WO2023163071A1 - 複合材料及びその製造方法 - Google Patents
複合材料及びその製造方法 Download PDFInfo
- Publication number
- WO2023163071A1 WO2023163071A1 PCT/JP2023/006584 JP2023006584W WO2023163071A1 WO 2023163071 A1 WO2023163071 A1 WO 2023163071A1 JP 2023006584 W JP2023006584 W JP 2023006584W WO 2023163071 A1 WO2023163071 A1 WO 2023163071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- composite material
- less
- peak
- conductive material
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims description 47
- 238000000034 method Methods 0.000 title claims description 29
- 229940126062 Compound A Drugs 0.000 claims abstract description 124
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims abstract description 124
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 36
- 238000002156 mixing Methods 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 13
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 7
- 150000002367 halogens Chemical class 0.000 claims abstract description 7
- 239000004020 conductor Substances 0.000 claims description 64
- 229910052698 phosphorus Inorganic materials 0.000 claims description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 13
- 239000011574 phosphorus Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 229910052744 lithium Inorganic materials 0.000 claims description 9
- 239000011572 manganese Substances 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 7
- 239000003575 carbonaceous material Substances 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000013078 crystal Substances 0.000 abstract description 28
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract 2
- 239000002245 particle Substances 0.000 description 33
- 239000011149 active material Substances 0.000 description 32
- 239000000843 powder Substances 0.000 description 23
- 239000007784 solid electrolyte Substances 0.000 description 21
- 239000000203 mixture Substances 0.000 description 18
- 239000012071 phase Substances 0.000 description 18
- 239000007774 positive electrode material Substances 0.000 description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 16
- 229910001416 lithium ion Inorganic materials 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- 239000002203 sulfidic glass Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000003701 mechanical milling Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910018091 Li 2 S Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 3
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- -1 silver vanadium sulfide Chemical compound 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 1
- 229910003405 Li10GeP2S12 Inorganic materials 0.000 description 1
- 229910009142 Li2S—Li3PO4—P2S5 Inorganic materials 0.000 description 1
- 229910013936 Li3.25P0.95S4 Inorganic materials 0.000 description 1
- 229910012007 Li4P2S6 Inorganic materials 0.000 description 1
- 229910011201 Li7P3S11 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000006092 crystalline glass-ceramic Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- OCVXZQOKBHXGRU-UHFFFAOYSA-N iodine(1+) Chemical compound [I+] OCVXZQOKBHXGRU-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910000921 lithium phosphorous sulfides (LPS) Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000003823 mortar mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000003826 uniaxial pressing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/14—Sulfur, selenium, or tellurium compounds of phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to composite materials and manufacturing methods thereof.
- the composite material of the present invention is suitable for use as a battery material.
- Lithium-ion batteries have a high energy density and are easily miniaturized and lightweight, so they are widely used as power sources for portable electronic devices such as notebook computers and mobile phones. Recently, development of high-output, high-capacity lithium-ion batteries to be mounted on electric vehicles, hybrid electric vehicles, and the like is underway.
- Patent Literature 1 proposes a composite positive electrode material produced by dry-ball-mill mixing a sulfide electrolyte having a silver vanadium sulfide crystal structure and a conductive carbon material. Furthermore, Non-Patent Document 1 proposes a positive electrode active material in which Li 3 PS 4 glass, which is a sulfide solid electrolyte, and a carbon-based conductive aid are combined.
- an object of the present invention is to provide a material capable of improving the performance of a lithium ion battery and a suitable method for producing the same.
- the present invention provides lithium (Li) element, sulfur (S) element, and M element
- M is phosphorus (P) element, germanium (Ge) element, antimony (Sb) element, silicon (Si) element, tin (Sn ) element, aluminum (Al) element, titanium (Ti) element, iron (Fe) element, nickel (Ni) element, cobalt (Co) element, and manganese (Mn) element).
- the above problems have been solved by providing a method of manufacturing the material
- FIG. 1 is an X-ray diffraction pattern of a composite material of compound A and a conductive material used in Example 1.
- FIG. 2 is an X-ray diffraction pattern of a composite material of compound A and a conductive material used in Example 2.
- FIG. 3 is an X-ray diffraction pattern of a composite material of compound A and a conductive material used in Example 3.
- FIG. 4 is an X-ray diffraction pattern of a composite material of compound A and a conductive material used in Example 4.
- FIG. 5 is an X-ray diffraction pattern of a composite material of compound A and a conductive material used in Example 5.
- FIG. 1 is an X-ray diffraction pattern of a composite material of compound A and a conductive material used in Comparative Example 1.
- FIG. 7 is an X-ray diffraction pattern of a composite material of compound A and a conductive material used in Example 2.
- FIG. 8 is an X-ray diffraction pattern of a composite material of compound A and a conductive material used in Reference Example 1.
- FIG. 9 is a charge/discharge curve of a battery using the positive electrode active material produced in Example 1.
- FIG. 10 is a charge/discharge curve of a battery using the positive electrode active material produced in Example 3.
- FIG. 11 is a charge/discharge curve of a battery using the positive electrode active material produced in Comparative Example 1.
- FIG. 12 is a charge/discharge curve of a battery using the positive electrode active material produced in Comparative Example 2.
- FIG. 13 is a charge/discharge curve of a battery using the positive electrode active material produced in Reference Example 1.
- FIG. 13 is a charge/discharge curve of a battery using the positive electrode active material produced in Reference Example 1.
- the present invention will be described below based on its preferred embodiments.
- the present invention relates to a method for manufacturing composite materials.
- This composite material is a composite material of a compound A and a conductive material, which will be described later.
- This composite material is particularly suitable for use as an active material for batteries.
- the production method of the present invention is roughly divided into the following steps (1) and (2).
- (1) A step of preparing compound A (hereinafter also referred to as "preparing step”).
- a step of mixing compound A and a conductive material to obtain a composite material in which both are combined hereinafter also referred to as a “mixing step”.
- mixing step each step will be described below.
- compound A is prepared.
- the compound A preferably contains a lithium (Li) element, a sulfur (S) element, and an M element.
- M elements include, for example, phosphorus (P) elements, germanium (Ge) elements, antimony (Sb) elements, silicon (Si) elements, tin (Sn) elements, aluminum (Al) elements, titanium (Ti) elements, iron (Fe ) element, nickel (Ni) element, cobalt (Co) element and manganese (Mn) element.
- the M element preferably contains at least the phosphorus (P) element, and more preferably the M element is only the P element.
- Examples of the compound containing the Li element, the S element, and the M element include Li 7 PS 6 , Li 7+3x (P 5+ 1-x Fe 2+ x )S 6 , Li, which are compounds containing only the Li element, the S element, and the M element. 7+x (P 5+ 1 ⁇ x Si 4+ x )S 6 and the like (wherein x represents a number of 0.1 or more and 1.0 or less).
- x represents a number of 0.1 or more and 1.0 or less.
- a compound containing other elements in addition to these three elements can also be used. Examples of such other elements include halogen (X) elements.
- the properties of the composite material obtained by this production method as an active material can be further enhanced.
- the X element at least one element selected from fluorine (F), chlorine (Cl), bromine (Br) and iodine (I) can be used.
- the compound containing Li element, S element, M element and X element has a composition formula (1) Li a MS b X c (wherein M is P, Ge, Sb, Si, Sn, Al, Ti, Fe , Ni, Co and Mn.X is at least one element selected from F, Cl, Br and I.) is represented by the present production method This is preferable because the properties of the resulting composite material as an active material are further improved.
- a is preferably 3.0 or more, more preferably 3.5 or more, from the viewpoint of improving lithium ion conductivity.
- a is preferably 9.0 or less, more preferably 8.0 or less.
- the atomic ratio of Li to P that is, the value of a is, for example, preferably 5.0 or more, preferably 5.5 or more, particularly 6.0 or more.
- a is, for example, preferably 8.0 or less, more preferably 7.8 or less, and particularly preferably 7.5 or less.
- b is preferably 4.0 or more, more preferably 4.5 or more, and even more preferably 5.0 or more.
- b is preferably 7.5 or less, more preferably 7.0 or less, even more preferably 6.5 or less.
- c is preferably 0.1 or more, more preferably 0.2 or more.
- c is preferably less than 1.0, more preferably 0.8 or less, even more preferably 0.6 or less.
- the M element in the composition formula (1) is preferably at least one of the P element, Ge element, Sb element, Sn element and Si element, and it is particularly preferable that the P element is contained. is preferably only the P element.
- the discharge capacity of the battery can be increased when the composite material obtained by this production method is used as the active material of the battery.
- the M element is P
- the value of c which is the atomic ratio of X to P, is preferably 0.10 or more, and more preferably 0.2 or more.
- the value of c is preferably, for example, less than 1.0, more preferably 0.8 or less, particularly preferably 0.6 or less.
- the atomic ratio of Li to P is, for example, preferably 5.0 or more, preferably 5.5 or more, and particularly preferably 6.0 or more. preferable.
- the atomic ratio of Li to P is, for example, preferably 9.0 or less, preferably 8.0 or less, and even more preferably 7.5 or less.
- the atomic ratio of Li to P may be, for example, 20.0 or less, 15.0 or less, or 9 .0 or less.
- Compound A is particularly preferably represented by the compositional formula (2) Li 7-d MS 6-d X d from the viewpoint that the composite material obtained by this production method has even higher properties as an active material.
- the value of d which is the atomic ratio of X to P
- the atomic ratio of Li to P can also be the same as in the composition formula (1) described above, so the description is omitted here.
- the compound A can be represented by Li a (M1 1-y M2 y )S b X c .
- the compound A can be represented by Li 7-d (M1 1-y M2 y )S 6-d X d .
- y is preferably 0.010 or greater, more preferably 0.020 or greater, and even more preferably 0.050 or greater.
- y is preferably 0.70 or less, more preferably 0.40 or less, and even more preferably 0.20 or less. Note that the M1 element and the M2 element can be the same as the M element described in the composition formula (1), so descriptions thereof are omitted here.
- composition of each element in compound A can be measured, for example, by ICP emission spectrometry.
- compound A preferably contains a crystal phase having an aldirodite-type crystal structure. This makes it possible to further enhance the properties of the composite material obtained by this production method as an active material.
- compound A preferably contains a crystal phase having a cubic or orthogonal aldirodite crystal structure.
- Whether or not the active material of the present invention contains a crystal phase having an aldirodite crystal structure can be determined by analyzing the active material of the present invention by an X-ray diffraction method or an X-ray total scattering method.
- a CuK ⁇ ray for example, a CuK ⁇ 1 ray can be used as a radiation source in the X-ray diffraction method.
- one or more positions selected from four at 44.40° ⁇ 1.00°, four at 47.20° ⁇ 1.00° and two at 52.00° ⁇ 1.00° It is more preferable to have a peak at 2 ⁇ 15.40° ⁇ 1 2 at .00°, 2 at 17.86° ⁇ 1.00°, 2 at 31.25° ⁇ 1.00°, 4 at 44.40° ⁇ 1.00°, 47.20° It is even more preferred to have peaks at all four positions at ⁇ 1.00° and two at 52.00° ⁇ 1.00°.
- the above-described peak positions are represented by the median value of ⁇ 1.00°, the median value of ⁇ 0.800° is preferable, and the median value of ⁇ 0.500° is more preferable.
- Compound A may contain other materials and other components as necessary. Therefore, compound A may consist of a single phase composed of a crystal phase of an aldirodite-type crystal structure, or may contain other phases in addition to the phase concerned.
- the compound A may contain a Li 2 S phase, a Li 3 PS 4 phase, a Li 4 P 2 S 6 phase, a LiCl or LiBr phase, etc. in addition to the crystal phase of the aldirodite crystal structure.
- the capacity of the composite material obtained by this production method as the active material is further increased, which is preferable.
- the compound A contains a Li element, an S element, an M element and an X element, and is mainly composed of a compound containing a crystal phase having an aldirodite type crystal structure.
- compound A may contain unavoidable impurities of less than 5% by mass, especially less than 3% by mass, to the extent that the effect of the present invention is not adversely affected.
- Compound A has the form of particles, and its particle size D1 is 0.1 ⁇ m or more, expressed as the volume cumulative particle size D50 at a cumulative volume of 50% by volume measured by a laser diffraction scattering particle size distribution measurement method. is preferred, 0.2 ⁇ m or more is more preferred, and 0.5 ⁇ m or more is even more preferred. D1 is preferably 20.0 ⁇ m or less, more preferably 10.0 ⁇ m or less, and even more preferably 5.0 ⁇ m or less.
- Compound A can be produced by a known method. For example, when compound A contains Li element, P element, S element, Cl element and Br element, lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, and lithium chloride ( LiCl) powder and lithium bromide (LiBr) powder are mixed and fired to obtain particles of the compound.
- Li 2 S lithium sulfide
- P 2 S 5 diphosphorus pentasulfide
- LiCl lithium chloride
- LiBr lithium bromide
- the firing temperature in the case of firing in an atmosphere containing hydrogen sulfide gas is, for example, preferably 350° C. or higher, more preferably 450° C. or higher.
- the firing temperature is, for example, preferably 650° C. or lower, more preferably 600° C. or lower, and even more preferably 500° C. or lower.
- the firing temperature is preferably 350° C. or higher, for example.
- the firing temperature is, for example, preferably 550° C. or lower, more preferably 500° C. or lower, and even more preferably 450° C. or lower.
- Compound A can also be produced by amorphizing the raw material powder by a mechanical milling method, and heat-treating the amorphous raw material powder to crystallize it.
- the processing equipment and processing conditions are not particularly limited as long as the raw material powders can be sufficiently mixed and made amorphous.
- the container filled with the raw material powder rotates and revolves at high speed, so high impact energy is generated between the balls, which are the grinding media that are placed in the container together with the raw material powder, and the powder is efficiently and uniformly milled. It is possible to amorphize the raw material powder.
- the mechanical milling method may be either dry or wet.
- the processing conditions for the mechanical milling method can be appropriately set according to the processing equipment to be used, and the processing time can be, for example, 0.1 hours or more and 100 hours or less.
- the processing time can be, for example, 0.1 hours or more and 100 hours or less.
- the raw material powder can be amorphized more efficiently and uniformly.
- Balls as grinding media are preferably made of ZrO 2 , Al 2 O 3 , Si 3 N 4 (silicon nitride) or WC (tungsten carbide), and the ball diameter is preferably 0.2 mm or more and 10 mm or less.
- Compound A can be obtained by heat-treating and crystallizing the raw material powder that has been made amorphous by mechanical milling under the same firing conditions as above.
- the raw material powder subjected to the mechanical milling process is more uniformly mixed than the raw material powder obtained by ordinary pulverization and mixing, so the heat treatment temperature can be further lowered.
- Compound A can also be produced by a liquid phase method using an organic solvent. In this case, it can be obtained by dissolving a sulfide or halide as a raw material of compound A in a solvent such as tetrahydrofuran or ethanol, and precipitating compound A using the solvent as a reaction field. Compound A can also be obtained by preliminarily synthesizing compound A by another method, dissolving it in a solvent such as ethanol, and reprecipitating it. Such a liquid phase method can produce compound A in a shorter time and with less energy than other methods, and it is relatively easy to reduce the particle size of the particles.
- the particles of compound A are obtained in this way, it is preferable to adjust the particles to an appropriate particle size.
- the preferred particle size of compound A can be the same as described above, so the description is omitted here.
- the compound A and the conductive material are mixed to obtain a composite material in which the two are combined.
- a material having electronic conductivity can be used without particular limitation.
- Examples of conductive materials include various metallic materials and conductive non-metallic materials. Either one of the metallic material and the conductive non-metallic material may be used, or both may be used in combination.
- various noble metal elements such as gold (Au) element, silver (Ag) element, platinum (Pt) element, palladium (Pd) element, rhodium (Rh) element, iridium (Ir) element, ruthenium ( Ru) element and osmium (Os) element.
- various transition metal elements such as copper (Cu) element, iron (Fe) element and tin (Sn) element can be used.
- One of these metal elements may be used alone, or two or more of them may be used in combination.
- a carbon material can be used as the conductive nonmetallic material.
- Examples include graphite, acetylene black, carbon black, carbon nanofibers, carbon nanotubes, nanographenes and fullerene nanowhiskers. These carbon materials may be used singly or in combination of two or more. Among these carbon materials, when carbon black is used, the initial capacity and discharge rate characteristics of a battery using the composite material obtained by this production method as an active material can be further enhanced. From the viewpoint of making this advantage more remarkable, it is preferable to use furnace black as the carbon black, among them, it is preferable to use oil furnace black, and it is particularly preferable to use ketjen black.
- the conductive material has the form of particles, and the particle size D2 thereof is, for example, preferably 1 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more.
- D2 is, for example, preferably 500 nm or less, more preferably 300 nm or less, and even more preferably 200 nm or less.
- the particle size D2 of the conductive material is the average particle size of the Feret diameter measured by directly observing the particles using a scanning electron microscope (SEM) or a transmission electron microscope (TEM) (average of 100 or more particles value).
- the fiber diameter can be used instead of the particle size.
- the fiber diameter D3 is, for example, preferably 50 nm or more, more preferably 100 nm or more, and even more preferably 150 nm or more.
- D3 is, for example, preferably 10000 nm or less, more preferably 5000 nm or less, and even more preferably 2000 nm or less.
- the size of the conductive material is preferably smaller than the size of the compound A.
- the value of D1/D2 which is the ratio of the particle diameter D1 of the compound A to the particle diameter D2 of the conductive material, is, for example, preferably 2 or more, more preferably 5 or more, and 10 or more. is more preferable.
- the value of D1/D2 is, for example, preferably 1000 or less, more preferably 500 or less, and still more preferably 10 or more and 100 or less.
- the size of the fibrous conductive material is preferably smaller than the size of the compound A.
- the value of D1/D3, which is the ratio of the particle diameter D1 of the compound A to the fiber diameter D3 of the conductive material is, for example, preferably 1 or more, more preferably 2 or more, and 5 or more. is more preferable.
- the value of D1/D3 is, for example, preferably 1000 or less, more preferably 500 or less, and even more preferably 100 or less.
- the compound A and the conductive material are combined, for example, by applying mechanical energy to the particles of the compound A and the particles of the conductive material.
- powders are mainly stirred, mixed, kneaded, and granulated. , pulverization, dispersion, and/or surface modification.
- planetary ball mills, ball mills, jet mills, bead mills, stirring pulverizers, vibration mills, hammer mills, roller mills and atomizers can be used.
- the type of main mechanical energy that can be applied using these devices differs depending on each device. For example, when using a planetary ball mill, compressive and impact forces are mainly applied to compound A and conductive material in a mixed state.
- the centrifugal acceleration obtained during rotation of the device is not particularly limited as long as it allows the compound A and the conductive portion to be combined. More preferably. Further, the centrifugal acceleration is, for example, preferably 40 G or less, more preferably 30 G or less, and even more preferably 25 G or less. By setting the centrifugal acceleration within the above range, the discharge capacity of the battery can be further increased when the composite material obtained by the present invention is used as the active material of the battery.
- the conductive material is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and 5 parts by mass or more with respect to 100 parts by mass of the compound A. More preferred.
- the conductive material is preferably, for example, 50 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 10 parts by mass or less with respect to 100 parts by mass of Compound A.
- the compound A and the conductive material are combined so that the crystallinity of the compound A is lowered.
- the properties of the composite material obtained by this production method as an active material can be further enhanced.
- the diffraction peak with the highest peak intensity is I 0 .
- the diffraction peak with the highest peak intensity is Let It be.
- the crystallinity of the composite material decreases, the half width of each diffraction peak in the X-ray diffraction pattern widens, so that multiple diffraction peaks may overlap.
- the diffraction peaks are regarded as one diffraction peak and designated as It .
- the mixing step of the compound A and the conductive material is preferably performed so that the above-mentioned degree of amorphousness N is, for example, 97% or more, especially 98% or more, and further preferably 99% or more. preferable.
- the degree of amorphousness N is within the above range, the discharge capacity of a battery using the composite material obtained by the present invention as an active material can be increased.
- the impact force is preferably 0.50 N or more, particularly 0.70 N or more, and particularly preferably 0.90 N or more.
- the impact force is a force generated when an object with mass collides with the impact force, and is expressed by the following formula (2).
- Impact force (F) m x G (2)
- m is the weight (kg) of the colliding object and G is the acceleration (m/s 2 ).
- m and G is the centrifugal acceleration.
- conditions for mixing compound A and a conductive material using a planetary ball mill include a method of adjusting the revolution and/or rotation speed of the device, the diameter, material and number of balls, and the mixing time.
- lithium sulfide Li 2 S
- Lithium sulfide functions as a positive electrode active material of a battery and has the effect of increasing the discharge capacity of the battery. Therefore, it is desirable that lithium sulfide is produced as a result of the compositing.
- the compound A and the conductive material are combined so that the compound A is amorphous in the mixing step, it is not particularly limited whether the conductive material is amorphous.
- the composite material thus obtained comprises a main portion containing particles of Compound A and a conductive portion containing a conductive material dispersed on the surface and/or inside of the main portion and imparting electronic conductivity.
- the particles are composed.
- the conductive portion plays a role of an electron conduction path when lithium is desorbed from the main portion, it is desirable that the conductive portion is uniformly dispersed and closely attached to the surface and inside.
- the aldirodite production ratio of the composite material obtained by this production method is not particularly limited as long as the effects of the present invention are achieved.
- the aldirodite formation ratio is, for example, preferably 40 or less, more preferably 30 or less, particularly preferably 10 or less, further preferably 5 or less, and most preferably 0. Note that the aldirodite production ratio can be the same as that described in the section of Examples described later, so description thereof is omitted here.
- the compound A and the conductive material are "composited", which means that the conductive portion is in a state in which the conductive portion is in close contact with the main portion and dispersed on the surface or inside the main portion. is preferred.
- Examples of “complexed” aspects include aspects in which the particles of the conductive material are inseparably dispersed on the surface and/or inside of the particles of compound A, and particles of compound A that constitute the main portion and the conductive portion.
- An embodiment in which particles of the constituting conductive material are chemically reacted and bonded is exemplified.
- the composite material obtained by this production method is subjected to an energy dispersive X-ray spectrometer.
- SEM-EDS scanning electron microscope
- mapping the constituent elements (for example, sulfur element) of compound A that constitutes the main part and the constituent elements of the conductive material that constitutes the conductive part the main It refers to a state in which the constituent elements of the compound A constituting the part and the constituent elements of the conductive material constituting the conductive part are present so as to overlap each other.
- the constituent elements of compound A constituting the main part and the conductive part It is a state in which the constituent elements of the conductive material that constitute the are present so as to overlap.
- the fact that the main portion and the conductive portion are chemically reacted and combined can be confirmed by the presence or absence of a C—S bond by Raman spectroscopy or photoelectron spectroscopy, for example, when the conductive material is a carbon material.
- the composite material obtained by this production method When the composite material obtained by this production method is used as an active material, in the active material, electrons are smoothly transferred between the outside of the active material and the main part through the conductive part. As a result, it acquires electrical conductivity and acquires the desorption function of lithium ions. Furthermore, a battery having a composite material obtained by this production method as an active material by mainly using compound A having an aldirodite crystal structure with a high lithium ion conductivity and high lithium ion conductivity, A high discharge capacity is expressed. In particular, the composite material obtained by this production method is useful as a positive electrode active material for lithium ion batteries.
- the active material When using the composite material obtained by this production method as an active material, the active material can be mixed with an electrolyte, a conductive material, a binder, and the like to form an electrode mixture.
- An electrode mixture using the composite material obtained by this manufacturing method as a positive electrode active material is a positive electrode mixture that constitutes the positive electrode layer.
- the electrolyte can be, for example, a solid electrolyte.
- the solid electrolyte preferably has ionic conductivity such as lithium ion conductivity.
- Specific examples include inorganic solid electrolytes such as sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes and halide solid electrolytes, and organic polymer electrolytes such as polymer electrolytes.
- the solid electrolyte is preferably a sulfide solid electrolyte from the viewpoint of making the effects of the present invention more remarkable.
- the sulfide solid electrolyte may be the same as sulfide solid electrolytes used in general solid batteries.
- the sulfide solid electrolyte may contain, for example, Li and S and have lithium ion conductivity.
- the sulfide solid electrolyte may be any of crystalline material, glass ceramics, and glass.
- the sulfide solid electrolyte may have an aldirodite crystal structure. Examples of such sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiX ("X" represents one or more halogen elements), Li 2 S- P2S5 - P2O5 , Li2S - Li3PO4 - P2S5 , Li3PS4 , Li4P2S6 , Li10GeP2S12 , Li3.25Ge0 .
- X represents one or more halogen elements, a is 3.0 represents a number of 9.0 or less, b represents a number of 3.5 or more and 6.0 or less, and c represents a number of 0.1 or more and 3.0 or less.
- sulfide solid electrolytes described in International Publication No. 2013/099834 and International Publication No. 2015/001818 are included.
- the active material contained in the electrode mixture may be only the composite material obtained by this production method, or the composite material may be used in combination with other active materials.
- Other active materials include known active materials containing elemental sulfur and sulfur.
- the proportion of the composite material in the electrode mixture may be, for example, 20% by mass or more, 30% by mass or more, or 40% by mass or more. On the other hand, the ratio may be, for example, 70% by mass or less, or 60% by mass or less.
- a battery containing the composite material obtained by the present production method as an active material includes a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, wherein the positive electrode active material is It is preferably a composite material obtained by this manufacturing method.
- a battery can be produced, for example, by stacking three layers of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer produced as described above, and molding them under pressure.
- a battery having the composite material obtained by this production method as an active material is preferably a lithium-ion battery, and more preferably a lithium-sulfur battery. Batteries here include solid batteries having a solid electrolyte layer, in particular all-solid-state batteries.
- a battery having the composite material obtained by the present production method as an active material may be a primary battery or a secondary battery, but is preferably used for a secondary battery. is particularly preferred.
- the term “lithium secondary battery” broadly includes secondary batteries that charge and discharge by moving lithium ions between a positive electrode and a negative electrode.
- a solid battery has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer between the positive electrode layer and the negative electrode layer.
- the active material of the present invention is preferably contained in the positive electrode layer.
- Solid battery means a solid battery that does not contain any liquid or gel substance as an electrolyte, and also includes, for example, 50% by mass or less, 30% by mass or less, or 10% by mass or less of liquid or gel substance as an electrolyte. Aspects are also included.
- the present invention further discloses the following method for manufacturing a composite material.
- Lithium (Li) element, sulfur (S) element, and M element M is phosphorus (P) element, germanium (Ge) element, antimony (Sb) element, silicon (Si) element, tin (Sn) element, aluminum (Al) element, titanium (Ti) element, iron (Fe) element, nickel (Ni) element, cobalt (Co) element and manganese (Mn) element.
- Example 1 (1) Preparation Step A compound A and a conductive material having compositions shown in Table 1 below were prepared. (2) Mixing step Compound A and the conductive material were mixed in the amounts shown in Table 1. A planetary ball mill (manufactured by Fritsch, P-7) was used for mixing. The balls used were made of zirconia and had a diameter of 5 mm. Mixing was performed for 10 hours at a rotation speed of 500 rpm. The impact force applied at this time was as shown in Table 1. Thus, a composite material in which the compound A and the conductive material were combined was obtained.
- a planetary ball mill manufactured by Fritsch, P-7
- the resulting composite material was pulverized in a mortar and sieved with a sieve having an opening of 53 ⁇ m to obtain particles having a particle diameter D50 of 6.6 ⁇ m. All of the above operations were carried out in a glove box replaced with sufficiently dried Ar gas (dew point of ⁇ 60° C. or lower).
- Example 2 As the compound A and the conductive material, those shown in Table 1 were used. A composite material was obtained in the same manner as in Example 1 except for the above.
- the "X/P atomic number ratio" shown in Table 1 represents the ratio of the atomic number of the X (halogen) element to the atomic number of the phosphorus element.
- the “Li/P atomic ratio” represents the ratio of the number of atoms of the Li element to the number of atoms of the phosphorus element.
- Example 3 As the compound A, those shown in Table 1 were used. A composite material was obtained in the same manner as in Example 1 except for the above.
- Example 5 As the compound A, those shown in Table 1 were used. Further, using zirconia balls having a diameter of 10 mm, mixing was performed by a planetary ball mill at a rotational speed of 600 rpm for 10 hours. The impact force applied at this time was as shown in Table 1. A composite material was obtained in the same manner as in Example 1 except for these.
- Example 1 As the compound A, those shown in Table 1 were used. Further, using zirconia balls having a diameter of 10 mm, mixing was performed by a planetary ball mill at a rotational speed of 600 rpm for 10 hours. The impact force applied at this time was as shown in Table 1. A composite material was obtained in the same manner as in Example 1 except for these.
- Example 2 As the compound A and the conductive material, those shown in Table 1 were used. Further, mixing by a planetary ball mill was performed for 1 hour at a rotation speed of 300 rpm. The impact force applied at this time was as shown in Table 1. A composite material was obtained in the same manner as in Example 1 except for these.
- the aldirodite formation ratio of the composite materials produced in Examples, Comparative Examples and Reference Examples was measured by the following method. Table 1 shows the results.
- [Aldirodite formation ratio] In the X-ray diffraction pattern of the composite material, when compound A has a cubic aldirodite crystal structure, the intensity of the diffraction peak observed at 29.62 ° ⁇ 1.00 ° is Ia , and the cubic aldirodite crystal structure is , the intensity of the diffraction peak observed at 29.77° ⁇ 1.00° is Ia .
- a composite material can be evaluated by the aldirodite production ratio represented by the following equation (3).
- Aldirodite formation ratio (%) 100 x I a / (I a + I b ) (3)
- impurity phases other than compound A and lithium sulfide may be confirmed, but since the production ratio is small, the production ratio of the impurity phase does not need to be considered in the aldirodite production ratio. .
- solid battery cells were produced using the composite materials produced in Examples, Comparative Examples, and Reference Examples as positive electrode active materials, and the initial discharge capacity was measured by the following method. Table 1 shows the results.
- An all-solid battery cell in which a positive electrode layer, a solid electrolyte layer and a negative electrode layer are laminated was produced by sandwiching with a load of .
- the thickness of each layer is approximately 40 ⁇ m for the positive electrode layer, approximately 600 ⁇ m for the solid electrolyte layer, and approximately 400 ⁇ m for the negative electrode layer.
- the production of all-solid-state battery cells was carried out in a glove box that was replaced with argon gas having a dew point temperature of -60°C.
- the produced all-solid-state battery was connected to a charge/discharge measuring device in an environmental tester maintained at 25° C., and battery characteristics were evaluated. A current of 2.0 mA during charging and discharging was defined as a 1C rate.
- a method is provided that can suitably produce a material that can improve the performance of a lithium ion battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
したがって本発明の課題は、リチウムイオン電池の性能を高めることが可能な材料及びその製造に好適な方法を提供することにある。
前記化合物A及び導電材を混合し、両者が複合化した複合材料を得る混合工程と、を含み、
CuKα1線を用いたX線回折装置によって前記化合物Aを測定したときのX線回折パターンにおいて2θ=29.7°±1.00°の位置に観察される回折ピークをピークAとし、
CuKα1線を用いたX線回折装置によって前記複合材料を測定したときのX線回折パターンにおいて2θ=29.7°±1.00°の位置に観察される回折ピークをピークBとし、
前記ピークAの強度をI0とし、前記ピークBの強度をItとしたとき、下記式(1)で得られる無定形化度Nが97%以上となるように前記混合工程を行う、複合材料の製造方法を提供することによって前記の課題を解決したものである。
無定形化度N(%)=100×(I0-It)/I0 (1)
本発明の製造方法は、以下の工程(1)及び(2)に大別される。
(1)化合物Aを準備する工程(以下「準備工程」ともいう。)。
(2)化合物A及び導電材を混合し、両者が複合化した複合材料を得る工程(以下「混合工程」ともいう。)。
以下、それぞれの工程について説明する。
本工程においては、化合物Aを用意する。化合物Aは、リチウム(Li)元素、硫黄(S)元素、及びM元素を含んで構成されることが好ましい。M元素は、例えばリン(P)元素、ゲルマニウム(Ge)元素、アンチモン(Sb)元素、ケイ素(Si)元素、スズ(Sn)元素、アルミニウム(Al)元素、チタン(Ti)元素、鉄(Fe)元素、ニッケル(Ni)元素、コバルト(Co)元素及びマンガン(Mn)元素のうちの少なくとも1種であることが好ましい。特にM元素が少なくともリン(P)元素を含むことが好ましく、更にはM元素がP元素のみであることが好ましい。これによって本製造方法によって得られる複合材料を活物質として用いた電池の放電容量を一層高めることができる。
また、bは、好ましく4.0以上、更に好ましくは4.5以上、更に一層好ましくは5.0以上である。一方、bは、好ましくは7.5以下、更に好ましくは7.0以下、更に一層好ましくは6.5以下である。
更に、cは、好ましくは0.1以上、更に好ましくは0.2以上である。一方、cは、好ましくは1.0未満、更に好ましくは0.8以下、更に一層好ましくは0.6以下である。bが前記範囲内であることにより、化合物Aと導電材との複合化を円滑に進行させることができ、非晶質の化合物Aを好適に得られる。特に、M元素がPである場合、Pに対するXの原子数比が上述の範囲内であると、化合物Aの非晶質化が首尾よく生じるので好ましい。
M元素がPである場合、Pに対するXの原子数比であるcの値が、例えば0.10以上であることが好ましく、中でも0.2以上であることが好ましい。一方、cの値が、例えば1.0未満であることが好ましく、中でも0.8以下、特に0.6以下であることが好ましい。cの値が前記範囲内であることで、化合物Aと導電材との複合化を円滑に進行させることができ、非晶質の化合物Aが好適に得られる。また、M元素がPである場合、Pに対するLiの原子数比は、例えば5.0以上であることが好ましく、中でも5.5以上であることが好ましく、特に6.0以上であることが好ましい。一方、Pに対するLiの原子数比は、例えば、9.0以下であることが好ましく、中での8.0以下であることが好ましく、7.5以下であることがより一層好ましい。Pに対するLiの原子数比が前記範囲内であることで、化合物Aと導電材との複合化を円滑に進行させることができる。なお、M元素がP元素とそれ以外の元素を含む場合には、Pに対するLiの原子数比は、例えば、20.0以下であってもよく、15.0以下であってもよく、9.0以下であってもよい。
本工程においては、上述した化合物Aと導電材とを混合し、両者が複合化した複合材料を得る。化合物Aとともに用いられる導電材としては、電子伝導性を有する材料を特に制限なく用いることができる。導電材としては、例えば各種金属材料及び導電性非金属材料が挙げられる。金属材料及び導電性非金属材料は、これらのうちのいずれか一方を用いてもよく、あるいは両者を組み合わせて用いてもよい。
無定形化度N(%)=100×(I0-It)/I0 (1)
一方、ItはピークBの強度を表す。ピークBは、CuKα1線を用いたX線回折装置によって複合材料を測定したときのX線回折パターンにおいて2θ=29.7°±1.00°の位置に観察される回折ピークのことである。
無定形化度Nはその値が100%に近づくほど、結晶性が低下することを意味する。
衝撃力(F)= m×G (2)
式中、mは衝突する物体の重さ(kg)、Gは加速度(m/s2)であり、遊星ボールミルの場合では、化合物Aと導電材を入れた容器内に入れるボールの総重量がmであり、Gは遠心加速度である。
衝撃力が上述の値以上となるように化合物Aと導電材とを混合し、首尾よく両者を複合化させる方法としては、例えば両者の混合条件を調整する方法が挙げられる。例えば、化合物Aと導電材とを遊星ボールミルを用いて混合する条件として、装置の公転及び/又は自転回転数、ボールの直径、材質及び個数、並びに混合時間等を調整する方法が挙げられる。
硫化物固体電解質は、結晶性材料、ガラスセラミックス、ガラスのいずれであってもよい。硫化物固体電解質は、アルジロダイト型結晶構造を有していてもよい。このような硫化物固体電解質としては、例えば、Li2S-P2S5、Li2S-P2S5-LiX(「X」は一種以上のハロゲン元素を示す。)、Li2S-P2S5-P2O5、Li2S-Li3PO4-P2S5、Li3PS4、Li4P2S6、Li10GeP2S12、Li3.25Ge0.25P0.75S4、Li7P3S11、Li3.25P0.95S4、LiaPSbXc(「X」は一種以上のハロゲン元素を示す。aは3.0以上9.0以下の数を表す。bは3.5以上6.0以下の数を表す。cは0.1以上3.0以下の数を表す。)で表される化合物などが挙げられる。このほかにも、例えば、国際公開第2013/099834号パンフレット、国際公開第2015/001818号パンフレットに記載の硫化物固体電解質が挙げられる。
〔1〕
リチウム(Li)元素、硫黄(S)元素、及びM元素(Mは、リン(P)元素、ゲルマニウム(Ge)元素、アンチモン(Sb)元素、ケイ素(Si)元素、スズ(Sn)元素、アルミニウム(Al)元素、チタン(Ti)元素、鉄(Fe)元素、ニッケル(Ni)元素、コバルト(Co)元素及びマンガン(Mn)元素のうちの少なくとも1種である。)を含み、アルジロダイト型結晶構造を有する結晶相を含む化合物Aを準備する準備工程と、
前記化合物A及び導電材を混合し、両者が複合化した複合材料を得る混合工程と、を含み、
CuKα1線を用いたX線回折装置によって前記化合物Aを測定したときのX線回折パターンにおいて2θ=29.7°±1.00°の位置に観察される回折ピークをピークAとし、
CuKα1線を用いたX線回折装置によって前記複合材料を測定したときのX線回折パターンにおいて2θ=29.7°±1.00°の位置に観察される回折ピークをピークBとし、
前記ピークAの強度をI0とし、前記ピークBの強度をItとしたとき、下記式(1)で得られる無定形化度Nが97%以上となるように前記混合工程を行う、複合材料の製造方法。
無定形化度N(%)=100×(I0-It)/I0 (1)
〔2〕
前記化合物Aに含まれるM元素が、少なくともリン(P)元素を含む、〔1〕に記載の製造方法。
〔3〕
前記化合物Aに含まれるリン(P)元素に対するハロゲン(X)元素の原子数比が1.0未満である、〔1〕又は〔2〕記載の製造方法。
〔4〕
前記化合物Aに含まれるリン(P)元素に対するリチウム(Li)元素の原子数比が5.0以上9.0以下である、〔1〕ないし〔3〕のいずれか一つに記載の製造方法。
〔5〕
前記導電材が、炭素材料又は金属材料である、〔1〕ないし〔4〕のいずれか一つに記載の製造方法。
〔6〕
〔1〕ないし〔5〕のいずれか一つに記載の方法で製造された複合材料。
(1)準備工程
以下の表1に示す組成を有する化合物A及び導電材を用意した。
(2)混合工程
化合物A及び導電材を、表1に示す使用量で混合した。混合には遊星ボールミル(フリッチュ製、P-7)を用いた。使用したボールは直径5mmのジルコニア製のものであった。混合は、自転回転数500rpmで10時間行った。このときに加えられた衝撃力は表1に示すとおりであった。このようにして、化合物Aと導電材とが複合化した複合材料を得た。得られた複合材料を乳鉢で解砕し、目開き53μmの篩いで整粒して粒径D50が6.6μmの粒子を得た。
以上の操作はすべて、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で実施した。
化合物A及び導電材として表1に示すものを用いた。それ以外は実施例1と同様にして複合材料を得た。なお本実施例において、表1に示す「X/P原子数比」とは、リン元素の原子数に対するX(ハロゲン)元素の原子数の比率を表している。また、「Li/P原子数比」とは、リン元素の原子数に対するLi元素の原子数の比率を表している。
化合物Aとして表1に示すものを用いた。それ以外は実施例1と同様にして複合材料を得た。
化合物Aとして表1に示すものを用いた。また、直径10mmのジルコニア製ボールを用い、遊星ボールミルによる混合を、自転回転数600rpmで10時間行った。このときに加えられた衝撃力は表1に示すとおりであった。それら以外は実施例1と同様にして複合材料を得た。
化合物Aとして表1に示すものを用いた。また、直径10mmのジルコニア製ボールを用い、遊星ボールミルによる混合を、自転回転数600rpmで10時間行った。このときに加えられた衝撃力は表1に示すとおりであった。それら以外は実施例1と同様にして複合材料を得た。
化合物A及び導電材として表1に示すものを用いた。また、遊星ボールミルによる混合を、自転回転数300rpmで1時間行った。このときに加えられた衝撃力は表1に示すとおりであった。それら以外は実施例1と同様にして複合材料を得た。
化合物A及び導電材として表1に示すものを用いた。また、それ以外は実施例1と同様にして複合材料を得た。
実施例、比較例及び参考例において用いた化合物A、及び製造された複合材料についてXRD測定を行いピークA及びピークBの強度であるI0及びItを測定し、無定形化度Nを算出した。その結果を表1に示す。また、XRDチャートを図1ないし8に示す。XRD測定の条件は以下のとおりとした。
実施例、比較例及び参考例で得られた複合材料を、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で、大気非暴露型の気密ホルダーに充填し、XRD測定を行った。測定条件は以下のとおりとした。
・装置名: 全自動多目的X線回折装置 SmartLab SE(株式会社リガク製)
・線源:CuKα1
・管電圧:40kV
・管電流:50mA
・測定方法:集中法(反射法)
・光学系: 多層膜ミラー発散ビーム法(CBO-α)
・検出器:一次元半導体検出器
・入射ソーラースリット:ソーラースリット2.5°
・長手制限スリット:10mm
・受光ソーラースリット:2.5°
・入射スリット:1/6°
・受光スリット:2mm(オープン)
・測定範囲:2θ=10~120°
・ステップ幅:0.02°
・スキャンスピード:1.0°/min
〔アルジロダイト生成比〕
複合材料のX線回折パターンにおいて、化合物Aが立方晶アルジロダイト型結晶構造を有する場合は29.62°±1.00°に観測される回折ピークの強度をIaとし、直方晶アルジロダイト型結晶構造を有する場合は29.77°±1.00°に観測される回折ピークの強度をIaとする。また2θ=27.00°±1.00°の位置に観察される硫化リチウムの回折ピーク強度をIbとする。複合材料は、以下の式(3)で表されるアルジロダイト生成比によって評価することができる。
アルジロダイト生成比(%)=100×Ia/(Ia+Ib) (3)
なお、複合材料においては化合物A及び硫化リチウム以外の不純物相も確認されることがあるが、その生成比は僅かであることから、アルジロダイト生成比において不純物相の生成比は考慮しなくてもよい。
正極活物質として実施例、比較例及び参考例で製造した複合を用い、正極層及び固体電解質層に用いる固体電解質粉末としてアルジロダイト型結晶構造を有するLi5.4PS4.4Cl0.8Br0.8、負極層の負極活物質としてIn-Liメタルを用いて全固体電池を作製した。
(正極合剤の調製)
正極層用の正極合剤粉末は、実施例及び比較例で得られた複合材料の粉末と、固体電解質粉末とを質量比で60:40の割合で乳鉢混合することで調製した。
上下が開口したポリプロピレン製の円筒(開口径10.5mm、高さ18mm)の下側開口部を負極電極(SUS製)で閉塞し、その上に固体電解質粉末を載せ、正極電極(SUS製)で閉塞した後、200MPaにて一軸プレスすることで固体電解質層を形成した。次に、一旦正極電極を取り外し、固体電解質層の上に正極合剤粉末を載せて再び正極電極で閉塞した後、560MPaにて一軸プレスし正極層と固体電解質層を積層させた。その後、前記円筒を上下反転させ、一旦負極電極を外し、固体電解質層の上にIn-Li箔を載せて再び負極電極で閉塞し、最後にシャコ万力にて正負極電極間を6N・mの荷重にて挟み込むことにより、正極層、固体電解質層及び負極層が積層された全固体電池セルを作製した。なお、各層の厚みは正極層が約40μm、固体電解質層が約600μm、及び負極層は約400μmとなっている。全固体電池セルの作製は、露点温度-60℃のアルゴンガスで置換されたグローブボックス内で行った。作製した全固体電池を、25℃に保たれた環境試験機内において充放電測定装置に接続して電池特性評価した。なお、充放電時の電流2.0mAを1Cレートとした。
初回充放電(1サイクル目)では正極活物質内に含まれるリチウムイオンを効率的に脱吸蔵させる目的で、0.03Cで3.0VまでCC-CV方式で充電し、0.03Cで0.38VまでCC方式で放電した。2サイクル目では、0.1Cで3.0VまでCC-CV方式で充電し、0.1Cで0.38VまでCC方式で放電した。ここで、2サイクル目の充放電容量を初期充放電容量とした。実施例1及び3、比較例1及び2、並びに参考例1の測定結果を図9ないし13に示す。
Claims (6)
- リチウム(Li)元素、硫黄(S)元素、及びM元素(Mは、リン(P)元素、ゲルマニウム(Ge)元素、アンチモン(Sb)元素、ケイ素(Si)元素、スズ(Sn)元素、アルミニウム(Al)元素、チタン(Ti)元素、鉄(Fe)元素、ニッケル(Ni)元素、コバルト(Co)元素及びマンガン(Mn)元素のうちの少なくとも1種である。)を含み、アルジロダイト型結晶構造を有する結晶相を含む化合物Aを準備する準備工程と、
前記化合物A及び導電材を混合し、両者が複合化した複合材料を得る混合工程と、を含み、
CuKα1線を用いたX線回折装置によって前記化合物Aを測定したときのX線回折パターンにおいて2θ=29.7°±1.00°の位置に観察される回折ピークをピークAとし、
CuKα1線を用いたX線回折装置によって前記複合材料を測定したときのX線回折パターンにおいて2θ=29.7°±1.00°の位置に観察される回折ピークをピークBとし、
前記ピークAの強度をI0とし、前記ピークBの強度をItとしたとき、下記式(1)で得られる無定形化度Nが97%以上となるように前記混合工程を行う、複合材料の製造方法。
無定形化度N(%)=100×(I0-It)/I0 (1) - 前記化合物Aに含まれるM元素が、少なくともリン(P)元素を含む、請求項1に記載の製造方法。
- 前記化合物Aに含まれるリン(P)元素に対するハロゲン(X)元素の原子数比が1.0未満である、請求項1に記載の製造方法。
- 前記化合物Aに含まれるリン(P)元素に対するリチウム(Li)元素の原子数比が5.0以上9.0以下である、請求項1に記載の製造方法。
- 前記導電材が、炭素材料又は金属材料である、請求項1に記載の製造方法。
- 請求項1ないし5のいずれか一項に記載の方法で製造された複合材料。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380013079.9A CN117836982A (zh) | 2022-02-26 | 2023-02-22 | 复合材料及其制造方法 |
JP2023545812A JP7442022B2 (ja) | 2022-02-26 | 2023-02-22 | 複合材料及びその製造方法 |
KR1020247002763A KR20240024258A (ko) | 2022-02-26 | 2023-02-22 | 복합 재료 및 그 제조 방법 |
JP2024022635A JP7505135B2 (ja) | 2022-02-26 | 2024-02-19 | 複合材料及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022028735 | 2022-02-26 | ||
JP2022-028735 | 2022-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023163071A1 true WO2023163071A1 (ja) | 2023-08-31 |
Family
ID=87766048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/006584 WO2023163071A1 (ja) | 2022-02-26 | 2023-02-22 | 複合材料及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP7442022B2 (ja) |
KR (1) | KR20240024258A (ja) |
CN (1) | CN117836982A (ja) |
WO (1) | WO2023163071A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024166908A1 (ja) * | 2023-02-07 | 2024-08-15 | 三井金属鉱業株式会社 | 活物質、固体電解質、電極合剤並びに電池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099834A1 (ja) | 2011-12-28 | 2013-07-04 | 三井金属鉱業株式会社 | 硫化物系固体電解質 |
WO2015001818A1 (ja) | 2013-07-04 | 2015-01-08 | 三井金属鉱業株式会社 | 結晶性固体電解質及びその製造方法 |
CN109256555A (zh) | 2018-10-16 | 2019-01-22 | 清华大学 | 一种硫系复合正极材料及其全固态锂电池以及它们的制备方法 |
CN111082128A (zh) * | 2019-12-23 | 2020-04-28 | 中国科学院青岛生物能源与过程研究所 | 一种高功率全固态电池及其制备 |
JP2020135947A (ja) * | 2019-02-13 | 2020-08-31 | トヨタ自動車株式会社 | 炭素コーティング固体電解質粒子の製造方法 |
WO2022045302A1 (ja) * | 2020-08-28 | 2022-03-03 | 三井金属鉱業株式会社 | 活物質及びその製造方法、電極合剤並びに電池 |
-
2023
- 2023-02-22 CN CN202380013079.9A patent/CN117836982A/zh active Pending
- 2023-02-22 JP JP2023545812A patent/JP7442022B2/ja active Active
- 2023-02-22 WO PCT/JP2023/006584 patent/WO2023163071A1/ja active Application Filing
- 2023-02-22 KR KR1020247002763A patent/KR20240024258A/ko active IP Right Grant
-
2024
- 2024-02-19 JP JP2024022635A patent/JP7505135B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099834A1 (ja) | 2011-12-28 | 2013-07-04 | 三井金属鉱業株式会社 | 硫化物系固体電解質 |
WO2015001818A1 (ja) | 2013-07-04 | 2015-01-08 | 三井金属鉱業株式会社 | 結晶性固体電解質及びその製造方法 |
CN109256555A (zh) | 2018-10-16 | 2019-01-22 | 清华大学 | 一种硫系复合正极材料及其全固态锂电池以及它们的制备方法 |
JP2020135947A (ja) * | 2019-02-13 | 2020-08-31 | トヨタ自動車株式会社 | 炭素コーティング固体電解質粒子の製造方法 |
CN111082128A (zh) * | 2019-12-23 | 2020-04-28 | 中国科学院青岛生物能源与过程研究所 | 一种高功率全固态电池及其制备 |
WO2022045302A1 (ja) * | 2020-08-28 | 2022-03-03 | 三井金属鉱業株式会社 | 活物質及びその製造方法、電極合剤並びに電池 |
Non-Patent Citations (1)
Title |
---|
JOURNAL OF POWER SOURCES, vol. 293, 2015, pages 721 - 725 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024166908A1 (ja) * | 2023-02-07 | 2024-08-15 | 三井金属鉱業株式会社 | 活物質、固体電解質、電極合剤並びに電池 |
Also Published As
Publication number | Publication date |
---|---|
JP2024059733A (ja) | 2024-05-01 |
KR20240024258A (ko) | 2024-02-23 |
JPWO2023163071A1 (ja) | 2023-08-31 |
JP7505135B2 (ja) | 2024-06-24 |
CN117836982A (zh) | 2024-04-05 |
JP7442022B2 (ja) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022045302A1 (ja) | 活物質及びその製造方法、電極合剤並びに電池 | |
JP7344345B2 (ja) | 硫化物系無機固体電解質材料の製造方法 | |
JP7077793B2 (ja) | 正極合材及びその製造方法 | |
JP7505135B2 (ja) | 複合材料及びその製造方法 | |
CN111446492B (zh) | 硫化物固体电解质粒子及其制造方法和全固体电池 | |
JP5895917B2 (ja) | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 | |
JP4379971B2 (ja) | 電気エネルギー貯蔵素子 | |
Choi et al. | Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes | |
US11075375B2 (en) | Cathode mixture, all solid state battery, method for producing cathode mixture, and method for producing all solid state battery | |
JP7107272B2 (ja) | 硫化物固体電解質、硫化物固体電解質の製造方法、電極体および全固体電池 | |
WO2024048476A1 (ja) | 複合材料の製造方法及び複合材料 | |
WO2024166908A1 (ja) | 活物質、固体電解質、電極合剤並びに電池 | |
WO2023090269A1 (ja) | 電池 | |
JP6112715B2 (ja) | 多硫化チタン−炭素複合体 | |
JP7192726B2 (ja) | 負極材料及びその製造方法 | |
Sujithkrishnan et al. | Lithium-ion battery full-cell performances of laboratory glass waste-derived SiO2@ Fe2O3 nanocomposite anode | |
WO2024185669A1 (ja) | 正極合材の製造方法、正極合材及びリチウムイオン電池 | |
JP7514630B2 (ja) | 蓄電デバイス用負極材料 | |
JP7465672B2 (ja) | 蓄電デバイス用負極材料 | |
JP5652132B2 (ja) | 無機固体電解質及びリチウム二次電池 | |
WO2023234359A1 (ja) | 全固体二次電池用電極組成物、全固体二次電池用電極シート、及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法 | |
WO2024166792A1 (ja) | 負極合剤、スラリー、負極及び電池 | |
Kim et al. | Characterization of the Ge@ GeO2-C Composite Anode Synthesized Using a Simple High-Energy Ball-Milling Process for Li-Ion Batteries | |
WO2024166778A1 (ja) | 負極及びこれを用いた電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023545812 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23760070 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20247002763 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247002763 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380013079.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023760070 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023760070 Country of ref document: EP Effective date: 20240926 |