WO2023162468A1 - 熱輸送装置 - Google Patents

熱輸送装置 Download PDF

Info

Publication number
WO2023162468A1
WO2023162468A1 PCT/JP2022/048554 JP2022048554W WO2023162468A1 WO 2023162468 A1 WO2023162468 A1 WO 2023162468A1 JP 2022048554 W JP2022048554 W JP 2022048554W WO 2023162468 A1 WO2023162468 A1 WO 2023162468A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transport
heat
section
capillary force
wick structure
Prior art date
Application number
PCT/JP2022/048554
Other languages
English (en)
French (fr)
Inventor
陽介 渡邉
博史 青木
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2023162468A1 publication Critical patent/WO2023162468A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat transport device for cooling a heat generating element such as an electric/electronic component mounted on a board such as an electronic circuit board.
  • the present invention relates to a heat transport device capable of preventing drying out of a working fluid in an evaporator even under conditions of use with an increased air volume.
  • heat generating elements such as electronic components
  • substrates such as electronic circuit boards inside electronic devices.
  • heat transport members such as vapor chambers, heat pipes, and heat sinks are sometimes used as means for cooling heat generating bodies such as electronic components.
  • the flow rate of the gas-phase working fluid flowing from the evaporating portion to the condensing portion of the heat transport member increases. Circulation of the liquid-phase working fluid may be inhibited.
  • the wick structure has a relatively small capillary force, such as when the wick structure has a plurality of grooves, the reflux of the liquid-phase working fluid tends to be hindered. If the circulation of the liquid-phase working fluid is impeded, the liquid-phase working fluid will accumulate in the condenser section of the heat transport member, and the amount of the liquid-phase working fluid that is circulated from the condenser section to the evaporator section will be insufficient. As a result, the heat transport member may dry out.
  • a vapor chamber containing a working fluid and a wick structure having a relatively large capillary force, such as a sintered body of metal powder, is provided as a heat transport member for cooling a heat generating body such as an electronic component.
  • a second section extending from one end of the first section away from the first section; a fourth section extending left and right from the second section; and the first section extending away from the first section.
  • a third section extending from one end of the vapor chamber; and a fifth section extending in the left-right direction from the third section, wherein the wick structure extends over all of the first to fifth sections.
  • Patent Document 1 the heat of a heating element thermally connected to the first section is transferred from the first section, which is an evaporator, through the second and third sections to the fourth and fifth sections, which are condensers. Cool the heating element by transporting it to A wick structure having a relatively large capillary force, such as a sintered body of metal powder, circulates the liquid-phase working fluid from the fourth and fifth sections to the first section.
  • a wick structure having a relatively large capillary force such as a sintered body of metal powder
  • Patent Document 1 the same wick structure extends over all of the first to fifth sections, so that the wick structures located in the fourth and fifth sections pass liquid-phase working fluid. I tended to keep it. Therefore, even in the vapor chamber of Patent Document 1, the liquid-phase working fluid is still accumulated in the condensation section, and the amount of the liquid-phase working fluid recirculated from the condensation section to the evaporation section is insufficient, resulting in dryout. I had a problem.
  • the amount of cooling air supplied to the heat transport member may be increased. However, if the flow rate of the cooling air is increased, the phase change of the working fluid from the gas phase to the liquid phase is promoted in the condensation section. Fluid may accumulate and dry out.
  • the present invention can prevent the working fluid from drying out in the evaporator even under usage conditions in which a heat generating element with a high calorific value is thermally connected or under usage conditions in which the flow rate of cooling air is increased.
  • An object of the present invention is to provide a heat transport device.
  • the gist of the configuration of the heat sink of the present invention is as follows. [1] a first heat transporting section having an evaporating section thermally connected to a heating element; a second heat transport section connected at the condensation section of the first heat transport section and having a heat transport direction different from the heat transport direction of the first heat transport section;
  • the first heat transporting part has an integral internal space that communicates from the evaporating part to a connecting part with the second heat transporting part and is filled with a working fluid, and the first heat transporting part is a heat transport device in which the internal space of the unit communicates with the internal space of the second heat transport unit; a first wick structure extending from the evaporating section to the condensing section, the heat transporting device being provided in the internal space of the first heat transporting section; a second wick structure provided on the inner surface of the second heat transport section and extending along the heat transport direction of the second heat transport section; a reflux promoter having a capillary force, provided on the second wick structure
  • the reflux promoter covers an area of 5% or more of the circumference of the cross section of the second heat transport section perpendicular to the heat transport direction [1] to [4] ]
  • [6] The heat transport device according to any one of [1] to [5], wherein the reflux promoting body comprises a plurality of reflux promoting sections, and the plurality of reflux promoting sections have different capillary forces.
  • the heat transport device according to any one of [1] to [7], wherein the second heat transport section is a plurality of tubular bodies.
  • Device [11] The heat transport device according to [9], wherein the plurality of tubular bodies extend downward in the direction of gravity.
  • the heat transport device according to any one of [1] to [11] which is a heat sink in which a plurality of radiation fins are thermally connected to the second heat transport section.
  • the internal space of the heat transport member having the evaporating portion (that is, the heat receiving portion) is entirely communicated, unlike the internal space of a group of heat pipes in which a plurality of heat pipes are arranged in parallel. and become one.
  • the part of the first heat transporting part that is thermally connected to the heating element to be cooled functions as the evaporating part (that is, the heat receiving part), and the second heat transporting part
  • the part connected to the transport part functions as a condensation part (that is, a heat radiation part) of the first heat transport part.
  • the working fluid receives heat from the heating element and undergoes a phase change from the liquid phase to the gas phase. It releases latent heat and undergoes a phase change from the gas phase to the liquid phase.
  • the heat of the heating element is transported by the first heat transporting part from the evaporating part of the first heat transporting part to the condensation part of the first heat transporting part. It is transported from the condensation section of one heat transport section to the second heat transport section.
  • the working fluid that has undergone a phase change to a vapor phase by the first heat transporting part receiving heat from the heating element flows from the first heat transporting part to the second heat transporting part.
  • the second heat transport section receives heat from the first heat transport section, and the heat of the heating element is Diffusion from the first heat transport portion to the second heat transport portion.
  • the second heat transporting part further transmits the heat received from the first heat transporting part to the heat exchanging means. Then, heat is released from the heat exchange means to the external environment.
  • the second heat transporting part transfers the heat received from the first heat transporting part to the heat exchange means, the vapor-phase working fluid that has flowed from the first heat transporting part to the second heat transporting part is liquid. phase to phase.
  • the extension direction of the first heat transport part and the extension direction of the second heat transport part are different.
  • the heat transport device has a structure of a vapor chamber.
  • the capillary force of the first wick structure extending from the evaporating section to the condensing section provided in the internal space of the first heat transporting section is applied to the second heat transporting section. is greater than the capillary force of the reflux promoter provided on the second wick structure formed on the inner surface of the reflux promoter, and the capillary force of the reflux promoter is greater than the capillary force of the second wick structure, or the second is the same as the capillary force of the wick structure of 1, the second wick structure and the reflux promoter are provided on the inner surface of the second heat transport section, and the first heat transport section having the evaporating section
  • the capillary force of the first wick structure provided in the portion is relatively large.
  • the liquid-phase working fluid can be used even under usage conditions in which a heat generating element with a high calorific value is thermally connected or under usage conditions in which the flow rate of the cooling air is increased.
  • the flow of heat from the tip of the second heat transporting part toward the connecting part with the first heat transporting part and the flow of heat from the condensation part of the first heat transporting part to the evaporating part are smoothed.
  • both the second wick structure and the reflux promoter provided on the inner surface of the second heat transport section have relatively small capillary force, so that the liquid It is possible to prevent the liquid-phase working fluid from accumulating in the second heat transport section by holding the phase working fluid.
  • the liquid phase is circulated in the second wick structure from the tip portion of the second heat transport portion toward the connecting portion with the first heat transport portion.
  • the fluid is protected by the reflux promoter from the flow of the gas-phase working fluid, which is a countercurrent flow, and the reflux promoter also extends from the tip portion of the second heat transport section to the connection portion with the first heat transport section. It contributes to the reflux of the liquid phase working fluid in the direction.
  • the working fluid in the evaporator is dry out can be prevented.
  • the first wick structure and the reflux promoter are connected via a connecting member having a capillary force, so that the heat from the second heat transport section to the first heat transport section is Circulation of the liquid-phase working fluid to the heat-transporting part is further facilitated.
  • the capillary force of the first wick structure is greater than the capillary force of the connecting member, and the capillary force of the connecting member is greater than the capillary force of the reflux promoter, or
  • the capillary force increases as the liquid-phase working fluid flows from the second heat-transporting part to the first heat-transporting part. It is possible to more reliably prevent dry-out of the working fluid in the evaporator even under the conditions of use in which the cooling air is connected to the evaporator and the amount of cooling air is increased.
  • the reflux promoter covers an area of 5% or more of the circumferential length of the cross section of the second heat transport section in the direction perpendicular to the heat transport direction.
  • the reflux promoter further promotes the reflux of the liquid-phase working fluid from the tip of the second heat transporting portion toward the connecting portion with the first heat transporting portion.
  • the reflux promoting body is composed of a plurality of reflux promoting sections, and the capillary force of the plurality of reflux promoting sections is different from each other, so that the tip portion of the second heat transport section Since the capillary force of the reflux promoter can be increased in the direction of the connecting portion with the first heat transporting portion from the Circulation in the direction of the connecting portion is further facilitated.
  • a plurality of second heat transporting parts are provided and extend in a plurality of directions from the first heat transporting part. Since the heat transported to the second heat transporting part is transported in a plurality of directions different from the extending direction (heat transporting direction) of the first heat transporting part, it is possible to prevent an increase in the dimensions of the heat transporting device. As a result, space can be saved.
  • FIG. 1 is a cross-sectional plan view for explaining the outline of the interior of a heat transport device according to a first embodiment of the present invention
  • FIG. 4 is a front cross-sectional view for explaining the outline of the inside of the second heat transporting section of the heat transporting device according to the first embodiment of the present invention
  • FIG. 4 is a side cross-sectional view for explaining the outline of the inside of the second heat transporting section of the heat transporting device according to the first embodiment of the present invention
  • FIG. 5 is an explanatory diagram for explaining the flow of working fluid inside the second heat transport section of the heat transport device according to the first embodiment of the present invention
  • FIG. 10 is a cross-sectional plan view for explaining the outline of the interior of a heat transport device according to a second embodiment of the present invention
  • FIG. 11 is a front cross-sectional view for explaining the outline of the inside of a second heat transporting section of a heat transporting device according to a second embodiment of the present invention
  • FIG. 11 is a side cross-sectional view for explaining the outline of the inside of a second heat transporting section of a heat transporting device according to a second embodiment of the present invention
  • FIG. 11 is a side view of a heat transport device according to a third embodiment of the present invention
  • FIG. 11 is a front cross-sectional view for explaining the outline of the inside of a second heat transporting section of a heat transporting device according to a fourth embodiment of the present invention
  • FIG. 1 is a cross-sectional plan view for explaining the outline of the interior of the heat transport device according to the first embodiment of the present invention.
  • FIG. 2 is a front cross-sectional view for explaining the outline of the inside of the second heat transport section of the heat transport device according to the first embodiment of the present invention.
  • FIG. 3 is a side cross-sectional view for explaining the outline of the inside of the second heat transport section of the heat transport device according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram illustrating the flow of the working fluid inside the second heat transport section of the heat transport device according to the first embodiment of the present invention.
  • a heat transporting device 1 includes a first heat transporting section 10 having an evaporating section 11 thermally connected to a heating element 100; a second heat transporting section 20 having heat transporting directions D2 and D3 different from the heat transporting direction D1 of the first heat transporting section 10 and connected at the condensation section 12 of the heat transporting section 10. .
  • the second heat transporting section 20 is connected to the first heat transporting section 10 via the condensation section 12 of the first heat transporting section 10, so that the first heat transporting section 10 and the second heat A connecting portion 30 with the transport portion 20 is formed.
  • the internal space of the first heat transport section 10 communicates with the internal space of the second heat transport section 20 .
  • the first heat transport section 10 has an integral internal space that communicates from the evaporation section 11 to the connection section 30 with the second heat transport section 20 and that is filled with a working fluid. ing.
  • the first heat transport section 10 has a container 19 having a hollow cavity 13 and a working fluid (not shown in FIG. 1) flowing through the cavity 13 .
  • the container 19 is formed by stacking one plate-like body 40 located on the installation surface side of the heat transport device 1 and the other plate-like body (not shown in FIG. 1) facing the one plate-like body 40. formed by
  • One plate-like body 40 has a plate-like shape having side walls erected from the flat portion at the edge of the flat portion.
  • the other plate-like body also has a plate-like shape having side walls erected from the flat portion at the edges of the flat portion. Therefore, one plate-like body 40 and the other plate-like body both have a concave shape.
  • the hollow portion 13 of the container 19 is formed by stacking one plate-like body 40 and the other plate-like body with their concave shapes facing each other. Therefore, in the heat transport device 1, the shape of the container 19 of the first heat transport section 10 is flat.
  • the cavity 13 of the container 19 is an internal space that is sealed against the external environment, and is decompressed by degassing.
  • a portion of the outer surface of the container 19 to which the heating element 100 to be cooled is thermally connected functions as the evaporator 11 .
  • the heating element 100 is cooled by thermally connecting the heating element 100 to the container 19 of the first heat transport section 10 .
  • a heating element 100 is thermally connected to one end of the first heat transporting section 10 in the heat transporting direction D1 in the extending direction. Therefore, the evaporating section 11 is formed at one end of the first heat transporting section 10 in the extending direction.
  • the first heat transport section 10 extends in a predetermined direction from the position of the heating element 100, and a second heat transport section is provided at the other end opposite to one end in the extending direction of the first heat transport section 10 20 are connected.
  • the other end of the first heat transport section 10 to which the second heat transport section 20 is connected functions as the condensation section 12 of the first heat transport section 10 .
  • the intermediate section located between the evaporating section 11 located at one end of the container 19 and the condensing section 12 located at the other end of the container 19 functions as a heat insulating section 15.
  • the heat transferred from the heating element 100 to the evaporating section 11 is transferred from the evaporating section 11 to the condensing section 12 via the heat insulation section 15 .
  • a first wick structure 14 having a capillary force is housed in the hollow portion 13 of the first heat transport portion 10 .
  • the first wick structure 14 is provided in the internal space of the first heat transporting section 10 and extends from the evaporating section 11 to the condensing section 12 .
  • the first wick structure 14 extends from the evaporating section 11 of the container 19 to the condensing section 12 over substantially the entire width direction of the first heat transporting section 10 .
  • the first wick structure 14 is not particularly limited, examples thereof include a sintered body of metal powder such as copper powder, a metal mesh made of metal wire, non-woven fabric, and metal fiber.
  • a sintered body of metal powder is used as the first wick structure 14 in the first heat transport section 10 .
  • the inner surface of the container 19 may be further provided with grooves (a plurality of narrow grooves, not shown).
  • a portion of the hollow portion 13 where the first wick structure 14 is not provided functions as a vapor flow path 16 through which vapor-phase working fluid flows.
  • the vapor flow path 16 extends from the evaporator section 11 to the condenser section 12 of the container 19 corresponding to the first wick structure 14 extending from the evaporator section 11 to the condenser section 12 of the container 19 . ing.
  • the first heat transporting section 10 transports the heat of the heating element 100 received by the evaporating section 11 from the evaporating section 11 to the condensing section 12 due to the heat transport characteristics of the operation of the working fluid.
  • a second heat transport section 20 whose internal space communicates with the cavity 13 of the container 19 of the first heat transport section 10.
  • the second heat transport section 20 comprises a container 29 having a hollow cavity 23 .
  • the cavity 23 of the second heat transporting section 20 communicates with the cavity 13 of the first heat transporting section 10 via the connecting section 30 .
  • the container 29 is formed by stacking one plate-like body 41 located on the installation surface side of the heat transport device 1 and the other plate-like body (not shown in FIG. 1) facing the one plate-like body 41.
  • One plate-like body 41 has a plate-like shape having side walls erected from the flat portion at the edge of the flat portion.
  • the other plate-like body also has a plate-like shape having side walls erected from the flat portion at the edges of the flat portion. Therefore, one plate-like body 41 and the other plate-like body are both concave.
  • the hollow portion 23 of the container 29 is formed by stacking the one plate-like body 41 and the other plate-like body with their concave shapes facing each other. Therefore, in the heat transport device 1, the shape of the container 29 of the second heat transport section 20 is flat.
  • the cavity 23 of the container 29 is an internal space sealed from the external environment of the heat transport device 1, and is decompressed by degassing.
  • the working fluid can flow between the cavity 13 of the container 19 of the first heat transport section 10 and the cavity 23 of the container 29 of the second heat transport section 20 .
  • the working fluid flowing through the cavity 13 of the first heat transporting part 10 is enclosed in the space from the cavity 13 of the first heat transporting part 10 to the cavity 23 of the second heat transporting part 20. ing.
  • the shape of the second heat transporting section 20 is not particularly limited, and in the heat transporting device 1, the container 29 of the second heat transporting section 20 is a flat type having an integral internal space.
  • the second heat transport section 20 extends in a direction substantially orthogonal to the heat transport direction of the first heat transport section 10 along the planar direction of the condensation section 12 of the first heat transport section 10. . Therefore, the second heat transport section 20 may be installed along a direction perpendicular to the direction of gravity.
  • the heat transport device 1 since the extending direction of the second heat transporting part 20 is not parallel to the extending direction (heat transport direction) of the first heat transporting part 10, the heat transported from the first heat transporting part 10 The heat is transported by the second heat transporting section 20 in a direction different from the extending direction of the first heat transporting section 10 . Therefore, it is possible to prevent an increase in the dimension of the heat transporting device 1 in the heat transporting direction of the first heat transporting section 10, so that the space of the heat transporting device 1 can be reduced.
  • a plurality of second heat transport sections 20 are provided and extend in a plurality of directions from the first heat transport section 10 .
  • the heat transport device 1 two second heat transport parts 20 are provided, and the second heat transport parts 20 extend in both left and right directions with the first heat transport part 10 as the center. Since the plurality of second heat transporting parts 20 extend from the first heat transporting part 10 in a plurality of directions (two directions in the heat transporting device 1), the second heat transporting part 10 The heat transported to the transporting section 20 is branched and transported in a plurality of directions (two directions in the heat transporting device 1) different from the extending direction of the first heat transporting section 10 . Therefore, it is possible to more reliably prevent an increase in the dimension of the heat transport device 1 in the extending direction of the first heat transport section 10 .
  • a second wick structure 24 extending along the heat transport direction of the second heat transporting part 20 is provided on the inner surface of the second heat transporting part 20.
  • the second wick structure 24 has a function of causing the liquid-phase working fluid to circulate from the distal end portion 33 of the second heat transporting portion 20 toward the connection portion 30 with the first heat transporting portion 10 .
  • the second wick structure 24 is a wick structure having a capillary force, which is different in structure from the first wick structure 14 housed in the container 19 .
  • grooves (a plurality of fine grooves) are formed on the inner surface of the second heat transport section 20 as the second wick structure 24 .
  • the second wick structure 24 is a different type of wick structure from the first wick structure 14 .
  • the groove, which is the second wick structure 24 extends along the heat transport direction of the second heat transport part 20 .
  • the second wick structure 24 extends from the distal end portion 33 of the second heat transport portion 20 to the connection portion 30 with the first heat transport portion 10 .
  • a reflux promoter 34 having a capillary force and extending along the heat transporting direction of the second heat transporting section 20 is provided on the second wick structure 24. It is The reflux promoter 34 has a function of promoting reflux of the liquid-phase working fluid from the front end portion 33 of the second heat transport section 20 toward the connecting portion 30 with the first heat transport section 10 . The reflux promoter 34 is provided in a manner in contact with the second wick structure 24 . In the heat transport device 1 , the reflux accelerator 34 extends from the tip 33 of the second heat transport section 20 to the vicinity of the connecting section 30 with the first heat transport section 10 .
  • the reflux promoter 34 is a wick member having a capillary force and having a structure different from that of the first wick structure 14 housed in the container 19 and the second wick structure 24 housed in the container 29 .
  • the reflux accelerator 34 is not particularly limited, but examples thereof include a sintered body of metal powder such as copper powder, a metal mesh made of metal wire, a non-woven fabric, and a metal fiber.
  • the entire reflux promoter 34 is made of the same member, and the entire reflux promoter 34 has substantially the same capillary force.
  • a sheet-like metal mesh is used as the reflux promoter 34 .
  • the reflux promoter 34 is a different type of wick member from the first wick structure 14 and the second wick structure 24 .
  • a portion of the hollow portion 23 of the second heat transport section 20 where the reflux promoter 34 and the second wick structure 24 are not provided functions as a vapor flow path 26 through which the vapor-phase working fluid flows.
  • the steam flow path 26 extends from the connecting portion 30 with the first heat transporting section 10 to the tip portion 33 of the container 29 of the second heat transporting section 20 .
  • the second heat transporting part 20 transfers the heat of the heating element 100 received from the first heat transporting part 10 to the second heat transporting part 30 through the connection part 30 with the first heat transporting part 10 due to the heat transport characteristic of the operation of the working fluid. is transported toward the tip portion 33 of the heat transport portion 20 .
  • the installation position of the reflux promoter 34 is not particularly limited as long as it is on the inner surface of the container 29 of the second heat transport section 20. Reflux from the portion 33 to the connecting portion 30 with the first heat transporting portion 10 is further promoted, and the direction of the connecting portion 30 from the tip portion 33 of the second heat transporting portion 20 to the first heat transporting portion 10 is increased. From the viewpoint that the liquid-phase working fluid can be circulated more smoothly, in the cross section of the second heat transport section 20 in the direction perpendicular to the heat transport direction, a region of 5% or more of the circumference of the cross section is covered. preferably.
  • the reflux promoter 34 may From the point of reliably securing the vapor flow path 26 while further promoting the reflux of the liquid-phase working fluid from the tip portion 33 of the heat transport section 20 toward the connecting portion 30 with the first heat transport section 10, It is preferable to cover an area of 25% or more and 50% or less of the circumference of the cross section.
  • the reflux promoting body 34 is 50% or more of the circumference of the cross section from the point of reliably promoting the reflux of the liquid-phase working fluid from the tip end portion 33 of the second heat transporting portion 20 toward the connecting portion 30. It is preferable to cover 100% or less of the area.
  • the inner surface of the container 29 is formed by overlapping one plate-like body 41 and the other plate-like body 43 facing the one plate-like body 41.
  • the reflux promoting body 34 is provided on one plate-like body 41 which is a plate-like body positioned downward in the direction of gravity, and is not provided on the other plate-like body 43 .
  • the capillary force of the first wick structure 14 is greater than the capillary force of the reflux promoter 34.
  • the capillary force of the reflux promoting body 34 is greater than the capillary force of the second wick structure 24 or is equivalent to the capillary force of the second wick structure 24 .
  • the first wick structure 14 provided in the first heat transport section 10 and the reflux promoter 34 provided in the second heat transport section 20 have capillary force. It may be connected via the connection member 35 .
  • the connecting member 35 is positioned at the connecting portion 30 between the first heat transporting portion 10 and the second heat transporting portion 20 and its vicinity.
  • connection member 35 is a wick member having a capillary force and having a structure different from the first wick structure 14 housed in the container 19, the second wick structure 24 housed in the container 29, and the reflux promoter 34. be.
  • Examples of the connection member 35 include a metal mesh, a braided body of metal wires, and metal fibers.
  • the connection member 35 may be a wick member of a different type from the first wick structure 14 , the second wick structure 24 and the reflux promoter 34 .
  • the capillary force of the first wick structure 14 is greater than the capillary force of the connection member 35. Also, the capillary force of the connection member 35 is greater than the capillary force of the reflux promoter 34 or substantially the same as the capillary force of the reflux promoter 34 .
  • the working fluid that has undergone a phase change from the vapor phase to the liquid phase inside the second heat transporting section 20 moves inside the second wick structure 24 due to the capillary force of the second wick structure 24 and the capillary force of the reflux promoter 34 .
  • the liquid-phase working fluid that has returned to the vicinity of the connecting portion 30 flows from the second wick structure 24 and the reflux promoter 34 to one end of the connecting member 35 .
  • the liquid-phase working fluid that has flowed through one end of the connection member 35 flows through the connection member 35 from one end to the other end, and from the other end of the connection member 35 to the first wick structure 14 of the first heat transport section 10 . Reflux.
  • connection member 35 improves the flow performance of the liquid-phase working fluid between the second heat transporting section 20 and the first heat transporting section 10 , thereby improving the heat transporting characteristics of the heat transporting device 1 .
  • connection member 35 in order to improve the flow performance of the liquid-phase working fluid between the second heat transport section 20 and the first heat transport section 10, in the vicinity of the connection section 30, reflux A structure in which the facilitator 34 is in contact with the first wick structure 14 is preferred.
  • Examples of materials for the containers 19 and 29 include copper, copper alloys, aluminum, aluminum alloys, nickel, nickel alloys, stainless steel, titanium, and titanium alloys.
  • the working fluid to be enclosed in the heat transport device 1 can be appropriately selected according to compatibility with the material of the container 19 and the container 29. Examples include water, fluorocarbons, hydrofluoroether (HFE), cyclopentane, Ethylene glycol, mixtures thereof, and the like can be mentioned.
  • the thickness of the container 19 and the container 29 can be appropriately selected according to mechanical strength, weight, etc., and can be 0.5 to 3 mm, for example.
  • the width of the container 19 and the container 29 can be appropriately selected depending on the usage conditions of the heat transport device 1, and can be 4 to 20 mm, for example.
  • the heating element 100 which is an object to be cooled is thermally connected to one end of the container 19 of the first heat transporting section 10 so that the one end of the container 19 functions as the evaporating section 11 .
  • the heat is transferred to the liquid-phase working fluid in the cavity 13 at one end of the container 19 , and the liquid-phase of the working fluid undergoes a phase change to a vapor phase working fluid.
  • the vapor-phase working fluid flows through the vapor flow path 16 from one end of the container 19 to the other end, which is the condensation section 12 .
  • the first heat transport section 10 transports heat from the one end to the other end.
  • a heat exchange means (not shown) is thermally connected to the other end of the container 19
  • part of the vapor-phase working fluid that has flowed to the other end of the container 19 is absorbed by the heat exchange action of the heat exchange means.
  • the heat transferred to the heat exchange means is released to the environment outside the heat transport device 1 via the heat exchange means.
  • the working fluid that has undergone a phase change to the liquid phase at the other end of the container 19 flows back from the other end of the container 19 to the one end due to the capillary force of the first wick structure 14 .
  • the evaporation section 11 of the first heat transporting section 10 converts the gas from the liquid phase to the gas.
  • the working fluid that has not undergone a phase change to the liquid phase in the condensation section 12 of the first heat transport section 10 flows from the cavity section 13 of the first heat transport section 10 to the connection section 30. flows into the hollow portion 23 of the second heat transport portion 20 through the .
  • the gas-phase working fluid that has flowed from the hollow portion 13 of the first heat transporting portion 10 into the hollow portion 23 of the second heat transporting portion 20 flows from the connecting portion 30 toward the tip portion 33 of the second heat transporting portion 20. It circulates through the steam flow path 26 .
  • the second heat transporting portion 20 moves from the connecting portion 30 to the tip portion thereof. It transports heat in 33 directions.
  • a heat exchange means (not shown) is thermally connected to the container 29 of the second heat transport section 20, the heat exchange action of the heat exchange means causes the heat to flow into the cavity 23 of the second heat transport section 20.
  • the gas-phase working fluid that has flowed in releases latent heat inside the second heat transporting section 20 and undergoes a phase change to a liquid-phase working fluid.
  • the latent heat released inside the second heat transport section 20 is transferred to the heat exchange means thermally connected to the second heat transport section 20 .
  • the heat transferred to the heat exchange means is released to the environment outside the heat transport device 1 via the heat exchange means.
  • the working fluid that has undergone a phase change from the gas phase to the liquid phase inside the second heat transport section 20 is caused by the capillary forces of the second wick structure 24 and the reflux promoter 34 provided on the inner surface of the second heat transport section 20. As a result, the heat is circulated from the tip portion 33 of the second heat transporting portion 20 toward the connecting portion 30 .
  • the liquid-phase working fluid that has returned from the tip end portion 33 of the second heat transporting portion 20 to the vicinity of the connecting portion 30 passes through the connecting member 35 at the other end (condensing portion 12 ) of the container 19 to form the first wick structure. Reflux to 14. Due to the capillary force of the first wick structure 14, the liquid-phase working fluid that has returned to the first wick structure 14 flows from the other end of the container 19 (condensing section 12) to the one end of the container 19 (evaporating section 11). Reflux to
  • the capillary force of the first wick structure 14 extending from the evaporator 11 to the condenser 12 provided in the cavity 13 of the first heat transporter 10 acts as the second heat transporter.
  • the capillary force of the reflux promoter 34 provided on the second wick structure 24 formed on the inner surface of the portion 20 is greater than the capillary force of the reflux promoter 34, and the capillary force of the reflux promoter 34 is greater than the capillary force of the second wick structure 24.
  • the capillary force of the reflux promoter 34 is substantially the same as the capillary force of the second wick structure 24, so that the second wick structure 24 and the reflux promoter
  • the body 34 is provided, and the capillary force of the first wick structure 14 provided in the first heat transporting section 10 having the evaporating section 11 is relatively large. Therefore, in the heat transport device 1, the second heat transport of the liquid-phase working fluid is possible even under the use condition in which the heat generating element 100 with a high heat value is thermally connected or the use condition in which the flow rate of the cooling air is increased.
  • both the second wick structure 24 and the reflux promoter 34 provided on the inner surface of the second heat transport section 20 have relatively small capillary force, so that liquid-phase operation is possible. By retaining the fluid, it is possible to prevent the liquid-phase working fluid from accumulating in the second heat transport section 20 .
  • heat transport device 1 heat travels through the second wick structure 24 from the distal end portion 33 of the second heat transport section 20 toward the connecting portion 30 with the first heat transport section 10 .
  • the refluxing liquid-phase working fluid F1 is protected by the reflux accelerator 34 from the flow of the gaseous-phase working fluid G, which is the counterflow.
  • 33 contributes to the reflux of the liquid-phase working fluid F2 from 33 toward the connecting portion 30 with the first heat transporting portion 10 .
  • the interface portion S between the second wick structure 24 and the reflux promoter 34 also has a liquid phase from the tip portion 33 of the second heat transporting portion 20 toward the connection portion 30 with the first heat transporting portion 10 . contributes to the circulation of the working fluid F3.
  • the drying out of the working fluid in the evaporator 11 is prevented even under the use condition in which the heat generating element 100 with a high heat value is thermally connected or the use condition in which the cooling air flow rate is increased. can be prevented.
  • the capillary force of the first wick structure 14 is greater than the capillary force of the connection member 35, and the capillary force of the connection member 35 is greater than the capillary force of the reflux promoter 34, or Since the capillary force of 35 is substantially the same as the capillary force of the reflux promoter 34, the capillary force increases as the liquid-phase working fluid flows from the second heat transport section 20 to the first heat transport section 10. Drying out of the working fluid in the evaporator 11 can be more reliably prevented even under conditions of use in which the heat generating element 100 with a large amount of heat is thermally connected or under conditions of use in which the flow rate of the cooling air is increased.
  • FIG. 5 is a cross-sectional plan view for explaining the outline of the interior of the heat transport device according to the second embodiment of the present invention.
  • FIG. 6 is a front cross-sectional view for explaining the outline of the inside of the second heat transport section of the heat transport device according to the second embodiment of the present invention.
  • FIG. 7 is a side cross-sectional view for explaining the outline of the inside of the second heat transport section of the heat transport device according to the second embodiment of the present invention.
  • the second heat transport section 20 is a flat container having an integral internal space, but as shown in FIG.
  • the second heat transport section 20 is made up of a plurality of tubular bodies 51, 51, 51, .
  • the second heat transport section 20 includes a plurality of tubular bodies 51 having hollow cavities 23 .
  • the longitudinal direction of the tubular body 51 is the heat transport direction of the tubular body 51 and thus the heat transport direction of the second heat transport section 20 .
  • the first heat transporting part 10 side end (hereinafter sometimes referred to as "base") 32 of the tubular body 51 is open, and the end opposite to the base 32 (that is, the tip 33) is closed. are doing.
  • the hollow portion 23 of the tubular body 51 forming the second heat transporting portion 20 communicates with the hollow portion 13 of the first heat transporting portion 10 via the connecting portion 30 .
  • the hollow portion 23 of the tubular body 51 is an internal space sealed from the external environment of the heat transport device 2 and is decompressed by degassing. The working fluid can flow between the cavity 13 of the first heat transport section 10 and the cavity 23 of the tubular body 51 .
  • a through hole (not shown) for attaching the tubular body 51 to the container 19 is formed in the side surface of the container 19 of the first heat transport section 10 .
  • the shape and size of the through-hole correspond to the shape and size of the tubular body 51, and the base portion 32 of the tubular body 51 is inserted into the through-hole of the container 19, thereby allowing the tubular body 51 to perform the first heat transport. It is connected to the part 10 . Therefore, the tubular body 51 and the container 19 of the first heat transport section 10 are made of different members.
  • a method for fixing the tubular body 51 attached to the container 19 is not particularly limited, but examples thereof include welding, soldering, and brazing.
  • the tubular body 51 extends in a direction substantially orthogonal to the heat transport direction of the first heat transport section 10 along the planar direction of the condensation section 12 of the first heat transport section 10 . Therefore, in the heat transport device 2, the longitudinal direction of the tubular body 51 may be installed along the direction perpendicular to the direction of gravity.
  • each tubular body 51 is provided with a second wick structure 24 extending along the heat transport direction of the tubular body 51 .
  • the second wick structure 24 has a function of recirculating the liquid-phase working fluid from the distal end portion 33 of the tubular body 51 toward the connecting portion 30 with the first heat transporting portion 10 .
  • the second wick structure 24 extends from the distal end portion 33 of the tubular body 51 to the connection portion 30 with the first heat transport portion 10 .
  • grooves are formed on the inner surface of the tubular body 51 as the second wick structure 24 .
  • Each tube 51 is provided with a reflux promoter 34 having a capillary force and extending along the heat transport direction of the second heat transport section 20 on the second wick structure 24 .
  • the reflux promoter 34 extends from the longitudinal central portion 36 of the tubular body 51 to the vicinity of the connection portion 30 with the first heat transport portion 10 (ie, the vicinity of the base portion 32).
  • the reflux promoter 34 is not provided in the region from the tip portion 33 to the central portion 36 of the tubular body 51 , and the second wick structure 24 is exposed.
  • the reflux promoting body 34 is provided at the lower portion in the direction of gravity, and is not provided at the upper portion in the direction of gravity.
  • the entire reflux promoter 34 is made of the same member, and the entire reflux promoter 34 has substantially the same capillary force.
  • the first wick structure 14 provided in the first heat transport section 10 and the reflux promoter 34 provided in the tubular body 51 are connected via a connecting member 35 having capillary force.
  • the shape of the tubular body 51 is not particularly limited, and in the heat transport device 2, the shape in the longitudinal direction is linear, and the shape in the direction perpendicular to the longitudinal direction (radial direction) is elliptical. Moreover, all tubular bodies 51 are substantially the same in shape and size.
  • the material of the tubular body 51 constituting the second heat transport section 20 is the same as the material of the container 29 of the second heat transport section 20, such as copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, Examples include stainless steel, titanium, and titanium alloys.
  • a plurality of first radiation fins 61 , 61 , 61 . . . are arranged in parallel along the longitudinal direction of the tubular body 51 .
  • the first heat radiating fin 61 is attached and fixed to the position of the tubular member 51, thereby performing the first heat radiating.
  • a fin 61 is thermally connected to a plurality of tubular bodies 51, 51, 51 .
  • the heat transport device 2 is a heat sink in which the plurality of first heat radiation fins 61, 61, 61 . . .
  • a plurality of second radiation fins 62, 62, 62, . (Not shown in FIG. 5 for convenience of explanation).
  • the plurality of second heat radiation fins 62 , 62 , 62 . . . are arranged in parallel along the width direction of the first heat transport section 10 .
  • the second radiating fins 62 are attached and fixed to the position of the first heat transporting section 10 and are thermally connected to the first heat transporting section 10 .
  • Both the first heat radiation fin 61 and the second heat radiation fin 62 are thin flat members.
  • the capillary force of the first wick structure 14 extending from the evaporating part 11 to the condensing part 12 provided in the hollow part 13 of the first heat transporting part 10 acts as the second heat transporting part.
  • the capillary force of the reflux promoter 34 provided on the second wick structure 24 formed on the inner surface of the tubular body 51 which is the portion 20 is greater than the capillary force of the reflux promoter 34, and the capillary force of the reflux promoter 34 is greater than that of the second wick structure. 24, or the capillary force of the reflux promoter 34 is substantially the same as that of the second wick structure 24, the inner surface of the tube 51 has the second wick structure 24 and the reflux.
  • the first wick structure 14 provided in the first heat transporting section 10 having the facilitating body 34 and the evaporating section 11 has a relatively large capillary force. Therefore, in the heat transport device 2 as well, even under the conditions of use in which the heat generating element 100 with a large amount of heat is thermally connected or under the conditions of use in which the air flow rate of the cooling air is increased, the first airflow from the distal end portion 33 of the tubular body 51 The return of the liquid-phase working fluid toward the connection portion 30 with the heat transporter 10 and the return of the liquid-phase working fluid from the condenser 12 of the first heat transporter 10 to the evaporator 11 are facilitated.
  • both the second wick structure 24 and the reflux promoter 34 provided on the inner surface of the tubular body 51 have relatively small capillary force, so that they retain the liquid-phase working fluid. Therefore, it is possible to prevent the liquid-phase working fluid from accumulating in the tubular body 51 .
  • the liquid-phase working fluid flowing back in the second wick structure 24 from the tip 33 of the tubular body 51 toward the connecting portion 30 with the first heat transport section 10 promotes circulation.
  • the body 34 protects against the flow of the gas-phase working fluid, which is a countercurrent flow. It contributes to the reflux of the liquid-phase working fluid.
  • the interface between the second wick structure 24 and the reflux promoter 34 also allows the liquid-phase working fluid to flow back from the tip 33 of the tubular body 51 toward the connecting portion 30 with the first heat transport section 10 .
  • the working fluid in the evaporator 11 can be prevented from drying out even under the use condition in which the heat generating element 100 with a high heat value is thermally connected or the use condition in which the cooling air flow rate is increased. can be prevented.
  • FIG. 8 is a side view of the heat transport device according to the third embodiment of the present invention.
  • the second heat transport section 20 is arranged along the planar direction of the condensation section 12 of the first heat transport section 10, and 10, but as shown in FIG. 8, in the heat transport device 3 according to the third embodiment, the second heat transport part 20 extends in the first It extends in a direction perpendicular to the planar direction of the condensation section 12 of the heat transport section 10 and in a direction substantially orthogonal to the heat transport direction of the first heat transport section 10 .
  • the second heat transport section 20 is composed of a plurality of tubular bodies 51, 51, 51, . ⁇ extends downward in the direction of gravity.
  • one second heat transport section 20 is provided. Since the tip end portion 33 of the second heat transporting portion 20 is installed below the evaporating portion 11 of the first heat transporting portion 10 in the gravitational direction, the tip end portion 33 of the second heat transporting portion 20 reaches the first heat transporting portion 20 . 50% or more and 100% of the circumferential length of the tubular body 51 in the cross section in the direction perpendicular to the heat transport direction in order to reliably promote the reflux of the liquid-phase working fluid to the heat transport section 10. It preferably covers the following areas:
  • the second wick structure and the reflux promoter are provided on the inner surface of the tubular body 51 , and the first heat transport section 10 provided in the first heat transport section 10 having the evaporation section 11 Since the wick structure has a relatively large capillary force, even under conditions of use in which the heat generating element 100 with a high calorific value is thermally connected or under conditions of use in which the flow rate of the cooling air is increased, the pipe Circulation of the liquid-phase working fluid from the tip portion 33 of the body 51 toward the first heat transport section 10 and circulation of the liquid-phase working fluid from the condensation section 12 of the first heat transport section 10 to the evaporation section 11 facilitated.
  • FIG. 9 is a front cross-sectional view for explaining the outline of the inside of the second heat transport section of the heat transport device according to the fourth embodiment of the present invention.
  • the entire reflux accelerator 34 is made of the same member and has substantially the same capillary force.
  • the reflux promoter 34 is composed of a plurality of reflux promoters 34a, 34a, 34a, . , 34a, . . . have different capillary forces.
  • the reflux promoting body 34 has three reflux promoting portions 34a, but the number of the reflux promoting portions 34a to be installed is not particularly limited as long as it is plural.
  • the capillary force of the first wick structure 14 is greater than the capillary force of the reflux promoter 34, the capillary force of any of the reflux promoters 34a is greater than that of the first wick structure 14. It is in a mode smaller than the capillary force.
  • the capillary force of the reflux promoter 34 is greater than the capillary force of the second wick structure 24, or is substantially equal to the capillary force of the second wick structure 24.
  • the capillary force of any of the reflux promoting portions 34 a is greater than the capillary force of the second wick structure 24 or substantially equal to the capillary force of the second wick structure 24 .
  • the plurality of circulation promoting portions 34a, 34a, 34a, . . . are arranged in direct contact with each other.
  • 34a is a sintered body of metal powder, it can be selected by adjusting the porosity of the sintered body.
  • the heat transport device of the present invention can prevent the working fluid from drying out in the evaporator even under the conditions of use with a high heat input and an increased cooling air flow rate. It is highly useful in the field of cooling electronic parts such as central processing units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

高発熱量の発熱体が熱的に接続される使用条件、冷却風の風量が増大した使用条件であっても、蒸発部における作動流体のドライアウトを防止できる熱輸送装置を提供する。 発熱体と熱的に接続される蒸発部を有する第1の熱輸送部と、前記第1の熱輸送部の凝縮部にて接続された、前記第1の熱輸送部の熱輸送方向とは異なる熱輸送方向を有する第2の熱輸送部と、を備え、前記第1の熱輸送部が、前記蒸発部から前記第2の熱輸送部との接続部まで連通し、且つ作動流体が封入された、一体の内部空間を有し、前記第1の熱輸送部の内部空間が、前記第2の熱輸送部の内部空間と連通した熱輸送装置であり、前記熱輸送装置が、前記第1の熱輸送部の内部空間に設けられた、前記蒸発部から前記凝縮部へ延在した第1のウィック構造体と、前記第2の熱輸送部の内面に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した第2のウィック構造体と、前記第2のウィック構造体上に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した、毛細管力を有する還流促進体と、を備え、前記第1のウィック構造体の毛細管力が前記還流促進体の毛細管力よりも大きく、前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力よりも大きい、または前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力と同じである熱輸送装置。

Description

熱輸送装置
 本発明は、電子回路基板等の基板に搭載された電気・電子部品等の発熱体を冷却する熱輸送装置に関し、特に、高発熱量の発熱体が熱的に接続される使用条件、冷却風の風量が増大した使用条件であっても、蒸発部における作動流体のドライアウトを防止できる熱輸送装置に関する。
 電子機器の高機能化に伴い、電子機器内部には、電子部品等の発熱体を含め、多数の部品が電子回路基板等の基板上に搭載されている。また、電子機器の高機能化に伴い、電子部品等の発熱体の発熱量が増大している。電子部品等の発熱体を冷却する手段として、ベーパーチャンバ、ヒートパイプ、ヒートシンク等の熱輸送部材が使用されることがある。
 しかし、電子部品等の発熱体の発熱量が増大すると、熱輸送部材の蒸発部から凝縮部へ流通する気相の作動流体の流量が増大するので、気相の作動流体とは対向流の関係である液相の作動流体の還流が阻害されることがあった。特に、ウィック構造体が複数の溝部の場合等、ウィック構造体の毛細管力が比較的小さいと、液相の作動流体の還流が阻害されやすい傾向にあった。液相の作動流体の還流が阻害されると、熱輸送部材の凝縮部において液相の作動流体が貯留してしまい、ひいては、凝縮部から蒸発部への液相の作動流体の還流量が不足して、熱輸送部材がドライアウトしてしまうことがあった。
 そこで、電子部品等の発熱体を冷却する熱輸送部材として、金属粉の焼結体等の毛細管力が比較的大きいウィック構造体と作動流体とが収容されているベーパーチャンバであって、第1セクションと、第1セクションから離れる方向に第1セクションの一端から延在する第2セクションと、第2セクションから左右の方向に延在する第4セクションと、第1セクションから離れる方向に第1セクションの一端から延在する第3セクションと、第3セクションから左右の方向に延在する第5セクションと、を備え、第1セクション~第5セクションの全てにわたって前記ウィック構造体が延在したベーパーチャンバが提案されている(特許文献1)。
 特許文献1では、第1セクションに熱的に接続された発熱体の熱を、蒸発部である第1セクションから第2セクションと第3セクションを介して凝縮部である第4セクションと第5セクションへ輸送することで、発熱体を冷却する。また、金属粉の焼結体等の毛細管力が比較的大きいウィック構造体によって、第4セクションと第5セクションから第1セクションへ液相の作動流体を還流させている。
 しかし、特許文献1では、第1セクション~第5セクションの全てにわたって同じウィック構造体が延在しているので、第4セクションと第5セクションに位置するウィック構造体が、液相の作動流体を保持してしまう傾向があった。従って、特許文献1のベーパーチャンバでも、依然として、凝縮部において液相の作動流体が貯留してしまい、凝縮部から蒸発部への液相の作動流体の還流量が不足して、ドライアウトしてしまうことがあった。
 また、高発熱量の発熱体を円滑に冷却するために、熱輸送部材に供給される冷却風の風量を増大させる場合がある。しかし、冷却風の風量を増大させると、凝縮部において、作動流体の気相から液相への相変化が促進されるので、特許文献1のベーパーチャンバでは、やはり、凝縮部において液相の作動流体が貯留してしまい、ドライアウトしてしまうことがあった。
米国特許出願公開第2020/0018555号明細書
 上記事情に鑑み、本発明は、高発熱量の発熱体が熱的に接続される使用条件、冷却風の風量が増大した使用条件であっても、蒸発部における作動流体のドライアウトを防止できる熱輸送装置を提供することを目的とする。
 本発明のヒートシンクの構成の要旨は、以下の通りである。
 [1]発熱体と熱的に接続される蒸発部を有する第1の熱輸送部と、
前記第1の熱輸送部の凝縮部にて接続された、前記第1の熱輸送部の熱輸送方向とは異なる熱輸送方向を有する第2の熱輸送部と、を備え、
 前記第1の熱輸送部が、前記蒸発部から前記第2の熱輸送部との接続部まで連通し、且つ作動流体が封入された、一体の内部空間を有し、前記第1の熱輸送部の内部空間が、前記第2の熱輸送部の内部空間と連通した熱輸送装置であり、
 前記熱輸送装置が、前記第1の熱輸送部の内部空間に設けられた、前記蒸発部から前記凝縮部へ延在した第1のウィック構造体と、
前記第2の熱輸送部の内面に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した第2のウィック構造体と、
前記第2のウィック構造体上に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した、毛細管力を有する還流促進体と、を備え、
 前記第1のウィック構造体の毛細管力が前記還流促進体の毛細管力よりも大きく、前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力よりも大きい、または前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力と同じである熱輸送装置。
 [2]前記第1のウィック構造体と前記還流促進体とが、毛細管力を有する接続部材を介して接続されている[1]に記載の熱輸送装置。
 [3]前記第1のウィック構造体の毛細管力が前記接続部材の毛細管力よりも大きく、前記接続部材の毛細管力が前記還流促進体の毛細管力よりも大きい、または前記接続部材の毛細管力が前記還流促進体の毛細管力と同じである[2]に記載の熱輸送装置。
 [4]前記接続部材が、前記第1の熱輸送部と前記第2の熱輸送部との接続部に位置する[2]または[3]に記載の熱輸送装置。
 [5]前記還流促進体が、前記第2の熱輸送部の熱輸送方向に対して直交方向の断面において、前記断面の周長の5%以上の領域を覆っている[1]乃至[4]のいずれか1つに記載の熱輸送装置。
 [6]前記還流促進体が、複数の還流促進部からなり、複数の前記還流促進部の毛細管力が相互に異なる[1]乃至[5]のいずれか1つに記載の熱輸送装置。
 [7]前記第1の熱輸送部のコンテナが、平面型である[1]乃至[6]のいずれか1つに記載の熱輸送装置。
 [8]前記第2の熱輸送部のコンテナが、一体の内部空間を有する平面型である[1]乃至[7]のいずれか1つに記載の熱輸送装置。
 [9]前記第2の熱輸送部が、複数の管体である[1]乃至[7]のいずれか1つに記載の熱輸送装置。
 [10]前記第2の熱輸送部が、複数設けられ、前記第1の熱輸送部から複数の方向に延在している[1]乃至[9]のいずれか1つに記載の熱輸送装置。
 [11]複数の前記管体が、重力方向下方へ延在している[9]に記載の熱輸送装置。
 [12]前記第2の熱輸送部に複数の放熱フィンが熱的に接続されたヒートシンクである、[1]乃至[11]のいずれか1つに記載の熱輸送装置。
 本発明の熱輸送装置の態様では、蒸発部(すなわち、受熱部)を有する熱輸送部材の内部空間は、複数のヒートパイプが並列配置されたヒートパイプ群の内部空間とは異なり、全体が連通して一体となっている。本発明の熱輸送装置の態様では、第1の熱輸送部のうち、冷却対象である発熱体と熱的に接続される部位が蒸発部(すなわち、受熱部)として機能し、第2の熱輸送部と接続された部位が第1の熱輸送部の凝縮部(すなわち、放熱部)として機能する。第1の熱輸送部の蒸発部では、作動流体が発熱体から受熱して液相から気相へ相変化し、第1の熱輸送部の凝縮部では、気相の作動流体の一部が潜熱を放出して気相から液相へ相変化する。本発明の熱輸送装置の態様では、発熱体の熱は、第1の熱輸送部によって第1の熱輸送部の蒸発部から第1の熱輸送部の凝縮部へ輸送され、さらには、第1の熱輸送部の凝縮部から第2の熱輸送部へ輸送される。また、第1の熱輸送部が発熱体から受熱することで気相に相変化した作動流体は、第1の熱輸送部から第2の熱輸送部へ流通する。気相の作動流体が第1の熱輸送部から第2の熱輸送部へ流通することで、第2の熱輸送部は、第1の熱輸送部から熱を受け、発熱体の熱は、第1の熱輸送部から第2の熱輸送部へ拡散する。第2の熱輸送部に放熱フィン等の熱交換手段が熱的に接続されることで、第2の熱輸送部は、さらに、第1の熱輸送部から受けた熱を熱交換手段へ伝達し、熱交換手段から外部環境へ熱が放出される。第2の熱輸送部が第1の熱輸送部から受けた熱を熱交換手段へ伝達する際に、第1の熱輸送部から第2の熱輸送部へ流通した気相の作動流体は液相へ相変化する。
 上記態様では、第1の熱輸送部の熱輸送方向と第2の熱輸送部の熱輸送方向は相違するので、第1の熱輸送部の延在方向と第2の熱輸送部の延在方向は相違する。
 また、第1の熱輸送部のコンテナが平面型であり、第2の熱輸送部のコンテナが一体の内部空間を有する平面型である態様では、熱輸送装置は、ベーパーチャンバの構成となっている。
 本発明の熱輸送装置の態様では、第1の熱輸送部の内部空間に設けられた、蒸発部から凝縮部へ延在した第1のウィック構造体の毛細管力が、第2の熱輸送部の内面に形成された第2のウィック構造体上に設けられた還流促進体の毛細管力よりも大きく、還流促進体の毛細管力が第2のウィック構造体の毛細管力よりも大きい、または第2のウィック構造体の毛細管力と同じであるので、第2の熱輸送部の内面には第2のウィック構造体と還流促進体とが設けられているとともに、蒸発部を有する第1の熱輸送部に設けられた第1のウィック構造体の毛細管力が相対的に大きい態様となっている。従って、本発明の熱輸送装置の態様によれば、高発熱量の発熱体が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、液相の作動流体の第2の熱輸送部の先端部から第1の熱輸送部との接続部方向への還流及び第1の熱輸送部の凝縮部から蒸発部への還流が円滑化される。また、本発明の熱輸送装置の態様によれば、第2の熱輸送部の内面に設けられた第2のウィック構造体と還流促進体は、いずれも毛細管力が相対的に小さいので、液相の作動流体を保持して第2の熱輸送部に液相の作動流体が貯留してしまうことを防止できる。また、本発明の熱輸送装置の態様によれば、第2のウィック構造体中を第2の熱輸送部の先端部から第1の熱輸送部との接続部方向へ還流する液相の作動流体は、還流促進体によって、対向流である気相の作動流体の流れから保護され、さらに、還流促進体も、第2の熱輸送部の先端部から第1の熱輸送部との接続部方向への液相の作動流体の還流に寄与する。上記から、本発明の熱輸送装置の態様によれば、高発熱量の発熱体が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、蒸発部における作動流体のドライアウトを防止できる。
 本発明の熱輸送装置の態様によれば、第1のウィック構造体と還流促進体とが、毛細管力を有する接続部材を介して接続されていることにより、第2の熱輸送部から第1の熱輸送部への液相の作動流体の還流がさらに円滑化される。
 本発明の熱輸送装置の態様によれば、第1のウィック構造体の毛細管力が接続部材の毛細管力よりも大きく、接続部材の毛細管力が還流促進体の毛細管力よりも大きい、または還流促進体の毛細管力と同じであることにより、液相の作動流体が第2の熱輸送部から第1の熱輸送部へ流通するに従って毛細管力が大きくなるので、高発熱量の発熱体が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、より確実に、蒸発部における作動流体のドライアウトを防止できる。
 本発明の熱輸送装置の態様によれば、還流促進体が第2の熱輸送部の熱輸送方向に対して直交方向の断面において前記断面の周長の5%以上の領域を覆っていることにより、還流促進体が液相の作動流体の第2の熱輸送部の先端部から第1の熱輸送部との接続部方向への還流をさらに促進する。
 本発明の熱輸送装置の態様によれば、還流促進体が、複数の還流促進部からなり、複数の前記還流促進部の毛細管力が相互に異なることにより、第2の熱輸送部の先端部から第1の熱輸送部との接続部方向へ向かうに従って還流促進体の毛細管力を大きくできるので、液相の作動流体の第2の熱輸送部の先端部から第1の熱輸送部との接続部方向への還流がさらに円滑化される。
 本発明の熱輸送装置の態様によれば、第2の熱輸送部が複数設けられ、第1の熱輸送部から複数の方向に延在していることにより、第1の熱輸送部から第2の熱輸送部へ輸送された熱は第1の熱輸送部の延在方向(熱輸送方向)とは異なる複数の方向へ輸送されるので、熱輸送装置の寸法の増大を防止することができ、結果、省スペース化を図ることができる。
本発明の第1実施形態例に係る熱輸送装置の内部の概要を説明する平面断面図である。 本発明の第1実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する正面断面図である。 本発明の第1実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する側面断面図である。 本発明の第1実施形態例に係る熱輸送装置の第2の熱輸送部の内部の作動流体の流れを説明する説明図である。 本発明の第2実施形態例に係る熱輸送装置の内部の概要を説明する平面断面図である。 本発明の第2実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する正面断面図である。 本発明の第2実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する側面断面図である。 本発明の第3実施形態例に係る熱輸送装置の側面図である。 本発明の第4実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する正面断面図である。
 以下に、本発明の実施形態例に係る熱輸送装置について、図面を用いながら説明する。まず、本発明の第1実施形態例に係る熱輸送装置について説明する。なお、図1は、本発明の第1実施形態例に係る熱輸送装置の内部の概要を説明する平面断面図である。図2は、本発明の第1実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する正面断面図である。図3は、本発明の第1実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する側面断面図である。図4は、本発明の第1実施形態例に係る熱輸送装置の第2の熱輸送部の内部の作動流体の流れを説明する説明図である。
 図1に示すように、本発明の第1実施形態例に係る熱輸送装置1は、発熱体100と熱的に接続される蒸発部11を有する第1の熱輸送部10と、第1の熱輸送部10の凝縮部12にて接続された、第1の熱輸送部10の熱輸送方向D1とは異なる熱輸送方向D2、D3を有する第2の熱輸送部20と、を備えている。第2の熱輸送部20は、第1の熱輸送部10とは第1の熱輸送部10の凝縮部12にて接続されていることで、第1の熱輸送部10と第2の熱輸送部20との接続部30が形成されている。また、第1の熱輸送部10の内部空間が、第2の熱輸送部20の内部空間と連通している。熱輸送装置1では、第1の熱輸送部10は、蒸発部11から第2の熱輸送部20との接続部30まで連通し、且つ作動流体が封入された一体である内部空間を有している。
 第1の熱輸送部10は、中空の空洞部13を有するコンテナ19と、空洞部13を流通する作動流体(図1では、図示せず)と、を有している。コンテナ19は、熱輸送装置1の設置面側に位置する一方の板状体40と一方の板状体40と対向する他方の板状体(図1では、図示せず)とを重ね合わせることにより形成されている。
 一方の板状体40は平面部の縁部に平面部から立設した側壁を有する板状である。他方の板状体も、平面部の縁部に平面部から立設した側壁を有する板状である。従って、一方の板状体40と他方の板状体は、いずれも凹形状となっている。一方の板状体40と他方の板状体とを凹形状を対向させた状態で重ね合わせることにより、コンテナ19の空洞部13が形成される。従って、熱輸送装置1では、第1の熱輸送部10のコンテナ19の形状は平面型である。コンテナ19の空洞部13は、外部環境に対して密閉された内部空間であり、脱気処理により減圧されている。
 コンテナ19外面のうち、冷却対象である発熱体100が熱的に接続される部位が蒸発部11として機能する。発熱体100が第1の熱輸送部10のコンテナ19に熱的に接続されることで、発熱体100が冷却される。第1の熱輸送部10では、第1の熱輸送部10の熱輸送方向D1である延在方向の一方端に、発熱体100が熱的に接続されている。従って、第1の熱輸送部10の延在方向の一方端に蒸発部11が形成されている。
 第1の熱輸送部10は、発熱体100の位置から所定方向へ延在しており、第1の熱輸送部10の延在方向の一方端に対向する他方端に第2の熱輸送部20が接続されている。第2の熱輸送部20が接続されている第1の熱輸送部10の他方端が、第1の熱輸送部10の凝縮部12として機能する。
 第1の熱輸送部10は、コンテナ19の一方端に位置する蒸発部11とコンテナ19の他方端に位置する凝縮部12との間に位置する中間部が、断熱部15として機能する。発熱体100から蒸発部11へ伝達された熱が、断熱部15を介して、蒸発部11から凝縮部12へ輸送される。
 図1に示すように、第1の熱輸送部10の空洞部13には、毛細管力を有する第1のウィック構造体14が収納されている。第1のウィック構造体14は、第1の熱輸送部10の内部空間に設けられており、蒸発部11から凝縮部12へ延在している。第1のウィック構造体14は、第1の熱輸送部10の幅方向略全面にて、コンテナ19の蒸発部11から凝縮部12まで延在している。
 第1のウィック構造体14としては、特に限定されないが、例えば、銅粉等の金属粉の焼結体、金属線からなる金属メッシュ、不織布、金属繊維等を挙げることができる。第1の熱輸送部10では、第1のウィック構造体14として、金属粉の焼結体が用いられている。また、第1の熱輸送部10では、コンテナ19の内面に、さらに、グルーブ(複数の細溝、図示せず)が設けられていてもよい。空洞部13のうち、第1のウィック構造体14の設けられていない部位が、気相の作動流体の流通する蒸気流路16として機能する。蒸気流路16は、第1のウィック構造体14がコンテナ19の蒸発部11から凝縮部12まで延在していることに対応して、コンテナ19の蒸発部11から凝縮部12まで延在している。第1の熱輸送部10は、作動流体の動作による熱輸送特性によって、蒸発部11にて受けた発熱体100の熱を蒸発部11から凝縮部12へ輸送する。
 図1に示すように、第1の熱輸送部10の凝縮部12の側面には、第1の熱輸送部10のコンテナ19の空洞部13と内部空間の連通した第2の熱輸送部20が設けられている。第2の熱輸送部20は、中空の空洞部23を有するコンテナ29を備えている。第2の熱輸送部20の空洞部23は、接続部30を介して第1の熱輸送部10の空洞部13と連通している。
 コンテナ29は、熱輸送装置1の設置面側に位置する一方の板状体41と一方の板状体41と対向する他方の板状体(図1では、図示せず)とを重ね合わせることにより形成されている。一方の板状体41は平面部の縁部に平面部から立設した側壁を有する板状である。他方の板状体も、平面部の縁部に平面部から立設した側壁を有する板状である。従って、一方の板状体41と他方の板状体は、いずれも凹形状となっている。一方の板状体41と他方の板状体とを凹形状を対向させた状態で重ね合わせることにより、コンテナ29の空洞部23が形成される。従って、熱輸送装置1では、第2の熱輸送部20のコンテナ29の形状は平面型である。
 コンテナ29の空洞部23は、熱輸送装置1の外部環境に対して密閉された内部空間であり、脱気処理により減圧されている。作動流体は、第1の熱輸送部10のコンテナ19の空洞部13と第2の熱輸送部20のコンテナ29の空洞部23との間で流通可能となっている。上記から、第1の熱輸送部10の空洞部13を流通する作動流体は、第1の熱輸送部10の空洞部13から第2の熱輸送部20の空洞部23までの空間に封入されている。
 第2の熱輸送部20の形状は、特に限定されず、熱輸送装置1では、第2の熱輸送部20のコンテナ29が、一体の内部空間を有する平面型である。
 第2の熱輸送部20は、第1の熱輸送部10の凝縮部12の平面方向に沿って、第1の熱輸送部10の熱輸送方向に対して略直交方向に延在している。従って、第2の熱輸送部20は、重力方向に対して直交する方向に沿って設置されることがある。熱輸送装置1では、第2の熱輸送部20の延在方向が第1の熱輸送部10の延在方向(熱輸送方向)と平行ではないので、第1の熱輸送部10から輸送された熱は、第2の熱輸送部20によって、第1の熱輸送部10の延在方向とは異なる方向へ輸送される。従って、第1の熱輸送部10の熱輸送方向における熱輸送装置1の寸法の増大を防止することができるので、熱輸送装置1の省スペース化を図ることができる。
 第2の熱輸送部20は、複数設けられ、第1の熱輸送部10から複数の方向に延在している。熱輸送装置1では、第2の熱輸送部20は、2つ設けられ、第2の熱輸送部20は、第1の熱輸送部10を中心にして左右両方向へ延在している。複数の第2の熱輸送部20が第1の熱輸送部10から複数の方向(熱輸送装置1では2方向)に延在しているので、第1の熱輸送部10から第2の熱輸送部20へ輸送された熱は、第1の熱輸送部10の延在方向とは異なる複数の方向(熱輸送装置1では2方向)へ分岐して輸送される。従って、第1の熱輸送部10の延在方向における熱輸送装置1の寸法の増大をより確実に防止することができる。
 図1~3に示すように、第2の熱輸送部20の内面には、第2の熱輸送部20の熱輸送方向に沿って延在した第2のウィック構造体24が設けられている。第2のウィック構造体24は、液相の作動流体を第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向へ還流させる機能を有する。
 第2のウィック構造体24は、コンテナ19に収納された第1のウィック構造体14とは異なる構造の、毛細管力を有するウィック構造体である。熱輸送装置1では、第2のウィック構造体24として、第2の熱輸送部20の内面に、グルーブ(複数の細溝)が形成されている。上記から、熱輸送装置1では、第2のウィック構造体24は、第1のウィック構造体14とは異なる種類のウィック構造体である。第2のウィック構造体24であるグルーブは、第2の熱輸送部20の熱輸送方向に沿って延在している。熱輸送装置1では、第2のウィック構造体24は、第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30まで延在している。
 また、第2の熱輸送部20には、第2のウィック構造体24上に、第2の熱輸送部20の熱輸送方向に沿って延在した、毛細管力を有する還流促進体34が設けられている。還流促進体34は、液相の作動流体が第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向へ還流するのを促進する機能を有する。還流促進体34は、第2のウィック構造体24に接する態様で設けられている。熱輸送装置1では、還流促進体34は、第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30近傍まで延在している。
 還流促進体34は、コンテナ19に収納された第1のウィック構造体14及びコンテナ29に収納された第2のウィック構造体24とは異なる構造の、毛細管力を有するウィック部材である。還流促進体34としては、特に限定されないが、例えば、銅粉等の金属粉の焼結体、金属線からなる金属メッシュ、不織布、金属繊維等を挙げることができる。熱輸送装置1では、還流促進体34全体が、同じ部材で形成され、還流促進体34全体が略同じ毛細管力を有している。熱輸送装置1では、還流促進体34として、シート状の金属メッシュが使用されている。上記から、熱輸送装置1では、還流促進体34は、第1のウィック構造体14及び第2のウィック構造体24とは異なる種類のウィック部材である。第2の熱輸送部20の空洞部23のうち、還流促進体34及び第2のウィック構造体24の設けられていない部位が、気相の作動流体の流通する蒸気流路26として機能する。蒸気流路26は、第1の熱輸送部10との接続部30から第2の熱輸送部20のコンテナ29の先端部33まで延在している。第2の熱輸送部20は、作動流体の動作による熱輸送特性によって、第1の熱輸送部10から受けた発熱体100の熱を第1の熱輸送部10との接続部30から第2の熱輸送部20の先端部33方向へ輸送する。
 還流促進体34の設置位置は、第2の熱輸送部20のコンテナ29内面であれば、特に限定されないが、還流促進体34は、液相の作動流体の第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向への還流をさらに促進して、第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向へ、液相の作動流体がさらに円滑に還流できる点から、第2の熱輸送部20の熱輸送方向に対して直交方向の断面において、前記断面の周長の5%以上の領域を覆っていることが好ましい。また、第2の熱輸送部20の延在方向が重力方向に対して略直交方向となるように、第2の熱輸送部20が設置される場合には、還流促進体34は、第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向への液相の作動流体の還流をさらに促進しつつ、蒸気流路26を確実に確保する点から、前記断面の周長の25%以上50%以下の領域を覆っていることが好ましい。また、第2の熱輸送部20の先端部33が、第1の熱輸送部10との接続部30よりも重力方向下方となるように、第2の熱輸送部20が設置される場合には、還流促進体34は、第2の熱輸送部20の先端部33から接続部30方向への液相の作動流体の還流を確実に促進する点から、前記断面の周長の50%以上100%以下の領域を覆っていることが好ましい。
 図2、3に示すように、熱輸送装置1では、一方の板状体41と一方の板状体41と対向する他方の板状体43とを重ね合わせることにより形成されているコンテナ29内面のうち、還流促進体34は、重力方向下方に位置する板状体である一方の板状体41上に設けられており、他方の板状体43には設けられていない。
 熱輸送装置1では、第1のウィック構造体14の毛細管力が還流促進体34の毛細管力よりも大きい態様となっている。また、還流促進体34の毛細管力は、第2のウィック構造体24の毛細管力よりも大きい、または第2のウィック構造体24の毛細管力と同等の態様となっている。
 図1、2に示すように、第1の熱輸送部10に設けられた第1のウィック構造体14と第2の熱輸送部20に設けられた還流促進体34とが、毛細管力を有する接続部材35を介して接続されていてもよい。接続部材35は、第1の熱輸送部10と第2の熱輸送部20との接続部30とその近傍に位置している。
 接続部材35は、コンテナ19に収納された第1のウィック構造体14、コンテナ29に収納された第2のウィック構造体24及び還流促進体34とは異なる構造の、毛細管力を有するウィック部材である。接続部材35としては、例えば、金属メッシュ、金属線の編組体、金属繊維等を挙げることができる。熱輸送装置1では、接続部材35は、第1のウィック構造体14、第2のウィック構造体24及び還流促進体34とは異なる種類のウィック部材としてもよい。
 熱輸送装置1では、第1のウィック構造体14の毛細管力は、接続部材35の毛細管力よりも大きい態様となっている。また、接続部材35の毛細管力は、還流促進体34の毛細管力よりも大きい、または還流促進体34の毛細管力と略同じの態様となっている。
 第2の熱輸送部20内部で気相から液相へ相変化した作動流体は、第2のウィック構造体24の毛細管力と還流促進体34の毛細管力によって、第2のウィック構造体24内部と還流促進体34内部を、第2の熱輸送部20の先端部33から接続部30方向へ還流する。接続部30近傍まで還流した液相の作動流体は、第2のウィック構造体24と還流促進体34から接続部材35の一端へ流通する。接続部材35の一端へ流通した液相の作動流体は、接続部材35を一端から他端へ流通し、接続部材35の他端から第1の熱輸送部10の第1のウィック構造体14へ還流する。
 従って、接続部材35を設けることで、第2の熱輸送部20から第1の熱輸送部10への液相の作動流体の還流がさらに円滑化される。上記から、接続部材35により、第2の熱輸送部20と第1の熱輸送部10間における液相の作動流体の流通性能が向上するので、熱輸送装置1の熱輸送特性が向上する。
 なお、接続部材35を設けない場合には、第2の熱輸送部20と第1の熱輸送部10間における液相の作動流体の流通性能を向上させる点から、接続部30近傍で、還流促進体34が第1のウィック構造体14と接する構造とすることが好ましい。
 コンテナ19及びコンテナ29の材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ステンレス、チタン、チタン合金等を挙げることができる。熱輸送装置1に封入する作動流体としては、コンテナ19及びコンテナ29の材料との適合性に応じて、適宜選択可能であり、例えば、水、フルオロカーボン類、ハイドロフルオロエーテル(HFE)、シクロペンタン、エチレングリコール、これらの混合物等を挙げることができる。
 コンテナ19及びコンテナ29の厚さとしては、機械的強度、重量等から適宜選択可能であり、例えば、0.5~3mmを挙げることができる。コンテナ19及びコンテナ29の幅は、熱輸送装置1の使用条件等により適宜選択可能であり、例えば、4~20mmを挙げることができる。
 次に、図1~3を用いて、熱輸送装置1の熱輸送機能のメカニズムについて説明する。まず、第1の熱輸送部10のコンテナ19の一方端に被冷却体である発熱体100を熱的に接続して、コンテナ19の一方端を蒸発部11として機能させる。コンテナ19の一方端が発熱体100から受熱すると、コンテナ19の一方端において、空洞部13の液相の作動流体へ熱が伝達されて、コンテナ19の一方端の空洞部13にて、液相の作動流体が気相の作動流体へと相変化する。気相の作動流体は、蒸気流路16をコンテナ19の一方端から凝縮部12である他方端へ流通する。気相の作動流体が、コンテナ19の一方端から他方端へ流通することで、第1の熱輸送部10が、その一方端から他方端へ熱を輸送する。熱交換手段(図示せず)がコンテナ19の他方端にて熱的に接続されていると、熱交換手段の熱交換作用によって、コンテナ19の他方端へ流通した気相の作動流体の一部が潜熱を放出して液相の作動流体へ相変化し、放出された潜熱は熱交換手段へ伝達される。熱交換手段へ伝達された熱は、熱交換手段を介して熱輸送装置1の外部環境へ放出される。コンテナ19の他方端にて液相に相変化した作動流体は、第1のウィック構造体14の毛細管力により、コンテナ19の他方端から一方端へ還流する。
 また、第1の熱輸送部10の空洞部13と第2の熱輸送部20の空洞部23とは連通しているので、第1の熱輸送部10の蒸発部11にて液相から気相へ相変化した作動流体のうち、第1の熱輸送部10の凝縮部12にて液相に相変化しなかった作動流体は、第1の熱輸送部10の空洞部13から接続部30を介して第2の熱輸送部20の空洞部23へ流入する。第1の熱輸送部10の空洞部13から第2の熱輸送部20の空洞部23へ流入した気相の作動流体は、接続部30から第2の熱輸送部20の先端部33方向へ蒸気流路26を流通する。気相の作動流体が、接続部30から第2の熱輸送部20の先端部33方向へ蒸気流路26を流通することで、第2の熱輸送部20が、接続部30からその先端部33方向へ熱を輸送する。熱交換手段(図示せず)が第2の熱輸送部20のコンテナ29に熱的に接続されていると、熱交換手段の熱交換作用によって、第2の熱輸送部20の空洞部23へ流入した気相の作動流体は、第2の熱輸送部20内部にて潜熱を放出して、液相の作動流体へ相変化する。第2の熱輸送部20内部にて放出された潜熱は、第2の熱輸送部20と熱的に接続されている熱交換手段へ伝達される。熱交換手段へ伝達された熱は、熱交換手段を介して熱輸送装置1の外部環境へ放出される。第2の熱輸送部20内部にて気相から液相に相変化した作動流体は、第2の熱輸送部20内面に設けられた第2のウィック構造体24と還流促進体34の毛細管力によって、第2の熱輸送部20の先端部33から接続部30方向へ還流する。第2の熱輸送部20の先端部33から接続部30近傍へ還流した液相の作動流体は、接続部材35を介してコンテナ19の他方端(凝縮部12)にて第1のウィック構造体14へ還流する。第1のウィック構造体14へ還流した液相の作動流体は、第1のウィック構造体14の毛細管力により、コンテナ19の他方端(凝縮部12)からコンテナ19の一方端(蒸発部11)へ還流する。
 熱輸送装置1では、第1の熱輸送部10の空洞部13に設けられた、蒸発部11から凝縮部12へ延在した第1のウィック構造体14の毛細管力が、第2の熱輸送部20の内面に形成された第2のウィック構造体24上に設けられた還流促進体34の毛細管力よりも大きく、還流促進体34の毛細管力が第2のウィック構造体24の毛細管力よりも大きい、または還流促進体34の毛細管力が第2のウィック構造体24の毛細管力と略同じであるので、第2の熱輸送部20の内面には第2のウィック構造体24と還流促進体34とが設けられているとともに、蒸発部11を有する第1の熱輸送部10に設けられた第1のウィック構造体14の毛細管力が相対的に大きい態様となっている。従って、熱輸送装置1では、高発熱量の発熱体100が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、液相の作動流体の第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向への還流及び第1の熱輸送部10の凝縮部12から蒸発部11への還流が円滑化される。また、熱輸送装置1では、第2の熱輸送部20の内面に設けられた第2のウィック構造体24と還流促進体34は、いずれも毛細管力が相対的に小さいので、液相の作動流体を保持して第2の熱輸送部20に液相の作動流体が貯留してしまうことを防止できる。
 また、図4に示すように、熱輸送装置1では、第2のウィック構造体24中を第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向へ還流する液相の作動流体F1は、還流促進体34によって、対向流である気相の作動流体Gの流れから保護され、さらに、還流促進体34も、第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向への液相の作動流体F2の還流に寄与する。さらに、第2のウィック構造体24と還流促進体34との界面部Sも、第2の熱輸送部20の先端部33から第1の熱輸送部10との接続部30方向への液相の作動流体F3の還流に寄与する。上記から、熱輸送装置1では、高発熱量の発熱体100が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、蒸発部11における作動流体のドライアウトを防止できる。
 また、熱輸送装置1では、第1のウィック構造体14の毛細管力が接続部材35の毛細管力よりも大きく、接続部材35の毛細管力が還流促進体34の毛細管力よりも大きい、または接続部材35の毛細管力が還流促進体34の毛細管力と略同じなので、液相の作動流体が第2の熱輸送部20から第1の熱輸送部10へ流通するに従って毛細管力が大きくなる態様なので、高発熱量の発熱体100が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、より確実に、蒸発部11における作動流体のドライアウトを防止できる。
 次に、本発明の第2実施形態例に係る熱輸送装置について、図面を用いながら説明する。なお、第2実施形態例に係る熱輸送装置は、第1実施形態例に係る熱輸送装置と主要部は共通しているので、第1実施形態例に係る熱輸送装置と同じ構成要素については、同じ符号を用いて説明する。なお、図5は、本発明の第2実施形態例に係る熱輸送装置の内部の概要を説明する平面断面図である。図6は、本発明の第2実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する正面断面図である。図7は、本発明の第2実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する側面断面図である。
 第1実施形態例に係る熱輸送装置1では、第2の熱輸送部20は、一体の内部空間を有する平面型のコンテナであったが、図5に示すように、第2実施形態例に係る熱輸送装置2では、第2の熱輸送部20は、一体の内部空間を有する平面型のコンテナに代えて、複数の管体51、51、51・・・となっている。
 第2の熱輸送部20は、中空の空洞部23を有する管体51を複数備えている。複数の管体51、51、51・・・が、管体51の径方向に沿って並列配置されて、1つの第2の熱輸送部20が形成されている。管体51の長手方向が、管体51の熱輸送方向であり、ひいては、第2の熱輸送部20の熱輸送方向となっている。
 管体51の第1の熱輸送部10側端部(以下、「基部」ということがある。)32は開口しており、基部32とは反対の端部(すなわち、先端部33)は閉塞している。第2の熱輸送部20を形成する管体51の空洞部23は、接続部30を介して第1の熱輸送部10の空洞部13と連通している。管体51の空洞部23は、熱輸送装置2の外部環境に対して密閉された内部空間であり、脱気処理により減圧されている。作動流体は、第1の熱輸送部10の空洞部13と管体51の空洞部23との間で流通可能となっている。
 第1の熱輸送部10のコンテナ19の側面部には、管体51をコンテナ19に取り付けるための貫通孔(図示せず)が形成されている。貫通孔の形状と寸法は、管体51の形状と寸法に対応しており、管体51の基部32が、コンテナ19の貫通孔に嵌挿されることで、管体51が第1の熱輸送部10に接続されている。従って、管体51と第1の熱輸送部10のコンテナ19は、別の部材からなっている。コンテナ19に取り付けた管体51を固定する方法としては、特に限定されないが、例えば、溶接、はんだ付け、ろう付け等を挙げることができる。管体51は、第1の熱輸送部10の凝縮部12の平面方向に沿って、第1の熱輸送部10の熱輸送方向に対して略直交方向に延在している。従って、熱輸送装置2では、管体51の長手方向が、重力方向に対して直交する方向に沿うように設置されることがある。
 図5~7に示すように、それぞれの管体51の内面には、管体51の熱輸送方向に沿って延在した第2のウィック構造体24が設けられている。第2のウィック構造体24は、液相の作動流体を管体51の先端部33から第1の熱輸送部10との接続部30方向へ還流させる機能を有する。熱輸送装置2でも、第2のウィック構造体24は、管体51の先端部33から第1の熱輸送部10との接続部30まで延在している。熱輸送装置2でも、第2のウィック構造体24として、管体51の内面に、グルーブ(複数の細溝)が形成されている。
 また、それぞれの管体51には、第2のウィック構造体24上に、第2の熱輸送部20の熱輸送方向に沿って延在した、毛細管力を有する還流促進体34が設けられている。熱輸送装置2では、還流促進体34は、管体51の長手方向中央部36から第1の熱輸送部10との接続部30近傍(すなわち、基部32近傍)まで延在している。上記から、熱輸送装置2では、管体51の先端部33から中央部36の領域には、還流促進体34が設けられておらず、第2のウィック構造体24が露出している。管体51の内面のうち、還流促進体34は、重力方向下方の部位に設けられており、重力方向上方の部位には設けられていない。なお、熱輸送装置2でも、還流促進体34全体が、同じ部材で形成され、還流促進体34全体が略同じ毛細管力を有している。
 熱輸送装置2でも、第1の熱輸送部10に設けられた第1のウィック構造体14と管体51に設けられた還流促進体34とが、毛細管力を有する接続部材35を介して接続されていてもよい。
 管体51の形状は、特に限定されず、熱輸送装置2では、長手方向の形状は直線状であり、長手方向に対して直交方向(径方向)の形状は楕円形状となっている。また、いずれの管体51も、形状、寸法は略同じとなっている。第2の熱輸送部20を構成する管体51の材料としては、第2の熱輸送部20のコンテナ29の材料と同じく、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ステンレス、チタン、チタン合金等を挙げることができる。
 図5~7に示すように、熱輸送装置2では、管体51に、熱交換手段である複数の第1の放熱フィン61、61、61・・・が熱的に接続されている。複数の第1の放熱フィン61、61、61・・・は、管体51の長手方向に沿って並列配置されている。第1の放熱フィン61に形成された複数の貫通孔のそれぞれに管体51が嵌挿されることで、第1の放熱フィン61が管体51の位置に取り付け、固定されて、第1の放熱フィン61が複数の管体51、51、51・・・と熱的に接続されている。上記から、熱輸送装置2は、第2の熱輸送部20に複数の第1の放熱フィン61、61、61・・・が熱的に接続されたヒートシンクである。
 また、図6に示すように、第1の熱輸送部10の凝縮部12に、熱交換手段である複数の第2の放熱フィン62、62、62・・・が熱的に接続されている(図5では、説明の便宜上、図示せず)。複数の第2の放熱フィン62、62、62・・・は、第1の熱輸送部10の幅方向に沿って並列配置されている。第2の放熱フィン62は、第1の熱輸送部10の位置に取り付け、固定されて、第1の熱輸送部10と熱的に接続されている。第1の放熱フィン61、第2の放熱フィン62ともに、薄い平板状の部材である。
 熱輸送装置2でも、第1の熱輸送部10の空洞部13に設けられた、蒸発部11から凝縮部12へ延在した第1のウィック構造体14の毛細管力が、第2の熱輸送部20である管体51の内面に形成された第2のウィック構造体24上に設けられた還流促進体34の毛細管力よりも大きく、還流促進体34の毛細管力が第2のウィック構造体24の毛細管力よりも大きい、または還流促進体34の毛細管力が第2のウィック構造体24の毛細管力と略同じであるので、管体51の内面には第2のウィック構造体24と還流促進体34とが設けられているとともに、蒸発部11を有する第1の熱輸送部10に設けられた第1のウィック構造体14の毛細管力が相対的に大きい態様となっている。従って、熱輸送装置2でも、高発熱量の発熱体100が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、管体51の先端部33から第1の熱輸送部10との接続部30方向への液相の作動流体の還流及び第1の熱輸送部10の凝縮部12から蒸発部11への液相の作動流体の還流が円滑化される。また、熱輸送装置2でも、管体51の内面に設けられた第2のウィック構造体24と還流促進体34は、いずれも毛細管力が相対的に小さいので、液相の作動流体を保持して管体51に液相の作動流体が貯留してしまうことを防止できる。
 また、熱輸送装置2でも、第2のウィック構造体24中を管体51の先端部33から第1の熱輸送部10との接続部30方向へ還流する液相の作動流体は、還流促進体34によって、対向流である気相の作動流体の流れから保護され、さらに、還流促進体34も、管体51の先端部33から第1の熱輸送部10との接続部30方向への液相の作動流体の還流に寄与する。さらに、第2のウィック構造体24と還流促進体34との界面部も、管体51の先端部33から第1の熱輸送部10との接続部30方向への液相の作動流体の還流に寄与する。上記から、熱輸送装置2でも、高発熱量の発熱体100が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、蒸発部11における作動流体のドライアウトを防止できる。
 次に、本発明の第3実施形態例に係る熱輸送装置について、図面を用いながら説明する。なお、第3実施形態例に係る熱輸送装置は、第1及び第2実施形態例に係る熱輸送装置と主要部は共通しているので、第1及び第2実施形態例に係る熱輸送装置と同じ構成要素については、同じ符号を用いて説明する。なお、図8は、本発明の第3実施形態例に係る熱輸送装置の側面図である。
 第1及び第2実施形態例の熱輸送装置1、2では、第2の熱輸送部20は、第1の熱輸送部10の凝縮部12の平面方向に沿って、第1の熱輸送部10の熱輸送方向に対して略直交方向に延在していたが、図8に示すように、第3実施形態例に係る熱輸送装置3では、第2の熱輸送部20は、第1の熱輸送部10の凝縮部12の平面方向に対して鉛直方向、かつ第1の熱輸送部10の熱輸送方向に対して略直交方向に延在している。
 熱輸送装置3では、第2の熱輸送部20は複数の管体51、51、51・・・からなり、第2の熱輸送部20を形成する複数の管体51、51、51・・・は、重力方向下方へ延在している。熱輸送装置3では、第2の熱輸送部20は1つ設けられている。第2の熱輸送部20の先端部33が、第1の熱輸送部10の蒸発部11よりも重力方向下方に設置されているので、第2の熱輸送部20の先端部33から第1の熱輸送部10への液相の作動流体の還流を確実に促進する点から、還流促進体は、管体51の熱輸送方向に対して直交方向の断面における周長の50%以上100%以下の領域を覆っていることが好ましい。
 熱輸送装置3でも、管体51の内面には第2のウィック構造体と還流促進体とが設けられているとともに、蒸発部11を有する第1の熱輸送部10に設けられた第1のウィック構造体の毛細管力が相対的に大きい態様となっているので、高発熱量の発熱体100が熱的に接続される使用条件や冷却風の風量が増大した使用条件であっても、管体51の先端部33から第1の熱輸送部10方向への液相の作動流体の還流及び第1の熱輸送部10の凝縮部12から蒸発部11への液相の作動流体の還流が円滑化される。
 次に、本発明の第4実施形態例に係る熱輸送装置について、図面を用いながら説明する。なお、第4実施形態例に係る熱輸送装置は、第1~第3実施形態例に係る熱輸送装置と主要部は共通しているので、第1~第3実施形態例に係る熱輸送装置と同じ構成要素については、同じ符号を用いて説明する。なお、図9は、本発明の第4実施形態例に係る熱輸送装置の第2の熱輸送部の内部の概要を説明する正面断面図である。
 第1~第3実施形態例に係る熱輸送装置1、2、3では、還流促進体34全体が、同じ部材で形成され、還流促進体34全体が略同じ毛細管力を有していたが、図9に示すように、第4実施形態例に係る熱輸送装置4では、還流促進体34が、複数の還流促進部34a、34a、34a・・・からなり、複数の還流促進部34a、34a、34a・・・の毛細管力が相互に異なる構造となっている。なお、図9では、説明の便宜上、還流促進体34は3つの還流促進部34aを有しているが、還流促進部34aの設置数は、複数であれば、特に限定されない。
 第1のウィック構造体14の毛細管力が還流促進体34の毛細管力よりも大きい態様となっていることに対応して、いずれの還流促進部34aの毛細管力も、第1のウィック構造体14の毛細管力よりも小さい態様となっている。また、還流促進体34の毛細管力は、第2のウィック構造体24の毛細管力よりも大きい、または第2のウィック構造体24の毛細管力と略同等の態様となっていることに対応して、いずれの還流促進部34aの毛細管力も、第2のウィック構造体24の毛細管力よりも大きい、または第2のウィック構造体24の毛細管力と略同等の態様となっている。
 複数の還流促進部34a、34a、34a・・・は、第2の熱輸送部20の熱輸送方向に沿って連接して配置されている。熱輸送装置4では、複数の還流促進部34a、34a、34a・・・は、相互に、直接接して配置されている。複数の還流促進部34a、34a、34a・・・の毛細管力の大きさは、例えば、還流促進部34aが金属メッシュの場合には、金属メッシュの厚みを調整することで選択でき、還流促進部34aが金属粉の焼結体の場合には、焼結体の空隙率を調整することで選択できる。
 複数の還流促進部34a、34a、34a・・・の毛細管力が相互に異なることにより、第2の熱輸送部20の先端部33から第1の熱輸送部10へ向かうに従って還流促進体34の毛細管力を大きく設定することができるので、第2の熱輸送部20の先端部33から第1の熱輸送部10方向への液相の作動流体の還流がさらに円滑化される。
 次に、本発明の熱輸送装置の他の実施形態例について、以下に説明する。上記第1、第2実施形態例の熱輸送装置では、第2の熱輸送部は複数設けられていたが、これに代えて、第2の熱輸送部は1つでもよい。
 本発明の熱輸送装置は、高入熱量且つ冷却風の風量が増大した使用条件であっても、蒸発部における作動流体のドライアウトを防止できるので、回路基板に搭載された高発熱量の電子部品、例えば、中央演算処理装置等の電子部品を冷却する分野で利用価値が高い。
 1、2、3、4    熱輸送装置
 10         第1の熱輸送部
 11         蒸発部
 12         凝縮部
 14         第1のウィック構造体
 20         第2の熱輸送部
 24         第2のウィック構造体
 30         接続部
 34         還流促進体
 35         接続部材

Claims (15)

  1.  発熱体と熱的に接続される蒸発部を有する第1の熱輸送部と、
    前記第1の熱輸送部の凝縮部にて接続された、前記第1の熱輸送部の熱輸送方向とは異なる熱輸送方向を有する第2の熱輸送部と、を備え、
     前記第1の熱輸送部が、前記蒸発部から前記第2の熱輸送部との接続部まで連通し、且つ作動流体が封入された、一体の内部空間を有し、前記第1の熱輸送部の内部空間が、前記第2の熱輸送部の内部空間と連通した熱輸送装置であり、
     前記熱輸送装置が、前記第1の熱輸送部の内部空間に設けられた、前記蒸発部から前記凝縮部へ延在した第1のウィック構造体と、
    前記第2の熱輸送部の内面に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した第2のウィック構造体と、
    前記第2のウィック構造体上に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した、毛細管力を有する還流促進体と、を備え、
     前記第1のウィック構造体の毛細管力が前記還流促進体の毛細管力よりも大きく、前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力よりも大きい、または前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力と同じであり、
     前記第2の熱輸送部の内面のうち、前記還流促進体が、重力方向下方側に設けられ、重力方向上方側には設けられていない熱輸送装置。
  2.  発熱体と熱的に接続される蒸発部を有する第1の熱輸送部と、
    前記第1の熱輸送部の凝縮部にて接続された、前記第1の熱輸送部の熱輸送方向とは異なる熱輸送方向を有する第2の熱輸送部と、を備え、
     前記第1の熱輸送部が、前記蒸発部から前記第2の熱輸送部との接続部まで連通し、且つ作動流体が封入された、一体の内部空間を有し、前記第1の熱輸送部の内部空間が、前記第2の熱輸送部の内部空間と連通した熱輸送装置であり、
     前記熱輸送装置が、前記第1の熱輸送部の内部空間に設けられた、前記蒸発部から前記凝縮部へ延在した第1のウィック構造体と、
    前記第2の熱輸送部の内面に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した第2のウィック構造体と、
    前記第2のウィック構造体上に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した、毛細管力を有する還流促進体と、を備え、
     前記第1のウィック構造体の毛細管力が前記還流促進体の毛細管力よりも大きく、前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力よりも大きい、または前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力と同じであり、
     前記還流促進体が、前記第2の熱輸送部の熱輸送方向に対して直交方向の断面において、前記断面の周長の5%以上50%以下の領域を覆っている熱輸送装置。 
  3.  発熱体と熱的に接続される蒸発部を有する第1の熱輸送部と、
    前記第1の熱輸送部の凝縮部にて接続された、前記第1の熱輸送部の熱輸送方向とは異なる熱輸送方向を有する第2の熱輸送部と、を備え、
     前記第1の熱輸送部が、前記蒸発部から前記第2の熱輸送部との接続部まで連通し、且つ作動流体が封入された、一体の内部空間を有し、前記第1の熱輸送部の内部空間が、前記第2の熱輸送部の内部空間と連通した熱輸送装置であり、
     前記熱輸送装置が、前記第1の熱輸送部の内部空間に設けられた、前記蒸発部から前記凝縮部へ延在した第1のウィック構造体と、
    前記第2の熱輸送部の内面に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した第2のウィック構造体と、
    前記第2のウィック構造体上に設けられた、前記第2の熱輸送部の熱輸送方向に沿って延在した、毛細管力を有する還流促進体と、を備え、
     前記第1のウィック構造体の毛細管力が前記還流促進体の毛細管力よりも大きく、前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力よりも大きい、または前記還流促進体の毛細管力が前記第2のウィック構造体の毛細管力と同じであり、
     前記第2の熱輸送部の先端部が、前記第1の熱輸送部との前記接続部よりも重力方向下方となるように、前記第2の熱輸送部が設置されている熱輸送装置。 
  4.  前記第2の熱輸送部の延在方向が重力方向に対して直交方向となるように、前記第2の熱輸送部が設置されている請求項1または2に記載の熱輸送装置。
  5.  前記第1のウィック構造体と前記還流促進体とが、毛細管力を有する接続部材を介して接続されている請求項1乃至4のいずれか1項に記載の熱輸送装置。
  6.  前記第1のウィック構造体の毛細管力が前記接続部材の毛細管力よりも大きく、前記接続部材の毛細管力が前記還流促進体の毛細管力よりも大きい、または前記接続部材の毛細管力が前記還流促進体の毛細管力と同じである請求項5に記載の熱輸送装置。
  7.  前記接続部材が、前記第1の熱輸送部と前記第2の熱輸送部との接続部に位置する請求項5または6に記載の熱輸送装置。
  8.  前記還流促進体が、前記第2の熱輸送部の熱輸送方向に対して直交方向の断面において、前記断面の周長の5%以上の領域を覆っている請求項3に記載の熱輸送装置。
  9.  前記還流促進体が、複数の還流促進部からなり、複数の前記還流促進部の毛細管力が相互に異なる請求項1乃至8のいずれか1項に記載の熱輸送装置。
  10.  前記第1の熱輸送部のコンテナが、平面型である請求項1乃至9のいずれか1項に記載の熱輸送装置。
  11.  前記第2の熱輸送部のコンテナが、一体の内部空間を有する平面型である請求項1乃至10のいずれか1項に記載の熱輸送装置。
  12.  前記第2の熱輸送部が、複数の管体である請求項1乃至10のいずれか1項に記載の熱輸送装置。
  13.  前記第2の熱輸送部が、複数設けられ、前記第1の熱輸送部から複数の方向に延在している請求項1乃至12のいずれか1項に記載の熱輸送装置。
  14.  複数の前記管体が、重力方向下方へ延在している請求項12に記載の熱輸送装置。
  15.  前記第2の熱輸送部に複数の放熱フィンが熱的に接続されたヒートシンクである、請求項1乃至14のいずれか1項に記載の熱輸送装置。
PCT/JP2022/048554 2022-02-24 2022-12-28 熱輸送装置 WO2023162468A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-027148 2022-02-24
JP2022027148A JP7129577B1 (ja) 2022-02-24 2022-02-24 熱輸送装置

Publications (1)

Publication Number Publication Date
WO2023162468A1 true WO2023162468A1 (ja) 2023-08-31

Family

ID=83114590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048554 WO2023162468A1 (ja) 2022-02-24 2022-12-28 熱輸送装置

Country Status (3)

Country Link
JP (1) JP7129577B1 (ja)
TW (1) TWI842308B (ja)
WO (1) WO2023162468A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179766A (ja) * 1989-12-07 1991-08-05 Showa Alum Corp ヒートパイプ
US20070240858A1 (en) * 2006-04-14 2007-10-18 Foxconn Technology Co., Ltd. Heat pipe with composite capillary wick structure
WO2014157147A1 (ja) * 2013-03-27 2014-10-02 古河電気工業株式会社 冷却装置
JP2015121373A (ja) * 2013-12-24 2015-07-02 古河電気工業株式会社 ヒートパイプ
JP2016009828A (ja) * 2014-06-26 2016-01-18 昭和電工株式会社 発熱素子用沸騰冷却器
US20200103175A1 (en) * 2018-09-28 2020-04-02 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having a porous microstructure sheet with varying surface energy to optimize utilization of a working fluid
JP2020085430A (ja) * 2018-11-30 2020-06-04 古河電気工業株式会社 ヒートシンク
JP2020176752A (ja) * 2019-04-17 2020-10-29 古河電気工業株式会社 ヒートシンク

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI275768B (en) * 2006-06-02 2007-03-11 Foxconn Tech Co Ltd Heat pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179766A (ja) * 1989-12-07 1991-08-05 Showa Alum Corp ヒートパイプ
US20070240858A1 (en) * 2006-04-14 2007-10-18 Foxconn Technology Co., Ltd. Heat pipe with composite capillary wick structure
WO2014157147A1 (ja) * 2013-03-27 2014-10-02 古河電気工業株式会社 冷却装置
JP2015121373A (ja) * 2013-12-24 2015-07-02 古河電気工業株式会社 ヒートパイプ
JP2016009828A (ja) * 2014-06-26 2016-01-18 昭和電工株式会社 発熱素子用沸騰冷却器
US20200103175A1 (en) * 2018-09-28 2020-04-02 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having a porous microstructure sheet with varying surface energy to optimize utilization of a working fluid
JP2020085430A (ja) * 2018-11-30 2020-06-04 古河電気工業株式会社 ヒートシンク
JP2020176752A (ja) * 2019-04-17 2020-10-29 古河電気工業株式会社 ヒートシンク

Also Published As

Publication number Publication date
JP7129577B1 (ja) 2022-09-01
TW202342928A (zh) 2023-11-01
TWI842308B (zh) 2024-05-11
JP2023123210A (ja) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2020213463A1 (ja) ヒートシンク
JP6782326B2 (ja) ヒートシンク
TWI748294B (zh) 散熱裝置
WO2020230499A1 (ja) ヒートシンク
TWI810448B (zh) 散熱器
TWI722690B (zh) 散熱裝置
WO2023162468A1 (ja) 熱輸送装置
US11369042B2 (en) Heat exchanger with integrated two-phase heat spreader
JP7340709B1 (ja) ヒートシンク
WO2023189070A1 (ja) ヒートシンク
JP2023147079A (ja) ヒートシンク
JP2007071425A (ja) 冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928983

Country of ref document: EP

Kind code of ref document: A1