin material.
  • the convex member 47 engages with the stopper body 44 at the first position to stop the pressure-holding plunger 32, and the pressure-holding passage 5 is filled with an appropriate amount of the pressure-holding resin material.
  • the pressurized state of the drive cylinder 14 is maintained for a predetermined time in the injection device 1, and the cavity of the mold 60 shrinks due to cooling. A volume of resin material is introduced. As a result, pressure is retained in the resin material in the cavity of the mold 60 through the resin path of the hot runner 50 , the resin path 4 and the pressure retention path 5 .
  • the shutoff plunger 21 of the shutoff device 2 advances toward the resin passage 4, and the shutoff device 2 is closed.
  • the pressure holding plunger 32 is pressurized by driving the pressure holding cylinder 33 , the resin material is introduced into the cavity of the mold 60 , and the resin passage of the hot runner 50 , the resin passage 4 and the pressure holding passage 5 are opened.
  • the resin material in the cavity of the mold 60 is pressure-retained through the cavity.
  • the drive cylinder 14 is depressurized and the injection screw 12 rotates and retreats, and the weighing process of the resin material for the next injection is started.
  • the internal pressure release process is performed (S5).
  • the pressing force of the pressure holding cylinder 33 is reduced from that during pressure holding, and the holding pressure plunger 32 of the pressure holding device 3 is retracted.
  • the stopper member 40 of the pressure retaining device 3 is in the second position where the stopper body 44 is retracted with respect to the pressure retaining plunger 32 , and the pressure retaining plunger 32 can be retracted beyond the position of the stopper member 40 .
  • the pressure of the resin material in the resin passage of the hot runner 50, the resin passage 4, and the pressure holding passage 5 is released.
  • the blocking plunger 21 of the blocking device 2 retreats from the resin passage 4, and the space on the side of the injection screw 12 and the resin passage 4 are connected again.
  • the holding pressure cylinder 33 applies a pressing force to the holding pressure plunger 32 again, and advances the holding pressure plunger 32 until the tip portion 32 a protrudes into the resin passage 4 .
  • the stopper member 40 of the pressure retaining device 3 switches to the first position state in which the stopper body 44 protrudes with respect to the pressure retaining plunger 32 .
  • the mold 60 is opened, and the injection-molded product (preform) is carried out.
  • the injection molding machine can manufacture molded products in a continuous cycle.
  • the pressure holding device 3 is fixed (screwed) to the injection cylinder head 15 at a pressure holding device tip member 31 (fixed end) and is supported in a cantilevered state.
  • the weight of the pressure holding device 3 is several tens of kilograms or more, and in the case of a large pressure holding device 3 that can utilize a large amount of resin for holding pressure, the weight may exceed 100 kg. Therefore, if only the structure shown in FIG. 1 is fixed, the pressure holding device 3 may be bent by its own weight, and the free end side (cylinder barrel 33b side) may hang down.
  • a reinforcing member (anti-sagging member) 38 as shown in FIG. 9 may be provided in the pressure holding device 3 (or the injection device 1).
  • the reinforcing member 38 includes a first plate-like member 38a fixed to the first holding member 39a, a second plate-like member 38b fixed to the first holding member 39b, and an injection cylinder head of the injection device 1. 15, a first rod-like member 38d connecting the first plate-like member 38a and the second plate-like member 38b, a second plate-like member 38b and the second plate-like member 38b. and a second rod member 38e connecting the three plate members 38c.
  • a cover member 38f may be provided between the first plate member 38a and the second plate member 38b.
  • Each of the above-described members constituting the reinforcing member 38 is provided above the pressure holding device 3 and the injection cylinder head 15 (the position opposite to the direction in which the free end hangs down, the position in the anti-gravity direction).
  • the reinforcing member 38 extending from the injection nozzle head 15 allows the free end side of the pressure holding device 3 to be stretched and supported in the anti-gravity direction, so that the pressure holding device 3 can be prevented from sagging or bending.
  • the members such as the potentiometer 35 and the reinforcing member 38 are placed on the upper side of the pressure holding device 3, and the stopper member is placed on the lower side. 40 are preferably arranged respectively.
  • the pressure holding device 3 of the above embodiment can be installed, for example, in a molding apparatus shown in FIGS. 10 to 12 below.
  • the molding apparatus described below is merely an example, and the pressure holding apparatus 3 of the above embodiment may be mounted on molding apparatuses other than those shown in FIGS.
  • Fig. 10 shows a configuration example of a one-stage blow molding device.
  • a one-stage type blow molding machine uses the heat (internal heat quantity) inherent in injection molding to blow mold a container without cooling the preform to room temperature.
  • the blow molding apparatus 100 shown in FIG. 10 includes, for example, four molding stations. It has a blow molding section 130 for flow molding the subsequent preform and a take-out section 140 for removing the blow molded container.
  • the four forming stations are arranged at positions rotated by a predetermined angle (for example, 90 degrees) around the transport mechanism 150 .
  • the transport mechanism 150 includes a transfer plate (not shown) that rotates around an axis perpendicular to the paper surface of FIG.
  • the transport mechanism 150 transports the preforms or containers held by the neck molds between the molding stations by moving the transfer plates in the order of the injection molding section 110, the temperature adjustment section 120, the blow molding section 130, and the take-out section 140. .
  • the injection molding section 110 has a cavity mold, a core mold, a neck mold (also collectively referred to as an injection mold), and a hot runner mold. Also, the injection molding unit 110 is connected to the injection device 1 having the pressure holding device 3 of the present embodiment.
  • the pressure holding device 3 supplies a resin material (for example, PET) to the cavity (molding space) of the injection molding die through the hot runner mold to hold the pressure.
  • the resin material is introduced from the injection device 1 into the closed mold, and the preform is injection molded.
  • the preforms manufactured in the injection molding section 110 are conveyed to the temperature adjustment section 120 and subjected to temperature adjustment so as to approach the temperature suitable for the final blow.
  • the temperature-controlled preform is conveyed to the blow molding section 130 in a state of having the inherent heat during injection molding, and is shaped into a container by blow molding using a blow mold.
  • the container after blow molding is conveyed to the take-out section 140 and taken out of the apparatus.
  • Fig. 11 shows a configuration example of a 1.5-stage blow molding apparatus that has both the advantages of the hot parison method and the cold parison method.
  • a container is manufactured by blow-molding a preform that retains heat during injection molding, basically in the same manner as in the hot parison method (one-stage method).
  • the blow molding cycle in the 1.5 stage method is set shorter than the preform injection molding cycle.
  • a plurality of preforms molded in one injection molding cycle are divided into a plurality of blow molding cycles (for example, three times) and blow molded.
  • the blow molding apparatus 200 includes an injection molding section 210 for injection molding a preform, a cooling section 220 for cooling the preform, a heating section 230 for heating the preform after cooling, and a heating section 230 for heating the cooled preform. and a blow molding section 240 for the preform.
  • the blow molding apparatus 200 also includes a continuous transport section 250 that transports the preform carried out from the cooling section 220 to the blow molding section 240 via the heating section 230 .
  • the injection molding section 210 has a cavity mold, a core mold, a neck mold (also collectively referred to as an injection mold), and a hot runner mold. Also, the injection molding unit 210 is connected to the injection device 1 having the pressure holding device 3 of the present embodiment.
  • the pressure holding device 3 supplies a resin material (for example, PET) to the cavity (molding space) of the injection molding die through the hot runner mold to hold the pressure.
  • the resin material is introduced from the injection device 1 into the closed mold, and the preform is injection molded.
  • a preform injection-molded in the injection molding section 210 is supplied from the injection molding section 210 to the cooling section 220 .
  • the cooling section 220 forcibly cools the preform molded by the injection molding section 210 .
  • the preforms are carried out from the cooling section 220 in a state of being cooled to a predetermined temperature, and are continuously conveyed along the conveying line of the continuous conveying section 250 . Also, the preforms conveyed by the continuous conveying section 250 pass through the heating section 230 and are heated by the heating section 230 to an appropriate drawing temperature.
  • the preforms heated by the heating section 230 are transferred from the continuous conveying section 250 to the intermittent conveying section 260 and conveyed to the blow molding section 240 at predetermined intervals.
  • the blow molding unit 240 stretch blow molds a predetermined number of preforms to manufacture a container.
  • the container manufactured by the blow molding section 240 is transported to the take-out position P outside the blow molding section 240 by the intermittent transport section 260 and taken out of the apparatus.
  • FIG. 12 shows a configuration example of a two-stage injection molding apparatus 300 that does not have a blow molding section.
  • the injection molding apparatus 300 includes an injection molding section 310, an extraction section 320, a cooling section 330, and a transport mechanism.
  • the cooling unit 330 includes a cooling pot (not shown) that accommodates the preform and cools the body of the preform from the outside, and a cooling rod (not shown) that is inserted into the hollow part of the body of the preform and cools the body from the inside. not shown).
  • the conveying mechanism has a first holding member 341 that conveys the preform from the injection molding section 310 to the cooling section 330 and a second holding member 342 that conveys the preform from the cooling section 320 to the unloading section 24 .
  • the injection molding section 310 is provided with a cavity mold, a core mold, a neck mold (also collectively referred to as an injection mold), and a hot runner mold. Also, the injection molding unit 310 is connected to the injection device 1 having the pressure holding device 3 of the present embodiment.
  • the pressure holding device 3 supplies a resin material (for example, PET) to the cavity (molding space) of the injection molding die through the hot runner mold to hold the pressure.
  • a resin material for example, PET
  • the preform is injection molded.
  • the released preform is transported to the cooling section 330 in a high temperature state (for example, a state in which the outer surface of the body portion is 100 to 130° C.).
  • the preform is cooled to such an extent that shrinkage deformation such as sink marks does not occur even if the preform is left at room temperature (for example, the outer surface of the body is in a state of 50 to 60° C. or less).
  • the sufficiently cooled preform is conveyed to the unloading section 320 and unloaded from the apparatus.
  • the injection device 1 of this embodiment includes a stopper member 40 that regulates the amount of retraction of the pressure holding plunger 32 in the pressure holding device 3 .
  • the stopper body 44 (second engaging member) of the stopper member 40 holds the pressure at the first position where it engages with the convex member 47 (first engaging member). Regulates the amount of retraction of the plunger 32.
  • the pressure holding passage 5 can be filled with an appropriate amount of resin material for holding pressure.
  • the stopper member 40 suppresses the variation in the filling amount of the resin for holding pressure
  • the injection molding conditions set for the operation of the injection screw 12 (VP switching position of the injected molten resin (speed control and pressure Control switching position), etc.) will function well, avoiding overpacking and variations in filling amount, etc., making it easier to maintain uniform quality of injection-molded products.
  • the stopper body 44 moves from the first position to the retracted second position to release the restriction on the retraction amount of the pressure retention plunger 32 .
  • the internal volume of the pressure maintaining passage when the pressure is released becomes larger than the internal volume of the pressure maintaining passage when the pressure maintaining resin material is filled. Therefore, for example, even for the hot runner 50 having a large resin passage internal volume such as a mold with an open gate type gate structure or a mold with three rows of resin passages, the pressure release of the mold after pressure holding is performed. can be sufficiently performed.
  • the resin material constituting the gate portion at the bottom of the preform and the resin material at the nozzle portion of the hot runner 50 are separated, the resin material at the gate portion is sufficiently solidified, and the preform is properly removed from the mold. can be released from the mold.
  • the solidification of the resin material in the cavity-shaped gate hole (first narrowed portion) communicating with the hot runner 50 is hindered.
  • the gate portion of the bottom portion of the preform is stringy, resulting in molding defects.
  • the resin material remains in an inappropriately solidified state in the nozzle portion (second constricted portion) of the hot runner 50 communicating with the gate hole of the cavity mold 60.
  • the nozzle portion of the hot runner 50 is clogged.
  • the internal volume of the pressure holding passage during depressurization can be increased without increasing the internal volume of the pressure holding passage when the resin material for pressure holding is filled, so the effect of shortening the molding cycle is reduced. Not at all.
  • the first engaging member and the stopper member 40 are provided on the plunger exposure portion 3a of the pressure holding device 3 where the pressure holding plunger 32 is exposed to the outside. Therefore, it is easy to retrofit the first engaging member and the stopper member 40 to the conventional pressure holding device.
  • the stopper body 44 is engaged with the pressure holding plunger 32 and the convex member 47 to regulate the retraction amount of the pressure holding plunger 32 . Therefore, as compared with the structure of the conventional pressure holding device 3, it is possible to suppress an increase in device cost because it is not necessary to attach additional parts to the pressure holding plunger 32.
  • FIG. Furthermore, it is not necessary to increase the size of the pressure holding device 3 (the pressure holding cylinder 33 and the pressure holding plunger 32) just to secure the internal volume of the pressure holding passage at the time of depressurization, and an increase in device cost can be suppressed.
  • injection-molded articles manufactured by applying the injection apparatus of the present invention are not limited to preforms, and the injection apparatus may be applied to manufacture other molded articles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

保圧装置は、保圧プランジャの後退量を規制するストッパー部材を備える。保圧路に樹脂材料を充填するときに、ストッパー部材の第2係合部材は保圧プランジャに固定された第1係合部材と係合する第1位置で保圧プランジャの後退量を規制する。保圧後に金型の圧抜きを行うときに、第2係合部材は第1位置から退避した第2位置に移動して保圧プランジャの後退量の規制を解除する。

Description

保圧装置、射出装置および樹脂材料の射出方法
 本発明は、保圧装置、射出装置および樹脂材料の射出方法に関する。
 従来から、樹脂材料を射出成形する射出装置では、樹脂材料の計量工程、金型への樹脂材料の射出充填工程、保圧工程が連続して順番に行われる。
 また、射出スクリューと独立して進退するプランジャを備えた保圧装置を設けた射出装置も知られている(例えば、特許文献1~4参照)。この種の射出装置では、保圧装置のプランジャを前進させて射出成形品の保圧を行いつつ、射出スクリューで計量工程を実行することで、射出成形品の成形サイクルを短縮できる。
特許第5535595号公報 特許第2928750号公報 特許第3352917号公報 特開2002-240114号公報
 上記の保圧工程が終了すると、保圧装置は樹脂の加圧を停止し、プランジャを後退させて樹脂の圧抜き(減圧・除圧)を実行する。樹脂の圧抜きが不十分である場合、ホットランナーでのノズル詰まりや、成形品のゲート部(ホットランナーからの樹脂が流入する射出キャビティ型のゲート孔に対応する領域)での糸引き(ゲート部が十分に固化してない為に生ずる成形不良)などの不具合が発生しうる。
 圧抜き時における保圧装置のプランジャの後退量は、ホットランナーの樹脂路内容積に応じて大きく変動する。ホットランナーの樹脂路内容積は、バルブゲート式やオープンゲート式などのゲート構造の違いや、射出成形品の生産量に応じた樹脂路の仕様などによって変化する。樹脂路内容積が大きいホットランナーに対して圧抜きを行う場合、プランジャ等の大型化や保圧装置側の保圧路を長くすることで、保圧路内容積を大きくする対策が考えられる。
 しかし、射出時にプランジャを自由状態で後退させて保圧路に樹脂を充填する保圧装置で上記のように保圧路内容積を大きくすると、保圧装置の樹脂の射出量や充填量が無駄に増加し、成形サイクルの短縮効果が低下しうる。さらに、保圧路内容積を大きくすると保圧装置も大型化するため、装置コストの増加を招きうる。
 また、保圧のために保圧路に充填される樹脂量が不正確であると、射出装置に対して設定された成形条件が上手く機能せず、製造された射出成形品の品質が低下しうる。
 そこで、本発明はこのような課題に鑑みてなされたものであり、成形サイクルの短縮効果や射出成形品の品質を保ちつつ、多様な金型に対して保圧後の圧抜きを適正に実行できる保圧装置を提供することを目的とする。
 本発明の一態様は、射出装置の樹脂路から分岐する保圧路に取り付けられ、金型への樹脂材料の射出後に樹脂路および保圧路を保圧する保圧装置である。保圧装置は、外周に第1係合部材が固定され、保圧路を進退する保圧プランジャと、保圧プランジャを駆動する保圧ピストンと、保圧プランジャの後退量を規制するストッパー部材と、を備える。ストッパー部材は、第1係合部材と係合する第2係合部材と、保圧プランジャの移動方向と交差する方向に第2係合部材を進退させる駆動部材と、を有する。保圧路に樹脂材料を充填するときに、第2係合部材は第1係合部材と係合する第1位置で保圧プランジャの後退量を規制する。保圧後に金型の圧抜きを行うときに、第2係合部材は第1位置から退避した第2位置に移動して保圧プランジャの後退量の規制を解除する。
 本発明の一態様によれば、成形サイクルの短縮効果や射出成形品の品質を保ちつつ、多様な金型に対して保圧後の圧抜きを適正に実行できる保圧装置を提供できる。
本実施形態の射出装置における射出開始時の状態を示す図である。 本実施形態の射出装置における保圧開始前の状態を示す図である。 本実施形態の射出装置における圧抜きの状態を示す図である。 本実施形態の射出装置における保圧路の樹脂排出状態を示す図である。 保圧装置におけるストッパー部材の退避状態を示す図である。 保圧装置におけるストッパー部材の突出状態を示す図である。 ストッパー部材の構成例を示す図である。 本実施形態の射出装置を含む射出成形装置での成形フローを示す図である。 保圧装置の補強機構を示す図である。 保圧装置が搭載される成形装置の一例を示す図である。 保圧装置が搭載される成形装置の一例を示す図である。 保圧装置が搭載される成形装置の一例を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。
 実施形態では説明を分かり易くするため、本発明の主要部以外の構造や要素については、簡略化または省略して説明する。また、図面において、同じ要素には同じ符号を付す。なお、図面に示す各要素の形状、寸法などは模式的に示したもので、実際の形状、寸法などを示すものではない。
 図1から図4は、本実施形態の保圧装置3を有する射出装置1の一例を示している。図5から図7は、本実施形態の保圧装置3の一例を示している。
 本実施形態の射出装置1は、例えば、有底筒状の樹脂製のプリフォームを製造する射出成形装置の金型に樹脂材料を供給するために適用される。上記のプリフォームは、例えば樹脂製容器のブロー成形に適用される。特に限定するものではないが、射出装置1は、プリフォームを室温まで冷却せずに射出成形時の保有熱(内部熱量)を活用して樹脂製容器をブロー成形するホットパリソン方式(1ステージ方式とも称する)のブロー成形装置に実装されてもよい。
 射出装置1と金型の間には、ホットランナーが設けられている構成が好ましい。また、射出装置1は、射出ノズル(後述)がホットランナー50のスプルー(樹脂導入口)51に当接し、ホットランナー50内の樹脂路を介して金型(射出成形用金型)60のキャビティ(成形空間)に溶融した樹脂材料を導入する構成であることが好ましい。なお、図2~図6および図9ではホットランナー50や金型60を省略しているが、これらの図においてもホットランナー50や金型60は図1と同様の配置で設けられている。
 図1から図4に示すように、射出装置1は、射出シリンダー11と、射出スクリュー12と、射出ノズル13と、駆動シリンダー(駆動アクチュエーター)14と、回転機構(不図示)と、遮断装置2と、保圧装置3とを有している。なお、いずれも図示は省略するが、射出装置1の後方側(射出ノズルの反対側)には、樹脂材料を供給するホッパや、射出スクリュー12を回転させる駆動装置等が設けられている。なお、特に限定するものではないが、図1から図4は、各種成形機の機台に搭載された射出装置1を、上方より俯瞰した図(上面図)である。
 なお、保圧装置3を射出シリンダー11の上側に配置させると、金型の真正面に保圧装置3が立ち上がる位置関係になり、成形等の作業性が悪くなる。よって、保圧装置3は射出シリンダー11の横側(側面側)に略水平状に配置させることが好ましい。同様に、遮断装置2も射出シリンダー11の横側に略水平状に配置させることが好ましい。
 射出シリンダー11の内部には、射出スクリュー12が回転可能に支持(保持)されている。射出スクリュー12は、駆動シリンダー14の動作により射出シリンダー11に対して進退可能である。また、射出シリンダー11には樹脂材料を供給するホッパ(不図示)が接続され、射出シリンダー11の内部にはホッパから樹脂材料が供給される。射出シリンダー11は、射出シリンダー11の内壁と射出スクリュー12の溝との間に収容した固体状態の樹脂材料を溶融させるため、樹脂材料の融点以上の高温に設定される。
 射出スクリュー12の先端にはスクリューヘッド12aが設けられている。射出スクリュー12は、回転により射出シリンダー11の内部で固体状態の樹脂材料を加熱して溶融状態にする(樹脂材料を可塑化する)。射出成形工程の計量工程において、射出スクリュー12はスクリューヘッド12aの前方に溶融した樹脂材料を充填(チャージ)しながら後退する。そして、樹脂材料の充填が終了した後、射出成形工程の射出工程において、駆動シリンダー14により射出スクリュー12が非回転状態で前進することで、溶融した樹脂材料の射出が実施される。
 射出シリンダー11の先端(ホットランナー50に臨む側)には射出シリンダーヘッド15が設けられている。射出シリンダーヘッド15の内部には樹脂路4が形成され、射出シリンダーヘッド15の先端には射出ノズル13が接続されている。射出ノズル13は、ホットランナー50のスプルー51に接続されている。樹脂路4は、ホットランナー50の内部の樹脂路(ランナー)を介して射出成形用の金型60のキャビティ(成形空間)と連通している。
 射出シリンダーヘッド15の射出スクリュー12と射出ノズル13の間には遮断装置2が配置されている。また、射出シリンダーヘッド15の遮断装置2と射出ノズル13の間には、樹脂路4に連通する保圧路5が分岐して形成されている。保圧路5は、樹脂路4(またはホットランナー50の正面)に対して斜め後側(図中右側)に傾斜して形成され、樹脂路4と反対側の端部が保圧装置3に接続されている。金型60のキャビティに充填された樹脂は、ホットランナー50の樹脂路や保圧路5および樹脂路4にある樹脂を介して、保圧装置3の駆動により保圧可能である。
 遮断装置2は、樹脂路4と直交する方向(図中上下方向)に進退して樹脂路4を遮断する遮断プランジャ21と、樹脂路4に対して遮断プランジャ21を進退駆動させる遮断用シリンダー(遮断用アクチュエーター)22とを有する。遮断用シリンダー22は射出シリンダー11(具体的には射出シリンダーヘッド15)に接続され、遮断プランジャ21と接続されたピストンロッド22aがシリンダーバレル(シリンダーチューブ)22bの内部にピストン22cを介して進退可能に支持されている。
 遮断用シリンダー22のシリンダーバレル22bに圧油が供給されるとともに遮断用シリンダー22のシリンダーバレル22bから圧油が排出されることで、遮断用シリンダー22内でピストンロッド22aは進退駆動する。これにより、ピストンロッド22aに接続された遮断プランジャ21が樹脂路4に対して進退する。遮断装置2の閉状態では、遮断プランジャ21が樹脂路4の側に前進することで、スクリューヘッド12aの前側(ホットランナー50の側)の樹脂路4が閉じられて射出ノズル13との接続が遮断される。一方、遮断装置2の開状態では、遮断プランジャ21が樹脂路4から後退することで、スクリューヘッド12aの前側の樹脂路4が射出ノズル13と接続された状態となる。
 射出シリンダーヘッド15の射出ノズル13と遮断装置2の間には、保圧装置3の先端が連結されている。図1から図6に示すように、保圧装置3は、射出シリンダー11(具体的には射出シリンダーヘッド15)に接続された保圧装置先端部材(保圧路形成部材)31と、保圧用プランジャ(保圧プランジャ)32と、保圧用シリンダー(保圧用アクチュエーター、保圧シリンダー)33とを有する。保圧プランジャ32は、円筒状の保圧装置先端部31およびシリンダーヘッド15の保圧路5に沿って先端部32aが軸方向(図5、図6の左右方向)に進退する。
 保圧用シリンダー33は第1の保持部材39aに固定されており、保圧装置先端部材31は第2の保持部材39bに固定されている。第1の保持部材39aと第2の保持部材39bは、複数の支柱34を介して連結されている。なお、保圧装置先端部材31と第2の保持部材39bは一体化されていてもよい。
 保圧用シリンダー33は、軸方向に延びる複数の支柱34を介して保圧装置先端部31と接続されている。保圧用シリンダー33の内部には、保圧プランジャ32の末端側に接続(連結)されたピストンロッド33aが軸方向にピストン33cを介して進退可能に支持されている。保圧用シリンダー33のシリンダーバレル33bに圧油が供給されることで保圧プランジャ32のピストンロッド33aに押圧力が付与され、保圧ピストン33のシリンダーバレル33bへの圧油の排出路を開くことで保圧用シリンダー33による保圧プランジャ32への押圧力が解放(解除)される。
 保圧プランジャ32が保圧路5の前進端に移動するまで保圧用シリンダー33が押圧力を付与すると、保圧プランジャ32の先端部32aは樹脂路4に突出した状態となる。また、保圧用シリンダー33による押圧力が解放された場合、樹脂路4からの樹脂材料により保圧プランジャ32の先端部32aが押されて保圧プランジャ32が後退する。これにより、樹脂路4から樹脂材料が保圧路5に導入され、保圧路5に樹脂材料が充填(チャージ)される。
 また、保圧装置3において支柱34の配置された部位は、保圧プランジャ32が外部に露出するプランジャ露出部3aを構成する。保圧装置3のプランジャ露出部3aには、ポテンショメータ(リニアポテンショメータ、リニアセンサ、保圧用プランジャ32の位置検出装置)35と、ストッパー部材40と、凸状部材(フランジ状部材)47とが設けられている。
 ポテンショメータ35は、シャフト35aと、センサ本体35bと、位置検出板35cとを有し、保圧プランジャ32の軸方向位置を検出する。ポテンショメータ35のシャフト35aは、保圧プランジャ32および支柱34と平行に取り付けられている。位置検出板35cは、保圧プランジャ32に固定されるとともに、シャフト35aが挿通されている。保圧プランジャ32の移動に応じて位置検出板35cがシャフト35aに沿って移動する。センサ本体35bは当該シャフト35a上にある位置検出板35cの位置を検出し、保圧プランジャ32の軸方向位置を示す信号を出力する。
 ストッパー部材40は、保圧用シリンダー33(具体的には第1の保持部材39a)に固定された架台37を介してプランジャ露出部3aの所定位置に取り付けられている。ストッパー部材40は、エアシリンダ41と、連結部材42と、一対のロッド部材43と、ストッパー体44とを有している。
 エアシリンダ41は、架台37に固定される第1の取付板45と、第2の取付板46に挟まれて配置されている。エアシリンダ41のロッド41aは、第2の取付板46を挿通し、保圧プランジャ32から離れる方向に伸張する。また、エアシリンダ41のロッド41aの先端と、各ロッド部材43の一端は、第2の取付板46と平行に延びる連結部材42によって連結されている。
 各ロッド部材43は、第1の取付板45および第2の取付板46を貫通し、保圧プランジャ32の延長方向と交差する方向(または直交する方向)に延在している。各ロッド部材43の他端には、第1の取付板45と平行に延びるストッパー体44が保圧プランジャ32に対向して取り付けられている。ストッパー体44は、第2係合部材の一例であり、エアシリンダ41のロッド41aの伸縮によって、保圧プランジャ32に向けて突出した第1位置と、保圧プランジャ32から退避した第2位置とを切替可能である。
 凸状部材47は、第1係合部材の一例であり、保圧プランジャ32またはピストンロッド33aに設けられている。好ましくは、凸状部材47は、保圧プランジャ32とピストンロッド33aの連結位置(保圧プランジャ32の略末端側の位置)に設けられている。
 凸状部材47の断面積は保圧プランジャ32やピストンロッド33aの断面積より大きく形成されている。そのため、凸状部材47は、保圧プランジャ32の側に移動(突出)したストッパー体44と干渉可能である。なお、凸状部材47は、ストッパー体44が干渉しない部位(例えばストッパー部材40が設けられる位置と反対側の位置)に、位置検出板35cが連結されていることが好ましい。
 エアシリンダ41のロッド41aが伸びると、連結部材42が第2の取付板46から離れる方向(図中下側)に移動する。すると、ロッド部材43を介して連結部材42と一体化されたストッパー体44も保圧プランジャ32から離れる方向に移動し、ストッパー体44は保圧プランジャ32から退避した第2位置に移動する。図5、図7に示すように、第2位置のストッパー体44は、凸状部材47の端部よりも保圧プランジャ32から離れた位置にあり、保圧プランジャ32またはピストンロッド33aに固定されている凸状部材47の軸方向への移動を許容する。
 一方、エアシリンダ41のロッド41aが縮むと、連結部材42が第2の取付板46に近づく方向(図中上側)に移動する。すると、ロッド部材43を介して連結部材42と一体化されたストッパー体44も保圧プランジャ32に近づく方向に移動し、ストッパー体44は保圧プランジャ32に向けて突出した第1位置に移動する。図6に示すように、第1位置のストッパー体44は、凸状部材47と干渉する位置にある。これにより、第1位置のストッパー体44は、保圧プランジャ32が前進端から後退するときに凸状部材47と係合し、保圧プランジャ32の後退量を規制する。なお、保圧プランジャ32の軸方向におけるストッパー部材40の位置は、保圧路5への樹脂材料の充填量に応じて決定される。
 次に、図1から図4を参照し、射出装置1の動作を説明する。
 図1は、射出装置1の射出開始時の状態を示している。図1での遮断装置2は遮断プランジャ21が樹脂路4から退避した開状態にある。また、図1での保圧装置3は、保圧ピストン33の押圧力が解放されており、保圧プランジャ32は軸方向に自由に移動可能な状態にある。そのため、保圧プランジャ32の先端部32aは前進端の位置から後退可能となっている。また、保圧プランジャ32の位置検出板35cは、ストッパー部材40の位置よりも保圧路5側に位置し、保圧装置3のストッパー部材40は、保圧プランジャ32に対してストッパー体44が突出した第1位置の状態にある。また、図1の例では、射出動作1回で必要な溶融樹脂材料の確保(計量工程、チャージ)が完了している。
 図1の状態で、駆動シリンダー14により射出スクリュー12が非回転状態で前進することで、射出ノズル13から溶融した樹脂材料がホットランナー50を介して金型60に射出される(射出工程)。このとき、樹脂路4の樹脂が保圧路5に流入して保圧プランジャ32が押し戻され(すなわち、保圧用シリンダー33の側に押され)、保圧路5に保圧用の樹脂材料が充填される。上記で計量(充填)される保圧用の樹脂材料の量(体積、重量)は、金型60に導入した樹脂材料(熱可塑性樹脂)のうち、二次保圧工程(後述)中に、金型60との接触で冷却されて収縮する量に少なくとも対応する。
 保圧プランジャ32は自由状態にあるため、樹脂路4から流れ込む樹脂の押圧力で保圧プランジャ32は保圧路5内を後退するが、図2に示すように、凸状部材47が第1位置のストッパー体44と係合することで保圧プランジャ32は停止し、それ以上後退しなくなる。これにより、保圧装置3は、保圧用の樹脂材料を保圧路5に適正な分量で充填できる。
 金型60の内部に樹脂が充填された後、駆動シリンダー14の駆動位置(加圧状態)が所定時間維持される。かかる射出スクリュー12の加圧により樹脂路4の樹脂材料が金型60のキャビティに導入され、キャビティ内の樹脂材料が保圧される(一次保圧工程)。
 その後、図2に示すように、遮断装置2の遮断プランジャ21が樹脂路4の側に前進し、遮断装置2は閉状態となる。保圧装置3では、保圧用シリンダー33の駆動によって保圧プランジャ32が加圧される。そして、保圧路5の樹脂材料が樹脂路4の側に流動することで適正な保圧用の樹脂量がキャビティ内に追加で導入され、キャビティの樹脂材料が保圧される(二次保圧工程)。一方で、遮断装置2により樹脂路4との接続が遮断された射出スクリュー12側の空間では、駆動シリンダー14が減圧されるとともに射出スクリュー12が回転しながら後退し、次の射出のための樹脂材料の計量工程が開始される。
 保圧装置3による二次保圧が完了すると、図3に示すように、保圧用シリンダー33の押圧力を保圧時よりも低下させて、保圧装置3の保圧プランジャ32を後退させる。これにより、ホットランナー50(さらには樹脂路4および保圧路5)の内圧抜き(各樹脂路内にある樹脂材料の減圧)が行われる。図3では、保圧装置3のストッパー部材40は、保圧プランジャ32に対してストッパー体44が退避した第2位置の状態にある。そのため、保圧プランジャ32はストッパー部材40の位置を超えて後退することができる。すなわち、保圧用(具体的には二次保圧用)の樹脂材料を充填するときの保圧路内容積(ホットランナー50の内部の樹脂路と、保圧路5と、遮断プランジャ21で区切られた前側(ホットランナー50の側)の樹脂路4の空間の総体積)と比べて、圧抜きのときには保圧路内容積が大きくなり、樹脂の圧抜きを十分に行うことが可能となる。
 保圧工程時には、溶融した樹脂材料に高い圧力が及ぶため、その樹脂材料は射出工程時より若干圧縮された(体積が若干減少した)状態で金型60のキャビティに導入される。よって、圧抜き時は樹脂材料の体積が大きくなり、さらにホットランナー50の内部の樹脂路が長くその樹脂路の総体積が大きいほど、圧抜き時の樹脂材料の体積が増大し、保圧プランジャ32の後退量は大きくなる。本実施形態の保圧装置3や保圧方法では、凸状部材47とストッパー部材40により樹脂路(保圧路内容積)の容量が変更できる。本実施形態では、圧抜き時には射出工程時に比べ樹脂路の総体積を大きくすることができ、保圧プランジャ32の移動量を大きくできるため、保圧装置3のサイズを大きくせずとも、保圧後の樹脂材料の圧抜きを十分に行うことができる。
 その後、図4に示すように、遮断装置2の遮断プランジャ21が樹脂路4から後退し、射出スクリュー12側の空間と樹脂路4が再び接続される。そして、保圧用シリンダー33により保圧プランジャ32に押圧力を再度付与し、先端部32aが樹脂路4に突出した状態になるまで保圧プランジャ32を前進させる。これにより、保圧路5内の樹脂材料が樹脂路4に排出される。また、保圧装置3のストッパー部材40は、保圧プランジャ32に対してストッパー体44が突出した第1位置の状態に切り替わる。以上により、射出装置1の1サイクル分の動作が終了する。
<本実施形態の保圧工程を含む射出成形フロー>
 図8は、本実施形態の射出装置を含む射出成形装置での成形フローを示す図である。
 まず、射出成形装置では、金型60の型閉じが行われる(S1)。この段階において、射出装置1は、図1に示す射出開始時の状態にあり、射出装置1は射出動作1回で必要な溶融樹脂材料の確保(計量工程、チャージ)を完了させている。
 射出工程(S2)では、射出装置1において、駆動シリンダー14により射出スクリュー12が非回転状態で前進し、射出ノズル13から溶融した樹脂材料がホットランナー50を介して金型60に射出される。
 射出工程の射出装置1では、樹脂路4の樹脂が保圧路5に流入して保圧プランジャ32が押し戻され、保圧路5に保圧用の樹脂材料が充填される。このとき、凸状部材47が第1位置のストッパー体44と係合して保圧プランジャ32が停止し、保圧用の樹脂材料が保圧路5に適正な分量で充填される。
 一次保圧工程(S3)では、金型60の内部に樹脂が充填された後、射出装置1において駆動シリンダー14の加圧状態が所定時間維持され、金型60のキャビティには冷却により収縮した体積分の樹脂材料が導入される。これにより、ホットランナー50の樹脂路や樹脂路4および保圧路5を介し、金型60のキャビティの樹脂材料が保圧される。
 二次保圧工程(S4)では、射出装置1において、遮断装置2の遮断プランジャ21が樹脂路4の側に前進し、遮断装置2は閉状態となる。保圧装置3では、保圧用シリンダー33の駆動によって保圧プランジャ32が加圧され、金型60のキャビティに樹脂材料が導入され、ホットランナー50の樹脂路や樹脂路4および保圧路5を介し、金型60のキャビティの樹脂材料が保圧される。このとき、射出装置1の射出スクリュー12側の空間では、駆動シリンダー14が減圧されるとともに射出スクリュー12が回転しながら後退し、次の射出のための樹脂材料の計量工程が開始される。
 二次保圧の完了後、内圧抜き工程が行われる(S5)。内圧抜き工程での射出装置1は、保圧用シリンダー33の押圧力を保圧時よりも低下させて、保圧装置3の保圧プランジャ32を後退させる。このとき、保圧装置3のストッパー部材40は、保圧プランジャ32に対してストッパー体44が退避した第2位置の状態にあり、保圧プランジャ32はストッパー部材40の位置を超えて後退できる。これにより、ホットランナー50の樹脂路や樹脂路4および保圧路5にある樹脂材料の圧抜きが行われる。
 その後、射出装置1では、図4に示すように、遮断装置2の遮断プランジャ21が樹脂路4から後退し、射出スクリュー12側の空間と樹脂路4が再び接続される。そして、保圧用シリンダー33により保圧プランジャ32に押圧力を再度付与し、先端部32aが樹脂路4に突出した状態になるまで保圧プランジャ32を前進させる。また、保圧装置3のストッパー部材40は、保圧プランジャ32に対してストッパー体44が突出した第1位置の状態に切り替わる。
 圧抜き工程の完了後、金型60の型開きが行われ、射出成形品(プリフォーム)の搬出が行われる。
 以上のS1からS5の工程を繰り返すことで、射出成形装置は成形品を連続サイクルで製造することができる。
<保圧装置3の補強機構>
 保圧装置3は、保圧装置先端部材31(固定端)が射出シリンダーヘッド15に固定され(ねじ込みされ)、片持ち状態で支持されている。保圧装置3の重さは数10kg以上であり、保圧用の樹脂量を多く利用できるサイズの大きい保圧装置3の場合は、重さが100kgを超えることもある。よって、図1等の構成の固定のみでは、保圧装置3が自重で撓み、自由端側(シリンダーバレル33b側)が垂れ下がってしまう可能性がある。
 また、成形機や射出シリンダー11の振動が保圧装置3にも伝達することで、保圧装置3の自由端側が大きく揺動することや垂れ下がり易くなることがある。保圧装置3の自由端側が垂れ下がると、保圧装置3が精度よく動作できなくなり破損する可能性も高い。これを抑止するため、図9に示すような補強部材(垂れ下がり防止部材)38を保圧装置3(または射出装置1)に設けてもよい。
 補強部材38は、第1の保持部材39aに固定される第1の板状部材38aと、第1の保持部材39bに固定される第2の板状部材38bと、射出装置1の射出シリンダーヘッド15に固定された第3の板状部材38cと、第1の板状部材38aと第2の板状部材38bを連結する第1のロッド状部材38dと、第2の板状部材38bと第3の板状部材38cを連結する第2のロッド部材38eと、を少なくとも備える。また、第1の板状部材38aと第2の板状部材38bとの間に、カバー部材38fを設けてもよい。補強部材38を構成する上記の各部材は、保圧装置3および射出シリンダーヘッド15の上側の位置(自由端が垂れ下がる方向と逆方向の位置、反重力方向の位置)に設けられる。
 射出ノズルヘッド15から延設した補強部材38により、保圧装置3の自由端側は反重力方向に突っ張って支持される形となり、保圧装置3の垂れ下がりや撓みを抑止できる。なお、保圧装置3の水平方向の占有スペース(横幅)を小さくして作業性向上等を図るため、保圧装置3の上側にポテンショメータ35や補強部材38の各部材を、下側にストッパー部材40を、各々配置させる構成が好ましい。
<保圧装置3が搭載される成形装置>
 上記実施形態の保圧装置3は、例えば、以下の図10~図12に示す成形装置に搭載することができる。なお、以下に説明する成形装置はあくまで例示であり、上記実施形態の保圧装置3は、図10~図12以外の成形装置に搭載されてもよい。
 図10は、1ステージ方式のブロー成形装置の構成例を示している。1ステージ方式のブロー成形装置は、プリフォームを室温まで冷却せずに射出成形時の保有熱(内部熱量)を活用して容器のブロー成形を行う。
 図10に示すブロー成形装置100は、例えば4つの成形ステーションを備え、具体的には、プリフォームを射出成形する射出成形部110と、プリフォームの温度調整を行う温度調整部120と、温度調整後のプリフォームをフロー成形するブロー成形部130と、ブロー成形された容器を取り出す取り出し部140とを有する。4つの成形ステーションは、搬送機構150を中心として所定角度(例えば90度)ずつ回転した位置に配置されている。
 搬送機構150は、図10の紙面垂直方向の軸を中心に回転する移送板(不図示)を備える。搬送機構150は、射出成形部110、温度調整部120、ブロー成形部130、取り出し部140の順に移送板を移動させることで、ネック型で保持されたプリフォームまたは容器を成形ステーション間で搬送する。
 図10のブロー成形装置において、射出成形部110は、キャビティ型、コア型、ネック型(まとめて射出成形用金型とも称する)、ホットランナー型を有する。また、射出成形部110には、本実施形態の保圧装置3を有する射出装置1が接続されている。保圧装置3は、ホットランナー型を介し射出成形用金型のキャビティ(成形空間)に樹脂材料(例えばPET)を供給して保圧を行う。なお、射出成形部110で型閉じ状態の金型内に射出装置1から樹脂材料が導入され、プリフォームの射出成形が行われる。
 射出成形部110で製造されたプリフォームは、温度調整部120に搬送されて最終ブローに適した温度に近づけるための温度調整が行われる。その後、温度調整されたプリフォームは、射出成形時の保有熱を有する状態でブロー成形部130に搬送され、ブロー金型を用いたブロー成形で容器に賦形される。ブロー成形後の容器は取り出し部140に搬送されて、装置外部に取り出される。
 図11は、ホットパリソン方式とコールドパリソン方式の利点を併せ持つ1.5ステージ方式のブロー成形装置の構成例を示している。1.5ステージ方式のブロー成形方法では、基本的にホットパリソン方式(1ステージ方式)と同様に射出成形時の熱を保有したプリフォームをブロー成形して容器を製造する。ただし、1.5ステージ方式でのブロー成形のサイクルは、プリフォームの射出成形のサイクルよりも短く設定される。そして、1回の射出成形のサイクルで成形された複数のプリフォームは、複数回のブロー成形のサイクル(例えば3回)に分けてブロー成形される。
 図11に示すように、ブロー成形装置200は、プリフォームを射出成形する射出成形部210と、プリフォームを冷却する冷却部220と、冷却後のプリフォームを加熱する加熱部230と、加熱されたプリフォームをブロー成形部240とを備える。また、ブロー成形装置200は、冷却部220から搬出されたプリフォームを、加熱部230を経由してブロー成形部240に搬送する連続搬送部250を備えている。
 図11のブロー成形装置において、射出成形部210は、キャビティ型、コア型、ネック型(まとめて射出成形用金型とも称する)、ホットランナー型を有する。また、射出成形部210には、本実施形態の保圧装置3を有する射出装置1が接続されている。保圧装置3は、ホットランナー型を介し射出成形用金型のキャビティ(成形空間)に樹脂材料(例えばPET)を供給して保圧を行う。なお、射出成形部210で型閉じ状態の金型内に射出装置1から樹脂材料が導入され、プリフォームの射出成形が行われる。
 射出成形部210で射出成形されたプリフォームは、射出成形部210から冷却部220に供給される。冷却部220は、射出成形部210で成形されたプリフォームを強制冷却する。プリフォームは、所定温度まで冷却された状態で冷却部220から搬出され、連続搬送部250の搬送ラインに沿って連続的に搬送される。また、連続搬送部250で搬送されるプリフォームは加熱部230を通過し、加熱部230によって延伸適温まで加熱される。
 加熱部230で加熱されたプリフォームは、連続搬送部250から間欠搬送部260に受け渡されて、所定間隔でブロー成形部240に搬送される。ブロー成形部240は、所定個数のプリフォームを延伸ブロー成形して容器を製造する。ブロー成形部240で製造された容器は、間欠搬送部260によりブロー成形部240の外側の取り出し位置Pまで搬送されて装置外部に取り出される。
 図12は、ブロー成形部を有さない2ステージ式の射出成形装置300の構成例を示している。射出成形装置300は、射出成形部310と、取り出し部320と、冷却部330と、搬送機構とを備える。冷却部330は、プリフォームを収容しプリフォームの胴部を外側から冷却する冷却ポット(不図示)と、プリフォームの胴部の中空部に挿入されて胴部を内部から冷却するクーリングロッド(不図示)を備える。搬送機構は、射出成形部310からプリフォームを冷却部330に搬送する第1の保持部材341と、冷却部320からプリフォームを取り出し部24に搬送する第2の保持部材342とを有する。射出成形部310には、キャビティ型、コア型、ネック型(まとめて射出成形用金型とも称する)、ホットランナー型が設けられる。また、射出成形部310には、本実施形態の保圧装置3を有する射出装置1が接続されている。保圧装置3は、ホットランナー型を介し射出成形用金型のキャビティ(成形空間)に樹脂材料(例えばPET)を供給して保圧を行う。
 射出成形装置300では、射出成形部310で型閉じ状態の金型に射出装置1から樹脂材料(例えばPET)が導入され、プリフォームの射出成形が行われる。その後、高温状態(例えば胴部外表面が100~130℃の状態)で離型されたプリフォームが冷却部330に搬送される。冷却部330では、プリフォームが常温下で放置されてもヒケ等の収縮変形が発生しない程度(例えば胴部外表面が50~60℃以下の状態)まで冷却される。次いで、十分に冷却されたプリフォームが取り出し部320に搬送されて装置外部に取り出される。
 以下、本実施形態の作用効果を説明する。
 本実施形態の射出装置1は、保圧装置3に保圧プランジャ32の後退量を規制するストッパー部材40を備える。保圧路5に樹脂材料を充填するときに、ストッパー部材40のストッパー体44(第2係合部材)は、凸状部材47(第1係合部材)と係合する第1位置で保圧プランジャ32の後退量を規制する。これにより、保圧用の樹脂材料を保圧路5に適正な分量で充填できる。また、ストッパー部材40によって保圧用の樹脂の充填量のばらつきが抑制されることで、射出スクリュー12の動作に関して設定した射出成形条件(射出される溶融樹脂のV-P切換位置(速度制御と圧力制御の切換位置)など)が上手く機能するようになり、オーバーパック等や充填量のバラつき等が回避でき、射出成形品の品質を均一に保ち易くなる。
 一方で、保圧後に金型の圧抜きを行うときに、ストッパー体44は第1位置から退避した第2位置に移動して保圧プランジャ32の後退量の規制を解除する。これにより、保圧用の樹脂材料を充填するときの保圧路内容積と比べて、圧抜きのときの保圧路内容積が大きくなる。そのため、例えば、オープンゲート式のゲート構造の金型や樹脂路が3列仕様の金型などのように樹脂路内容積が大きいホットランナー50に対しても、保圧後の金型の圧抜きを十分に行うことが可能となる。これにより、プリフォームの底部のゲート部を構成する樹脂材料とホットランナー50のノズル部にある樹脂材料とが分離し、ゲート部の樹脂材料が十分に固化して、プリフォームを金型から適切に離型させることができる。
 保圧工程後、ホットランナー50内の樹脂路にある樹脂が十分に圧抜きできないと、ホットランナー50と連通するキャビティ型のゲート孔(第1の狭窄部)における樹脂材料の固化が妨げられる。これにより、プリフォームの底部のゲート部で糸引きの成形不良が生ずる。また、プリフォームのゲート部の固化が適切に行えないと、キャビティ型60のゲート孔と連通するホットランナー50のノズル部(第2の狭窄部)に樹脂材料が不適切に固化した状態で滞留し、ホットランナー50のノズル部が詰まってしまう不具合も生ずる。
 また、本実施形態では、保圧用の樹脂材料を充填するときの保圧路内容積は増加させずに圧抜きのときの保圧路内容積を増加できるので、成形サイクルの短縮効果を低下させることもない。
 また、本実施形態では、第1係合部材およびストッパー部材40は、保圧プランジャ32が外部に露出する保圧装置3のプランジャ露出部3aに設けられる。そのため、従来の保圧装置に第1係合部材およびストッパー部材40を後付けで追加することも容易である。
 また、本実施形態では、保圧プランジャ32や凸状部材47にストッパー体44を係合させて保圧プランジャ32の後退量を規制する。そのため、従来の保圧装置3の構成と比べて、保圧プランジャ32に追加部品を取り付けずに済むので、装置コストの増加を抑制できる。さらに、圧抜き時の保圧路内容積を確保するためだけに保圧装置3(保圧用シリンダー33や保圧プランジャ32)を大きなサイズに変更せずに済み、装置コストの増加も抑制できる。
 本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行ってもよい。
 例えば、本発明の射出装置を適用して製造される射出成形品はプリフォームに限らず、他の成形品の製造に射出装置が適用されてもよい。
 加えて、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1…射出装置、2…遮断装置、3…保圧装置、3a…プランジャ露出部、4…樹脂路、5…保圧路、11…射出シリンダー、13…射出ノズル、31…保圧シリンダー、32…保圧プランジャ、33…保圧用シリンダー(保圧用アクチュエーター)、34…支柱、35…ポテンショメータ、35a…シャフト、35b…センサ本体、35c…位置検出板、40…ストッパー部材、41…エアシリンダ、41a…ロッド、42…連結部材、43…ロッド部材、44…ストッパー体、45…第1の取付板、46…第2の取付板、47…凸状部材、50…ホットランナー、51…スプルー、60…金型

 

Claims (5)

  1.  射出装置の樹脂路から分岐する保圧路に取り付けられ、金型への樹脂材料の射出後に前記樹脂路および前記保圧路を保圧する保圧装置であって、
     外周に第1係合部材が固定され、前記保圧路を進退する保圧プランジャと、
     前記保圧プランジャを駆動する保圧用アクチュエーターと、
     前記保圧プランジャの後退量を規制するストッパー部材と、を備え、
     前記ストッパー部材は、
     前記第1係合部材と係合する第2係合部材と、
     前記保圧プランジャの移動方向と交差する方向に前記第2係合部材を進退させる駆動部材と、を有し、
     前記保圧路に前記樹脂材料を充填するときに、前記第2係合部材は前記第1係合部材と係合する第1位置で前記保圧プランジャの後退量を規制し、
     保圧後に前記金型の圧抜きを行うときに、前記第2係合部材は前記第1位置から退避した第2位置に移動して前記保圧プランジャの後退量の規制を解除する
    保圧装置。
  2.  前記第1係合部材および前記ストッパー部材は、前記保圧プランジャが外部に露出する前記保圧装置のプランジャ露出部に設けられる
    請求項1に記載の保圧装置。
  3.  前記保圧プランジャの位置を検出するポテンショメータをさらに備え、
     前記第1係合部材は、前記保圧プランジャに固定された前記ポテンショメータの部材である
    請求項1または請求項2に記載の保圧装置。
  4.  金型に樹脂材料を射出する樹脂路と前記樹脂路から分岐する保圧路を有する射出シリンダと、
     前記保圧路に取り付けられた請求項1から請求項3のいずれか一項に記載の保圧装置と、を備える射出装置。
  5.  請求項4に記載の射出装置を用いた樹脂材料の射出方法であって、
     前記樹脂路を介して前記金型へ樹脂材料を射出するとともに、前記保圧路に樹脂材料を充填する第1工程と、
     前記第1工程の後に、前記樹脂路および前記保圧路を前記保圧装置で保圧する第2工程と、
     前記第2工程の後に、前記保圧装置の押圧力を保圧時よりも低下させて前記金型の圧抜きを行う第3工程と、を含み、
     前記第1工程では、前記第2係合部材を前記第1係合部材と係合する第1位置に配置して前記保圧プランジャの後退量を規制し、
     前記第3工程では、前記第2係合部材を前記第1位置から退避した第2位置に配置して前記保圧プランジャの後退量の規制を解除する
    樹脂材料の射出方法。
PCT/JP2023/007274 2022-02-28 2023-02-28 保圧装置、射出装置および樹脂材料の射出方法 WO2023163208A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022028828 2022-02-28
JP2022-028828 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163208A1 true WO2023163208A1 (ja) 2023-08-31

Family

ID=87766331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007274 WO2023163208A1 (ja) 2022-02-28 2023-02-28 保圧装置、射出装置および樹脂材料の射出方法

Country Status (1)

Country Link
WO (1) WO2023163208A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985790A (ja) * 1995-09-27 1997-03-31 Nissei Plastics Ind Co 射出成形における保圧方法
JP2000263607A (ja) * 1999-03-17 2000-09-26 Niigata Eng Co Ltd 射出成形機および射出成形方法
JP2011110772A (ja) * 2009-11-25 2011-06-09 Nissei Asb Mach Co Ltd 射出装置及び樹脂の射出方法
CN204687287U (zh) * 2015-06-19 2015-10-07 宁波海太工贸有限公司 保压装置
JP2019069036A (ja) * 2017-10-10 2019-05-09 入江工研株式会社 液体供給システム
CN212636478U (zh) * 2020-07-13 2021-03-02 佛山市宝捷精密机械有限公司 一种精准节能的注塑成型保压装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985790A (ja) * 1995-09-27 1997-03-31 Nissei Plastics Ind Co 射出成形における保圧方法
JP2000263607A (ja) * 1999-03-17 2000-09-26 Niigata Eng Co Ltd 射出成形機および射出成形方法
JP2011110772A (ja) * 2009-11-25 2011-06-09 Nissei Asb Mach Co Ltd 射出装置及び樹脂の射出方法
CN204687287U (zh) * 2015-06-19 2015-10-07 宁波海太工贸有限公司 保压装置
JP2019069036A (ja) * 2017-10-10 2019-05-09 入江工研株式会社 液体供給システム
CN212636478U (zh) * 2020-07-13 2021-03-02 佛山市宝捷精密机械有限公司 一种精准节能的注塑成型保压装置

Similar Documents

Publication Publication Date Title
EP2826615B1 (en) System for operating an injection molding machine
JP6328142B2 (ja) 熱可塑性容器を製造するための射出圧縮装置
CN102421581B (zh) 用于模具系统的腔插入件和具有可变形部分的所述腔插入件
JP6374400B2 (ja) プラスチック予備成形品の射出金型
BRPI0806580B1 (pt) Molde de injeção e método para moldar por injeção um artigo que tem uma base e uma parede lateral
JPH0226723A (ja) プレス加圧を伴う射出成形方法
US20070184140A1 (en) Injection molding machine
JP6328143B2 (ja) 溶解プラスチックを押出機から予備成形品を成形するための回転機に移送するための回転接合部
CN108068285B (zh) 匣盒模具式射出成型机
EP3616883B1 (en) Method for manufacturing hollow molded body
WO2023163208A1 (ja) 保圧装置、射出装置および樹脂材料の射出方法
US20190308349A1 (en) Method and apparatus for the production of an optimized neck contour on preforms
CA2714344C (en) Compression injection moulding method and device for preforms
KR20170038159A (ko) 사출성형기
WO2022107851A1 (ja) 樹脂製容器の製造方法および製造装置
JP6949263B1 (ja) 射出吹込成形機および成形不良の検知方法
KR101463077B1 (ko) 사출압축팽창 성형 장치 및 이를 이용한 성형 방법
WO2016019452A1 (en) Adjustable length conditioning pins
CN115723289A (zh) 注射成型机的控制方法及注射成型机的控制装置
KR20220167527A (ko) 1계량 2사출을 이용한 사출방법
CN114633440A (zh) 注塑成型系统及其制造物品的方法
JP2024522534A (ja) シャトルモールド成形およびオーバーモールド成形を用いた製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760206

Country of ref document: EP

Kind code of ref document: A1