WO2023163202A1 - 処置部材形成剤 - Google Patents

処置部材形成剤 Download PDF

Info

Publication number
WO2023163202A1
WO2023163202A1 PCT/JP2023/007227 JP2023007227W WO2023163202A1 WO 2023163202 A1 WO2023163202 A1 WO 2023163202A1 JP 2023007227 W JP2023007227 W JP 2023007227W WO 2023163202 A1 WO2023163202 A1 WO 2023163202A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
forming agent
treatment member
calcium
agent according
Prior art date
Application number
PCT/JP2023/007227
Other languages
English (en)
French (fr)
Inventor
桂子 山本
孝幸 黒川
春菜 土洞
祐介 渡邊
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2023163202A1 publication Critical patent/WO2023163202A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/08Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials

Definitions

  • the present invention relates to a treatment member-forming agent.
  • Endoscopic submucosal dissection is a local injection (hereinafter also referred to as "local injection") of a liquid into the submucosa between the mucosa and the muscle layer to elevate the mucosa.
  • local injection is a treatment method that removes gastrointestinal cancer at an early stage by exfoliating the mucous membrane and leads to a radical cure. Since being developed in Japan, ESD has been widely spread and developed all over the world as an epoch-making technique.
  • Exfoliation of the lumen side of the thin gastrointestinal tract wall requires precise and precise techniques, and improper operation during surgery and thermal effects during exfoliation and hemostasis can cause perforation of the gastrointestinal tract. In particular, inadequate elevation of the mucosa makes the operation difficult and may cause perforation.
  • Intraoperative perforation occurs in 1-5% of stomachs and 12.8% of duodenum. The perforation rate is particularly high in the duodenum, which has thin walls and receives pancreatic juice containing powerful digestive enzymes. Also, delayed perforation or post-bleeding may occur due to exposure of ulcers formed after mucosal ablation to digestive juices.
  • Late perforation occurs in 0.1% or less of the stomach and 2.1% of the duodenum, and late bleeding occurs in 0-5% of the stomach and 4.7% of the duodenum.
  • Patent Document 1 discloses a two-component submucosal local injection solution containing an aqueous solution containing sodium alginate and the like and an aqueous solution containing calcium ions and the like. is formed, resulting in high mucosal protuberance.
  • Patent Document 2 discloses a treatment of attaching a PGA sheet made of polyglycolic acid (PGA) to an ulcer.
  • the two-component submucosal local injection solution described in Patent Document 1 above is an invention that focuses only on raising the mucosa at the time of local injection, and does not realize subsequent ulcer protection.
  • Hydrogels formed by cross-linking sodium alginate with calcium ions are known to disintegrate in the presence of sodium or in an alkaline environment, and are not durable in the gastrointestinal tract.
  • the PGA sheet described in Patent Document 2 has a problem that it is difficult to reliably fix it to the ulcer site under an endoscope.
  • the present invention has been made in view of the above-mentioned circumstances, and can realize effective mucous membrane lifting in ESD and ulcer protection after mucous membrane peeling, and can form a hydrogel having an effect of promoting treatment.
  • An object of the present invention is to provide a treatment member-forming agent.
  • the treatment member-forming agent according to the present invention is a first solution comprising a locally injected water-soluble alginate; the topically injected water-soluble chitosan salt; the locally supplied calcium ion donor; Prepare.
  • the water-soluble alginate is sodium alginate, You can do it.
  • the concentration of sodium alginate in the first solution is 0.3 to 2% by weight; You can do it.
  • the treatment member-forming agent according to the present invention is further comprising a second solution; the water-soluble chitosan salt and the calcium ion donor are contained in the second solution; You can do it.
  • water-soluble chitosan salt and the calcium ion donor are a second solution containing them, You can do it.
  • the calcium ion donor is a calcium salt
  • the concentration of calcium salt in the second solution is 2 to 7% by weight; You can do it.
  • the calcium salt is is calcium lactate, You can do it.
  • the concentration of the water-soluble chitosan salt in the second solution is 1 to 3% by weight; You can do it.
  • the first solution is further comprising calcium carbonate, further comprising a third solution and a fourth solution;
  • the water-soluble chitosan salt is contained in the third solution, the calcium ion donor is contained in the fourth solution, At least one of the third solution and the fourth solution, further comprising an acid applied to said topically selected from the group consisting of acetic acid and citric acid; You can do it.
  • the first solution is further comprising calcium carbonate
  • the water-soluble chitosan salt is a third solution containing this
  • the calcium ion donor is a fourth solution containing the same, At least one of the third solution and the fourth solution, further comprising an acid applied to said topically selected from the group consisting of acetic acid and citric acid; You can do it.
  • the third solution does not contain the acid and further contains calcium carbonate, wherein the fourth solution comprises the acid; You can do it.
  • the third solution contains the acid, wherein the fourth solution does not contain the acid; You can do it.
  • the calcium ion donor is a calcium salt
  • the concentration of calcium salt in the fourth solution is 2 to 7% by weight; You can do it.
  • the calcium salt is is calcium lactate, You can do it.
  • the concentration of the water-soluble chitosan salt in the third solution is 1 to 3% by weight; You can do it.
  • the treatment member-forming agent according to the present invention is For use in endoscopic submucosal dissection for mucosa elevation, ulcer protection after mucosal dissection, or promotion of ulcer healing. You can do it.
  • treatment member-forming agent according to the present invention is for use in suture failure fistula closure, You can do it.
  • the treatment member-forming agent of the present invention it is possible to realize effective mucous membrane elevation in ESD and ulcer protection after mucous membrane exfoliation, and also to form a hydrogel having a treatment promoting effect.
  • FIG. 2 is a diagram summarizing the examination results of the optimum concentration of water-soluble chitosan salt and calcium lactate according to Example 2.
  • FIG. FIG. 10 shows a duodenum stained with hematoxylin and eosin (HE) according to Example 3.
  • FIG. (a) is a diagram showing an overall image including an ESD-enforced site.
  • (b) and (d) are enlarged views of portions w, x and y enclosed by solid lines in (a), respectively.
  • (e) is an enlarged view of a portion z surrounded by a solid line in (c).
  • 10 is a graph showing the degree of swelling of the hydrogel over time according to Example 4.
  • FIG. 10 is an image diagram (a) of a pancreatic enzyme permeation test according to Example 5, and a graph (b) of the relative concentration of pancreatin over time.
  • FIG. 12A shows an image of a macroscopic sample of the stomach three days after ESD, and (b, c) shows images of HE staining according to Example 6.
  • FIG. (b) is a diagram showing an overall image including an ESD-applied site, and (c) is a partial enlarged view of (b).
  • FIG. 10 shows an HE-stained stomach 10 days after ESD according to Example 6.
  • FIG. (a) is a diagram showing an overall image including an ESD-enforced site.
  • (b) to (d) are diagrams showing enlarged images of the portion (a).
  • FIG. 10 shows an ESD-enforced site of the stomach 7 days after ESD according to Example 6.
  • FIG. (a) shows the overall image of the ESD-implemented site, the upper stage is the control site, and the lower stage is the site where ESD was performed by local injection of the treatment member-forming agent according to the present example.
  • (b) shows HE-stained and E-Masson-stained tissues for control sites.
  • (c) shows a HE-stained and E-Masson-stained tissue of a site where ESD was performed by local injection of the treatment member-forming agent according to the present example.
  • 14 shows an ESD-enforced site of the stomach 14 days after ESD according to Example 6.
  • FIG. 10 shows an ESD-enforced site of the stomach 21 days after ESD according to Example 6.
  • FIG. 10 shows an HE-stained stomach 3 weeks after surgery according to Example 8.
  • FIG. 10 is a diagram showing the size of an ulcer according to Example 9;
  • the treatment member-forming agent according to the embodiment of the present invention comprises a plurality of types of solutions, and can form a hydrogel for treatment (hereinafter also referred to as "gel") by contacting these aqueous solutions at the treatment site.
  • the treatment member-forming agent according to the present embodiment includes a locally injected solution 1 (first solution) containing a water-soluble alginate, a locally injected water-soluble chitosan salt, and locally supplied calcium. and an ion donor.
  • a local area is an arbitrary site in vivo, such as an organ or tissue, where you want to form a gel.
  • Organs include, for example, the duodenum, stomach, large intestine, bladder, or esophagus.
  • the local may be the submucosa of an organ or the like. Injection may be performed by any method including local injection, preferably local injection using an endoscopic local injection needle.
  • the aqueous solution of water-soluble alginate contained in Solution 1 has the property of cross-linking and gelling upon contact with polyvalent cations, particularly calcium ions.
  • Water-soluble alginates include, for example, sodium alginate, potassium alginate, or ammonium alginate, preferably sodium alginate.
  • Sodium alginate is a type of dietary fiber contained in seaweed, and is widely used as a food additive or pharmaceutical because it is highly biocompatible and safe.
  • 0.6% sodium alginate for example, Riftal (registered trademark) K, manufactured by Kaigen Co., Ltd.
  • 0.6% sodium alginate for example, Riftal (registered trademark) K, manufactured by Kaigen Co., Ltd.
  • the concentration of sodium alginate in Solution 1 is preferably 0.3-2% by weight, more preferably 0.4-0.8% by weight, pH 6.0. ⁇ 8.0.
  • the molecular weight of the sodium alginate used is not particularly limited, for example, sodium alginate having a weight average molecular weight of 40,000 to 4,000,000, preferably 200,000 to 350,000.
  • Chitosan is a substance obtained by deacetylating chitin, a polysaccharide in which N-acetylglucosamine is linearly bound. Chitosan is known to gel by forming a polyion complex with an anionic polymer colloid, and can form a durable gel when brought into contact with a water-soluble alginate. As shown in Examples described later, when chitosan is added to a gel obtained by cross-linking a water-soluble alginate with calcium ions, the gel can be maintained for a long period of time even in an acid, sodium, or alkaline environment. Become so. In addition, chitosan has been confirmed to have effects such as wound healing, bactericidal action, and bleeding prevention, and the inclusion of chitosan in the gel is expected to promote healing.
  • chitosan can be preferably used by converting the amino group to an amine salt under acidic conditions to impart water solubility.
  • solubilized chitosan is injected locally as a water-soluble chitosan salt.
  • the counter ion of the chitosan salt may be any counter ion that can impart solubility and does not adversely affect the living body. Examples include inorganic anions such as chloride ion, phosphate ion, or phosphite ion. or organic anions of formate, acetate, or propionate are used.
  • the calcium ion donor is not particularly limited as long as it can provide calcium ions locally, and can be, for example, a calcium salt.
  • a calcium ion donor that has high solubility and does not adversely affect living organisms is preferred.
  • Examples of calcium ion donors include calcium lactate, calcium chloride, calcium citrate, calcium malate, calcium gluconate, and the like.
  • the calcium salt as the calcium ion donor is calcium lactate, which is the most soluble calcium salt in clinical use.
  • the calcium ion donor may be supplied by any method, for example, it may be injected, sprinkled, sprayed, or applied as a solution, or it may be sprinkled as a powder. Also, the calcium ion donor may be orally administered as a calcium agent. Calcium ions provided by the calcium ion donor contact water-soluble alginate to form a gel.
  • the treatment member-forming agent according to the present embodiment may be a two-agent type treatment member-forming agent.
  • the treatment member-forming agent when the treatment member-forming agent is a two-dose type, the treatment member-forming agent further comprises solution 2 (second solution), and solution 2 contains a water-soluble chitosan salt and a calcium ion donor.
  • the concentration of the water-soluble chitosan salt in solution 2 is adjusted as appropriate to maintain the gel under harsh environments such as acid, base, sodium, or pancreatic enzymes. If the concentration of the water-soluble chitosan salt in solution 2 is low, the gel will collapse, so the concentration of the water-soluble chitosan salt is preferably 1% by weight or more. On the other hand, if the concentration of chitosan in solution 2 is too high, it becomes viscous and local injection is difficult, so the concentration is preferably 3% by weight or less.
  • the concentration of water-soluble chitosan salt in solution 2 can be, for example, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt%, or 3 wt%.
  • the molecular weight of the chitosan to be used is not particularly limited.
  • chitosan having a weight average molecular weight of 1,000 to 5,000,000 may be used.
  • the chitosan used has a deacetylation rate of 50 to 100 mol %, preferably 70 mol % or more.
  • the calcium lactate concentration in solution 2 is adjusted appropriately to maintain the gel under harsh environments such as acid, base, sodium, or pancreatic enzymes. be. If the concentration of calcium lactate in solution 2 is low, the gel will collapse, so the concentration of calcium lactate is preferably 2% by weight or more. On the other hand, if the concentration of calcium lactate in solution 2 is too high, lumps are formed in the local injection needle, so the concentration of calcium lactate is preferably 7% or less.
  • the concentration of calcium lactate in solution 2 is, for example, 2% by weight, 3% by weight, 3.5% by weight, 4% by weight, or 5% by weight.
  • each of solution 1 and solution 2 can further contain additives such as preservatives, stabilizers, pH adjusters, or buffers.
  • the treatment member-forming agent according to the present embodiment may be a multi-dosage treatment member-forming agent in which another solution is combined.
  • the treatment member-forming agent may further contain active ingredients such as a healing promoter, tissue regeneration agent, antibacterial agent, anti-inflammatory agent, vasoconstrictor, and hemostatic agent.
  • Active ingredients that may be included include, for example, trafermin, solcoseryl, aldioxa, and the like. These active ingredients may have been added to solution 1 or solution 2, or may be added as a further solution. Alternatively, the active ingredient may be directly injected locally into the ulcer after ESD.
  • the concentration of the active ingredient is not particularly limited, it may be added at a concentration at which the ingredient is effective.
  • the active ingredient when it is trafermin, it may be injected locally at a concentration of 10-500 ⁇ g/mL. Effects such as healing acceleration, tissue regeneration, antibacterial, anti-inflammatory, vasoconstriction and hemostasis can be expected at the ESD site depending on the type of active ingredient.
  • the method of using the treatment member-forming agent according to the present embodiment will be described using a two-dose type treatment member-forming agent as an example.
  • the solution 1 and the solution 2 are alternately locally injected into the submucosal layer of the site where ESD is to be performed, so that the water-soluble alginate is dissolved in the submucosal layer.
  • a strong gel is formed in contact with the active chitosan salt and calcium ions. After confirming that the mucous membrane is elevated, perform ESD. The gel remains in the submucosa even after mucosal detachment and protects the ulcer.
  • the gel formed by the treatment member-forming agent according to the present embodiment effective mucous membrane elevation and long-term ulcer protection are possible in ESD. Thereby, intraoperative perforation prevention, subsequent perforation prevention, and post-operative bleeding can be prevented. Furthermore, ulcer healing can be expected to accelerate due to the protection of ulcers by the gel and the therapeutic effect of chitosan on wounds.
  • the gel formed by the treatment member-forming agent according to the present embodiment is useful not only for ESD but also for various medical treatment applications.
  • an unsutured fistula in gastrointestinal surgery can be kept closed for an extended period of time by the gel, leading to closure.
  • the easy and minimally invasive endoscopic treatment of local injection of a treatment member-forming agent can avoid re-operation for fistula closure.
  • the agent for forming a treatment member according to the present embodiment When the agent for forming a treatment member according to the present embodiment is used for closing a fistula in a surgical operation, the solution 1 and the solution 2 are alternately locally injected into the mucosa surrounding the fistula formation site. , a gel is formed in the tissue. The gel raises the tissue to seal the fistula, and the gel is maintained in the tissue for a long period of time to maintain the sealed state.
  • the amount of each of solution 1 and solution 2 used may be an amount that forms a gel of the size and thickness required for the desired treatment, and may vary depending on the size of the treated area, the degree of fibrosis, and the like. It can be changed as appropriate. For example, in a non-fibrotic stomach, 5 mL of gel may be formed in the submucosa for a 2 cm diameter lesion.
  • the treatment member-forming agent according to the present embodiment may be a three-agent type treatment member-forming agent.
  • the treatment member-forming agent which is a three-dosage type, will be mainly described with respect to the differences from the first embodiment.
  • the solution 1 in the treatment member-forming agent according to this embodiment further contains calcium carbonate.
  • the treatment member-forming agent further comprises a solution 3 (third solution) containing a water-soluble chitosan salt and a solution 4 (fourth solution) containing a calcium ion donor.
  • the calcium carbonate contained in solution 1 has a very low solubility among calcium salts, and only 0.00145 g dissolves in 100 g of water at 25°C. Therefore, even if calcium carbonate is mixed with the solution 1, almost no calcium ions are liberated and gelation does not occur. By stirring the solution 1 well before use, the calcium carbonate is uniformly dispersed in the water-soluble alginate.
  • At least one of solution 3 and solution 4 further includes a locally supplied acid.
  • the acid is selected from the group consisting of acetic acid and citric acid.
  • Solution 3 may further contain acetic acid or citric acid
  • solution 4 may further contain acetic acid or citric acid.
  • both solution 3 and solution 4 may further contain acetic acid or citric acid.
  • Calcium carbonate uniformly dispersed in a water-soluble alginate dissolves upon contact with an acid, slowly releasing calcium ions, and gelation occurs uniformly and gradually.
  • the concentration of calcium carbonate contained in solution 1 is preferably 0.1-5% by weight, more preferably 0.1-0.5% by weight.
  • the concentration of acetic acid in Solution 3 or Solution 4 is 0.1-10% by weight, preferably 0.1-3% by weight.
  • the concentration of citric acid in Solution 3 or Solution 4 is 0.1-10% by weight, preferably 0.1-3% by weight. Note that the solution 3 may contain no acid and may further contain calcium carbonate, and the solution 4 may contain an acid.
  • the concentration of water-soluble chitosan salt in solution 3 is the same as the concentration of water-soluble chitosan salt in solution 2 in the first embodiment. Further, the concentration of calcium lactate in solution 4 when calcium lactate is used as the calcium ion donor is the same as the concentration of calcium lactate in solution 2 in the first embodiment.
  • Each of solution 1, solution 3, and solution 4 can further contain additives such as preservatives, stabilizers, pH adjusters, or buffers.
  • the treatment member-forming agent according to the present embodiment may be a multi-dosage treatment member-forming agent in which another solution is combined.
  • solution 1 contains a water-soluble alginate and calcium carbonate
  • solution 3 contains a water-soluble chitosan salt
  • solution 4 contains a calcium ion donor and acetic acid.
  • solution 4 is sprinkled on the soft gel remaining in the submucosa.
  • rapid gelation due to contact between calcium ions derived from the calcium donor and water-soluble alginate contained in solution 4 sustained release of calcium ions due to contact between calcium carbonate and acetic acid, and calcium ions derived from calcium carbonate and water-soluble alginate Gelation occurs upon contact with the alginate, forming a uniform and firm gel in the submucosal layer and protecting the ulcer.
  • solution 1 comprises a water-soluble alginate and calcium carbonate
  • solution 3 comprises a water-soluble chitosan salt and acetic acid
  • solution 4 comprises a calcium ion donor.
  • a flexible gel having high viscoelasticity is formed at the stage before ESD is performed. Mucous membrane peeling is easy.
  • a uniform gel is formed, and an ulcer after ESD can be reliably shielded.
  • a uniform and thick gel layer is formed in the submucosal layer, it is possible to prevent the heat of the electric scalpel from spreading to the muscular layer, thereby preventing crushing of the muscular layer due to heat.
  • the gel formed from the treatment member-forming agent according to the present embodiment is stably maintained in the gastrointestinal tract environment for a long period of time, it can be used for prevention of bleeding during colon polypectomy surgery, hemostasis for colon diverticulum bleeding, and internal medicine. It can also be applied to fill in gaps in suturing insufficiency after endoscopic treatment.
  • the treatment member-forming agent according to Embodiments 1 and 2 may be used as a mucosa-elevating agent, an ulcer-protecting agent, an ulcer-healing promoting agent, and a fistula-closing agent. Also provided in another embodiment is the use of a water-soluble chitosan salt in the manufacture of a treatment member forming agent, a mucosa-elevating agent, an ulcer-protecting agent, an ulcer-healing promoting agent or a fistula-closing agent.
  • water soluble chitosan salts for use in forming treatment devices water soluble chitosan salts for elevating mucous membranes, water soluble chitosan salts for protecting ulcers, promoting ulcer healing. and a water-soluble chitosan salt for closing fistulas.
  • another embodiment includes the steps of locally injecting Solution 1 and Solution 2 into the submucosa of the site where ESD is to be performed, and performing ESD on the site where the mucosa is elevated.
  • a method of forming a treatment member is provided.
  • the present invention will be explained more specifically by the following examples, but the present invention is not limited by the examples.
  • the gel formed by the treatment member-forming agent according to Embodiment 1 is particularly referred to as "two-part hydrogel”.
  • a gel formed by the treatment member-forming agent according to Embodiment 2 is particularly referred to as a "three-component hydrogel”.
  • Riftal (registered trademark) K manufactured by Kaigen was used as 0.6 wt% sodium alginate unless otherwise specified.
  • chitosan hydrochloride used as a water-soluble chitosan salt was prepared by stirring 5 g of chitosan (manufactured by Junsei Chemical Co., Ltd.) in 500 mL of dilute acetic acid (1% by weight) for 18 hours or more. After dissolution, the solution was filtered through a Millipore membrane (5.0 ⁇ m) and dialyzed with 0.4 M NaCl aqueous solution for 8 days and deionized water for 2 days or more to replace the counter ions with chloride. was prepared by lyophilizing
  • the alginate hydrogel was prone to early disintegration especially in a basic environment, and the higher the sodium concentration, the faster the disintegration.
  • This result indicates that the hydrogel according to this comparative example is not suitable for long-term ulcer protection in the duodenum, which is a basic environment.
  • the hydrogel soaked in calcium lactate solution for 30 minutes every day was able to maintain its morphology, although it disintegrated in saline on day 14. This result suggests the possibility of delaying hydrogel disintegration in the gastrointestinal tract by taking calcium preparations regularly after surgery.
  • Example 1 (Examination of durability of two-component hydrogel) 2 mL of 0.6% by weight sodium alginate, various concentrations of chitosan hydrochloride, and 5% by weight calcium lactate were mixed to prepare bead-shaped gels shaped with rayon waste threads.
  • the gel was immersed in acidic, neutral, and basic immersion liquids and pancreatic enzyme solutions, and the disintegration rate of the gel according to the concentration of chitosan hydrochloride was compared.
  • the composition of the produced gel and the composition of the immersion liquid used are as follows.
  • Chitosan-free gel 0.6% by weight sodium alginate, 5% by weight calcium lactate Chitosan low concentration gel: 0.6% by weight sodium alginate, 5% by weight calcium lactate, 0.25% by weight chitosan hydrochloride Chitosan medium concentration gel: 0.6% by weight sodium alginate, 5% by weight calcium lactate, 0.50% by weight chitosan hydrochloride Chitosan high concentration gel: 0.6% by weight sodium alginate, 5% by weight calcium lactate, 1.0% by weight chitosan hydrochloride acid Immersion liquid (pH 1-2): 0.6 wt% HCl, 0.9 wt% NaCl Neutral immersion liquid (pH 7): 0.9 wt% NaCl Basic Dip (pH 8): 0.25 wt% NaHCO3 , 0.9 wt% NaCl Pancreatic enzyme solution: 2% pancreatin by weight, 0.9% NaCl by weight
  • Example 2 (Examination of optimum concentration of chitosan and calcium lactate) Gels were made by mixing 0.6 wt% sodium alginate, various concentrations of chitosan hydrochloride, and various concentrations of calcium lactate. The gel was immersed in a basic pancreatic enzyme solution (0.5 wt% NaHCO 3 , 0.9 wt% NaCl, and 2 wt% pancreatin (pH 8.0)), and the durability of the gel was observed for 23 days. did. A chitosan hydrochloride concentration of 0 to 2% by weight and a calcium lactate concentration of 0.1 to 5% by weight were examined.
  • a basic pancreatic enzyme solution 0.5 wt% NaHCO 3 , 0.9 wt% NaCl, and 2 wt% pancreatin (pH 8.0)
  • Example 3 Evaluation of usefulness of two-component hydrogel
  • ESD was performed on the stomach and duodenum using general anesthetized 15 kg tribred pigs.
  • Solution 1 containing 0.6% by weight sodium alginate and solution 2 containing 4 to 5% by weight calcium lactate and 3% by weight chitosan hydrochloride were locally injected into the submucosa of the ESD site to perform ESD.
  • Local injection was performed using a top endoscope puncture needle Impact Flow H type 25G or 26G, and ESD was performed using a high frequency device (VIO3), dual knife, IT2.
  • VIO3 high frequency device
  • FIG. (a) is a diagram showing an overall image including an ESD-enforced site.
  • (b) and (d) are enlarged views of portions w, x and y enclosed by solid lines in (a), respectively.
  • (e) is an enlarged view of a portion z surrounded by a solid line in (c).
  • FIG. 2(a) phagocytosis of the gel by macrophages was confirmed, but as shown in FIG. 2(d), it was confirmed that the gel remained in the submucosa after one week. .
  • FIG. 2(e) which is a further enlarged view of FIG. 2(c), which is the resected portion of the mucous membrane, it was confirmed that the mucosal epithelium was regenerated on the surface of the ulcer. be done. Therefore, it was confirmed that the gel according to this example is effective in raising the mucous membrane during ESD and protecting the ulcer after mucous membrane peeling, suggesting that it is also effective in promoting healing of the ulcer.
  • Example 4 (Examination of durability of three-component hydrogel)
  • Durability was confirmed by immersing the prepared gel in physiological saline (Table 1) adjusted to three different pHs and measuring the degree of swelling of the gel over time.
  • FIG. 3 A graph of the degree of swelling of the gel measured over time is shown in FIG.
  • the degree of swelling is expressed as wet weight/dry weight.
  • the degree of swelling is relatively high, the gel network is weakened, indicating that the gel contains a large amount of water.
  • FIG. 3 the degree of swelling of the gel hardly increased from that at the beginning of the experiment, and the gel was maintained for 15 days or more at any pH of the immersion liquid. This suggested the possibility that the gel could be maintained even when exposed to various pH digestive juices in the gastrointestinal tract.
  • Example 5 (Examination of pancreatic enzyme permeability of 3-dose hydrogel)
  • Solution 1 and solution 3 which are the same as those used in Example 4, were alternately locally injected into absorbent cotton having a diameter of 45 mm, and then the absorbent cotton was added to solution 4 containing 2.33 wt% calcium lactate and 0.2 wt% acetic acid for 5 minutes.
  • a gel thickness 1.3125 mm was produced using absorbent cotton as a scaffold.
  • the gel was sandwiched between devices as shown in FIG.
  • pancreatin-spiked saline (0.15 M sodium chloride, 0.1 wt % sodium azide, 0.5 wt % pancreatin).
  • the absorbance of the solutions at 280 nm was measured over time while both devices were kept stirring for over 10 days. Taking the pancreatin concentration in physiological saline at the start of measurement as 0 and the pancreatin concentration in physiological saline containing pancreatin as 1, the relative concentrations of pancreatin in both solutions over time were calculated.
  • Example 6 Evaluation of usefulness of three-dose hydrogel in ESD of live swine ESD was performed on the stomachs of 15-20 kg tribred pigs under general anesthesia to evaluate the usefulness and safety of a three-part hydrogel in a mucosal ablation procedure.
  • the following two patterns of treatment member-forming agent were used.
  • ⁇ Pattern 1 Solution 1 0.6 wt% sodium alginate, 0.2 wt% calcium carbonate Solution 3: 2 wt% chitosan hydrochloride, 0.2 wt% calcium carbonate Solution 4: 3 wt% calcium lactate, 5 wt% acetic acid Pattern 2 Solution 1: 0.6 wt% sodium alginate, 0.2 wt% calcium carbonate Solution 3: 2 wt% chitosan hydrochloride, 2-3% acetic acid (or citric acid) Solution 4: 3% by weight calcium lactate
  • Solution 1 and solution 3 were alternately locally injected into the submucosa of the ESD site to form a gel, the mucosa was lifted, and the mucosa was peeled off with an ESD knife. After the exfoliation was completed, Solution 1 and Solution 3 were additionally locally injected into the ulcer floor (submucosa) to form a thick gel, and finally Solution 4 was sprayed.
  • ESD was performed by locally injecting 0.6% by weight sodium alginate, which is a conventional local injection agent.
  • the stomach was subjected to E-Masson staining and HE staining at 3 days, 10 days, 1, 2 and 3 weeks after ESD, and the duodenum at 3 weeks after ESD.
  • FIG. 5(a) shows an image of a macroscopic specimen taken three days after ESD
  • FIGS. 5(b) and 5(c) show HE-stained tissues.
  • FIGS. 5(b) and (c) show HE-stained tissues.
  • FIGS. 5(b) and (c) show HE-stained tissues.
  • FIGS. 5(b) and (c) show HE-stained tissues.
  • FIGS. 5(b) and (c) shows an ulcer (a) and its partial images (b, c, d) 10 days after ESD.
  • the surface gel disappeared, but remained in the submucosal tissue (Fig. 6(b)), and phagocytosis by macrophages (foreign body reaction) was observed (Fig. 6(c)).
  • fibrosis started in the first week, and inflammatory cell infiltration, vascular proliferation, fibrosis, etc. in the tissue gradually progressed over the second and third weeks, and tissue repair was observed (Fig. 6
  • Figures 7 to 9 show the sites where ESD was performed 7 days, 14 days, and 21 days after ESD, respectively.
  • (a) in each of FIGS. 7 to 9 shows the overall image of the ESD-applied site, the upper part is the control site, and the lower part is the site where ESD was performed by local injection of the treatment member-forming agent according to this example.
  • (b) shows HE-stained and E-Masson-stained tissues for control sites.
  • (c) shows a HE-stained and E-Masson-stained tissue of a site where ESD was performed by local injection of the treatment member-forming agent according to the present example. At the control site, crushing of the muscle layer by the heat of the ESD knife was observed (Fig. 7(b)).
  • FIGS. 8(a, b) and 9(a, b) in the control site where ESD was performed by local injection of 0.6% by weight sodium alginate, 2 to 3 weeks after ESD, Folds were concentrated around the ulcer, and during the healing process, the surrounding mucosa was pulled and the surrounding tissue was deformed.
  • the treatment member-forming agent at the site where the treatment member-forming agent was used, there was little contraction during the ulcer healing process, and it was observed that the surrounding tissue was gradually flattened without deformation (Fig. 8(c), Fig. 9(c)). ).
  • Example 7 Evaluation of usefulness of two-component hydrogel in fistula closure of surgical suture failure (removed stomach)
  • An anastomosis model was prepared by using an excised stomach of a 15-20 kg triple-mating pig and suturing it with an automatic suture device (ECHELON FLEX (manufactured by Ethicon, Johnson & Johnson)). Several staplers at the anastomosis were removed to create a suture failure model.
  • a solution containing 0.6% by weight sodium alginate as solution 1 and 2-3% calcium lactate and 2-3% chitosan hydrochloride as solution 2 was locally injected into the mucosa surrounding the suture failure, and a gel was applied to the submucosal layer. By forming a bulge with the fistula, the fistula was brought into close contact and sealed. By infusing the lumen of the pig stomach with air and compressing it under immersion in water, it was confirmed that the fistula was tightly sealed by the gel and that there was no air leakage.
  • Example 8 Evaluation of usefulness of two-component hydrogel in fistula closure of surgical suture failure (living pig)
  • ECHELON FLEX automatic anastomosis machine
  • a suture failure model was created by removing a few staples or trimming off the staple cut stump. The presence of a fistula was confirmed by endoscopic observation on the day after the operation or the day after the operation.
  • a solution containing 0.6% by weight sodium alginate as Solution 1 and 2-3% calcium lactate and 2-3% chitosan hydrochloride as Solution 2 was locally injected into the mucosa around the fistula to bulge the mucosa and close the fistula. Pushed closed.
  • the mucosal surfaces in contact with each other were lightly crushed by APC cauterization to promote new mucosal formation through the healing process.
  • the site of the fistula was endoscopically observed on the day after the operation, 1 week, and 3 weeks after the operation, and 3 weeks later, the pig was sacrificed and histopathologically evaluated.
  • Example 9 Effect of hydrogel to reduce ulcers to which a healing-promoting substance is added
  • ESD was performed on the stomachs of general anesthetized 15-20 kg tribred pigs using Gels 1-3 of the following composition and 0.6% sodium alginate as a control.
  • Trafermin contained in solution 5 of gel 3 is a fibroblast growth factor and is known to have an ulcer healing promoting effect.
  • ⁇ Gel 1 Solution 1 0.6 wt% sodium alginate, 0.1 wt% calcium carbonate Solution 3: 2 wt% chitosan hydrochloride, 2 wt% acetic acid Solution 4: 3 wt% calcium lactate (spray) ⁇ Gel 2 Solution 1: 0.6 wt% sodium alginate, 0.2 wt% calcium carbonate Solution 3: 2 wt% chitosan hydrochloride, 2 wt% acetic acid Solution 4: 3 wt% calcium lactate (spray) ⁇ Gel 3 Solution 1: 0.6 wt% sodium alginate, 0.2 wt% calcium carbonate Solution 3: 2 wt% chitosan hydrochloride, 2 wt% acetic acid Solution 4: 3 wt% calcium lactate (spray) Solution 5: 5 mL of 100 ⁇ g/mL trafermin (injected locally toward the ulcer base immediately after ESD)
  • the day of the ESD was defined as day 1, and the size of each ulcer was measured on the 1st, 8th, 15th, 22nd and 29th days.
  • FIG. 11 shows the relative ulcer size when the ulcer on the first day of ESD is set to 1. There was no difference in ulcer size between Gels 1, 2 and controls over the entire period ESD days 1-29. On the other hand, Gel 3, in which trafermin was locally injected after EDS, showed a tendency for the ulcer to shrink between 8 and 15 days after ESD. This suggests the possibility of early shrinkage of ulcers by incorporating an ulcer healing-promoting substance into the gel.
  • the present invention is useful in medical procedures such as ESD or fistula closure of suture failure in surgical operations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Preparation (AREA)

Abstract

処置部材形成剤は、局所に注入される水溶性アルギン酸塩を含む第1の溶液と、局所に注入される水溶性キトサン塩と、局所に供給されるカルシウムイオン供与体と、を備える。

Description

処置部材形成剤
 本発明は、処置部材形成剤に関する。
 内視鏡的粘膜下層剥離術(Endoscopic submucosal dissection、ESD)は、粘膜と筋層との間にある粘膜下層に液体を局所注射(以下、「局注」ともいう)して粘膜を挙上させ、粘膜を剥離することによって早期に消化器癌を切除し、根治へと導く治療法である。ESDは、我が国で開発されて以来、画期的な手法として世界中に広く普及し、発展している。
 薄い消化管壁の内腔側を剥離するには緻密で正確な技術が必要であり、術中の不適切な操作、剥離時及び止血時の熱波及により消化管穿孔が起こり得る。特に粘膜の挙上が不十分であると操作が困難となり、穿孔の原因となり得る。術中穿孔は胃では1~5%、十二指腸では12.8%起こっている。特に、壁が薄く、強力な消化酵素を含む膵液が流入する十二指腸では穿孔率が高い。また、粘膜剥離後に形成される潰瘍が消化液に暴露されることによる遅発穿孔又は後出血が起こる場合もある。遅発穿孔は胃では0.1%以下、十二指腸では2.1%起こり、後出血は胃では0~5%、十二指腸では4.7%起こっている。穿孔が生じると重篤な病態に進行する場合があるため、より効果的な粘膜挙上及びESD後の潰瘍保護により、穿孔及び後出血を予防することが急務となっている。
 現在、粘膜挙上のための局注剤として、アルギン酸ナトリウム又はヒアルロン酸が一般的に用いられている。しかし、これらの局注剤は液体又はゾルであるため、時間の経過とともに組織内から流出し、ESD中に頻回の局注が必要であったり、十分な粘膜挙上が得られなかったりする場合がある。
 特許文献1には、アルギン酸ナトリウム等を含む水溶液と、カルシウムイオン等を含む水溶液を含む2剤型粘膜下注入用局注液が開示されており、2剤を局注することにより粘膜下にゲルが形成され、高い粘膜隆起が得られることが記載されている。
 また、現在、ESD後の潰瘍保護のためにはクリップによる縫縮が一般的である。しかし、クリップによる完全な縫縮が困難であり、クリップの種類によっては非常に費用が高いという問題がある。そこで、特許文献2には、ポリグリコール酸(Polyglycolic Acid、PGA)を材料としたPGAシートを潰瘍に貼り付ける処置が開示されている。
国際公開第2019-059237号 特開2016-202888号公報
 上記特許文献1に記載の2剤型粘膜下注入用局注液は、局注時の粘膜挙上のみに着目した発明であり、その後の潰瘍保護を実現するものではない。アルギン酸ナトリウムをカルシウムイオンで架橋して形成されるハイドロゲルは、ナトリウムの存在又はアルカリ環境下で崩壊することが知られており、消化管内では耐久性を有しない。また、上記特許文献2に記載のPGAシートは、内視鏡的下で潰瘍部位に確実に固定することが難しいという問題がある。
 本発明は上述の事情に鑑みてなされたものであり、ESDにおいて効果的な粘膜挙上、及び粘膜剥離後の潰瘍保護を実現し、さらには治療促進効果を有するハイドロゲルを形成することができる処置部材形成剤を提供することを目的とする。
 本発明に係る処置部材形成剤は、
 局所に注入される水溶性アルギン酸塩を含む第1の溶液と、
 前記局所に注入される水溶性キトサン塩と、
 前記局所に供給されるカルシウムイオン供与体と、
 を備える。
 この場合、前記水溶性アルギン酸塩は、
 アルギン酸ナトリウムである、
 こととしてもよい。
 また、前記第1の溶液におけるアルギン酸ナトリウムの濃度は、
 0.3~2重量%である、
 こととしてもよい。
 上記本発明に係る処置部材形成剤は、
 第2の溶液をさらに備え、
 前記水溶性キトサン塩と前記カルシウムイオン供与体は、前記第2の溶液に含まれる、
 こととしてもよい。
 また、前記水溶性キトサン塩と前記カルシウムイオン供与体は、これらを含む第2の溶液である、
 こととしてもよい。
 また、前記カルシウムイオン供与体は、カルシウム塩であって、
 前記第2の溶液におけるカルシウム塩の濃度は、
 2~7重量%である、
 こととしてもよい。
 また、前記カルシウム塩は、
 乳酸カルシウムである、
 こととしてもよい。
 また、前記第2の溶液における水溶性キトサン塩の濃度は、
 1~3重量%である、
 こととしてもよい。
 また、前記第1の溶液は、
 炭酸カルシウムをさらに含み、
 第3の溶液と、第4の溶液をさらに備え、
 前記水溶性キトサン塩は、前記第3の溶液に含まれ、
 前記カルシウムイオン供与体は、前記第4の溶液に含まれ、
 前記第3の溶液及び前記第4の溶液の少なくとも一方は、
 前記局所に供給される、酢酸及びクエン酸からなる群から選択される酸をさらに含む、
 こととしてもよい。
 また、前記第1の溶液は、
 炭酸カルシウムをさらに含み、
 前記水溶性キトサン塩は、これを含む第3の溶液であり、
 前記カルシウムイオン供与体は、これを含む第4の溶液であり、
 前記第3の溶液及び前記第4の溶液の少なくとも一方は、
 前記局所に供給される、酢酸及びクエン酸からなる群から選択される酸をさらに含む、
 こととしてもよい。
 また、前記第3の溶液は、前記酸を含まず、炭酸カルシウムをさらに含み、
 前記第4の溶液は、前記酸を含む、
 こととしてもよい。
 また、前記第3の溶液は、前記酸を含み、
 前記第4の溶液は、前記酸を含まない、
 こととしてもよい。
 また、前記カルシウムイオン供与体は、カルシウム塩であって、
 前記第4の溶液におけるカルシウム塩の濃度は、
 2~7重量%である、
 こととしてもよい。
 また、前記カルシウム塩は、
 乳酸カルシウムである、
 こととしてもよい。
 また、前記第3の溶液における水溶性キトサン塩の濃度は、
 1~3重量%である、
 こととしてもよい。
 上記本発明に係る処置部材形成剤は、
 内視鏡的粘膜下層剥離術における粘膜挙上、粘膜剥離後の潰瘍保護又は潰瘍の治癒促進に使用されるためのものである、
 こととしてもよい。
 また、本発明に係る処置部材形成剤は、
 縫合不全部の瘻孔閉鎖に使用されるためのものである、
 こととしてもよい。
 本発明の処置部材形成剤によれば、ESDにおいて効果的な粘膜挙上、及び粘膜剥離後の潰瘍保護を実現し、さらには治療促進効果を有するハイドロゲルを形成することができる。
実施例2に係る水溶性キトサン塩及び乳酸カルシウムの至適濃度の検討結果をまとめた図である。 実施例3に係るヘマトキシリン・エオジン(HE)染色した十二指腸を示す図である。(a)はESD施行部位を含む全体像を示す図である。(b)、(c)及び(d)はそれぞれ(a)において実線で包囲された部分w、x、及びyを拡大した図である。(e)は(c)において実線で包囲された部分zを拡大した図である。 実施例4に係る経時的なハイドロゲルの膨潤度を示すグラフである。 実施例5に係る膵酵素透過試験のイメージ図(a)、及びパンクレアチンの経時的な相対濃度のグラフ(b)である。 実施例6に係る胃のESD後3日目のマクロ標本が撮像された画像を示す図(a)、及びHE染色が撮像された画像を示す図(b、c)である。(b)はESD施行部位を含む全体像を示す図であり、(c)は(b)の部分拡大図である。 実施例6に係るESD後10日目のHE染色した胃を示す図である。(a)はESD施行部位を含む全体像を示す図である。(b)~(d)は(a)の部分の拡大像を示す図である。 実施例6に係る胃のESD後7日目のESD施行部位を示す。(a)は、ESD施行部位の全体像を示し、上段は対照部位、下段は本実施例に係る処置部材形成剤を局注してESDを施行した部位である。(b)は、対照部位についてHE染色及びE-Masson染色した組織を示す。(c)は、本実施例に係る処置部材形成剤を局注してESDを施行した部位についてHE染色及びE-Masson染色した組織を示す。 実施例6に係る胃のESD後14日目のESD施行部位を示す。(a)は、ESD施行部位の全体像を示し、上段は対照部位、下段は本実施例に係る処置部材形成剤を局注してESDを施行した部位である。(b)は、対照部位についてHE染色及びE-Masson染色した組織を示す。(c)は、本実施例に係る処置部材形成剤を局注してESDを施行した部位についてHE染色及びE-Masson染色した組織を示す。 実施例6に係る胃のESD後21日目のESD施行部位を示す。(a)は、ESD施行部位の全体像を示し、上段は対照部位、下段は本実施例に係る処置部材形成剤を局注してESDを施行した部位である。(b)は、対照部位についてHE染色及びE-Masson染色した組織を示す。(c)は、本実施例に係る処置部材形成剤を局注してESDを施行した部位についてHE染色及びE-Masson染色した組織を示す。 実施例8に係る手術後3週間のHE染色した胃を示す図である。 実施例9に係る潰瘍の大きさを示す図である。
 以下、本発明の実施の形態について詳細に説明する。なお、本発明は下記の実施の形態及び図面によって限定されるものではない。なお、下記の実施の形態において、“有する”、“含む”又は“含有する”といった表現は、“からなる”又は“から構成される”という意味も包含する。また、特に明記しない限り、“%”は“重量%”を意味する。
 (実施の形態1)
 本発明の実施の形態に係る処置部材形成剤は、複数種類の溶液を備え、処置部位でそれらの水溶液が接触することにより処置用ハイドロゲル(以下「ゲル」ともいう)を形成することができる。本実施の形態に係る処置部材形成剤は、局所に注入される水溶性アルギン酸塩を含む溶液1(第1の溶液)と、局所に注入される水溶性キトサン塩と、局所に供給されるカルシウムイオン供与体と、を備える。
 局所は、生体内、例えば、臓器及び組織等、ゲルを形成したい任意の部位である。臓器としては、例えば、十二指腸、胃、大腸、膀胱、又は食道等が挙げられる。また、局所は、臓器等における粘膜下層であってもよい。注入は、局所への注射を含む任意の方法により行ってもよく、好適には内視鏡用局注針を用いた局所注射である。
 溶液1に含まれる水溶性アルギン酸塩の水溶液は、多価カチオン、特にカルシウムイオンとの接触により架橋され、ゲル化する性質を有する。水溶性アルギン酸塩としては、例えば、アルギン酸ナトリウム、アルギン酸カリウム、又はアルギン酸アンモニウムが挙げられるが、好適にはアルギン酸ナトリウムである。アルギン酸ナトリウムは、海藻に含まれる食物繊維の一種であり、生体適合性が高く安全であるため、食品添加物又は医薬品として広く使用されている。また、溶液1として、内視鏡用粘膜下注入剤として市販されている0.6%アルギン酸ナトリウム(例えば、リフタル(登録商標)K、カイゲン社製)を使用してもよい。
 水溶性アルギン酸塩としてアルギン酸ナトリウムを使用する場合、溶液1中のアルギン酸ナトリウムの濃度は、好適には0.3~2重量%、さらに好適には0.4~0.8重量%、pH6.0~8.0である。使用するアルギン酸ナトリウムの分子量は特に限定されないが、例えば、重量平均分子量が40,000~4,000,000、好適には重量平均分子量が200,000~350,000のアルギン酸ナトリウムである。
 キトサンは、N-アセチルグルコサミンが直鎖状に結合した多糖類であるキチンが、脱アセチル化されることで得られる物質である。キトサンは、アニオン性高分子コロイドとポリイオンコンプレックスを形成してゲル化する性質が知られており、水溶性アルギン酸塩と接触させることで耐久性のあるゲルを形成することができる。後述する実施例に示すように、水溶性アルギン酸塩をカルシウムイオンで架橋したゲルを作製する際に、さらにキトサンを添加することで、酸、ナトリウム、又はアルカリ環境下においても長期間ゲルが維持されるようになる。また、キトサンは、創傷治癒、殺菌作用、出血予防等の効果が確認されており、ゲル中にキトサンを含むことにより、治癒促進の効果も期待できる。
 本実施の形態では、キトサンをさらに酸性条件下でアミノ基をアミン塩として水溶性を付与することで、好適に用いることができる。本実施の形態では、可溶化させたキトサンを水溶性キトサン塩として、上記局所に注入する。キトサン塩の対イオンとしては、溶解性を付与することができ、生体に悪影響を与えない対イオンであればよく、例えば、塩化物イオン、リン酸イオン、もしくは亜リン酸イオン等の無機陰イオン類、又は、ギ酸イオン、酢酸イオン、もしくはプロピオン酸イオンの有機陰イオン類が用いられる。
 カルシウムイオン供与体は、供給された局所にカルシウムイオンを提供できれば特に限定されず、例えば、カルシウム塩であり得る。溶解度が高く、生体に悪影響を与えないカルシウムイオン供与体が好ましい。カルシウムイオン供与体としては、例えば、乳酸カルシウム、塩化カルシウム、クエン酸カルシウム、リンゴ酸カルシウム、又はグルコン酸カルシウム等が挙げられる。好適には、カルシウムイオン供与体としてのカルシウム塩は、臨床使用されているカルシウム塩の中で最も溶解度が高い物質である乳酸カルシウムである。
 カルシウムイオン供与体は、任意の方法で供給してもよく、例えば、溶液として注入、散布、噴霧、又は塗布されてもよいし、粉末として散布されてもよい。また、カルシウムイオン供与体は、カルシウム剤として経口投与されてもよい。当該カルシウムイオン供与体によって提供されるカルシウムイオンが、水溶性アルギン酸塩と接触することでゲルが生成する。
 本実施の形態に係る処置部材形成剤は、2剤型の処置部材形成剤であってもよい。処置部材形成剤が2剤型の場合、処置部材形成剤は、溶液2(第2の溶液)をさらに備え、溶液2は水溶性キトサン塩とカルシウムイオン供与体とを含む。
 溶液2中の水溶性キトサン塩の濃度は、酸、塩基、ナトリウム、又は膵酵素等の過酷な環境下でゲルを維持するために適宜調整される。溶液2中の水溶性キトサン塩の濃度が低いとゲルが崩壊するため、水溶性キトサン塩の濃度は1重量%以上が好ましい。一方、溶液2中のキトサンの濃度が高すぎると粘性が出て局注が困難であるため、3重量%以下が好ましい。溶液2中の水溶性キトサン塩の濃度は、例えば、1重量%、1.5重量%、2重量%、2.5重量%、又は3重量%であり得る。使用するキトサンの分子量は特に限定されないが、例えば、重量平均分子量が1,000~5,000,000のキトサンであってもよい。使用するキトサンの脱アセチル化率は、50~100モル%、好適には70モル%以上である。
 溶液2中のカルシウムイオン供与体として乳酸カルシウムを使用する場合、溶液2中の乳酸カルシウム濃度は、酸、塩基、ナトリウム、又は膵酵素等の過酷な環境下でゲルを維持するために適宜調整される。溶液2中の乳酸カルシウムの濃度が低いとゲルが崩壊するため、乳酸カルシウム濃度は、2重量%以上が好ましい。一方、溶液2中の乳酸カルシウム濃度が高すぎると局注針の中で塊が形成されるため、乳酸カルシウム濃度は7%以下が好ましい。溶液2中の乳酸カルシウム濃度は、例えば、2重量%、3重量%、3.5重量%、4重量%、又は5重量%等である。
 なお、溶液1及び溶液2の各々は、防腐剤、安定剤、pH調整剤、又は緩衝剤等の添加物をさらに含むことができる。
 本実施の形態に係る処置部材形成剤は、さらに別の溶液を組み合わせた多剤型処置部材形成剤であってもよい。また、処置部材形成剤は、治癒促進剤、組織再生剤、抗菌剤、抗炎症剤、血管収縮剤及び止血剤等の有効成分をさらに含んでいてもよい。含み得る有効成分としては、例えば、トラフェルミン、ソルコセリル及びアルジオキサ等が挙げられる。これらの有効成分は、溶液1又は溶液2に添加されていてもよいし、さらなる溶液として添加してもよい。また、ESD後に有効成分を潰瘍に直接局注してもよい。有効成分の濃度は特に限定されないが、その成分が有効とされる濃度で添加してもよい。例えば、有効成分がトラフェルミンである場合は、10~500μg/mLの濃度で局注してもよい。有効成分の種類に応じて、ESD部位における、治癒促進、組織再生、抗菌、抗炎症、血管収縮及び止血等の効果が期待できる。
 次に、本実施の形態に係る処置部材形成剤の使用方法について、2剤型の処置部材形成剤を例に説明する。本実施の形態に係る処置部材形成剤をESDにおいて使用する場合、ESDを施行する部位の粘膜下層に、溶液1及び溶液2を交互に局注することにより、粘膜下層で水溶性アルギン酸塩が水溶性キトサン塩及びカルシウムイオンと接触し、強固なゲルが形成される。粘膜の挙上を確認後、ESDを施行する。粘膜剥離後も粘膜下層にゲルが残留し、潰瘍が保護される。
 本実施の形態に係る処置部材形成剤により形成されるゲルによれば、ESDにおいて、効果的な粘膜挙上及び長期間の潰瘍保護が可能である。それにより、術中穿孔予防、後発穿孔予防、及び後出血を予防することができる。さらに、ゲルによる潰瘍保護とキトサンの創傷治療効果から、潰瘍の治癒促進も期待できる。
 また、本実施の形態に係る処置部材形成剤により形成されるゲルは、ESDだけでなく、様々な医療処置用途に有用である。例えば、消化管外科手術における縫合不全部の瘻孔を当該ゲルにより長期間密着させた状態で維持することにより、閉鎖に導くことができる。処置部材形成剤の局注という、容易かつ低侵襲な内視鏡治療により、瘻孔閉鎖のための再手術を回避することができる。
 本実施の形態に係る処置部材形成剤を、外科手術における縫合不全部の瘻孔閉鎖のために使用する場合、瘻孔形成部の周囲の粘膜に、溶液1及び溶液2を交互に局注することにより、組織内にゲルが形成される。ゲルにより組織が隆起することで瘻孔部が密閉され、ゲルが組織内に長期間維持されることにより密閉状態を維持することができる。
 溶液1及び溶液2の各々の使用量は、目的の処置のために必要な大きさ及び厚さのゲルが形成される量であればよく、処置箇所の大きさ、及び線維化の程度等により適宜変更し得る。例えば、線維化が起こっていない胃では、直径2cmの病変に対して粘膜下層に形成されるゲルは、5mLであってもよい。
 (実施の形態2)
 本実施の形態に係る処置部材形成剤は、3剤型の処置部材形成剤であってもよい。続いて、3剤型である処置部材形成剤について、上記実施の形態1と異なる点について主に説明する。本実施の形態に係る処置部材形成剤における溶液1は、炭酸カルシウムをさらに含む。当該処置部材形成剤は、水溶性キトサン塩を含む溶液3(第3の溶液)と、カルシウムイオン供与体を含む溶液4(第4の溶液)と、をさらに備える。
 溶液1に含まれる炭酸カルシウムはカルシウム塩の中でも非常に溶解度が低く、25℃で100gの水に0.00145gしか溶解しない。したがって、溶液1に炭酸カルシウムを混合してもカルシウムイオンがほとんど遊離せず、ゲル化が起こらない。溶液1を使用前によく撹拌することにより、炭酸カルシウムは水溶性アルギン酸塩中に均一に分散される。
 溶液3及び溶液4の少なくとも一方は、局所に供給される酸をさらに含む。当該酸は、酢酸及びクエン酸からなる群から選択される。溶液3が酢酸又はクエン酸をさらに含んでもよいし、溶液4が酢酸又はクエン酸をさらに含んでもよい。また、溶液3と溶液4の両方が酢酸又はクエン酸をさらに含んでもよい。水溶性アルギン酸塩中に均一に分散された炭酸カルシウムは、酸と接触することにより溶解し、カルシウムイオンを徐放するため、均一かつ徐々にゲル化が起こる。
 溶液1に含まれる炭酸カルシウムの濃度は、好適には0.1~5重量%、さらに好適には0.1~0.5重量%である。溶液3又は溶液4における酢酸の濃度は、0.1~10重量%、好適には0.1~3重量%である。溶液3又は溶液4におけるクエン酸の濃度は、0.1~10重量%、好適には0.1~3重量%である。なお、溶液3が酸を含まず、炭酸カルシウムをさらに含み、溶液4が酸を含んでもよい。
 溶液3中の水溶性キトサン塩の濃度は、上記実施の形態1における溶液2中の水溶性キトサン塩の濃度と同様である。また、カルシウムイオン供与体として乳酸カルシウムを使用する場合の溶液4中の乳酸カルシウムの濃度は、上記実施の形態1における溶液2中の乳酸カルシウムの濃度と同様である。
 なお、溶液1、溶液3、及び溶液4の各々は、防腐剤、安定剤、pH調整剤、又は緩衝剤等の添加物をさらに含むことができる。
 本実施の形態に係る処置部材形成剤は、さらに別の溶液を組み合わせた多剤型処置部材形成剤であってもよい。
 次に、溶液1が水溶性アルギン酸塩及び炭酸カルシウムを含み、溶液3が水溶性キトサン塩を含み、溶液4がカルシウムイオン供与体及び酢酸を含む、3剤型の処置部材形成剤のESDにおける使用方法について説明する。ESDを施行する部位の粘膜下層に、溶液1及び溶液3を交互に局注することにより、水溶性アルギン酸塩と水溶性キトサン塩が接触してポリイオンコンプレックスが形成され、粘膜下層で柔軟なゲルが形成される。粘膜の挙上を確認後、ESDを施行する。粘膜剥離後、粘膜下層に残留している柔軟なゲルに、溶液4を散布する。これにより、溶液4に含まれるカルシウム供与体由来のカルシウムイオンと水溶性アルギン酸塩の接触による急速なゲル化、炭酸カルシウムと酢酸の接触によるカルシウムイオンの徐放、及び炭酸カルシウム由来のカルシウムイオンと水溶性アルギン酸塩の接触によるゲル化が起こり、均一かつ強固なゲルが粘膜下層に形成され、潰瘍が保護される。
 続いて、溶液1が水溶性アルギン酸塩及び炭酸カルシウムを含み、溶液3が水溶性キトサン塩及び酢酸を含み、溶液4がカルシウムイオン供与体を含む、3剤型の処置部材形成剤のESDにおける使用方法について説明する。ESDを施行する部位の粘膜下層に、溶液1及び溶液3を交互に局注することにより、水溶性アルギン酸塩と水溶性キトサン塩の接触によるポリイオンコンプレックスの形成、炭酸カルシウムと酢酸の接触によるカルシウムイオンの徐放、及び炭酸カルシウム由来のカルシウムイオンと水溶性アルギン酸塩の接触によるゲル化が起こり、粘膜下層に均一かつ柔軟なゲルが形成される。粘膜の挙上を確認後、ESDを施行する。粘膜剥離後、粘膜下層に残留している柔軟なゲルに、溶液4を散布する。これにより、溶液4に含まれるカルシウム供与体由来のカルシウムイオンと水溶性アルギン酸塩の接触による急速なゲル化が起こり、均一かつ強固なゲルが粘膜下層に形成され、潰瘍が保護される。
 本実施の形態に係る処置部材形成剤によれば、ESD施行前の段階で粘弾性の高い柔軟なゲルが形成されるため、実施の形態1に係る処置部材形成剤により形成されるゲルに比べ粘膜剥離が容易である。また、実施の形態1に係る処置部材形成剤に比べ、均一なゲルが形成され、ESD後の潰瘍を確実に遮蔽することができる。また、粘膜下層に均一かつ厚いゲル層が形成されるため、電気メスの熱が筋層に波及するのを防ぐことができ、熱による筋層の挫滅を予防することができる。
 さらに、本実施の形態に係る処置部材形成剤により形成されるゲルは、消化管内環境で長期間安定的に維持されるため、大腸ポリープ切除手術時の出血予防、大腸憩室出血に対する止血術、内視鏡治療後縫縮不全の隙間埋め等にも応用が可能である。
 なお、上記実施の形態1及び2に係る処置部材形成剤は、粘膜挙上剤、潰瘍保護剤、潰瘍治癒促進剤及び瘻孔閉鎖剤として使用されてもよい。また、別の実施の形態では、処置部材形成剤、粘膜挙上剤、潰瘍保護剤、潰瘍治癒促進剤又は瘻孔閉鎖剤の製造における水溶性キトサン塩の使用が提供される。他の実施の形態では、処置部材の形成に使用するための水溶性キトサン塩、粘膜を挙上するための水溶性キトサン塩、潰瘍を保護するための水溶性キトサン塩、潰瘍治癒を促進するための水溶性キトサン塩及び瘻孔を閉鎖するための水溶性キトサン塩が提供される。
 なお、別の実施の形態では、ESDを施行する部位の粘膜下層に、溶液1及び溶液2を局注するステップと、粘膜が挙上した当該部位に対してESDを施行するステップと、を含む、処置部材形成方法が提供される。別の実施の形態では、ESDを施行する部位の粘膜下層に、溶液1及び溶液3を交互に局注するステップと、粘膜が挙上した当該部位に対してESDを施行するステップと、粘膜剥離後、粘膜下層に残留しているゲルに、溶液4を供給するステップと、を含む、処置部材形成方法が提供される。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。以下の実施例では、実施の形態1に係る処置部材形成剤により形成されるゲルを、特に「2剤型ハイドロゲル」ともいう。実施の形態2に係る処置部材形成剤により形成されるゲルを、特に「3剤型ハイドロゲル」ともいう。
 以下の実施例において、特に明記しない限り、0.6重量%アルギン酸ナトリウムはリフタル(登録商標)K(カイゲン社製)を使用した。また、以下の実施例において、特に明記しない限り、水溶性キトサン塩として使用したキトサン塩酸塩は、キトサン(純正化学社製)5gを500mLの希酢酸(1重量%)に18時間以上撹拌して溶解した後、ミリポア膜(5.0μm)で濾過し、0.4MのNaCl水溶液を用いて8日間、脱イオン水を用いて2日間以上透析して対イオンを塩化物に置換し、この溶液を凍結乾燥することにより調製した。
 (比較例1)
 (カルシウムで架橋されたアルギン酸ハイドロゲルによる粘膜挙上の確認)
 アルギン酸ナトリウムと乳酸カルシウムの混合により形成されるハイドロゲルのESDにおける有用性を検討した。食用の豚腸を使用し、0.6重量%アルギン酸ナトリウムと5重量%乳酸カルシウム溶液を交互に局注してESDを行い、ハイドロゲルの形成を観察した。局注には5~10mLシリンジ、24G針、ESDは高周波装置(VIO3)、デュアルナイフを使用した。
 (結果)
 局注後、瞬時に組織内にハイドロゲルが形成され、アルギン酸ナトリウム単独よりも強力な粘膜挙上が見られた。また、形成されたハイドロゲルは、粘膜下層の線維を支持組織として良好に固定され、粘膜を切除しても組織内に留まることが確認された。
 (比較例2)
 (カルシウムで架橋されたアルギン酸ハイドロゲルの耐久性の検討)
 体内環境を想定したNa存在下、及び胃内、十二指腸内環境を想定したpH下(胃酸:pH1前後、膵液:pH8前後)でのアルギン酸ハイドロゲルの耐久性を検討した。ハイドロゲルは5.2cm×4.0cmの型にレーヨン屑糸を敷き詰めて0.6重量%アルギン酸ナトリウム2mLに浸し、5%重量%乳酸カルシウム2mLを滴下して整形し、自由に変形及び崩壊することができ、その形態が認識しやすいハイドロゲルシートを作成した。酸性浸漬液(pH1~2)として、0.6%HClの浸漬液、及び0.3%HCl、0.45%NaClの浸漬液を使用した。中性浸漬液(pH7)として、蒸留水及び生理食塩水を使用した。塩基性浸漬液(pH8)として、6.7%NaHCOの浸漬液、0.25%NaHCO、0.45%NaClの浸漬液、及び0.25%NaHCOの浸漬液を使用した。それぞれの浸漬液にハイドロゲルシートを浸し、7日目までの時間経過における崩壊の様子を観察した。また、生理食塩水に浸漬したハイドロゲルを毎日30分間5%乳酸カルシウムに浸した場合に崩壊が遅延するか否かを14日間観察した。
 (結果)
 酸性環境下では、ハイドロゲルは、0.6%HCl浸漬液中で7日間維持されたが、0.3%HCl、0.45%NaClの浸漬液の中では7日目に挫滅が認められた。中性環境下において、蒸留水又は生理食塩水に浸漬した場合のいずれも、ハイドロゲルは7日目まで維持された。塩基性環境下では、6.7%NaHCOに浸漬した場合は1日目に完全崩壊し、0.25%NaHCO、0.45%NaClに浸漬した場合は2日目に崩壊した。また、0.25%NaHCOに浸漬した場合は7日目に崩壊傾向が認められた。すなわち、アルギン酸ハイドロゲルは、特に塩基性環境下で早期に崩壊しやすく、ナトリウム濃度が高いほど、速やかに崩壊した。この結果は、本比較例に係るハイドロゲルは、塩基性環境である十二指腸において、長期間の潰瘍保護には適さないことを示す。また、生理食塩水では14日目に崩壊したが、毎日30分間乳酸カルシウム溶液に浸したハイドロゲルは、形態を維持することができた。この結果は、術後に定期的にカルシウム製剤を内服することよって、消化管内においてハイドロゲルの崩壊を遅らせる可能性を示唆している。
 (実施例1)
 (2剤型ハイドロゲルの耐久性の検討)
 0.6重量%アルギン酸ナトリウム2mLと、様々な濃度のキトサン塩酸塩と、5重量%乳酸カルシウムとを混合し、レーヨン屑糸で整形した玉状のゲルを作製した。当該ゲルを、酸性、中性、塩基性の浸漬液、及び膵酵素溶液に浸漬し、キトサン塩酸塩配合濃度によるゲルの崩壊速度を比較した。作製したゲルの組成及び使用した浸漬液の組成は以下の通りである。
  キトサン無添加ゲル:0.6重量%アルギン酸ナトリウム、5重量%乳酸カルシウム
  キトサン低濃度ゲル:0.6重量%アルギン酸ナトリウム、5重量%乳酸カルシウム、0.25重量%キトサン塩酸塩
  キトサン中濃度ゲル:0.6重量%アルギン酸ナトリウム、5重量%乳酸カルシウム、0.50重量%キトサン塩酸塩
  キトサン高濃度ゲル:0.6重量%アルギン酸ナトリウム、5重量%乳酸カルシウム、1.0重量%キトサン塩酸塩
  酸性浸漬液(pH1~2):0.6重量%HCl、0.9重量%NaCl
  中性浸漬液(pH7):0.9重量%NaCl
  塩基性浸漬液(pH8):0.25重量%NaHCO、0.9重量%NaCl
  膵酵素溶液:2重量%パンクレアチン、0.9重量%NaCl
 (結果)
 塩基性浸漬液では、キトサン無添加及び低濃度のゲルが6日目に崩壊しはじめ、14日目には完全に崩壊した。一方、キトサン中濃度及び高濃度のゲルは、塩化ナトリウムを配合した酸性、塩基性、及び膵酵素のいずれの環境下でも14日間崩壊せず、キトサン塩酸塩の配合によりそれらの環境下で耐久性を有することが確認できた。
 (実施例2)
 (キトサン及び乳酸カルシウムの至適濃度の検討)
 0.6重量%アルギン酸ナトリウムと、様々な濃度のキトサン塩酸塩と、様々な濃度の乳酸カルシウムとの混合によりゲルを作製した。当該ゲルを、塩基性膵酵素溶液(0.5重量%NaHCO、0.9重量%NaCl、及び2重量%パンクレアチン(pH8.0))に浸漬して、23日間ゲルの耐久性を観察した。キトサン塩酸塩の濃度は0~2重量%、乳酸カルシウム濃度は0.1~5重量%の間で検討した。
 (結果)
 図1に結果を示す。0.5重量%以下のキトサン塩酸塩の濃度では、7日目以降にゲルの崩壊が観察された。キトサン塩酸塩の濃度が高いほど柔軟なゲルが形成された。1重量%以下の乳酸カルシウム濃度では、4日目以降にゲルの崩壊が観察された。キトサン塩酸塩の濃度が1重量%未満、又は乳酸カルシウム濃度が1重量%未満の場合は、23日目までゲルを維持することができなかった。
 (実施例3)
 (2剤型ハイドロゲルの有用性の評価)
 ESDにおける2剤型ハイドロゲルの有用性及び安全性を評価するために、全身麻酔した15kg三元交配豚を使用して、胃及び十二指腸にESDを施行した。ESD施行部位の粘膜下に、0.6重量%アルギン酸ナトリウムである溶液1、4~5重量%乳酸カルシウムと3重量%キトサン塩酸塩を含む溶液2を局注してESDを施行した。局注はトップ内視鏡用穿刺針インパクト・フローHタイプ25G又は26Gを用いて行い、ESDは高周波装置(VIO3)、デュアルナイフ、IT2を使用した。局注液である溶液1及び溶液2を交互に局注して粘膜下層内にゲルを形成して粘膜を挙上させ、ESDナイフにて粘膜剥離を施行した。剥離終了後に、潰瘍底(粘膜下層)に溶液1及び溶液2をさらに局注して、厚みのあるゲルを形成させた。1週間後に豚を屠殺し、病理組織を評価した。対照実験として、従来の局注剤である0.6%アルギン酸ナトリウムのみを局注してESDを施行した。
 (結果)
 溶液1及び溶液2の局注により、0.6%アルギン酸ナトリウムのみを局注した対照実験よりも良好な粘膜挙上が得られた。また、胃、十二指腸ともに、ESD後1週間目までに遅発穿孔は起こらず、1週間後も組織内にゲルが残存していた。十二指腸のHE染色を図2に示す。(a)はESD施行部位を含む全体像を示す図である。(b)、(c)及び(d)はそれぞれ(a)において実線で包囲された部分w、x、及びyを拡大した図である。(e)は(c)において実線で包囲された部分zを拡大した図である。図2(a)に示すように、マクロファージによるゲルの貪食が確認されたが、図2(d)に示すように、1週間後も粘膜下層内にゲルが残存していることが確認された。また、粘膜切除部分である図2(c)をさらに拡大した図2(e)では、潰瘍の表層に粘膜上皮が再生していることが確認されたことから、組織治癒も良好であると考えられる。したがって、本実施例に係るゲルは、ESDの際の粘膜挙上、粘膜剥離後の潰瘍保護に効果的であることが確認され、潰瘍の治癒促進にも効果があることが示唆された。
 (実施例4)
 (3剤型ハイドロゲルの耐久性の検討)
 0.6重量%アルギン酸ナトリウムに炭酸カルシウム(和光純薬工業社製)を0.2重量%の濃度で混合した溶液1と、2.5重量%キトサン塩酸塩である溶液3を容器中に交互に添加し、軽く混合し、溶液4として乳酸カルシウム2.67重量%溶液を1mL以上滴下し、5分間放置した。作製したゲルを、3種類のpHに調製した生理食塩水(表1)に浸し、ゲルの膨潤度を経時的に測定することにより耐久性を確認した。さらに、比較例2の結果に示されるように、アルギン酸ゲルはアルカリ性に弱いため、pH9.33の溶液に浸したゲルに毎日5分間乳酸カルシウム溶液を滴下し、カルシウムイオンの事後的な供給によりゲルの崩壊を防ぐことができるか否かについても検討した。
 (結果)
 経時的に測定したゲルの膨潤度のグラフを図3に示す。膨潤度は、湿潤重量/乾燥重量で表される。膨潤度が相対的に大きい場合は、ゲルのネットワークが弱くなっており、ゲルが水分を多く含んでいることを示し、膨潤度が100を超えるとゲルが崩壊し始めていると考えられる。図3に示すように、ゲルの膨潤度が実験開始時よりも大きくなることはほとんどなく、浸漬液がいずれのpHの場合も15日間以上ゲルが維持された。このことから、当該ゲルが、消化管内の様々なpHの消化液に曝されても維持される可能性が示唆された。また、pH7.57又はpH9.33の溶液に浸漬した場合に比べ、pH1.08の溶液に浸漬した場合、又はpH9.33の溶液に浸漬して毎日乳酸カルシウムを滴下したゲルのほうが、膨潤度が小さく、ゲルが強固になっていることが示された。このことから、当該ゲルを使用して消化管内の処置を受けた後の乳酸カルシウムの摂取がゲルの維持に効果的である可能性が示唆された。
 (実施例5)
 (3剤型ハイドロゲルの膵酵素透過性の検討)
 実施例4で用いたものと同じ溶液1及び溶液3を直径45mmの脱脂綿に交互に局注した後、2.33重量%乳酸カルシウムと0.2重量%酢酸を含む溶液4に脱脂綿を5分間浸漬して、脱脂綿を足場としたゲル(厚さ1.3125mm)を作製した。当該ゲルの膵酵素透過性を調べるために、図4(a)に示すように装置の間にゲルを挟み、装置の一方の槽には生理食塩水(0.15M塩化ナトリウム、0.1重量%アジ化ナトリウム)を、もう一方の槽にはパンクレアチンを添加した生理食塩水(0.15M塩化ナトリウム、0.1重量%アジ化ナトリウム、0.5重量%パンクレアチン)を入れた。両方の装置を10日間以上撹拌し続けながら、経時的に溶液の280nmの吸光度を測定した。測定開始時の生理食塩水におけるパンクレアチン濃度を0、パンクレアチンを添加した生理食塩水におけるパンクレアチン濃度を1として、両液におけるパンクレアチンの経時的な相対濃度を算出した。
 (結果)
 結果を図4(b)に示す。両液におけるパンクレアチンの濃度格差は10日間以上保たれ、本実施例に係るゲルシートが膵酵素遮蔽効果を有することが示された。このことから、当該ゲルが、膵酵素に暴露される十二指腸における潰瘍保護に有用であることが示唆された。
 (実施例6)
 (生体豚のESDにおける3剤型ハイドロゲルの有用性の評価)
 全身麻酔した15~20kg三元交配豚の胃にESDを施行し、粘膜剥離操作における3剤型ハイドロゲルの有用性及び安全性を評価した。ゲルの形成には、以下の2パターンの処置部材形成剤を用いた。
 ・パターン1
  溶液1:0.6重量%アルギン酸ナトリウム、0.2重量%炭酸カルシウム
  溶液3:2重量%キトサン塩酸塩、0.2重量%炭酸カルシウム
  溶液4:3重量%乳酸カルシウム、5重量%酢酸
 ・パターン2
  溶液1:0.6重量%アルギン酸ナトリウム、0.2重量%炭酸カルシウム
  溶液3:2重量%キトサン塩酸塩、2~3%酢酸(あるいはクエン酸)
  溶液4:3重量%乳酸カルシウム
 ESD施行部位の粘膜下層に溶液1及び溶液3を交互に局注してゲルを形成し、粘膜を挙上させ、ESDナイフにて粘膜剥離を施行した。剥離終了後に、潰瘍底(粘膜下層)に溶液1及び溶液3を追加局注して、厚みのあるゲルを形成させ、最後に溶液4を散布した。対照実験として、従来の局注剤である0.6重量%アルギン酸ナトリウムを局注してESDを施行した。胃についてはESD3日後、10日後、1、2及び3週間後、十二指腸については、3週間後の病理組織でE-Masson染色及びHE染色を行った。
 (結果)
 いずれのパターンの処置部材形成剤を使用した場合も、良好な粘膜挙上が見られた。パターン1の処置部材形成剤によるゲルは、切開、剥離時にESDナイフの熱による変性が見られ、白濁した。パターン2の処置部材形成剤によるゲルは、パターン1のゲルに比べて白濁が緩和され、比較的シャープな切開が得られた。ESD施行後の挙動は、いずれの処置部材形成剤を使用した場合も同様であった。
 図5(a)は、ESD後3日目のマクロ標本が撮像された画像を示し、図5(b)及び(c)は、HE染色した組織を示す図である。図5(b)及び(c)に示すように、胃では、ESD後3日目の潰瘍表面にはゲルが残存していた。図6は、ESD後10日目の潰瘍(a)及びその部分像を示す図である(b、c、d)。1週間目には表面のゲルは消失するが、粘膜下組織内に残存し(図6(b))、マクロファージによる貪食(異物反応)がみられた(図6(c))。また1週間目には線維化が始まり、2、3週間目にかけて組織内の炎症細胞湿潤、血管増生、線維化等が徐々に進行し、組織修復がみられた(図6(d))。
 図7~9は、それぞれESD後7日目、14日目、及び21日目のESD施行部位を示す。図7~9それぞれにおける(a)は、ESD施行部位の全体像を示し、上段は対照部位、下段は本実施例に係る処置部材形成剤を局注してESDを施行した部位である。(b)は、対照部位についてHE染色及びE-Masson染色した組織を示す。(c)は、本実施例に係る処置部材形成剤を局注してESDを施行した部位についてHE染色及びE-Masson染色した組織を示す。対照部位では、ESDナイフの熱による筋層の挫滅が見られた(図7(b))。一方、本実施例に係る処置部材形成剤を使用した場合、熱による筋層の挫滅はほとんど見られなかった(図7(c))。これは、粘膜下に厚いゲル層が形成されることにより、筋層に熱が波及するのを防いだためと考えられる。これらの結果から、本実施例に係るゲルは胃のESDに有用であることが示された。
 また、図8(a、b)及び図9(a、b)に示すように、0.6重量%アルギン酸ナトリウムを局注してESDを施行した対照部位では、ESD後2~3週間目に潰瘍を中心にひだが集中し、治癒過程で周囲粘膜に引き連れが生じ、周囲組織が変形していた。一方、処置部材形成剤を使用した箇所では潰瘍治癒過程での収縮が少なく、周囲組織が変形せずに徐々に平坦化している様子が観察された(図8(c)、図9(c))。このことから、本実施例に係る処置部材形成剤を使用したESDにより、食道等におけるESD後狭窄を予防することができる可能性が示唆された。
 十二指腸では、潰瘍を縫縮しなくても、膵液の暴露による遅発穿孔又は後出血は見られず、豚はESD後3週間目の屠殺時まで生存した。潰瘍は3週間で完全上皮化はみられないものの、縮小傾向がみられた。このことから、十二指腸のアルカリ環境下でも本実施例に係るゲルは崩壊せず、十分に消化液を遮蔽することが示唆され、十二指腸のESDに有用であることが示された。また、豚の十二指腸におけるESDはヒトと比べて非常に難しく、本実施例に係る処置部材形成剤を使用しても術中穿孔が起こる場合があったが、粘膜下層内に形成されたゲルがクッションとなり、クリップで容易に密閉することが可能であった。したがって、術中穿孔が起こった場合であってもその処置が容易であることが示された。
 (実施例7)
 (外科縫合不全の瘻孔閉鎖における2剤型ハイドロゲルの有用性の評価(摘出胃))
 15~20kg三元交配豚の摘出胃を使用し、自動縫合器(ECHELON FLEX(Ethicon、Johnson&Johnson社製))で縫合して吻合モデルを作製した。吻合部のステープラを数個外して、縫合不全モデルとした。縫合不全部の周囲の粘膜に、溶液1として0.6重量%アルギン酸ナトリウム、及び溶液2として2~3%乳酸カルシウムと2~3%キトサン塩酸塩を含む溶液を局注し、粘膜下層にゲルによる膨隆を形成することで、瘻孔部を密着させ、密閉した。豚胃の内腔に空気を含ませ、浸水下で圧迫することにより、瘻孔部がゲルによって密着して密閉され、空気の漏れがないことが確認できた。
 (実施例8)
 (外科縫合不全の瘻孔閉鎖における2剤型ハイドロゲルの有用性の評価(生体豚))
 全身麻酔した15kg三元交配豚3匹を使用し、腹腔鏡下で胃の一部を自動吻合機(ECHELON FLEX(Ethicon、Johnson&Johnson社製))を用いて胃部分切除を行った。ステープラ針を数本除去するか、又はステープラ切離断端を一部切り落とすことで、縫合不全モデルを形成した。術翌日又は術翌々日に内視鏡観察で瘻孔の存在を確認した。瘻孔周囲の粘膜に、溶液1として0.6重量%アルギン酸ナトリウム、及び溶液2として2~3%乳酸カルシウムと2~3%キトサン塩酸塩を含む溶液を局注して粘膜を膨隆させ、瘻孔を圧排閉鎖した。また、互いに接触する粘膜面をAPC焼灼で軽度に挫滅させ、治癒過程による新たに粘膜形成を促した。手術の翌日、1週間目、3週間目に瘻孔部位を内視鏡的に観察し、3週間後に豚を屠殺して病理組織学的評価を行った。
 (結果)
 手術の翌日、1週間目、及び3週間目のいずれも瘻孔は観察されず、いずれの豚も3週間目まで生存した。図10に示すHE染色では、ゲルによって圧排密着した部位に線維増生して瘻孔閉鎖に至っていることが確認された。このことから、本実施例に係るゲルは外科縫合不全の瘻孔閉鎖に有用であることが示された。
 (実施例9)
 (治癒促進物質を添加したハイドロゲルの潰瘍縮小効果)
 以下の組成のゲル1~ゲル3、及び対照として0.6%アルギン酸ナトリウムを使用して、全身麻酔した15~20kg三元交配豚の胃にESDを施行した。ゲル3の溶液5に含まれているトラフェルミンは、線維芽細胞増殖因子であり、潰瘍治癒促進効果を有することが知られている。
 ・ゲル1
  溶液1:0.6重量%アルギン酸ナトリウム、0.1重量%炭酸カルシウム
  溶液3:2重量%キトサン塩酸塩、2重量%酢酸
  溶液4:3重量%乳酸カルシウム(散布)
 ・ゲル2
  溶液1:0.6重量%アルギン酸ナトリウム、0.2重量%炭酸カルシウム
  溶液3:2重量%キトサン塩酸塩、2重量%酢酸
  溶液4:3重量%乳酸カルシウム(散布)
 ・ゲル3
  溶液1:0.6重量%アルギン酸ナトリウム、0.2重量%炭酸カルシウム
  溶液3:2重量%キトサン塩酸塩、2重量%酢酸
  溶液4:3重量%乳酸カルシウム(散布)
  溶液5:100μg/mLトラフェルミン5mL(ESD直後に潰瘍底めがけて局注)
 ESD当日を1日目とし、1日目、8日目、15日目、22日目及び29日目において、それぞれの潰瘍の大きさを測定した。
 (結果)
 ESD1日目での潰瘍を1とした場合の相対的な潰瘍の大きさを図11に示す。ESD1~29日目の全期間にわたり、ゲル1、2及び対照では、潰瘍の大きさに差異がみられなかった。一方、EDS後にトラフェルミンを局注したゲル3では、ESD後8~15日の間で、潰瘍が縮小する傾向が示された。このことは、潰瘍治癒促進物質をゲル内に配合することで、潰瘍を早期に縮小できる可能性を示唆している。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等な発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2022年2月28日に出願された、日本国特許出願2022-029337号に基づく。本明細書中に日本国特許出願2022-029337号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、ESD、又は外科手術における縫合不全部の瘻孔閉鎖等の医療処置において有用である。
 1,2,3,4,5 溶液

Claims (17)

  1.  局所に注入される水溶性アルギン酸塩を含む第1の溶液と、
     前記局所に注入される水溶性キトサン塩と、
     前記局所に供給されるカルシウムイオン供与体と、
     を備える、処置部材形成剤。
  2.  前記水溶性アルギン酸塩は、
     アルギン酸ナトリウムである、
     請求項1に記載の処置部材形成剤。
  3.  前記第1の溶液におけるアルギン酸ナトリウムの濃度は、
     0.3~2重量%である、
     請求項2に記載の処置部材形成剤。
  4.  第2の溶液をさらに備え、
     前記水溶性キトサン塩と前記カルシウムイオン供与体は、前記第2の溶液に含まれる、
     請求項1から3のいずれか一項に記載の処置部材形成剤。
  5.  前記水溶性キトサン塩と前記カルシウムイオン供与体は、これらを含む第2の溶液である、
     請求項1から3のいずれか一項に記載の処置部材形成剤。
  6.  前記カルシウムイオン供与体は、カルシウム塩であって、
     前記第2の溶液におけるカルシウム塩の濃度は、
     2~7重量%である、
     請求項4又は5に記載の処置部材形成剤。
  7.  前記カルシウム塩は、
     乳酸カルシウムである、
     請求項6に記載の処置部材形成剤。
  8.  前記第2の溶液における水溶性キトサン塩の濃度は、
     1~3重量%である、
     請求項4から7のいずれか一項に記載の処置部材形成剤。
  9.  前記第1の溶液は、
     炭酸カルシウムをさらに含み、
     第3の溶液と、第4の溶液をさらに備え、
     前記水溶性キトサン塩は、前記第3の溶液に含まれ、
     前記カルシウムイオン供与体は、前記第4の溶液に含まれ、
     前記第3の溶液及び前記第4の溶液の少なくとも一方は、
     前記局所に供給される、酢酸及びクエン酸からなる群から選択される酸をさらに含む、
     請求項1から3のいずれか一項に記載の処置部材形成剤。
  10.  前記第1の溶液は、
     炭酸カルシウムをさらに含み、
     前記水溶性キトサン塩は、これを含む第3の溶液であり、
     前記カルシウムイオン供与体は、これを含む第4の溶液であり、
     前記第3の溶液及び前記第4の溶液の少なくとも一方は、
     前記局所に供給される、酢酸及びクエン酸からなる群から選択される酸をさらに含む、
     請求項1から3のいずれか一項に記載の処置部材形成剤。
  11.  前記第3の溶液は、前記酸を含まず、炭酸カルシウムをさらに含み、
     前記第4の溶液は、前記酸を含む、
     請求項9又は10に記載の処置部材形成剤。
  12.  前記第3の溶液は、前記酸を含み、
     前記第4の溶液は、前記酸を含まない、
     請求項9又は10に記載の処置部材形成剤。
  13.  前記カルシウムイオン供与体は、カルシウム塩であって、
     前記第4の溶液におけるカルシウム塩の濃度は、
     2~7重量%である、
     請求項9から12のいずれか一項に記載の処置部材形成剤。
  14.  前記カルシウム塩は、
     乳酸カルシウムである、
     請求項13に記載の処置部材形成剤。
  15.  前記第3の溶液における水溶性キトサン塩の濃度は、
     1~3重量%である、
     請求項9から14のいずれか一項に記載の処置部材形成剤。
  16.  内視鏡的粘膜下層剥離術における粘膜挙上、粘膜剥離後の潰瘍保護又は潰瘍の治癒促進に使用されるための、
     請求項1から15のいずれか一項に記載の処置部材形成剤。
  17.  縫合不全部の瘻孔閉鎖に使用されるための、
     請求項1から8のいずれか一項に記載の処置部材形成剤。
PCT/JP2023/007227 2022-02-28 2023-02-28 処置部材形成剤 WO2023163202A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022029337 2022-02-28
JP2022-029337 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163202A1 true WO2023163202A1 (ja) 2023-08-31

Family

ID=87766325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007227 WO2023163202A1 (ja) 2022-02-28 2023-02-28 処置部材形成剤

Country Status (1)

Country Link
WO (1) WO2023163202A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109045063A (zh) * 2018-10-17 2018-12-21 西北大学 一种用于泪道栓塞的原位可注射温敏响应水溶性壳聚糖复合水凝胶及其制备方法和应用
WO2019059237A1 (ja) * 2017-09-25 2019-03-28 京都府公立大学法人 2剤型粘膜下注入用局注液

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059237A1 (ja) * 2017-09-25 2019-03-28 京都府公立大学法人 2剤型粘膜下注入用局注液
CN109045063A (zh) * 2018-10-17 2018-12-21 西北大学 一种用于泪道栓塞的原位可注射温敏响应水溶性壳聚糖复合水凝胶及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STRACCIA, MARIA CRISTINA ET AL.: "Alginate Hydrogels Coated with Chitosan for Wound Dressing", MARINE DRUGS, vol. 13, no. 5, 2015, pages 2890 - 2908, XP055379747, DOI: 10.3390/md13052890 *
TRAN NGOC QUYEN, JOUNG YOON KI, LIH EUGENE, PARK KI DONG: "In Situ Forming and Rutin-Releasing Chitosan Hydrogels As Injectable Dressings for Dermal Wound Healing", BIOMACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 8, 8 August 2011 (2011-08-08), US , pages 2872 - 2880, XP093088306, ISSN: 1525-7797, DOI: 10.1021/bm200326g *

Similar Documents

Publication Publication Date Title
JP6492137B2 (ja) 組織閉塞剤
JP5489999B2 (ja) 外科用ハイドロゲル
JP6552115B2 (ja) 消化管病変を治療するための接着性医療製品及び方法
US10314937B2 (en) Biocompatible hemostatic product and preparation method thereof
KR20080007380A (ko) 지혈 및 다른 생리학적 활성을 촉진하기 위한 조성물 및방법
JP6284163B2 (ja) 胃腸管内における傷の保護、止血、または癒着の防止のための医薬組成物
CN115916279A (zh) 具有优异粘膜粘附和溶胀性能的膜型防粘连组合物
KR20020011955A (ko) 유착방지제
WO2023163202A1 (ja) 処置部材形成剤
US11504341B2 (en) Nanotechnology-based hemostatic dressings
CN106963977B (zh) 一种抑制瘢痕形成的灯盏花素/壳聚糖复合水凝胶及其制备方法
JP2020130536A (ja) 液状高分子化合物組成物および医療材料
WO2005037292A1 (ja) 糖鎖含有キトサン誘導体を含有する内視鏡手術用粘膜下膨隆液組成物
Baghdasarian Engineering a Highly Adhesive and Hemostatic Sealant for Soft Tissues
JP2020130541A (ja) 医療材料およびその製造方法
CN116099059B (zh) 一种可注射抗菌堵瘘水凝胶及其制备方法
JP2021115287A (ja) 液状医療材料
JP2021115285A (ja) 液状高分子化合物組成物
US20210251890A1 (en) Hemostatic compositions and related methods
JP2022035398A (ja) 液状医療材料
BR112016026064B1 (pt) Adesivos e vedantes biológicos e métodos de uso dos mesmos
TW202220707A (zh) 用於製備止血組合物之止血材料
CN116688253A (zh) 一种用于内镜黏膜下剥离术的注射凝胶及方法
WO2000028978A1 (fr) Agents utiles pour reparer des sites tissulaires endommages
JP2021115288A (ja) 液状組成物および液状医療材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760200

Country of ref document: EP

Kind code of ref document: A1