WO2023162607A1 - 親水性粉末油脂およびその製造方法 - Google Patents

親水性粉末油脂およびその製造方法 Download PDF

Info

Publication number
WO2023162607A1
WO2023162607A1 PCT/JP2023/003282 JP2023003282W WO2023162607A1 WO 2023162607 A1 WO2023162607 A1 WO 2023162607A1 JP 2023003282 W JP2023003282 W JP 2023003282W WO 2023162607 A1 WO2023162607 A1 WO 2023162607A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
fat
oil
hydrophilic
protein
Prior art date
Application number
PCT/JP2023/003282
Other languages
English (en)
French (fr)
Inventor
茂樹 水嶋
知樹 上山
健太 高木
弘志 狩野
量太 井上
Original Assignee
不二製油グループ本社株式会社
不二製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油グループ本社株式会社, 不二製油株式会社 filed Critical 不二製油グループ本社株式会社
Priority to CN202380020293.7A priority Critical patent/CN118647274A/zh
Priority to JP2024502952A priority patent/JPWO2023162607A1/ja
Publication of WO2023162607A1 publication Critical patent/WO2023162607A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/06Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing non-milk proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS OR COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings or cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS OR COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings or cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings or cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L9/00Puddings; Cream substitutes; Preparation or treatment thereof
    • A23L9/20Cream substitutes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/18Vegetable proteins from wheat
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/20Proteins from microorganisms or unicellular algae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis

Definitions

  • the present invention relates to a hydrophilic powdery fat and a method for producing the same.
  • Oil and fat products such as butter, margarine and shortening are used for various purposes such as improving physical properties of dough and imparting flavor.
  • these oil and fat products are hydrophobic, and when used in water-rich products or in water-rich manufacturing processes, uniform mixing and stable retention are difficult. Therefore, powdered fats and oils are used, which are fats coated with milk proteins, emulsifiers, sugars and other excipients. Powdered fats and oils can be obtained by stirring and homogenizing an aqueous phase containing milk proteins and excipients and an oil phase to form an oil-in-water emulsion, followed by drying and powdering.
  • ICP instant creaming powder
  • Patent Documents 1 and 2 also use an emulsifier. Accordingly, an object of the present invention is to select a protein having a strong emulsifiability that surpasses that of conventional proteins, and to produce a hydrophilic powdery fat using this protein.
  • the present inventors selected a protein material having specific properties, and by using this, it was possible to obtain a stable hydrophilic powder, which was difficult with conventional soy protein.
  • the inventors have found that fats and oils can be obtained, and completed the present invention.
  • the present invention provides (1) a hydrophilic powdered fat containing 3 parts by mass or more of a protein material having the following properties per 100 parts by mass of fat.
  • the protein material has a viscosity of 10,000 mPa s or less when measured at 25°C after heating an aqueous solution of 20% by mass of crude protein at 80°C for 30 minutes, and the solubilization rate of 0.22M TCA is 30% or higher. It has 95% properties.
  • hydrophilic powdery fat according to (1) which forms an oil-in-water emulsion having an average emulsified particle size of 3 ⁇ m or less when dispersed in water.
  • the hydrophilic powdery fat according to (1) wherein the protein material has an NSI of 80 or more and forms an oil-in-water emulsion having an average emulsified particle size of 3 ⁇ m or less when dispersed in water.
  • the instant creaming powder according to (5) which contains 30% by mass or more of fat and 10% by mass or more of sugar, and the total weight of fat and sugar is 50% by mass or more of the dry mass.
  • the hydrophilic powdery fat according to (4) wherein the hydrophilic powdery fat is an instant creaming powder.
  • the instant creaming powder according to (7) which contains 30% by mass or more of oil and 10% by mass or more of sugar, and the total mass of fat and sugar is 50% by mass or more of the dry mass. . (9)
  • a method for producing a hydrophilic powdered fat comprising drying an oil-in-water emulsion containing 3 parts by mass or more of a protein material having the following properties with respect to 100 parts by mass of fat.
  • the protein material has a viscosity of 10,000 mPa s or less when measured at 25°C after heating an aqueous solution of 20% by mass of crude protein at 80°C for 30 minutes, and the solubilization rate of 0.22M TCA is 30% or higher. 95% and NSI of 80 or higher.
  • the present invention can also provide the following aspects.
  • Hydrophilic powdered fat containing 3 parts by mass or more of a protein material having the following properties per 100 parts by mass of fat.
  • the protein material has a viscosity of 10,000 mPa s or less when measured at 25°C after heating an aqueous solution of 20% by mass of crude protein at 80°C for 30 minutes, and the solubilization rate of 0.22M TCA is 30% or higher. It has 95% properties.
  • hydrophilic powdery fat according to (1) or (2) which forms an oil-in-water emulsion having an average emulsified particle size of 3 ⁇ m or less when dispersed in water.
  • the instant creaming powder according to (4) which contains 30% by mass or more of fat and 10% by mass or more of sugar, and the total mass of fat and sugar is 50% by mass or more of the dry mass. .
  • a method for producing a hydrophilic powdery fat comprising drying an oil-in-water emulsion containing at least 3 parts by mass of a protein material having the following properties with respect to 100 parts by mass of the oil.
  • the protein material has a viscosity of 10,000 mPa s or less when measured at 25°C after heating an aqueous solution of 20% by mass of crude protein at 80°C for 30 minutes, and the solubilization rate of 0.22M TCA is 30% or higher. 95% and NSI of 80 or higher.
  • the instant creaming powder according to (8) which contains 30% by mass or more of fat and 10% by mass or more of sugar, and the total mass of fat and sugar is 50% by mass or more of the dry mass. manufacturing method.
  • a method for producing granules comprising granulating the hydrophilic powdered fat or instant creaming powder obtained by the method according to any one of (6) to (9).
  • the powdered fats and oils of the present invention are powder particles containing a large amount of fats and oils, which are solid at room temperature and have a particle size of 5 mm or less, preferably 2 mm or less, more preferably 500 ⁇ m or less, most preferably 200 ⁇ m or less.
  • the hydrophilic powdery fat of the present invention has oil droplets in a hydrophilic structure, and is different from the hydrophobic powdery fat obtained by crushing solid fat. By dispersing the hydrophilic powdery fat of the present invention in water, the hydrophilic tissue is easily dissolved, and an oil-in-water emulsion in which oil droplets are dispersed is obtained.
  • the hydrophilic powdered fat of the present invention uses vegetable raw materials, such as vegetable oils and fats, vegetable proteins, and carbohydrates derived from plants, as part or all of the raw materials. Therefore, some of the raw materials may contain animal raw materials such as milk and eggs.
  • a hydrophilic powdery oil in which 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more of the total raw material is a vegetable raw material, and further 100% by mass is a vegetable raw material.
  • Certain hydrophilic powdered oils are preferred.
  • a hydrophilic powdery fat that does not contain a synthetic emulsifier, which will be described later, is also preferable.
  • the fats and oils of the present invention are fats and oils generally used for food applications, and include soybean oil, rapeseed oil, corn oil, safflower oil, rice oil, cottonseed oil, sunflower oil, sesame oil, olive oil, peanut oil, lard, Examples include triglycerides such as beef tallow and medium-chain fatty acid oils, and those modified by transesterification or hydrogenation. Fats with a medium melting point around 20-40° C., such as palm oil, palm kernel oil, coconut oil, cocoa butter, interesterified oils and hydrogenated oils, are suitable for some applications.
  • Fish oil, linseed oil, perilla oil, algae oil, and fats containing concentrated fatty acids from these, which contain large amounts of polyunsaturated fatty acids (e.g., eicosapentaenoic acid, docosahexaenoic acid, arachidonic acid, and ⁇ -linolenic acid) etc. are also included. Since the present invention also has the effect of suppressing the oxidation of fats and oils, fats and oils having a large amount of polyunsaturated fatty acids are suitable.
  • Vegetable milk obtained by extracting or crushing and suspending oil crops such as coconut, almond, peanut, cashew nut, macadamia nut, and pistachio with water can also use the part corresponding to oil and fat.
  • coconut and almond are preferred and are referred to as coconut milk and almond milk respectively.
  • the protein material used in the present invention is required to have a low viscosity after heating. That is, it can be measured by preparing an aqueous solution of the protein material with a crude protein content of 20% by mass, heating it at 80°C for 30 minutes, and then measuring the viscosity at 25°C.
  • the viscosity after heating is 10,000 mPa ⁇ s or less, preferably 5,000 mPa ⁇ s or less, 1,000 mPa ⁇ s or less, 500 mPa ⁇ s or less, and more preferably 200 mPa ⁇ s or less, 100 mPa ⁇ s or less.
  • the present protein material requires a molecular weight of a certain size. Molecular weight is defined by the TCA solubilization rate.
  • the TCA solubilization rate is defined as the ratio of crude protein dissolved in 0.22M TCA to total crude protein.
  • the TCA solubilization rate is 30-95%, preferably 35-90%, more preferably 40-85%, 50-80%. If the TCA solubilization rate is too low, the viscosity tends to increase after heating, which is not appropriate, and the transmittance decreases. On the other hand, if the TCA solubilization rate is too high, the amount of protein that contributes to emulsifiability will decrease, and it will be necessary to add a large amount of protein material, which reduces the degree of freedom in blending, which is not preferable.
  • the present protein material preferably has an NSI (Nitrogen Solubility Index) of 80 or higher, which is used as an index of protein solubility. More preferably, those having an NSI of 85 or higher, 90 or higher, 95 or higher, or 97 or higher can be used.
  • a high NSI of a protein material indicates high dispersibility in water, and can contribute to the dispersion stability of the oil-in-water emulsion composition of the present invention. If the NSI is too low, precipitation tends to occur, which is not preferred.
  • the crude protein content in the protein material is preferably 30% by mass or more, more preferably 50% by mass or more, and most preferably 70% by mass or more.
  • a protein material with a higher crude protein content can exhibit its function with a smaller amount. Although such protein material is not generally commercially available, it can be obtained by the denaturation and molecular weight adjustment treatment described later. Commercially available soybean protein materials such as Fujipro R, Fujipro 748, Fujipro CL, and Hinute AM (manufactured by Fuji Oil Co., Ltd.) do not meet this requirement.
  • the origin of the protein material to be prepared is not particularly limited, but proteins derived from plants, animals or microorganisms can be used.
  • Vegetable proteins include beans such as soybeans, peas, mung beans, lupine beans, chickpeas, kidney beans, lentils and cowpeas, seeds such as sesame seeds, canola seeds, coconut seeds and almond seeds, corn, buckwheat, wheat, Examples include proteins derived from grains such as rice, vegetables, fruits, algae, microalgae, and the like.
  • soybean-derived protein material it is prepared by further concentrating protein from soybean raw materials such as defatted soybeans and whole soybeans. Alternatively, variously processed products thereof are conceptually included.
  • animal proteins include egg proteins including ovalbumin, milk proteins such as casein, whey, lactalbumin, and lactalbumin, proteins derived from blood such as blood plasma, serum albumin, and bleached hemoglobin, and meat-derived proteins.
  • milk proteins such as casein, whey, lactalbumin, and lactalbumin
  • proteins derived from blood such as blood plasma, serum albumin, and bleached hemoglobin
  • meat-derived proteins examples include proteins, proteins derived from fish and shellfish, and the like.
  • proteins derived from microorganisms such as yeast, fungi, and bacteria can be used. Even proteins that are poorly soluble in water can be used in the present invention by the treatment described below.
  • the protein material used in the oil-in-water emulsion of the present invention is applied in combination with "degradation/denaturation treatment” for degrading and/or denaturing the protein and "molecular weight distribution adjustment treatment” for adjusting the molecular weight distribution of the protein.
  • degradation/denaturation treatment include enzyme treatment, pH adjustment treatment (e.g., acid treatment, alkali treatment), denaturant treatment, heat treatment, cooling treatment, high pressure treatment, organic solvent treatment, mineral addition treatment, supercritical treatment, sonication, electrolysis, combinations thereof, and the like.
  • Examples of the “molecular weight distribution adjusting treatment” include filtration, gel filtration, chromatography, centrifugation, electrophoresis, dialysis, and combinations thereof.
  • the order and number of times of the “decomposition/denaturation treatment” and “molecular weight distribution adjustment treatment” are not particularly limited, and the “decomposition/denaturation treatment” may be followed by the “molecular weight distribution adjustment treatment”, or the “molecular weight distribution adjustment treatment” may be performed. Treatment” may be followed by "decomposition/denaturation treatment", or both treatments may be performed at the same time.
  • “degradation/denaturation treatment” is performed between two or more “molecular weight distribution adjustment treatments”
  • “molecular weight distribution adjustment treatment” is performed between two or more “degradation/denaturation treatments”, each multiple times. , etc.
  • the desired molecular weight distribution can be obtained by the "decomposition/denaturation treatment”
  • the “molecular weight distribution adjustment treatment” may not be performed.
  • all the treatments starting from the raw material may be carried out continuously, or may be carried out after an interval of time.
  • a commercial product that has undergone a certain treatment may be used as a raw material and subjected to another treatment.
  • a protein material that has undergone molecular weight distribution adjustment treatment and a protein material that has not undergone molecular weight distribution adjustment treatment may be mixed to form a specific protein material.
  • the ratio of the two (treated protein material: untreated protein material) can be adjusted as appropriate within the range satisfying the above characteristics, but the mass ratio is, for example, 1:99 to 99:1, for example, 50 : 50-95:5, 75:25-90:10 and the like.
  • the protein material used in the oil-in-water emulsion of this aspect is a protein material that has undergone "degradation/denaturation/molecular weight distribution adjustment treatment".
  • a person skilled in the art can appropriately set the processing conditions for protein decomposition or denaturation, such as the types and concentrations of enzymes, pH, organic solvents, minerals, etc., temperature, pressure, output intensity, current, time, etc.
  • enzymes examples include proteases classified into “metalloproteases,” “acid proteases,” “thiol proteases,” and “serine proteases.”
  • the reaction temperature is 20 to 80°C, preferably 40 to 60°C.
  • any of pH 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12 can be treated in a pH range with upper and lower limits, eg, pH 2-12.
  • acid treatment it may be a method of adding acid or a method of carrying out fermentation treatment such as lactic acid fermentation.
  • acids to be added include inorganic acids such as hydrochloric acid and phosphoric acid; Organic acids are mentioned.
  • acid may be added using acid-containing foods and drinks such as fruit juice such as lemon, concentrated fruit juice, fermented milk, yogurt, and brewed vinegar.
  • alkali treatment an alkali such as sodium hydroxide or potassium hydroxide can be added.
  • denaturant treatment denaturants such as guanidine hydrochloride, urea, arginine, PEG, etc. may be added.
  • heating or cooling treatment examples of heating temperatures are 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, and 150°C. °C, the upper limit and the lower limit of which are, for example, 60°C to 150°C.
  • cooling temperatures are -10°C, -15°C, -20°C, -25°C, -30°C, -35°C, -40°C, -45°C, -50°C, -55°C, -60°C, Ranges with upper and lower limits of -65°C, -70°C, and -75°C, such as -10°C to -75°C.
  • heating or cooling times are 5 seconds, 10 seconds, 30 seconds, 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes, 70 minutes, 80 minutes, 90 minutes, Ranges with upper and lower limits of 100 minutes, 120 minutes, 150 minutes, 180 minutes, and 200 minutes, such as 5 seconds to 200 minutes.
  • examples of pressure conditions are 100 MPa, 200 MPa, 300 MPa, 400 MPa, 500 MPa, 600 MPa, 700 MPa, 800 MPa, 900 MPa, and 1,000 MPa. mentioned.
  • examples of solvents used include alcohols and ketones such as ethanol and acetone.
  • examples of minerals used include divalent metal ions such as calcium and magnesium.
  • supercritical treatment for example, carbon dioxide in a supercritical state at a temperature of about 30° C. or higher and about 7 MPa or higher can be used.
  • treatment can be performed by irradiating with a frequency of 100 KHz to 2 MHz and an output of 100 to 1,000 W.
  • electrolysis treatment for example, a protein aqueous solution can be treated by applying a voltage of 100 mV to 1,000 mV.
  • the treatment that degrades and/or denatures proteins is selected from denaturant treatment, heat treatment, and combinations thereof.
  • a person skilled in the art can appropriately set the processing conditions for adjusting the molecular weight distribution of proteins, such as the type of filter medium, gel filtration carrier, centrifugation speed, current, and time.
  • filter media include filter paper, filter cloth, diatomaceous earth, ceramics, glass, membranes, and the like.
  • carriers for gel filtration include dextran and agarose.
  • centrifugation conditions include 1,000-3,000 ⁇ g for 5-20 minutes.
  • synthetic emulsifiers do not need to be intentionally blended. Formulations that do not contain synthetic emulsifiers are also preferred.
  • the synthetic emulsifier of the present invention is specifically polyglycerin fatty acid ester, sucrose fatty acid ester, sodium stearoyl lactylate, calcium stearoyl lactylate, polyoxyethylene derivative, fatty acid salt, modified starch, etc., use their emulsifying properties for food applications It is a substance that requires a chemical reaction to manufacture.
  • the hydrophilic powdery fats and oils of the present invention have the minimum components of fats and proteins.
  • the ratio is 3 parts by mass or more, preferably 8 parts by mass or more, more preferably 20 parts by mass or more for 100 parts by mass of fats and oils.
  • the upper limit is preferably 2,000 parts by mass or less, more preferably 500 parts by mass or less. If the relative amount of the protein material is too small, the emulsification will be insufficient, and the emulsified particle size will become coarse and oxidation will easily occur. If the relative amount of protein is too large, it leads to a decrease in the amount of fats and oils in the powder, which will be described later.
  • substances other than fats and proteins can be added to the raw materials, typically carbohydrates.
  • Carbohydrates have the effect of improving the strength of the powder and facilitating its dissolution in water.
  • carbohydrates used include various starches, dextrins, oligosaccharides, oligosaccharides (maltose, lactose, glucose, fructose, etc.), and sugar alcohols (sorbitol, reduced maltose, etc.).
  • Various substances other than carbohydrates can be used as raw materials as needed, as long as they do not actively inhibit emulsification. Examples include other proteins, peptides, amino acids, water-insoluble or soluble polysaccharides, organic acids, salts thereof, and various inorganic salts that are not included in the above requirements.
  • animal materials include animal proteins and seasonings derived from animals, such as casein and whey albumin.
  • the weight of the fat is preferably 5% by mass or more, more preferably 30% by mass or more, and most preferably 50% by mass or more. Moreover, 90% by mass or less is preferable. If the amount of oil in the hydrophilic powdered oil is too large, emulsification may be insufficient, or the structure of the powder may be difficult to maintain, which may make it difficult to stably retain the powdered oil. If the amount of oil in the hydrophilic powdered oil is too small, the original purpose of the powdered oil cannot be achieved, and the utility value of the powdered oil is reduced, such as narrowing of applications and excessive use.
  • the preparation method is described below. Based on the composition described above, fats and oils, protein material and other raw materials are prepared, and the protein material and other water-soluble raw materials are first dissolved in water to prepare an aqueous phase.
  • the amount of water is preferably 1.5 to 50 times by mass, more preferably 3 to 10 times by mass that of the water-soluble raw material including the protein material. If the amount of the water phase is too small, the drying load described below is reduced, but the subsequent emulsification may not be carried out well. If the amount of the aqueous phase is too large, the subsequent emulsification may not be performed well as before, and the drying load will be excessive.
  • the temperature of the water to be used is not particularly limited, but warm water is preferable, and 60 to 80°C is suitable. If the temperature is too low, the viscosity increases and the workability deteriorates.
  • the protein material used in the present invention is characterized by having a low viscosity after heating, and the water phase prepared here also exhibits a low viscosity in spite of its high crude protein concentration.
  • fats and oils if there are any necessary oil-soluble substances, they are added to the fats and oils, and then used as the oil phase. Heating is preferable depending on the fatty acid that also constitutes the oil phase, and in many cases, the preparation is carried out at the melting point or above.
  • an oil-in-water type emulsion such as vegetable milk is treated as an oil phase in the sense that it is mixed with an aqueous phase and emulsified.
  • Preliminary emulsification is to prepare an oil-in-water emulsion having an emulsified particle size of about 10 to 100 ⁇ m by treating with a homomixer or the like. The number of revolutions varies depending on the equipment, but in the case of HOMOGENIZING MIXER MARK II Model 2.5 manufactured by PRIMIX, for example, processing is performed at 8,000 rpm for about 10 minutes. This is followed by main emulsification.
  • Emulsification is not particularly limited, but emulsification equipment with high shearing force is preferred, and examples thereof include homomixers, colloid mills, high-pressure homogenizers, ultrahigh-pressure homogenizers, and vacuum emulsifiers.
  • APV Gaulin homogenizer manufactured by APV
  • Microfluidizer manufactured by Microfluidex
  • Ultimizer manufactured by Sugino Machine
  • Nanomizer manufactured by Yamato Seikan
  • the shearing treatment is effective to perform the shearing treatment at a pressure of preferably 15 MPa or higher, more preferably 40 MPa or higher. Also, the shearing treatment can be performed multiple times. Through these emulsification treatments, the emulsified particle size of the oil-in-water emulsion is made approximately 0.2 to 2 ⁇ m.
  • the oil-in-water emulsion prepared above is dried to obtain a hydrophilic powdery oil.
  • a method for drying and pulverizing the oil-in-water emulsion a generally known spray drying method, vacuum freeze drying method, vacuum drying method, or the like can be used. Among these, a spray-dried powdered oil obtained by a spray-drying method is preferable.
  • a disk-type atomizer system, spray drying using a single-fluid or two-fluid nozzle, or the like can be used. Examples of drying conditions include a hot air temperature of 100 to 200°C and an exhaust air temperature of 50 to 100°C.
  • the water content is 15% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, and the particle diameter is about 1 ⁇ m to 1 mm, preferably Powder particles of about 3 ⁇ m to 500 ⁇ m, more preferably about 5 ⁇ m to 200 ⁇ m can be obtained.
  • This prepared powder is the hydrophilic powdery fat of the present invention.
  • the powder particle size of the hydrophilic powdered fat When the powder particle size of the hydrophilic powdered fat is small, it may exhibit properties such as high scattering properties, high hygroscopicity, low fluidity, and high cohesiveness, making it difficult to disperse and dissolve in a liquid.
  • granulation treatment can be performed.
  • the granulation method include granulation methods such as fluidized bed granulation, tumbling granulation, and coating granulation. is not limited to In particular, fluidized bed granulation is excellent in that it can efficiently produce high-quality granules.
  • an appropriate binder can be selected and used in these granulation treatments.
  • the resulting granules show various states, such as granules with increased diameters due to the adhesion of particles to each other, and particles that incorporate fine powder, all of which exhibit high fluidity and dispersibility. is.
  • the hydrophilic powdery fats and oils of the present invention can be easily made into an oil-in-water emulsion by dispersing them in water.
  • the emulsified product preferably has an emulsified particle size of 3 ⁇ m or less. It is more preferably 2 ⁇ m or less, and most preferably 1 ⁇ m or less. When the emulsified particle size exceeds 3 ⁇ m, the oxidation of fats and oils is accelerated, and the possibility of oil precipitating on the powder surface increases.
  • the emulsion of the present invention and its raw material are evaluated according to the following procedures. ⁇ moisture content> Determined by normal pressure heat loss method (105°C, 12 hours).
  • the nitrogen conversion factor is 6.25. Basically, it is obtained by rounding off the second decimal place.
  • ⁇ NSI> Add 60 ml of water to 3 g of the sample, stir with a propeller at 37° C. for 1 hour, centrifuge at 1400 ⁇ g for 10 minutes, and collect the supernatant (I). Next, 100 ml of water is added to the remaining precipitate, and the mixture is stirred again at 37°C for 1 hour with a propeller, and then centrifuged to collect the supernatant (II). Combine solution (I) and solution (II), and add water to the mixture to bring the total volume to 250 ml. After filtering this with filter paper (No. 5), the nitrogen content in the filtrate is measured by the Kjeldahl method.
  • the amount of nitrogen in the sample is measured by the Kjeldahl method, and the ratio of the amount of nitrogen (water-soluble nitrogen) recovered as a filtrate to the total amount of nitrogen in the sample is expressed as mass % and defined as NSI. Basically, it is obtained by rounding off the second decimal place.
  • TCA soluble rate An equal amount of 0.44M trichloroacetic acid (TCA) is added to a 2% by mass aqueous solution of the protein material to make a 0.22M TCA solution, and the ratio of soluble nitrogen is determined by the Kjeldahl method. Basically, it is obtained by rounding off the second decimal place.
  • the viscosity of the protein material is measured using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., type BM).
  • a protein material aqueous solution is prepared so that the amount of crude protein is 20% by mass, filled in a measurement container, a rotor is set, and after sealing, heat in a hot water bath at 80°C for 30 minutes. Next, measure at an arbitrary number of revolutions at 25°C, read the indicator value, and multiply the rotor No. by a conversion multiplier corresponding to the number of revolutions to calculate the viscosity. (Unit: Pa ⁇ s) Measured value after 1 minute.
  • the rotation speed is basically 60 rpm.
  • ⁇ Emulsion particle size> The emulsified particle size was measured by mixing 1 g of a sample of hydrophilic powdered fat with 19 g of water, re-dissolving it with a touch mixer, and then using a laser diffraction particle size analyzer "SALD-2300" manufactured by Shimadzu Corporation, using water as the solvent. do. The median diameter D50 is taken as the particle diameter.
  • ⁇ Powder particle diameter> The powder particle size was measured by mixing 0.1 g of a sample of hydrophilic powdered oil with 10 ml of isopropanol, redissolving it with a touch mixer, and measuring it with a laser diffraction particle size analyzer "SALD-2300" manufactured by Shimadzu Corporation in the same solvent. to measure. The median diameter D50 is taken as the particle diameter.
  • ICPs instant creaming powders
  • coffee 2 g of commercially available instant coffee is dissolved in warm water of 75° C. to make 140 ml, and used as coffee.
  • a commercially available coffee whitener or each sample hydrophilic powdered fat is added to the mixture so that the fat becomes 1.1 g, and each item of whitening, feathering, and oil-off is evaluated.
  • a commercially available coffee whitener (Bright manufactured by Nestlé Japan Co., Ltd., lipid 36.5% by mass) is used.
  • a score of 3 or more for each item is regarded as a pass.
  • ⁇ Whitener property 4 points: White and cloudy like the control.
  • ⁇ Evaluation of oxidation stability> Place the sample powder in a polyethylene bag without nitrogen replacement, and store it at 40°C for 60 days in the dark. After allowing to stand at room temperature for 1 hour, the samples are scored according to the following criteria by consensus among five panelists, and 3 or more points are judged to be acceptable. 5 points: No offensive odor due to oxidation of polyunsaturated fatty acids is felt. 4 points: Two or less panelists sense an offensive odor due to the oxidation of highly unsaturated fatty acids, but it is judged to be at a level that does not pose a problem. 3 points Slight off-flavour due to oxidation of highly unsaturated fatty acids is felt, but judged to be acceptable. 2 points A foul odor associated with the oxidation of highly unsaturated fatty acids is perceived, and is judged to exceed the allowable range. 1 point A rather strong offensive odor associated with the oxidation of highly unsaturated fatty acids is felt.
  • ⁇ Measurement of extracted oil POV> Place the sample powder in a polyethylene bag without nitrogen replacement, and store it at 60°C for 30 days in the dark. Add 300 g of n-hexane to 30 g of each sample, stir and extract, and filter off the hexane layer. Measure the peroxide value (POV) of the extracted oil from which hexane has been removed under reduced pressure according to the Japanese standard oil analysis test method 2.5.2.1-2013 peroxide value (acetic acid-isooctane method), and judge 10 or less as passing.
  • hydrophilic powdery fats and oils of the present invention can be widely applied to processed foods, beverages, health foods, etc. to which an oily substance is desired.
  • ICP instant creaming powder
  • ICP instant creaming powders
  • casein was essential, but according to the present invention, equivalent functions can be exhibited without using casein and actively using synthetic emulsifiers.
  • INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain an ICP with high versatility, free from offensive odors such as milky odor, astringency, and astringent taste, by blending a milk-derived raw material such as casein and an emulsifier.
  • ICP free from allergens such as milk can be obtained.
  • Carbohydrates are essential for ICP to aid dispersion, and examples include dextrins, oligosaccharides, oligosaccharides (maltose, lactose, glucose, fructose, etc.), and sugar alcohols (sorbitol, maltitol, etc.).
  • the powder contains 30% by mass or more of fats and oils, 10% by mass or more of carbohydrates, and 50% by mass or more of the total amount of fats and oils and carbohydrates.
  • Fats and oils are more preferably 40% by mass or more, 50% by mass or more, 60% by mass or more, and carbohydrates are more preferably 20% by mass or more, 30% by mass or more, and 40% by mass or more.
  • the total is more preferably 50% by mass or more, 60% by mass or more, or 70% by mass or more.
  • Oil-soluble functional substance having physiological functions By using or adding an oil-soluble functional substance having physiological functions as the oil phase, it can be used as a so-called health food with enhanced physiological functions. At this time, since it is possible to choose not to use a synthetic emulsifier, a layer that avoids these can also be used.
  • Oil-soluble functional substances include fat-soluble vitamins, pigments such as carotenoids, polyunsaturated fatty acids, plant sterols, plant estrogens, and the like.
  • Triglycerides expected to have physiological functions such as polysaturated fatty acid triglycerides and medium-chain fatty acid triglycerides (MCT), can also be used or added as the oil phase.
  • MCTs are oils and fats that easily produce ketone bodies, and the product of the present invention containing MCTs can be used as a ketogenic diet for ketogenic diet therapy.
  • the present invention can be widely used as a substitute for fields in which powdered fats and oils have been used. It can be widely used for improving physical properties, improving flavor, and for other purposes.
  • target foods include instant noodles, retort foods, instant foods such as soups, bread, pasta, noodles, flour products such as cake mixes, chocolates, biscuits, snacks, confectionery such as desserts, and sauces.
  • Curry bases, seasonings such as dressings, fat foods such as butter, mayonnaise, margarines, processed milk, milk drinks, yogurts, lactic acid beverages, cheese, ice cream, dairy products such as cream, frozen
  • Examples include foods, fish paste products, hams and sausages, and canned foods, but are not limited to these.
  • Soybean protein material A A product processed by decomposition/denaturation and molecular weight distribution adjustment of isolated soybean protein. (Fuji Oil Co., Ltd. test product, moisture content 1.2%, crude protein content 79.3%, TCA solubilization rate 61.8%, viscosity after heating 28 mPa s, NSI 98.1)
  • Raw material Isolated soy protein Fujipro R (manufactured by Fuji Oil Co., Ltd.) , crude protein content 87.2%, TCA solubilization rate 3.2%)
  • Pea protein material A Product processed by decomposition/denaturation/adjustment of molecular weight distribution of pea protein.
  • Raw material almond milk powder PP-CS (manufactured by Tsukuba Dairy Co., crude protein content 28.8%)
  • Wheat protein material A Decomposed/denatured wheat protein product (Fuji Oil Co., Ltd.
  • Raw material powdered wheat protein V-75 (manufactured by Glico Nutrition Foods, crude protein content 71.8%)
  • Microorganism-derived protein material A Decomposed/denatured product of microbial-derived protein (Fuji Oil Co., Ltd. test product, water content 1.2%, crude protein content 43.9%, TCA solubilization rate 82.3%, viscosity after heating 317 mPa s, NSI 98.5)
  • Raw material lipase preparation manufactured by Amano Enzyme, crude protein content 94.0%)
  • Soy protein material B (Fujipro R, manufactured by Fuji Oil Co., Ltd., crude protein content 87.2%, TCA solubilization rate 3.2%, viscosity after heating 100,000 mPa s or more, NSI 81.2)
  • Soy protein material D (Fujipro CL, manufactured by Fuji Oil Co., Ltd., crude protein content 88.0%, TCA solubilization rate 23.0%, viscosity after heating 100,000 mPa ⁇ s or more, NS I 65.0) was used.
  • Soybean protein material E (Hinute AM, manufactured by Fuji Oil Co., Ltd., crude protein content: 90.0%, TCA solubilization rate: 100.0%, viscosity after heating: 20 mPa ⁇ s, NSI: 100) was used.
  • the emulsified product was subjected to spray drying to prepare hydrophilic powdered oils and fats having a powder particle size of less than 100 ⁇ m (Examples 1 to 5, Comparative Examples 1 to 4).
  • the conditions for spray drying were hot air of 150°C and exhaust air of 90°C.
  • Palm olein is "Palm Ace 10N” manufactured by Fuji Oil Co., Ltd.
  • Acacia gum is "Arabic Coal SS” manufactured by Sanei Yakuhin Boeki Co., Ltd.
  • Monoguri is "Rikemal PP-100" manufactured by Riken Vitamin Co., Ltd.
  • Lecithin is manufactured by Tsuji Oil Co., Ltd. SLP-Paste”, and dextrin used was “TK-16” manufactured by Matsutani Chemical Industry Co., Ltd.
  • ICP compounded According to the formulation and conditions shown in Table 4, in the same manner as in Example 1, instant creaming powder (ICP) hydrophilic powdered fats and oils were prepared (Examples 28-30, Comparative Examples 6-7). In addition to the emulsified particle size after re-dissolution, the evaluation was made by evaluating the whitener property as an ICP, feathering, and oil-off, and then making a comprehensive evaluation. The results are shown in Table 4. In all of the examples using soybean protein material A, good ICP was prepared. The diameter was large and the physical properties were not suitable for ICP.
  • MCT-containing hydrophilic powder oil (MCT-containing hydrophilic powder oil) Using MCT ("MCT-64" manufactured by Fuji Oil Co., Ltd.), hydrophilic powdered fats and oils were prepared in the same manner as in Example 1 according to the formulation and conditions shown in Table 5 (Examples 31 to 33, Comparative Example 8). The results are shown in Table 5. Using MCT, a hydrophilic powdery oil could be prepared without any problems. Although dextrin is not essential, the emulsion particle size tended to decrease as the amount of dextrin increased.
  • the hydrophilic powdery fat of the present invention can also be prepared from a pre-prepared oil-in-water emulsion.
  • Example 36 Comparative Example 11
  • the linseed oil used was “refined linseed oil” manufactured by Summit Oil Co., Ltd., and was evaluated based on the presence or absence of flavor (offensive odor) after storage at 40°C for 60 days, and POV after storage at 60°C for 30 days. .
  • the results are shown in Table 7.
  • the comparative examples compared with the examples had a large emulsified particle size, a strong offensive odor during storage, and a very high POV. It was found that the present invention has an effect of suppressing oxidation of easily oxidizable fats and oils.
  • hydrophilic powdered fats and oils typified by instant creaming powder with reduced or no use of animal raw materials such as milk and synthetic emulsifiers. This will broaden the consumer's options and make it possible to provide these powders with sufficient functionality depending on the application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Edible Oils And Fats (AREA)

Abstract

大豆蛋白質等の、乳以外の蛋白質を用いて調製した親水性粉末油脂は乳化安定性が十分ではないところ、従来の蛋白質を陵駕した強い乳化性を有する蛋白質を選択し、これを用いた親水性粉末油脂の製造を目的とした。 油脂100質量部に対して、下記性質を有するたん白素材を5質量部以上含んだ水中油型乳化物を乾燥することで、当該親水性粉末油脂を得ることができる。但し、たん白素材が、粗蛋白質量 20質量%の水溶液を80℃,30分加熱後、25℃で測定時の粘度が10,000mPa・s以下で、0.22MのTCA可溶化率が30%~95%、およびNSIが80以上の性質を有するものである。

Description

親水性粉末油脂およびその製造方法
 本発明は、親水性粉末油脂およびその製造方法に関する。
 バターやマーガリン,ショートニングといった油脂製品は、生地物性改良や風味付与など、種々の目的の為に使用されている。一方で、これら油脂製品は疎水性を有しており、水の多い製品や水の多い製造工程に用いる場合は、均一な混合や安定した保持が難しい。そこで、油脂に乳タンパク質、乳化剤や糖質などの賦形剤が被覆された、粉末油脂が用いられている。粉末油脂は、乳タンパク質や賦形剤を含む水相と油相とを攪拌、均質化することにより水中油型乳化物とし、その後、乾燥粉末化して得ることができる。
 粉末油脂の代表はコーヒー等に使用するインスタントクリーミングパウダー(ICP)であるが、これは乳蛋白質、油脂並びに砂糖やデキストリン等の糖質を原料とし、必要により乳化剤を使用して調製するものである。近年は持続的な原料供給や健康等の問題から、動物性原料や化学物質を忌避する動きがあり、例えば乳蛋白質を使用しないICPの提案がなされてる。特許文献1および2には、大豆たん白を用いた粉末油脂によるICPが開示されている。
WO2017/010513号公報 WO2009/084529号公報
 大豆蛋白質等の、乳以外の蛋白質を用いて調製した親水性粉末油脂は乳化安定性が十分ではない。例えば、特許文献1および特許文献2も、乳化剤が併用されている。そこで本発明は、従来の蛋白質を陵駕した強い乳化性を有する蛋白質を選択し、これを用いた親水性粉末油脂の製造を目的とした。
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定の性質を有したたん白素材を選択し、これを用いることで、従来の大豆たん白では難しかった、安定した親水性粉末油脂が得られることを見出し、本発明を完成させた。
 即ち本発明は
(1)油脂100質量部に対して、下記性質を有するたん白素材を3質量部以上含む親水性粉末油脂。但し、たん白素材が、粗蛋白質量 20質量%の水溶液を80℃,30分加熱後、25℃で測定時の粘度が10,000mPa・s以下で、0.22MのTCA可溶化率が30%~95%の性質を有するものである。
(2)当該たん白素材のNSIが80以上である、(1)に記載の親水性粉末油脂。
(3)水に分散すると平均乳化粒子径3μm以下の水中油型乳化物となる、(1)に記載の親水性粉末油脂。
(4)当該たん白素材のNSIが80以上であり、水に分散すると平均乳化粒子径3μm以下の水中油型乳化物となる、(1)に記載の親水性粉末油脂。
(5)親水性粉末油脂が、インスタントクリーミングパウダーである、(1)乃至(3)の何れかに記載の親水性粉末油脂。
(6)油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、(5)に記載のインスタントクリーミングパウダー。
(7)親水性粉末油脂が、インスタントクリーミングパウダーである、(4)に記載の親水性粉末油脂。
(8)油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、(7)に記載のインスタントクリーミングパウダー。
(9)油脂100質量部に対して、下記性質を有するたん白素材を3質量部以上含む水中油型乳化物を乾燥する、親水性粉末油脂の製造方法。但し、たん白素材が、粗蛋白質量 20質量%の水溶液を80℃,30分加熱後、25℃で測定時の粘度が10,000mPa・s以下で、0.22MのTCA可溶化率が30%~95%、およびNSIが80以上の性質を有するものである。
(10)油脂の一部または全部に、植物性ミルクを使用する、(9)に記載の親水性粉末油脂の製造方法。
(11)親水性粉末油脂が、インスタントクリーミングパウダーである、(9)に記載の親水性粉末油脂の製造方法。
(12)親水性粉末油脂が、インスタントクリーミングパウダーである、(10)に記載の親水性粉末油脂の製造方法。
(13)油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、(11)に記載のインスタントクリーミングパウダーの製造方法。
(14)油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、(12)に記載のインスタントクリーミングパウダーの製造方法。
(15)(9)乃至(14)のいずれかに記載の方法で得られた、親水性粉末油脂またはインスタントクリーミングパウダーについて、これを造粒加工する、造粒物の製造方法。
である。
 また本発明は、以下の態様も提供し得る。
(1)油脂100質量部に対して、下記性質を有するたん白素材を3質量部以上含む親水性粉末油脂。但し、たん白素材が、粗蛋白質量 20質量%の水溶液を80℃,30分加熱後、25℃で測定時の粘度が10,000mPa・s以下で、0.22MのTCA可溶化率が30%~95%の性質を有するものである。
(2)当該たん白素材のNSIが80以上である、(1)に記載の親水性粉末油脂。
(3)水に分散すると平均乳化粒子径3μm以下の水中油型乳化物となる、(1)または(2)に記載の親水性粉末油脂。
(4)親水性粉末油脂が、インスタントクリーミングパウダーである、(1)乃至(3)の何れか1項記載の親水性粉末油脂。
(5)油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、(4)に記載のインスタントクリーミングパウダー。
(6)油脂100質量部に対して、下記性質を有するたん白素材を3質量部以上含む水中油型乳化物を乾燥する、親水性粉末油脂の製造方法。但し、たん白素材が、粗蛋白質量 20質量%の水溶液を80℃,30分加熱後、25℃で測定時の粘度が10,000mPa・s以下で、0.22MのTCA可溶化率が30%~95%、およびNSIが80以上の性質を有するものである。
(7)油脂の一部または全部に、植物性ミルクを使用する、(6)に記載の親水性粉末油脂の製造方法。
(8)親水性粉末油脂が、インスタントクリーミングパウダーである、(6)または(7)に記載の親水性粉末油脂。
(9)油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、(8)に記載のインスタントクリーミングパウダーの製造方法。
(10)(6)乃至(9)のいずれかに記載の方法で得られた、親水性粉末油脂またはインスタントクリーミングパウダーについて、これを造粒加工する、造粒物の製造方法。
 以下に本発明を詳しく説明する。
(親水性粉末油脂)
 本発明の粉末油脂とは、油脂を多く含む常温で固体の、5mm以下、好ましくは2mm以下、更に好ましくは500μm以下、最も好ましくは200μm以下の粒子径を有する粉体粒子である。本発明の親水性粉末油脂とは、親水性の組織の中に油滴を有したものであり、固体脂を破砕することで得られる疎水性粉末油脂とは異なる。
 本発明の親水性粉末油脂は、水に分散させることで親水性の組織が容易に溶解し、油滴が分散した水中油型乳化物が得られる。
 本発明の親水性粉末油脂は、植物性油脂、植物性蛋白、および植物に由来する糖質などの、植物性原料が原料の一部又は全部に使用されていることが好ましい。従って、乳や卵等の動物性原料が原料の一部に含まれていてもよい。特に全原料の50質量%以上、60質量%以上、70質量%以上、80質量%以上又は90質量%以上が植物性原料である親水性粉末油脂が好ましく、さらに100質量%が植物性原料である親水性粉末油脂が好ましい。また、後述する合成乳化剤も、含有しない親水性粉末油脂が好ましい。
(油脂)
 本発明の油脂とは、食品用途に一般的に用いられる油脂であり、ダイズ油、ナタネ油、トウモロコシ油、サフラワー油、コメ油、綿実油、ヒマワリ油、ゴマ油、オリーブ油、落花生油、豚脂、牛脂、中鎖脂肪酸油といったトリグリセリド類およびこれらをエステル交換や水素添加処理等で改質したものが挙げられる。パーム油、パーム核油、ヤシ油、ココアバター、エステル交換油および水素添加油等の、20~40℃程度の中融点を有した油脂は、一部の用途には好適である。多価不飽和脂肪酸(例えば、エイコサペンタエン酸、ドコサヘキサエン酸、アラキドン酸ならびにγ-リノレン酸)等を多く含有する、魚油、亜麻仁油、シソ油、藻類油やこれらから一部の脂肪酸を濃縮した油脂等も含まれる。本発明は油脂の酸化を抑える効果も有するために、多価不飽和脂肪酸を多く有した油脂は好適である。
 ココナッツ、アーモンド、ピーナッツ、カシューナッツ、マカデミアナッツ、ピスタチオ等の油糧作物を水で抽出または破砕懸濁した植物性ミルクとよばれているものも、その油脂相当部分を用いることができる。ココナッツおよびアーモンドが好ましく、それぞれココナッツミルク、アーモンドミルクと称される。
(たん白素材)
 本発明に用いるたん白素材は、加熱後の粘度が低いものが必要である。すなわち、たん白素材を粗蛋白質量が20質量%となる水溶液を調製し、80℃,30分の加熱の後、25℃にて粘度測定する事により測定できる。加熱後粘度は10,000mPa・s以下であり、好ましくは5,000mPa・s以下、1,000mPa・s以下、500mPa・s以下であり、更に好ましくは200mPa・s以下、100 mPa・s以下である。
 また、本たん白素材は一定サイズの分子量が必要となる。分子量は、TCA可溶化率で定義される。本発明においてTCA可溶化率は、総粗蛋白質量に対する0.22M TCA中で溶解する粗蛋白質量の比率で定義される。TCA可溶化率は30~95%であり、好ましくは35~90%、更に好ましくは40~85%、50~80%である。TCA可溶化率が低すぎると加熱後粘度が増加する傾向となり適切ではない、また、透過率が低下する。一方、TCA可溶化率が高すぎると、乳化性に寄与する蛋白質量が低下し、たん白素材を多く配合する必要が生じるため、配合の自由度が低下し、好ましくない。
 本たん白素材は、タンパク質の溶解性の指標として用いられているNSI(Nitrogen Solubility Index:窒素溶解指数)が80以上のものであることが好ましい。より好ましくはNSIが85以上、90以上、95以上、又は97以上のものを用いることができる。タンパク素材のNSIが高いことは、水への分散性が高いことを示し、本発明である水中油型乳化組成物の分散安定性に寄与し得る。NSIが低すぎると沈殿が生じやすくなり、好ましくない。また、たん白素材中の粗蛋白質含量についても、30質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上が最も好ましい。粗蛋白質含量が多いたん白素材の方が、より少量で機能を出すことが可能となる。
 このようなたん白素材は、一般的に市販されていないが、後述する変性および分子量調整処理等により得ることができる。また、市販の大豆たん白素材、例えばフジプロR、フジプロ748、フジプロCL、ハイニュートAM(以上、不二製油社製)等は、本要件に該当しない。
 上記の調製を行う対象のたん白素材の由来は特に限定されないが、植物性、動物性または微生物由来の蛋白質が使用できる。植物性蛋白質としては、大豆、エンドウ、緑豆、ルピン豆、ヒヨコ豆、インゲン豆、ヒラ豆、ササゲ等の豆類、ゴマ、キャノーラ種子、ココナッツ種子、アーモンド種子等の種子類、とうもろこし、そば、麦、米などの穀物類、野菜類、果物類、藻類、微細藻類などに由来する蛋白質が挙げられる。一例として大豆由来のたん白素材の場合、脱脂大豆や丸大豆等の大豆原料からさらに蛋白質を濃縮加工して調製されるものであり、一般には分離大豆たん白質、濃縮大豆たん白質や粉末豆乳、あるいはそれらを種々加工したものなどが概念的に包含される。
 また、動物性の蛋白質としては、卵白アルブミンを含む卵蛋白質、カゼイン、乳清、ラクトアルブミン、ラクトアルブミンなどの乳蛋白質、血漿、血清アルブミン、脱色ヘモグロビンなどの血液に由来する蛋白質、畜肉に由来する蛋白質、魚介類に由来する蛋白質等が挙げられる。更に、酵母、カビ、細菌類等の微生物由来の蛋白質が利用できる。水への溶解性に劣る蛋白質であっても、後述する処理により、本発明に使用できるたん白素材を調製することができる。
(変性および分子量調整処理)
 本発明の水中油型乳化物に用いられるたん白素材は、タンパク質を分解及び/又は変性させる「分解/変性処理」と、タンパク質の分子量分布の調整する「分子量分布調整処理」を組み合わせて適用することにより得られ得る。上記「分解/変性処理」の例として、酵素処理、pH調整処理(例えば、酸処理、アルカリ処理)、変性剤処理、加熱処理、冷却処理、高圧処理、有機溶媒処理、ミネラル添加処理、超臨界処理、超音波処理、電気分解処理及びこれらの組み合わせ等が挙げられる。上記「分子量分布調整処理」の例として、ろ過、ゲルろ過、クロマトグラフィー、遠心分離、電気泳動、透析及びこれらの組み合わせ等が挙げられる。「分解/変性処理」と「分子量分布調整処理」の順序及び回数は特に限定されず、「分解/変性処理」を行ってから「分子量分布調整処理」を行ってもよいし、「分子量分布調整処理」を行ってから「分解/変性処理」を行ってもよいし、両処理を同時に行ってもよい。また、例えば2回以上の「分子量分布調整処理」の間に「分解/変性処理」を行う、2回以上の「分解/変性処理」の間に「分子量分布調整処理」を行う、各々複数回の処理を任意の順に行う、等も可能である。なお、「分解/変性処理」によって所望の分子量分布が得られる場合は、「分子量分布調整処理」を行わなくてもよい。これらの処理を組み合わせて、複数回行う際、原料から全ての処理を連続で行ってもよいし、時間をおいてから行ってもよい。例えば、ある処理を経た市販品を原料として他の処理を行ってもよい。なお、上記特性を満たす限り、分子量分布調整処理を経たたん白素材と、分子量分布調整処理を経ていないたん白素材を混合して、特定のたん白素材としてもよい。この場合、両者の比率(処理を経たたん白素材:処理を経ていないたん白素材)は上記特性を満たす範囲で適宜調整可能であるが、質量比で例えば1:99~99:1、例えば50:50~95:5、75:25~90:10等が挙げられる。ある実施形態では、本態様の水中油型乳化物に用いられるたん白素材は、「分解/変性・分子量分布調整処理」を経たたん白素材からなる。
 タンパク質を分解又は変性させる処理の条件、例えば酵素、pH、有機溶媒、ミネラル等の種類や濃度、温度、圧力、出力強度、電流、時間等は、当業者が適宜設定できる。酵素の場合、使用される酵素の例として、「金属プロテアーゼ」、「酸性プロテアーゼ」、「チオールプロテアーゼ」、「セリンプロテアーゼ」に分類されるプロテアーゼが挙げられる。反応温度は20~80℃、好ましくは40~60℃で反応を行うことができる。pH調整処理の場合、例えばpH2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12の任意の値を上限、下限とするpH範囲、例えばpH2~12の範囲で処理し得る。酸処理の場合、酸を添加する方法であっても、また、乳酸発酵などの発酵処理を行う方法であってもよい。添加する酸の例として、塩酸、リン酸等の無機酸、酢酸、乳酸、クエン酸、グルコン酸、フィチン酸、ソルビン酸、アジピン酸、コハク酸、酒石酸、フマル酸、リンゴ酸、アスコルビン酸等の有機酸が挙げられる。また、レモンなどの果汁、濃縮果汁、発酵乳、ヨーグルト、醸造酢などの酸を含有する飲食品を用いて酸を添加してもよい。アルカリ処理の場合、水酸化ナトリウム、水酸化カリウム等のアルカリを添加し得る。変性剤処理の場合、塩酸グアニジン、尿素、アルギニン、PEG等の変性剤を添加し得る。加熱又は冷却処理の場合、加熱温度の例として、60℃、70℃、80℃、90℃、100℃、110℃、120℃、125℃、130℃、135℃、140℃、145℃、150℃の任意の温度を上限、下限とする範囲、例えば60℃~150℃が挙げられる。冷却温度の例として、-10℃、-15℃、-20℃、-25℃、-30℃、-35℃、-40℃、-45℃、-50℃、-55℃、-60℃、-65℃、-70℃、-75℃の任意の温度を上限、下限とする範囲、例えば-10℃~-75℃が挙げられる。加熱又は冷却時間の例として、5秒、10秒、30秒、1分、5分、10分、20分、30分、40分、50分、60分、70分、80分、90分、100分、120分、150分、180分、200分の任意の時間を上限、下限とする範囲、例えば5秒間~200分間が挙げられる。高圧処理の場合、圧力の条件の例として、100MPa、200MPa、300MPa、400MPa、500MPa、600MPa、700MPa、800MPa、900MPa、1,000MPaの任意の圧力を上限、下限とする範囲、例えば100MPa~1,000MPaが挙げられる。有機溶媒処理の場合、用いられる溶媒の例として、アルコールやケトン、例えばエタノールやアセトンが挙げられる。ミネラル添加処理の場合、用いられるミネラルの例として、カルシウム、マグネシウムなどの2価金属イオンが挙げられる。超臨界処理の場合、例えば、温度約30℃以上で約7MPa以上の超臨界状態の二酸化炭素を使用して処理できる。超音波処理の場合、例えば100KHz~2MHzの周波数で100~1,000Wの出力で照射して処理し得る。電気分解処理の場合、例えばタンパク質水溶液を100mV~1,000mVの電圧を印加することにより処理し得る。具体的な実施形態において、タンパク質を分解及び/又は変性させる処理は、変性剤処理、加熱処理、及びそれらの組み合わせから選択される。
 タンパク質の分子量分布を調整する処理の条件、例えばろ材の種類、ゲルろ過の担体、遠心分離回転数、電流、時間等は、当業者が適宜設定できる。ろ材の例として、ろ紙、ろ布、ケイ藻土、セラミック、ガラス、メンブラン等が挙げられる。ゲルろ過の担体の例として、デキストラン、アガロース等が挙げられる。遠心分離の条件の例として、1,000~3,000×g、5~20分間等が挙げられる。
(合成乳化剤)
 本発明には、合成乳化剤は積極的に配合する必要がない。また合成乳化剤を含めない配合も好ましい。
 本発明の合成乳化剤とは、具体的にはポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ステアロイル乳酸ナトリウム、ステアロイル乳酸カルシウム、ポリオキシエチレン誘導体、脂肪酸塩、加工デンプンといった、食品用途にその乳化性を利用するものであって、製造に化学反応を必要とする物質である。
(組成)
 本発明の親水性粉末油脂は、油脂とたん白素材を最小の構成物とする。その比は油脂100質量部に対してたん白素材が3質量部以上であり、好ましくは8質量部以上であり、更に好ましくは20質量部以上である。また上限については、2,000質量部以下が好ましく、500質量部以下が更に好ましい。たん白素材の相対量が少な過ぎる場合は、乳化が不十分となり乳化粒子径の粗大化や酸化が起こり易くなる。たん白の相対量が多すぎる場合は、後述する粉末中の油脂量の減少に通じる。
 本発明は、油脂とたん白素材以外の物質を原料に加えることも可能であり、典型的には糖質である。糖質は粉体の強度を向上すると共に、水への溶解を容易とする効果がある。用いる糖質としては、各種のでん粉、デキストリン、オリゴ糖、少糖類(麦芽糖、乳糖、ブドウ糖、果糖等)、および糖アルコール(ソルビトール、還元麦芽糖等)等が例示できる。 糖質以外にも乳化を積極的に阻害しないものであれば、必要に応じて種々の物質を原料とすることができる。上記の要件に含まれない他の蛋白質、ペプチド、アミノ酸、水に不溶のまたは可溶の多糖類、有機酸類、およびこれらの塩、並びに各種の無機塩等が例示できる。一方で、動物性素材を使用しないことが好ましい。動物性素材としては、動物性蛋白質や動物由来の調味材であり、カゼイン、乳清アルブミン等が例示できる。
 最終的に得られる親水性粉末油脂は、油脂の質量が粉末中の5質量%以上が好ましく、30質量%以上が更に好ましく、50質量%以上が最も好ましい。また、90質量%以下が好ましい。親水性粉末油脂中に占める油脂の量が多すぎると、乳化が不十分となったり、粉末の構造維持が困難となったりと、粉末油脂を安定に保持しにくくなるおそれがある。親水性粉末油脂中に占める油脂の量が少なすぎると、粉末油脂の本来の目的が達成できず、用途が狭まったり、使用量が過多になるなど、粉末油脂としての利用価値が減少する。
(調製方法)
 以下に調製方法を説明する。前述した組成を基に油脂、たん白素材および他の原料を準備し、まずはたん白素材および他の水溶性原料を水に溶解させて水相を調製する。水の量はたん白素材を含む水溶性原料の1.5~50質量倍が好ましく、3~10質量倍が更に好ましい。水相が少なすぎると後述する乾燥の負荷が低減するが、この後の乳化が上手く行えない場合がある。水相が多すぎる場合は、先と同様にこの後の乳化が上手く行えない場合があり、また乾燥の負荷が過大になる。使用する水の温度は特に限定しないが、温水が好ましく、60~80℃が適切である。温度が低いと粘度が増加して作業性が悪化し、温度が高いと配合する油溶性分が劣化する原因となる場合がある。本発明に用いるたん白素材は加熱後に低粘度であることが特徴であり、ここで調製する水相も粗蛋白質濃度が高いにも関わらず、低い粘度を示す。
 油脂については、必要な油溶性物質があればこれを油脂中に添加したのち、油相として用いる。油相も構成する脂肪酸等によっては加温が好ましく、多くはその融点以上で調製を行う。
 また、植物乳の様な予め水中油型の乳化物となったものも、水相と混合し乳化処理を行うという意味において、油相として扱うものとする。
(乳化装置)
 水相および油相を混合する。この際に予備乳化を行うことが好ましい。予備乳化は、ホモミキサー等で処理することで、乳化粒子径を10~100μm程度の水中油型乳化物に調製することである。回転数は機器により異なるが、例えばPRIMIX社製のHOMOGENIZING MIXER MARK II Model 2.5の場合、8,000rmpで10分間ほどの処理が例示できる。
 続けて、主たる乳化を行う。乳化には特に限定されるものではないが、せん断力の高い乳化装置が好ましく、ホモミキサー、コロイドミル、高圧ホモジナイザー、超高圧ホモジナイザー、真空乳化機などが例示できる。具体的にはAPVゴーリンホモジナイザー(APV社製)、マイクロフルイダイザー(マイクロフルイデックス社製)、アルティマイザー(スギノマシン社製)又はナノマイザー(大和製罐社製)等を好ましく使用することができる。
 これらの高圧乳化装置を用いて、10MPa以上の圧力で乳化を行うことが好ましい。高圧ホモゲナイザーを例示すれば、好ましくは15MPa以上、更に好ましくは40MPa以上の圧力にてせん断処理を行うことが効果的である。また、せん断処理は複数回行うことも可能である。
 これらの乳化処理により、水中油型乳化物の乳化粒子径を概ね0.2~2μm程度にする。
(乾燥)
 上記で調製した水中油型乳化物は乾燥を行うことで、親水性粉末油脂とする。水中油型乳化物を乾燥粉末化する方法としては、一般的に知られている噴霧乾燥法、真空凍結乾燥法、真空乾燥法などを用いることができる。これらの中でも、噴霧乾燥法によって得られる噴霧乾燥型粉末油脂が好ましい。噴霧乾燥の場合は、ディスク型のアトマイザー方式や1流体、2流体ノズルによるスプレー乾燥等を利用することができる。乾燥条件は例えば、熱風温度100~200℃、排風温度50~100℃が例示できる。本条件で前述の水中油型乳化物を乾燥することで、水分を15質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下含んだ、粒子径1μm~1mm程度の、好ましくは3μm~500μm程度の、更に好ましくは5μm~200μm程度の粉体粒子を得ることができる。この調製された粉末が本発明の親水性粉末油脂である。
(造粒物)
 親水性粉末油脂の粉体粒子径が小さい場合、高飛散性、高吸湿性、低流動性、高凝集性等の性質を示して、液体に分散および溶解しづらい場合がある。これを改善するために、造粒処理を行う事ができる。
 造粒方法は、例えば、流動層造粒、転動造粒、コーティング造粒等のような造粒方法が挙げられるが、親水性粉末油脂を顆粒化するものであれば好適に利用でき、これらに限定されるものではない。特に、流動層造粒は効率的に高品質の造粒物を製造できる点で優れている。また、これら造粒処理の際は、適切なバインダーを選択して使用することができる。
 得られる造粒物は条件により、粒子同士が固着することで径が増大した顆粒や、微粉末を取り込んだ粒子等の種々の状態を示すが、いずれも高い流動性と分散溶解性を示すものである。
(乳化粒子径)
 本発明の親水性粉末油脂は、水に分散させることで容易に水中油型乳化物となる。その乳化物として、乳化粒子径は3μm以下が好ましい。更に好ましくは2μm以下であり、最も好ましくは1μm以下である。乳化粒子径が3μmを超えると、油脂の酸化が促進されたり、粉体表面に油が析出する可能性が増す。
 本発明の乳化物およびその原料については、以下の手順にてその評価を行う。
<水分>
 常圧加熱減量法(105℃、12時間)にて求める。
<粗蛋白質含量>
 ケルダール法により測定する。具体的には、たん白素材重量に対して、ケルダール法により測定した窒素の質量を、乾燥物中の粗蛋白質含量として「質量%」で表す。なお、窒素換算係数は6.25とする。基本的に、小数点以下第2桁の数値を四捨五入して求められる。
<NSI>
 試料3gに60mlの水を加え、37℃で1時間プロペラ攪拌した後、1400×gにて10分間遠心分離し、上澄み液(I)を採取する。次に、残った沈殿に再度水100mlを加え、再度37℃で1時間プロペラ撹拌した後、遠心分離し、上澄み液(II)を採取する。(I)液及び(II)液を合わせ、その混合液に水を加えて250mlとする。これをろ紙(No.5)にてろ過した後、ろ液中の窒素含量をケルダール法にて測定する。同時に試料中の窒素量をケルダール法にて測定し、ろ液として回収された窒素量(水溶性窒素)の試料中の全窒素量に対する割合を質量%として表したものをNSIとする。基本的に、小数点以下第2桁の数値を四捨五入して求められる。
<TCA可溶率>
 たん白素材の2質量%水溶液に、0.44M トリクロロ酢酸(TCA)を等量加え、0.22M TCA溶液とし、可溶性窒素の割合をケルダール法により測定した値とする。基本的に、小数点以下第2桁の数値を四捨五入して求められる。
<加熱後粘度>
 たん白素材の粘度は、B型粘度計(東機産業社製、タイプBM)を用い測定する。粗蛋白質量が20質量%となるようにたん白素材水溶液を調製し、測定容器に充填、ロータをセットし、密閉の後、湯浴中にて80℃,30分間の加熱を行う。次いで、25℃にて、任意の回転数で測定し、指針値を読み取り、ロータNo.と回転数に対応した換算乗数を掛けて、粘度を算出する。(単位:Pa・s)1分後の測定値とする。基本的に回転数は60rpmとする。高粘度のサンプルはロータNo.を1→4とし、6rpmまで回転数を低下させる。尚、本測定の測定上限粘度は100,000mPa・sとなる。ロータNo.4と回転数6rpmで測定レンジを超過する場合は、即時に加熱後粘度は100,000mPa・s以上と判定する。
<乳化粒子径>
 乳化粒子径は親水性粉末油脂の試料1gを水19gに混合し、タッチミキサーにて再溶解したのちに、レーザー回折型粒度分析装置「SALD-2300」島津製作所製にて、溶媒を水として測定する。メジアン径 D50を粒子径とする。
<粉体粒子径>
 粉体粒子径は親水性粉末油脂の試料0.1gをイソプロパノール10mlに混合し、タッチミキサーにて再溶解したのちに、レーザー回折型粒度分析装置「SALD-2300」島津製作所製にて、同溶媒にて測定する。メジアン径 D50を粒子径とする。
<ICP適性の評価>
 インスタントクリーミングパウダー(ICP)の適性評価は、コーヒーを用いて行う。市販のインスタントコーヒー2gを75℃の温水に溶解し140mlとし、コーヒーとして用いる。ここに市販のコーヒーホワイトナーあるいは各試料である親水性粉末油脂を、油脂として1.1gになるように添加し、ホワイトナー性、フェザリング、オイルオフの各項目を評価する。尚、各項目の評価基準として、市販のコーヒーホワイトナー(ネスレ日本社製ブライト、脂質36.5質量%)を用いる。各項目何れも3点以上を合格とする。

・ホワイトナー性
4点 コントロールと同等に白く濁っている。
3点 コントロールと比較すると濁りが少ない。
2点 コントロールと比較すると明らかに濁りが少ない。
1点 殆ど濁っていない。

・フェザリング
4点 フェザリングが全くない。
3点 僅かにフェザリングを認める。
2点 明らかにフェザリングを認める。
1点 凝集物を認める。

・オイルオフ
4点 表面に油滴が全くない。
3点 1mm以下の僅かに油滴を認める。
2点 1mm以上の油滴を認める。
1点 5mm以上の油滴を認める。
<染み出しの測定>
 サンプル1gを濾紙(ADVANTEC製 No.2、Φ70mm)上に均一に配し、もう一枚で挟む。5kgの荷重を均一にかけ、1分間静置する。その後、サンプルを除き、濾紙2枚の重量変化を染み出した脂質量とする。サンプルに対する染み出した脂質の割合が0.5質量%以下を合格とする。
<酸化安定性の評価>
 試料粉体を窒素置換は行わずにポリエチレン製の袋へ入れ、40℃,60日間遮光保管する。室温にて1時間放置した後、パネラー5名の合議により以下の基準で採点を行い、3点以上を合格と判断する。
5点 高度不飽和脂肪酸の酸化に伴う異臭は感じられない。
4点 2名以下のパネラーが高度不飽和脂肪酸の酸化に伴う異臭を感じるが、問題とはならないレベルと判断される。
3点 わずかに高度不飽和脂肪酸の酸化に伴う異臭が感じられるものの、許容範囲と判断される。
2点 高度不飽和脂肪酸の酸化に伴う異臭が感じられ、許容範囲を超えると判断される。 
1点 かなり強い、高度不飽和脂肪酸の酸化に伴う異臭が感じられる。 
<抽出油POVの測定>
 試料粉体を窒素置換は行わずにポリエチレン製の袋へ入れ、60℃,30日間遮光保管する。各試料30gに、n-ヘキサン300gを加えて攪拌抽出後にヘキサン層を濾別する。ヘキサンを減圧除去した抽出油について、過酸化物価(POV)を、日本基準油脂分析試験法 2.5.2.1-2013 過酸化物価(酢酸-イソオクタン法)に準じ測定し、10以下を合格と判断する。
(応用)
 本発明の親水性粉末油脂は、油性物質の添加が望まれる加工食品、飲料類、健康食品等に広く適用できる。
(インスタントクリーミングパウダー)
 本発明はインスタントクリーミングパウダー(ICP)に好適である。ICPとはコーヒー等に添加する為の油脂を多く含み、容易に溶解分散する粉末油脂である。従来はカゼインが必須であったが、本発明によれば、カゼインを使用することなく、合成乳化剤も積極的に使用することなく、同等の機能示すことができる。
 本発明により、カゼイン等の乳由来原料や乳化剤の配合による、乳臭さや渋み、収斂味等の異味異臭の無い、汎用性の高いICPを得る事ができる。これにより、他のコーヒーや他のフレーバー(例えば、抹茶やキャラメル)、或いは食品(例えば、レトルト食品、スープ等の即席食品類、パン、チョコレートソース類、カレーの素類、ドレッシング等の調味料類)と混合された際に、素材の風味を引き立たせる事が可能となる。また、乳等のアレルゲンの無いICPを得る事ができる。
 ICPには分散を補助するための糖質が不可欠であり、デキストリン、オリゴ糖、少糖類(麦芽糖、乳糖、ブドウ糖、果糖等)、および糖アルコール(ソルビトール、マルチトール等)等が例示できる。
 粉末中に油脂を30質量%以上、糖質を10質量%以上、且つ油脂と糖質の合計が50質量%以上であることが好ましい。油脂は更に好ましくは40質量%以上、50質量%以上、60質量%以上であり、糖質は更に好ましくは20質量%以上、30質量%以上、40質量%以上であり、油脂と糖質の合計は更に好ましくは50質量%以上、60質量%以上、70質量%以上である。
(生理機能強化)
 生理機能を有する油溶性機能物質を油相としてとして使用または添加することで、生理機能を強化したいわゆる健康食品として使用することができる。この際に合成乳化剤を使用しない選択も可能なことから、これらを忌避する層も利用することができる。油溶性機能物質として、脂溶性ビタミン類、カロテノイド等の色素類、多価不飽和脂肪酸類に加え、植物ステロール、植物エストロゲン等が挙げられる。
 多価飽和脂肪酸トリグリセリドや中鎖脂肪酸トリグリセリド(MCT)等の、生理機能が期待できるトリグリセリドを油相として使用または添加することもできる。特にMCTはケトン体を産生し易い油脂であり、MCTを含んだ本発明品は、ケトン食療法の為のケトン食として利用することができる。
(その他の用途)
 本発明は、従来より粉末油脂が用いられている分野には、広く置換することができる。物性の改良として、風味の改良として、その他の目的に、広く使用することできる。対象の食品としては、例えば、即席麺、レトルト食品、スープ等の即席食品類、パン、パスタ、麺類、ケーキミックス等の小麦粉製品、チョコレート、ビスケット類、スナック類、デザート菓子等の菓子類、ソース類、カレーの素類、ドレッシング等の調味料類、バター、マヨネーズ類、マーガリン類等の油脂食品、加工乳、乳飲料、ヨーグルト類、乳酸菌飲料、チーズ、アイスクリーム、クリーム等の乳製品、冷凍食品、水産練り製品、ハム・ソーセージ類、缶詰等が例示できるが、これらに限定されるものではない。
 次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。以下に記載の部または%は、特に記載のない場合は、それぞれ質量部または質量%とする。
(たん白素材)
 蛋白素材として以下を用いた。
大豆たん白素材A:分離大豆タンパク質の分解/変性・分子量分布調整処理品。(不二製油株式会社テスト製造品、水分 1.2%、粗蛋白含量 79.3%、TCA可溶化率 61.8%、加熱後粘度 28mPa・s、NSI 98.1)原料 分離大豆タンパク質:フジプロR(不二製油社製、粗蛋白質含量 87.2%、TCA可溶化率 3.2%)

エンドウたん白素材A:エンドウタンパク質の分解/変性・分子量分布調整処理品。(不二製油株式会社テスト製造品、水分 1.1%、粗蛋白含量 72.4%、TCA可溶化率 45.9%、加熱後粘度 43mPa・s、NSI 98.9)原料 エンドウタンパク質:PP-CS(オルガノフードテック(株)社製、粗蛋白質含量 79.1%)

アーモンドたん白素材A:アーモンドタンパク質の分解/変性処理品(不二製油株式会社テスト製造品、水分 1.2%、粗蛋白含量 52.8%、TCA可溶化率 55.8%、加熱後粘度 325mPa・s、NSI 92.3)原料 アーモンドミルクパウダー:PP-CS(筑波乳業社製、粗蛋白質含量 28.8%)

小麦たん白素材A:小麦タンパク質の分解/変性処理品(不二製油株式会社テスト製造品、水分 1.2%、粗蛋白含量 40.1%、TCA可溶化率 50.4%、加熱後粘度 355mPa・s、NSI 96.7)原料 粉末状小麦たん白:V-75(グリコ栄養食品社製、粗蛋白質含量 71.8%)

微生物由来たん白素材A:微生物由来タンパク質の分解/変性処理品(不二製油株式会社テスト製造品、水分 1.2%、粗蛋白含量 43.9%、TCA可溶化率 82.3%、加熱後粘度 317mPa・s、NSI 98.5)原料 リパーゼ製剤(天野エンザイム社製、粗蛋白質含量 94.0%)
 他のたん白素材として、以下を用いた。
大豆たん白素材B(フジプロR・不二製油社製、粗蛋白質含量 87.2%、TCA可溶化率 3.2%、加熱後粘度 10万mPa・s以上、NSI 81.2)
大豆たん白素材D(フジプローCL・不二製油社製、粗蛋白質含量 88.0%、TCA可溶化率 23.0%、加熱後粘度 10万mPa・s以上、NS I65.0)を用いた。
大豆たん白素材E(ハイニュートAM・不二製油社製、粗蛋白質含量 90.0%、TCA可溶化率100.0%、加熱後粘度 20mPa・s、NSI 100)を用いた。
(たん白素材の検討)
 表1の配合に従い、水相の原材料を混合し、水相を調製した。水相を60℃とし、攪拌しているところへ油相を添加して攪拌し、略乳化物とした。攪拌は、ホモミキサー(PRIMIX社製、HOMOGENIZING MIXER MARK-II、6000rpm、5分)を用いた。略乳化物を高圧ホモゲナイザー(SMT社製 APV1000)にて、表に記載の18MPa,1パス処理し、乳化物を得た。乳化物を噴霧乾燥に供して、粉体粒子径100μm未満の、親水性粉末油脂を調製した(実施例1~5、比較例1~4)。噴霧乾燥の条件は、熱風150℃、排風90℃であった。
 尚、パームオレインは不二製油製「パームエース10N」、アカシアガムは三栄薬品貿易株式会社製「アラビックコールSS」、モノグリは理研ビタミン社製「リケマールPP-100」、レシチンは辻製油社製「SLP-ペースト」、デキストリンは松谷化学工業社製「TK-16」を使用した。
(表1)各種たん白素材の検討
Figure JPOXMLDOC01-appb-I000001
 結果を表1に示す。得られた親水性粉末油脂を水に溶解後に粒度を確認したところ、粘度およびTCA値が規定値以内のたん白素材を用いた実施例1~5については、何れも1μm以下の良好な乳化粒子径のエマルジョンが得られることが判った。一方、たん白素材の粘度またはTCA値が規定から外れる比較例1~3およびたん白素材を用いない比較例4は乳化粒子径が大きかった。
(油脂/たん白比の検討)
 表2の配合および条件に従い、実施例1と同様に親水性粉末油脂を調製した(実施例6~17、比較例5)。結果を表2に示すが、油脂に対するたん白素材が1質量%の比較例5を除き、2μm以下の乳化粒子径のエマルジョンが得られることが判った。油脂に対するたん白素材が10質量%以上の実施例8~17は、乳化粒子径が1μm以下と非常に良好だった。
(表2)油脂/たん白比の検討
Figure JPOXMLDOC01-appb-I000002
(油脂/デキストリン比の検討)
 表3の配合および条件に従い、実施例1と同様に親水性粉末油脂を調製した(実施例18~27)。結果を表3に示すが、油脂に対するデキストリンの量を変えた試験区の全てで、1μm以下の乳化粒子径のエマルジョンが得られることが判った。デキストリンを油脂の18質量%以上加えた実施例19~27は、更に良好だった。
(表3)油脂/デキストリン比の検討
Figure JPOXMLDOC01-appb-I000003
(ICP配合)
 表4の配合および条件に従い、実施例1と同様の方法で、インスタントクリーミングパウダー(ICP)である親水性粉末油脂を調製した(実施例28~30、比較例6~7)。評価は再溶解後の乳化粒子径に加え、ICPとしてのホワイトナー性、フェザリング、オイルオフも評価した上で、総合評価を行った。
 結果を表4に示すが、大豆たん白素材Aを用いた実施例は何れも良好なICPが調製できた一方、アカシアガム(比較例6)や合成乳化剤のみ(比較例7)では、乳化粒子径が大きく物性もICPに適していないものだった。
(表4)ICP調製検討
Figure JPOXMLDOC01-appb-I000004
(MCT含有親水性粉末油脂)
 MCT(不二製油社製「MCT-64」)を用いて、表5の配合および条件に従い、実施例1と同様に親水性粉末油脂を調製した(実施例31~33、比較例8)。結果を表5に示すが、MCTを用いても問題なく親水性粉末油脂が調製できた。デキストリンは必須ではないが、デキストリンの配合が増すことで乳化粒子径が小さくなる傾向があった。
(表5)MCT配合の検討
Figure JPOXMLDOC01-appb-I000005
(アーモンドミルクによる調製)
 市販のアーモンドプードル(サガミ産業社製「アーモンドプードル純100%」)100質量部に温水400質量部を混合し、水酸化ナトリウムにてpH7.0に調製し、遠心分離操作(1,000×G,10分)にて不溶性繊維を除き、アーモンドミルク(水分78.5%、粗たん白 6.8%、脂質 13.5%、炭水化物 1.0%、灰分 0.3%・各質量%)を得た。その後、表6の配合および条件に従い、実施例1と同様に親水性粉末油脂を調製した(実施例34、比較例9)。
(ココナッツミルクによる調製)
 市販のココナッツミルク(ユウキ食品社製)(水分76.9%、粗たん白 2.1%、脂質 17.0%、炭水化物 4.1%、灰分0.1%・各質量%)を原料とし、表6の配合および条件に従い、実施例1と同様に親水性粉末油脂を調製した(実施例35、比較例10)。
 アーモンドミルクおよびココナッツミルクを用いた親水性粉末油脂の評価は、再溶解後の乳化粒子径に加え、染み出しを測定してその抑制効果を踏まえた総合評価を行い、表6に示した。大豆たん白素材Aを用いた実施例は何れも良好なICPが調製できた一方、アカシアガムを用いた比較例は、どちらも乳化粒子径が大きく染み出し多いものだった。これらから、予め調製された水中油型乳化物からも、本発明の親水性粉末油脂が調製できることが判った。
(表6)植物ミルク
Figure JPOXMLDOC01-appb-I000006
(油脂の酸化安定性)
 表7の配合および条件に従い、実施例1と同様の方法で、親水性粉末油脂を調製した(実施例36、比較例11)。尚、アマニ油はサミット製油社製の「精製亜麻仁油」を用い、評価は40℃,60日間遮光保管後の風味(異臭)の有無および、60℃,30日間遮光保管後のPOVで判断した。
 結果を表7に示すが、実施例に比較した比較例は、乳化粒子径が大きく、保存による異臭が激しく、POVも非常に高いものだった。本発明は酸化し易い油脂の酸化抑制の効果を有することが判った。
(表7)酸化安定
Figure JPOXMLDOC01-appb-I000007
(造粒処理)
 70℃のお湯100質量部に、デキストリン「アミコール6H」(日澱化学(株)製)30質量部をホモミキサーを用いて、攪拌混合し、糖液を調製した。フローコーター(大川原製作所(株)製)を用いて、この糖液をバインダー液として、実施例28で調製したICPの1,000質量部に対し噴霧し、65℃にて造粒処理を行った。
 この加工処理により得られた粒子の、水への分散性は更に向上した。
 本発明によれば、乳を始めとした動物性原料および合成乳化剤を低減し、あるいは使用することなく、インスタントクリーミングパウダーを代表とする親水性粉末油脂を得ることができる。これにより、消費者の選択肢を広げ、十分な機能を有したこれら粉末を、用途に応じて提供することが可能となる。

Claims (15)

  1. 油脂100質量部に対して、下記性質を有するたん白素材を3質量部以上含む親水性粉末油脂。但し、たん白素材が、粗蛋白質量 20質量%の水溶液を80℃,30分加熱後、25℃で測定時の粘度が10,000mPa・s以下で、0.22MのTCA可溶化率が30%~95%の性質を有するものである。
  2. 当該たん白素材のNSIが80以上である、請求項1に記載の親水性粉末油脂。
  3. 水に分散すると平均乳化粒子径3μm以下の水中油型乳化物となる、請求項1に記載の親水性粉末油脂。
  4. 当該たん白素材のNSIが80以上であり、水に分散すると平均乳化粒子径3μm以下の水中油型乳化物となる、請求項1に記載の親水性粉末油脂。
  5. 親水性粉末油脂が、インスタントクリーミングパウダーである、請求項1乃至請求項3の何れか1項に記載の親水性粉末油脂。
  6. 油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、請求項5に記載のインスタントクリーミングパウダー。
  7. 親水性粉末油脂が、インスタントクリーミングパウダーである、請求項4に記載の親水性粉末油脂。
  8. 油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、請求項7に記載のインスタントクリーミングパウダー。
  9. 油脂100質量部に対して、下記性質を有するたん白素材を3質量部以上含む水中油型乳化物を乾燥する、親水性粉末油脂の製造方法。但し、たん白素材が、粗蛋白質量 20質量%の水溶液を80℃,30分加熱後、25℃で測定時の粘度が10,000mPa・s以下で、0.22MのTCA可溶化率が30%~95%、およびNSIが80以上の性質を有するものである。
  10. 油脂の一部または全部に、植物性ミルクを使用する、請求項9に記載の親水性粉末油脂の製造方法。
  11. 親水性粉末油脂が、インスタントクリーミングパウダーである、請求項9に記載の親水性粉末油脂の製造方法。
  12. 親水性粉末油脂が、インスタントクリーミングパウダーである、請求項10に記載の親水性粉末油脂の製造方法。
  13. 油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、請求項11に記載のインスタントクリーミングパウダーの製造方法。
  14. 油脂を30質量%以上、糖質を10質量%以上含むものであり、油脂と糖質の質量の合計が乾燥質量の50質量%以上である、請求項12に記載のインスタントクリーミングパウダーの製造方法。
  15. 請求項9乃至請求項14のいずれか1項に記載の方法で得られた、親水性粉末油脂またはインスタントクリーミングパウダーについて、これを造粒加工する、造粒物の製造方法。
PCT/JP2023/003282 2022-02-28 2023-02-01 親水性粉末油脂およびその製造方法 WO2023162607A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380020293.7A CN118647274A (zh) 2022-02-28 2023-02-01 亲水性粉末油脂及其制备方法
JP2024502952A JPWO2023162607A1 (ja) 2022-02-28 2023-02-01

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022029606 2022-02-28
JP2022-029606 2022-02-28
JP2022168704 2022-10-20
JP2022-168704 2022-10-20

Publications (1)

Publication Number Publication Date
WO2023162607A1 true WO2023162607A1 (ja) 2023-08-31

Family

ID=87765584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003282 WO2023162607A1 (ja) 2022-02-28 2023-02-01 親水性粉末油脂およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2023162607A1 (ja)
WO (1) WO2023162607A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069920A (ja) * 1998-07-29 2001-03-21 Fuji Oil Co Ltd 大豆蛋白加水分解物及びその製造法並びにそれを使用した製品
WO2009084529A1 (ja) 2007-12-27 2009-07-09 Fuji Oil Company, Limited 新規大豆たん白素材及びその製造方法
WO2013089025A1 (ja) * 2011-12-12 2013-06-20 不二製油株式会社 濃縮大豆蛋白質素材
WO2017010513A1 (ja) 2015-07-14 2017-01-19 不二製油グループ本社株式会社 粉末状乳化組成物
WO2019189810A1 (ja) * 2018-03-30 2019-10-03 不二製油グループ本社株式会社 乳化食品製造用タンパク質含有油脂乳化組成物
JP2021003101A (ja) * 2019-06-25 2021-01-14 ミヨシ油脂株式会社 粉末油脂
WO2021066005A1 (ja) * 2019-09-30 2021-04-08 不二製油グループ本社株式会社 植物ベースの各種乳化食品の製造法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069920A (ja) * 1998-07-29 2001-03-21 Fuji Oil Co Ltd 大豆蛋白加水分解物及びその製造法並びにそれを使用した製品
WO2009084529A1 (ja) 2007-12-27 2009-07-09 Fuji Oil Company, Limited 新規大豆たん白素材及びその製造方法
WO2013089025A1 (ja) * 2011-12-12 2013-06-20 不二製油株式会社 濃縮大豆蛋白質素材
WO2017010513A1 (ja) 2015-07-14 2017-01-19 不二製油グループ本社株式会社 粉末状乳化組成物
WO2019189810A1 (ja) * 2018-03-30 2019-10-03 不二製油グループ本社株式会社 乳化食品製造用タンパク質含有油脂乳化組成物
JP2021003101A (ja) * 2019-06-25 2021-01-14 ミヨシ油脂株式会社 粉末油脂
WO2021066005A1 (ja) * 2019-09-30 2021-04-08 不二製油グループ本社株式会社 植物ベースの各種乳化食品の製造法

Also Published As

Publication number Publication date
JPWO2023162607A1 (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
JP7537568B2 (ja) 水中油型ピッカリングエマルション
WO2002064714A1 (fr) Produits contenant du $g(b)-glucane
JPH07305088A (ja) 粉末油脂組成物
WO2023162608A1 (ja) 水中油型乳化物およびその製造方法
JP7329408B2 (ja) 植物ベースのクリーム代替物の製造法
WO2023248862A1 (ja) 油脂組成物
JP7133406B2 (ja) 飲料用粉末油脂
WO2023162607A1 (ja) 親水性粉末油脂およびその製造方法
WO2024038767A1 (ja) 油脂含有固型食品の製造方法
WO2023145757A1 (ja) 高油分水中油型油脂乳化組成物
JP2018011537A (ja) 乳化調味料の製造方法
CN118647274A (zh) 亲水性粉末油脂及其制备方法
Prasanna et al. Virgin coconut oil: wet production methods and food applications–a review
JPH02242638A (ja) 粉末油脂の製造法
WO2023191026A1 (ja) タンパク質、該タンパク質を含むタンパク質粒子分散液及び乳化組成物、並びにこれらの製造方法
JP2024040545A (ja) 難溶性物質用の水分散剤および難溶性物質の水分散液
WO2024075757A1 (ja) 酸性調味料
JPH05209190A (ja) 油脂含有粉末組成物の製造方法
WO2022210754A1 (ja) 乳化食品製造用タンパク質含有油脂乳化組成物
WO2023119810A1 (ja) 高度不飽和脂肪酸を含有する粉末油脂
RU2780588C2 (ru) Композиция забеливателя
AWAD et al. EFFECT OF PH-SHIFT TREATMENT AND ULTRASONICATION ON THE PHYSICAL STABILITY AND PROPERTIES OF HEMP SEED MILK
Sá et al. Deoiled Sesame Seed Cake and Its Utilization as a Protein Source
WO2023054515A1 (ja) 水中油型乳化組成物の製造方法
WO2024204314A1 (ja) 含水チョコレート類

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024502952

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202380020293.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11202405625W

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2023759613

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023759613

Country of ref document: EP

Effective date: 20240930