WO2023160581A9 - 芒果扭摆器 - Google Patents

芒果扭摆器 Download PDF

Info

Publication number
WO2023160581A9
WO2023160581A9 PCT/CN2023/077667 CN2023077667W WO2023160581A9 WO 2023160581 A9 WO2023160581 A9 WO 2023160581A9 CN 2023077667 W CN2023077667 W CN 2023077667W WO 2023160581 A9 WO2023160581 A9 WO 2023160581A9
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
distributed along
mango
field distributed
twister
Prior art date
Application number
PCT/CN2023/077667
Other languages
English (en)
French (fr)
Other versions
WO2023160581A1 (zh
Inventor
李明
张冬霓
李啸宇
陆辉华
黎刚
董宇辉
盛伟繁
刘鹏
Original Assignee
中国科学院高能物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院高能物理研究所 filed Critical 中国科学院高能物理研究所
Publication of WO2023160581A1 publication Critical patent/WO2023160581A1/zh
Publication of WO2023160581A9 publication Critical patent/WO2023160581A9/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons

Definitions

  • the present disclosure relates to the fields of synchrotron radiation devices, synchrotron radiation optical technology and accelerator technology, and in particular, to a mango wiggler.
  • relativistic charged particles produce electromagnetic radiation when they are deflected by an electromagnetic field. Initially, this electromagnetic radiation was observed at a synchrotron, so this electromagnetic radiation can also be called “synchrotron radiation.”
  • a planar twister can be used to generate synchrotron radiation light, and use the synchrotron radiation light to form an imaging field of view.
  • the synchrotron radiation generated by the planar wiggler can only obtain the imaging information of the sample within a "narrow band" when measuring the sample in a single time. Therefore, it is necessary to conduct multiple measurements and analyze the imaging field of view formed during multiple measurements. Only by stitching can the imaging information of the entire sample be obtained. Therefore, when measuring samples with a planar torsion device, the steps are cumbersome and take a lot of time.
  • the purpose of this disclosure is to provide a mango twister that can form a larger field of view for synchrotron radiation light imaging and increase the luminous flux.
  • a mango twister including:
  • each of the magnet arrays is arranged along the first direction, and the mango twister generates a wave that alternates with the first direction.
  • the first direction is the movement direction of the electron beam; the first direction, the second direction and the third direction are orthogonal to each other and satisfy the right-handed coordinate system.
  • the distributed magnetic field deflects the electron beam in a plane formed by the first direction and the third direction, and the magnetic field distributed along the third direction deflects the electron beam in a plane formed by the first direction and the second direction.
  • the period length of the magnetic field distributed along the second direction is different from the period length of the magnetic field distributed along the third direction.
  • the period length of the magnetic field distributed along the third direction is:
  • ⁇ ux is the period length of the magnetic field distributed along the second direction
  • ⁇ uy is the period length of the magnetic field distributed along the third direction
  • N is the period number of the magnet array
  • L is the magnet array length.
  • the deflection factor of the mango twister, the period number of the magnet array, and the harmonic series of the mango twister satisfy a first relationship, and the first relationship is:
  • ⁇ 1 is the first coefficient
  • N is the period number of the magnet array
  • n is the harmonic series of the mango twister
  • ⁇ ⁇ is the energy dispersion of the electron beam group
  • ⁇ x′ is the location of the electron beam group.
  • the divergence angle in the second direction, ⁇ y′ is respectively the divergence angle of the electron beam group in the third direction, and the electron beam flow includes multiple electron beam groups;
  • m is the static mass of the electron
  • c is the speed of light
  • E is the energy of the electron
  • K is the deflection factor of the mango twister
  • e is the charge of electrons
  • B x0 is the peak magnetic induction intensity of the magnetic field distributed along the second direction
  • B y0 is the magnetic induction of the magnetic field distributed along the third direction. intensity peak.
  • the first coefficient ranges from 0.5 to 4.
  • ⁇ 2 is the second coefficient
  • B x0 is the magnetic induction intensity peak value of the magnetic field distributed along the second direction
  • B y0 is the magnetic induction intensity peak value of the magnetic field distributed along the third direction
  • ⁇ v′ is the opening angle of the electron beam group emitting light at any position in the mango twister
  • ⁇ r′ is the opening angle of the single electron emitting light
  • the single electron is any electron in the electron beam group.
  • m is the static mass of the electron
  • c is the speed of light
  • E is the energy of the electron
  • is the nth harmonic energy of the mango twister
  • h is Planck's constant
  • e is the electric charge of the electron
  • B is the magnetic induction intensity.
  • the second coefficient ranges from 0.5 to 4.
  • the magnetic induction intensity peaks within at least two magnetic field periods in the magnetic field distributed along the second direction are different, and/or the magnetic induction intensity peaks within at least two magnetic field periods among the magnetic field distributed along the third direction are different.
  • the peak value of magnetic induction intensity is different.
  • the magnetic induction of the magnetic field distributed along the second direction is The intensity peak value is offset modulated so that the magnetic induction intensity peak value in at least two magnetic field periods in the magnetic field distributed along the second direction is different; or, the magnetic induction intensity peak value of the magnetic field distributed along the third direction is individually offset modulated. , so that the peak value of the magnetic induction intensity in at least two magnetic field periods in the magnetic field distributed along the third direction is different.
  • the magnetic induction intensity peak of the magnetic field distributed along the second direction and the magnetic induction intensity peak of the magnetic field distributed along the third direction are offset modulated simultaneously, so that the magnetic induction intensity peak along the second direction
  • the peak value of the magnetic induction intensity within at least two magnetic field periods in the distributed magnetic field is different, and the peak value of the magnetic induction intensity within at least two magnetic field periods in the magnetic field distributed along the third direction is different.
  • the offset modulation method is a tilted magnetic gap method.
  • the mango wiggler provided by the present disclosure includes at least four rows of magnet arrays, and the at least four rows of magnet arrays can be arranged around the electron beam.
  • the mango twister can generate a magnetic field distributed along the second direction that alternates with the first direction and a magnetic field distributed along the third direction that alternates with the first direction. Therefore, the mango twister can deflect the electron beam in the plane formed by the first direction and the second direction, and can also deflect the electron beam in the plane formed by the first direction and the third direction at the same time.
  • the mango twister can make the electron beam deflection range larger and the deflection angle larger in the mango twister, so that the trajectory of the electron beam expands from a two-dimensional plane to a three-dimensional plane, ultimately forming a symmetrical imaging. Large field of view.
  • the imaging field of view formed by the mango twister has a larger imaging range than the field of view formed by the planar twister. Therefore, there is no need to conduct multiple measurements of the sample, or even to measure the sample.
  • the formed imaging field of view is spliced, and only a small amount or even one measurement is needed to obtain complete sample imaging information.
  • the mango twister can make the deflection range of the electron beam in the mango twister larger and the deflection angle larger. Therefore, without increasing the total length of the twister and maintaining a small light source size, the mango can The wiggler can also increase the light flux.
  • Figure 1 shows a schematic diagram of the trajectory of electron beam in bent iron in the prior art
  • Figure 2 shows a schematic diagram of the synchrotron radiation generated by electrons in a bent iron along the tangential direction of motion
  • Figure 3 shows a schematic diagram of the horizontal half-opening angle of synchrotron radiation produced by bent iron
  • Figure 4 shows a schematic diagram of synchrotron radiation generated by a twister in the prior art
  • Figure 5 shows a schematic diagram of synchrotron radiation generated by an undulator in the prior art
  • Figure 6 shows a schematic diagram of the imaging field of view formed by the planar wiggler
  • Figure 7 shows a schematic structural diagram of a mango twister according to an embodiment of the present disclosure
  • Figure 8 shows an observation schematic diagram of the imaging field of view of the mango twister according to an embodiment of the present disclosure
  • Figure 9 shows a schematic structural diagram of the imaging field of view of the mango twister according to an embodiment of the present disclosure
  • Figure 10 shows a schematic diagram of the angular distribution of the movement trajectory of electrons in a mango twister according to an embodiment of the present disclosure
  • Figure 11 shows a schematic diagram of magnetic field distribution according to an embodiment of the present disclosure
  • Figure 12 shows a schematic diagram of the angular distribution of the movement trajectory of electrons in a mango twister according to another embodiment of the present disclosure
  • Figure 13 shows a schematic diagram of flux density angular distribution according to an embodiment of the present disclosure
  • Figure 14 shows a schematic diagram of a flux density angular distribution according to another embodiment of the present disclosure.
  • Figure 15 shows a schematic diagram of magnetic field deviation modulation according to an embodiment of the present disclosure
  • Figure 16 shows a schematic diagram of the flux density angular distribution after magnetic field deviation modulation according to an embodiment of the present disclosure
  • Figure 17 shows a schematic diagram of flux density angular distribution according to yet another embodiment of the present disclosure.
  • Figure 18 shows a schematic diagram of a flux density angular distribution according to yet another embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • synchrotron radiation In the field of synchrotron radiation technology, relativistic charged particles deflected under the action of an electromagnetic field will produce electromagnetic radiation. This electromagnetic radiation was originally observed at a synchrotron accelerator, so this electromagnetic radiation is called “synchrotron radiation”.
  • the imaging field of view can be formed through synchrotron radiation to measure the sample that needs to be measured to obtain imaging information of the sample.
  • the three devices that generate synchrotron radiation in the electron storage ring are the bent iron 1, the undulator 5 and the torsion device. These three devices may be collectively referred to as transmitters, and the undulator 5 and the twister may be referred to as inserters.
  • the first generation Devices that generate synchrotron radiation appear as a by-product of high-energy physics and are attached to high-energy physics devices. Since the second generation of devices that generate synchrotron radiation, they have been independent of high-energy physics devices and have synchrotron radiation devices with dedicated electron accelerators.
  • the synchrotron radiation device of this special electron accelerator uses bent iron 1 as the main emitter of synchrotron radiation.
  • the insert is gradually used as the main emitting element of the device that generates synchrotron radiation.
  • accelerator technologies such as multi-curved iron achromatic structures are used to obtain extremely low electron beam emittance, so that the emitted synchrotron radiation approaches or reaches the photon diffraction limit level, so that Used for experiments with extremely high brightness or extremely high coherence.
  • the bent iron 1 is a set of secondary magnets 3 extending along the first direction z and arranged up and down along the third direction y.
  • the electron beam 2 composed of relativistic electrons e - moves in the bent iron 1, it can be affected by the Lorentz force in the horizontal plane composed of the first direction Z and the second direction x. Deflect, and radiate synchrotron radiation light in the tangential direction of the trajectory of the electron beam 2 to form an imaging field of view.
  • the electron beam 2 will not receive the Lorentz force in the vertical plane composed of the first direction z and the third direction y, which means that the electron beam 2 will not receive the Lorentz force in the first direction z. Deflection occurs in the plane formed by the third direction y.
  • bent iron 1 As shown in Figure 3, the half-opening angle of the synchrotron radiation single electron e - optical power is in E is the energy of electron e - , m is the static mass of electron e - , and c is the speed of light.
  • the imaging field of view formed by the bent iron 1 is small, usually a line-shaped imaging field of view. Therefore, when using bent iron 1 to measure sample 8, we can only obtain the imaging information of sample 8 within "one line”. Therefore, we need to perform multiple measurements and splice the imaging fields formed during multiple measurements to obtain Imaging information for the entire sample 8. Therefore, when the bending iron 1 measures the sample 8, the steps are complicated and require a lot of time. Although in this field, it is also possible to expand the imaging field of view in the third direction y by adding a magnetic field distributed along the second direction x, but this method will reduce the imaging resolution.
  • the above-mentioned first direction Z may be the movement direction of the electron beam 2 .
  • the first direction z, the second direction x and the third direction y are orthogonal to each other and satisfy the right-handed coordinate system.
  • the movement direction of the electron beam 2 mentioned here can be the overall movement direction of the electron beam 2 in the emitting member, that is: the entrance of the emitting member points to the movement direction of the emitting member outlet, not the direction of movement of the electron beam 2 In progress The direction of deflection within the projectile.
  • the insert may have a magnet array 6 with magnetic poles alternately arranged along the first direction z. Therefore, the relativistic electron e - can be deflected multiple times within the insert. Because relativistic electrons e - produce Doppler compression and superposition between different magnetic poles and the photons they emit, synchrotron radiation with better performance is emitted.
  • the inserts there are two types of inserts: a twister and an undulator 5 .
  • the insert that uses continuous incoherent superposition of high-order harmonics is a twister;
  • the insert that uses discrete coherent superposition of low-order harmonics is an oscillator.
  • the deflection factor of the twister is relatively large, and its radiated energy is mainly concentrated on continuous high-order harmonics;
  • the deflection factor of the undulator 5 is small, and its radiated energy is mainly concentrated on discrete low-order harmonics.
  • the twister In order to obtain higher photon energy, the twister usually uses a stronger magnetic field.
  • the period length of the magnetic field it often uses is longer and the number of cycles is smaller. Therefore, the electron beam group in the twister has a larger twist amplitude, and This makes the synchrotron radiation light generated by the twister have a wider distribution.
  • the undulator 5 often uses a magnetic field with a shorter cycle length and a larger number of cycles, so the undulator 5 can obtain higher luminous flux and brightness.
  • the mango twister is a new type of symmetrical large field of view imaging insert, which can be well adapted to synchrotron radiation imaging.
  • the mango twister can expand the electron e - trajectory from a two-dimensional plane to a three-dimensional space by changing the polarization state of the electron e - motion, thereby being able to expand the synchrotron radiation light along the vertical plane composed of the first direction z and the third direction y. , ultimately forming a symmetrical large imaging field of view 9.
  • the symmetrical large imaging field of view 9 can be in the shape of a mango.
  • the symmetrical large imaging field of view 9 formed by the mango twister of the present disclosure has a larger imaging field of view and higher brightness than the "narrow strip 7" style imaging field formed by the planar twister 4. . Therefore, when the mango twister provided by the present disclosure obtains the imaging information of the sample 8, it no longer needs to perform multiple measurements on the sample 8, or even splice the imaging fields formed by the measurements, and only needs to perform a small amount of Even complete sample 8 imaging information can be obtained in one measurement. Therefore, the mango twister provided by the present disclosure can simplify the measurement steps and save a lot of measurement time.
  • the mango twister may include: at least four rows of magnet arrays 6 . At least four rows of magnet arrays 6 may be arranged around the electron beam 2 . It can be understood that at least four rows of magnet arrays 6 can surround the electron beam 2 . Each magnet array 6 can be arranged along the first direction z, and the mango twister can generate a magnetic field distributed along the second direction x that alternates with the first direction z and a magnetic field distributed along the third direction that alternates with the first direction z. y distributed magnetic field.
  • the electron beam 2 may include a plurality of electron beam clusters.
  • the first direction z can be the movement direction of the electron beam 2; the first direction z, the second direction x and the third direction y are orthogonal to each other and satisfy the right-handed coordinate system.
  • the magnetic field distributed along the second direction x can deflect the electron beam 2 in the plane composed of the first direction z and the third direction y; the magnetic field distributed along the third direction y can deflect the electron beam 2 in the first direction z and the third direction y. Deflection in the plane consisting of the second direction x.
  • the mango twister can make the electron beam 2 have a larger deflection range and a larger deflection angle in the mango twister, so that the trajectory of the electron beam 2 expands from a two-dimensional plane to a three-dimensional space, ultimately forming a symmetry Large imaging field of view9.
  • the movement direction of the electron beam 2 mentioned here can be the overall movement direction of the electron beam 2 in the mango twister, that is: the entrance of the mango twister points to the movement direction of the outlet of the mango twister, and The deflection direction of non-electron beam 2 in the mango twister.
  • the plane formed by the first direction z and the second direction x may be a horizontal plane, and the plane formed by the first direction z and the third direction y may be a vertical plane. Therefore, the electron beam 2 of the present disclosure can be deflected in both horizontal and vertical directions.
  • the mango twister may have four rows of magnet arrays 6, and two rows of magnet arrays 6 may be disposed oppositely along the second direction x, and the other two rows of magnet arrays 6 may to be set relatively along the third direction y.
  • the distance between two opposite rows of magnet arrays 6 along the second direction x may be the same as the distance between two opposite rows of magnet arrays 6 along the third direction y.
  • the distance between any two adjacent rows of magnet arrays 6 may also be the same.
  • the distance between the two rows of magnet arrays 6 oppositely arranged along the second direction x and the distance between the two rows oppositely arranged magnet arrays 6 along the third direction y can also be different, and any two adjacent ones The distance between the rows of magnet arrays 6 can also be different.
  • the present disclosure discusses the specific distance between the two rows of magnet arrays 6 oppositely arranged along the second direction x, the specific distance between the two rows of magnet arrays 6 oppositely arranged along the third direction y, and any two adjacent rows.
  • the specific distance between the magnet arrays 6 is not limited and can be set according to actual needs, which is within the scope of the present disclosure.
  • Each row of magnet arrays 6 mentioned above may include multiple magnets 3, and two adjacent magnets 3 may have the same shape and different magnetic properties.
  • the shape of the magnet 3 may be hexagonal, but is not limited thereto.
  • the shape of the magnet 3 may also be other shapes, which are all within the protection scope of the present disclosure.
  • the peak magnetic induction intensity of the magnetic field distributed along the second direction x and the peak magnetic induction intensity of the magnetic field distributed along the third direction y may be the same, but are not limited thereto.
  • the magnetic field distributed along the second direction x The peak value of the magnetic induction intensity and the peak value of the magnetic induction intensity of the magnetic field distributed along the third direction y may also be different.
  • the period length of the magnetic field distributed along the second direction x is different from the period length of the magnetic field distributed along the third direction y. It is precisely because the period length of the magnetic field distributed along the second direction x and the period length of the magnetic field distributed along the third direction y are different that the polarization state of the electron beam 2 in the mango twister can be changed. The polarization changes to circular polarization, thereby forming a larger imaging field of view.
  • the period length of the magnetic field distributed along the third direction y can be:
  • ⁇ ux is the period length of the magnetic field distributed along the second direction x
  • ⁇ uy is the period length of the magnetic field distributed along the third direction y
  • N is the period number of the magnet array 6
  • L is the length of the magnet array 6 .
  • the period length of the magnetic field distributed along the second direction x may be:
  • the inventor of the present disclosure also found that the energy spectrum and angular distribution of the mango twister at the low energy end are uneven because the energy spectrum distribution at the low energy end is uneven. In order to solve this problem, the inventor of the present application further improved the mango twister provided above.
  • the deflection factor of the mango twister, the period number of the magnet array 6 and the harmonic series of the mango twister can be made to satisfy the first relationship.
  • the first relationship can be:
  • ⁇ 1 is the first coefficient
  • N is the period number of the magnet array 6
  • n is the harmonic series of the mango twister
  • ⁇ ⁇ is the energy dispersion of the electron beam group
  • ⁇ x′ is the electron beam group in the second direction x
  • the divergence angle of , ⁇ y′ is the divergence angle of the electron beam in the third direction y;
  • m is the static mass of electron e -
  • c is the speed of light
  • E is the energy of electron e - ;
  • K is the deflection factor of the mango twister
  • e is the electric charge of the electron e -
  • B x0 is the peak magnetic induction intensity of the magnetic field distributed along the second direction x
  • B y0 is the peak magnetic induction intensity of the magnetic field distributed along the third direction y.
  • the harmonic series n of the above-mentioned mango twister may be the starting point of the low energy end.
  • the value range of the first coefficient may be 0.5-4.
  • a method can be used to destroy the longitudinal coherence of synchrotron radiation at the low energy end, and the peak magnetic induction intensity of the magnetic field distributed along the second direction x and along the third direction y can be controlled.
  • the peak magnetic induction intensity of the distributed magnetic field destroys the phase of the light, thereby broadening the low-order harmonics, so that the low-energy end can obtain a smooth and continuous energy spectrum. and continuous and uniform light field distribution.
  • the peak value of the magnetic induction intensity within at least two magnetic field periods in the magnetic field distributed along the second direction x may be different, and/or the peak value of the magnetic induction intensity within at least two magnetic field periods in the magnetic field distributed along the third direction y Can be different. In this way, a smooth continuous energy spectrum and a continuous and uniform light field distribution can be obtained at the lower energy end.
  • the magnetic induction intensity peak values in all magnetic field periods in the magnetic field distributed along the second direction x may be different, and the magnetic induction intensity peak values in all magnetic field periods in the magnetic field distributed along the third direction y may also be different.
  • the magnetic induction intensity peak value of the magnetic field distributed along the second direction x can be separately modulated.
  • the magnetic induction intensity peak value of the magnetic field distributed along the third direction y can be separately modulated.
  • the above-mentioned deviation modulation method may be a gradient magnetic gap (Taper) method, but it is not limited thereto.
  • the above-mentioned deviation modulation method may not be a Taper method, as long as the above-mentioned requirements for each magnetic field can be satisfied.
  • the peak value of the magnetic induction intensity of the magnetic field is different, which is within the protection scope of the present disclosure, and can be selected according to actual needs.
  • the inventor of the present disclosure also found that for this mango twister, when observing the trajectory changes of electrons e - in the plane composed of the second direction x and the third direction y along the movement axis of the electron beam 2, it is possible to It is found that after the electron e - passes through a magnetic period, its movement trajectory is projected onto the angular distribution surface, and two "meridians 10" can be obtained. Because the mango twister can have N magnetic field periods, the electron e - can be deflected 2N times. When the trajectory of the electron e - deflected 2N times is projected onto the angular distribution surface, 2N "meridians 10" can be obtained.
  • the optical imaging field distribution can be determined by the electron e-
  • the movement trajectory is formed together with the luminescence of the electron beam clusters at various positions of the movement trajectory.
  • the spacing between the 2N "meridians 10" is unequal. The closer the “meridians 10" are to the center, the larger the spacing is, and the closer the spacing between the "meridians 10" is to the edge. The smaller.
  • the luminous opening angle of the electron beam cluster will decrease with the increase of the synchrotron radiation light energy, the luminous opening angle of the high-energy end electron beam cluster may be smaller than the distance between the "meridians 10", that is: the electron beam
  • the opening angle of the cluster luminescence cannot evenly fill the spacing between the "meridians 10" in the angular distribution plane, which will cause the entire light imaging field of view to be uneven at the high-energy end.
  • the inventor of the present disclosure conducted in-depth research and further improved the mango twister, thereby perfectly solving the above technical problems.
  • the peak magnetic induction intensity of the magnetic field distributed along the second direction x, the peak magnetic induction intensity of the magnetic field distributed along the third direction y, the period length of the magnetic field distributed along the second direction x and the period length along the third direction satisfies the second relationship.
  • the second relationship may be:
  • ⁇ 2 is the second coefficient
  • B x0 is the magnetic induction intensity peak value of the magnetic field distributed along the second direction x
  • B y0 is the magnetic induction intensity peak value of the magnetic field distributed along the third direction y
  • ⁇ v′ is the opening angle of the electron beam group emitting light at any position in the mango twister
  • ⁇ r′ is the opening angle of the single electron e - luminescence
  • the single electron can be any electron in the electron beam group
  • m is the static mass of electron e -
  • c is the speed of light
  • E is the energy of electron e -
  • is the nth level of mango twister Harmonic energy
  • k Planck’s constant
  • e is the charge of electron e -
  • B is the magnetic induction intensity.
  • B here can be any magnetic induction intensity in the second direction x and the third direction y, that is, B here can be B x or By y .
  • the second coefficient may range from 0.5 to 4. In this way, when the peak magnetic induction intensity of the magnetic field distributed along the second direction x, the peak magnetic induction intensity of the magnetic field distributed along the third direction y, the period length of the magnetic field distributed along the second direction x and the magnetic field distributed along the third direction y When the period length satisfies the second relationship, the maximum "meridian 10" spacing in the angular distribution plane can be filled evenly by the electron beam group's luminous opening angle, so that the synchrotron radiation at the high-energy end obtains a smooth and continuous angular distribution, thereby making the imaging field The light intensity is evenly distributed.
  • the mango twister provided by the present disclosure can have four rows of magnet arrays 6, and two rows of magnet arrays 6 are arranged oppositely along the second direction x, and the other two rows of magnet arrays 6 are arranged oppositely along the third direction y. .
  • the distance between two opposite rows of magnet arrays 6 along the second direction x is the same as the distance between two opposite rows of magnet arrays 6 along the third direction y.
  • the distance between any two adjacent rows of magnet arrays 6 is also the same.
  • the expression of the magnetic field distributed along the second direction x that alternates with the first direction z can be:
  • the expression of the magnetic field distributed along the third direction y that alternates with the first direction z can be:
  • Z is the distance that the electron e - moves along the first direction z in the mango twister.
  • the energy E of the electron e - is 6GeV
  • the energy divergence ⁇ ⁇ of the electron beam group is 0.0011
  • the divergence angle ⁇ x′ of the electron beam group in the second direction x is 0.0031mrad
  • the electron beam group is in the third direction
  • the flux solid angle density contrast ratio is less than 1% as the standard for a uniform optical imaging field of view.
  • the coefficient ⁇ 1 takes 2, when the harmonic series n of the mango twister satisfies:
  • the corresponding harmonic energy is about 11.36keV
  • the left side of the inequality is equal to 0.0044
  • the right side of the inequality is equal to 0.0049.
  • the first relationship is not satisfied, and the light imaging field of view at this time is uneven.
  • the flux density contrast of the light imaging field formed by the mango twister at this time is about 2.4%. As shown in Figure 13, the flux density angular distribution is uneven, so it does not meet the light imaging field of view. uniform standard.
  • the flux density contrast of the light imaging field formed by the mango twister at this time is about 0.05%. As shown in Figure 14, the flux density angular distribution is uniform, so it meets the standard of uniform light imaging field of view. .
  • the energy range of the uniform field of view can be expanded to lower energies through Taper's method.
  • the specific Taper method is as follows: Based on this example, as shown in Figure 15, the magnetic induction intensity peak value of the magnetic field distributed along the second direction x and the magnetic induction intensity peak value of the magnetic field distributed along the third direction y can be made by tilting the magnetic gap method. Stepwise increase from 1.78T to 1.8T. As mentioned before, when taper is not performed, the energy spectrum and angular distribution when the harmonic energy is 11.36keV are uneven; after tapering the magnetic field, SPECTRA verified that the corresponding channel when the harmonic energy is 11.36keV The flux density contrast is about 0.5%. As shown in Figure 16, the flux density angular distribution is uniform, thus meeting the standard of uniform optical imaging field of view.
  • the left side of the inequality is equal to 53.72 ⁇ rad.
  • the harmonic energy is 150keV
  • the right side of the inequality is equal to 57.88 ⁇ rad, and the second relationship is satisfied at this time.
  • the flux density contrast at this time is about 0.8%.
  • the flux density angular distribution is uniform, thus meeting the standard of uniform optical imaging field of view.
  • the flux density contrast at this time is about 2.8%.
  • the flux density angular distribution is not Uniform, so it does not meet the standard of uniform light imaging field of view. At this time, The light imaging field of view is non-uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Particle Accelerators (AREA)

Abstract

一种芒果扭摆器,包括:至少四排磁铁阵列(6),至少四排磁铁阵列(6)围绕电子束流(2)排列;各磁铁阵列(6)均沿第一方向排布,且芒果扭摆器产生随第一方向交变的沿第二方向分布的磁场和随第一方向交变的沿第三方向分布的磁场;其中,第一方向为电子束流的运动方向;第一方向、第二方向和第三方向之间两两相互正交,且满足右手坐标系,沿第二方向分布的磁场使电子束流在第一方向和第三方向组成的平面内偏转,沿第三方向分布的磁场使电子束流在第一方向和第二方向组成的平面内偏转;沿第二方向分布的磁场的周期长度和沿第三方向分布的磁场的周期长度不同。芒果扭摆器能够形成较大的同步辐射光成像视场,且能够提高光通量。

Description

芒果扭摆器
本公开基于申请号为202210177928.1、申请日为2022年2月25日、发明名称为《芒果扭摆器》的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及同步辐射装置、同步辐射光学技术和加速器技术领域,尤其涉及一种芒果扭摆器。
背景技术
目前,相对论性的带电粒子在电磁场的作用下进行偏转时会产生电磁辐射,起初此电磁辐射是在同步加速器上观察到的,所以该电磁辐射也可以被称为“同步辐射”。
在本领域的现有技术中,可以采用平面扭摆器来产生同步辐射光,并利用同步辐射光形成成像视场。但是,平面扭摆器产生的同步辐射光在单次测量样品时,只能够获得样品在一个“窄带条”内的成像信息,所以需要进行多次测量,并对多次测量时形成的成像视场进行拼接才能够获得整个样品的成像信息。也就因此,平面扭摆器在测量样品时步骤较繁琐且需要花费大量的时间。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开目的在于提供一种芒果扭摆器,该芒果扭摆器能够形成较大的同步辐射光成像视场,且能够提高光通量。
本公开一方面提供了一种芒果扭摆器,包括:
至少四排磁铁阵列,至少四排所述磁铁阵列围绕电子束流排列;各所述磁铁阵列均沿第一方向排布,且所述芒果扭摆器产生随所述第一方向交变的 沿第二方向分布的磁场和随所述第一方向交变的沿第三方向分布的磁场;
其中,第一方向为电子束流的运动方向;所述第一方向、所述第二方向和所述第三方向之间两两相互正交,且满足右手坐标系,所述沿第二方向分布的磁场使所述电子束流在第一方向和第三方向组成的平面内偏转,所述沿第三方向分布的磁场使所述电子束流在第一方向和第二方向组成的平面内偏转;所述沿第二方向分布的磁场的周期长度和所述沿第三方向分布的磁场的周期长度不同。
在本公开的一个实施例中,所述沿第三方向分布的磁场的周期长度为:
所述沿第二方向分布的磁场的周期长度为:
且λux≠λuy
其中,λux为所述沿第二方向分布的磁场的周期长度,λuy为所述沿第三方向分布的磁场的周期长度,N为所述磁铁阵列的周期数,L为所述磁铁阵列的长度。
在本公开的一个实施例中,所述芒果扭摆器的偏转因子、所述磁铁阵列的周期数和所述芒果扭摆器的谐波级数满足第一关系,所述第一关系为:
其中,χ1为第一系数,N为所述磁铁阵列的周期数,n为所述芒果扭摆器的谐波级数,σδ为电子束团能散,σx′为电子束团在所述第二方向的发散角,σy′分别为电子束团在所述第三方向的发散角,所述电子束流包括多个电子束团;
其中,m为电子的静质量,c为光速,E为电子的能量;

其中,K为所述芒果扭摆器的偏转因子,e为电子的电量,Bx0为所述沿第二方向分布的磁场的磁感应强度峰值,By0为所述沿第三方向分布的磁场的磁感应强度峰值。
在本公开的一个实施例中,所述第一系数的取值范围为0.5~4。
在本公开的一个实施例中,所述沿第二方向分布的磁场的磁感应强度峰值、所述沿第三方向分布的磁场的磁感应强度峰值、所述沿第二方向分布的磁场的周期长度和所述沿第三方向分布的磁场的周期长度满足第二关系,所述第二关系为:
其中,χ2为第二系数,Bx0为所述沿第二方向分布的磁场的磁感应强度峰值,By0为所述沿第三方向分布的磁场的磁感应强度峰值,




其中,σv′为所述芒果扭摆器中任意一个位置处电子束团发光的张角,σr′为单电子发光的张角,所述单电子为所述电子束团中的任意一个电子, m为电子的静质量,c为光速,E为电子的能量,ε为所述芒果扭摆器第n级谐波能量,h为普朗克常数,K5/3(y′)和为第二类分数阶修正贝塞尔函数,e为电子的电量,B为磁感应强度。
在本公开的一个实施例中,所述第二系数的取值范围为0.5~4。
在本公开的一个实施例中,所述沿第二方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同,和/或所述沿第三方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同。
在本公开的一个实施例中,单独对所述沿第二方向分布的磁场的磁感应 强度峰值进行偏离调制,以使所述沿第二方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同;或者,单独对所述沿第三方向分布的磁场的磁感应强度峰值进行偏离调制,以使所述沿第三方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同。
在本公开的一个实施例中,同时对所述沿第二方向分布的磁场的磁感应强度峰值和所述沿第三方向分布的磁场的磁感应强度峰值进行偏离调制,以使所述沿第二方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同,并且所述沿第三方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同。
在本公开的一个实施例中,所述偏离调制的方法为倾斜磁间隙的方法。
本公开提供的技术方案可以达到以下有益效果:
本公开所提供的芒果扭摆器包括至少四排磁铁阵列,并且至少四排磁铁阵列可以围绕电子束流排列。该芒果扭摆器可以产生随第一方向交变的沿第二方向分布的磁场和随第一方向交变的沿第三方向分布的磁场。由此,该芒果扭摆器可以使得电子束流可以在第一方向和第二方向组成的平面内进行偏转,也可以同时使得电子束流在第一方向和第三方向组成的平面内进行偏转。以此,该芒果扭摆器可以使得电子束流在芒果扭摆器中偏转范围更大,偏转角度也更大,从而使得电子束流的轨迹从二维平面向三维平面展开,最终形成一个对称的成像大视场。
也就因此,通过该芒果扭摆器形成的成像视场相对于平面扭摆器形成的视场来说成像范围更大,也就因此不再需要对样品进行多次测量,甚至也不再需要对测量形成的成像视场进行拼接,只需要进行少量甚至一次测量即可得到完整的样品成像信息。
并且,由该芒果扭摆器可以使得电子束流在芒果扭摆中的偏转范围更大,偏转角度也更大,也就因此在不增加扭摆器总长且保持较小的光源尺寸的情况下,该芒果扭摆器还能够提高光通量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了现有技术中电子束流在弯铁中的轨迹示意图;
图2示出了电子在弯铁中沿运动的切线方向产生的同步辐射示意图;
图3示出了弯铁产生的同步辐射水平半张角示意图;
图4示出了现有技术中扭摆器产生的同步辐射的示意图;
图5示出了现有技术中波荡器产生的同步辐射的示意图;
图6示出了平面扭摆器形成的成像视场的示意图;
图7示出了根据本公开一实施例的芒果扭摆器的结构示意图;
图8示出了根据本公开一实施例的芒果扭摆器成像视场的观测示意图;
图9示出了根据本公开一实施例的芒果扭摆器成像视场的结构示意图;
图10示出了根据本公开一实施例的电子在芒果扭摆器中运动轨迹的角分布示意图;
图11示出了根据本公开一实施例的磁场分布示意图;
图12示出了根据本公开另一实施例的电子在芒果扭摆器中运动轨迹的角分布示意图;
图13示出了根据本公开一实施例的通量密度角分布的示意图;
图14示出了根据本公开另一实施例的通量密度角分布的示意图;
图15示出了根据本公开一实施例的磁场偏离调制的示意图;
图16示出了根据本公开一实施例的磁场偏离调制后的通量密度角分布的示意图;
图17示出了根据本公开再一实施例的通量密度角分布的示意图;
图18示出了根据本公开又一实施例的通量密度角分布的示意图;
附图标记说明:
1、弯铁;2、电子束流;3、磁铁;4、平面扭摆器;5、波荡器;6、磁铁阵列;7、窄条带;8、样品;9、大成像视场;10、经线;11、水平面的张角;12、垂直面的张角。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
在同步辐射技术领域中,相对论性的带电粒子在电磁场的作用下偏转会产生电磁辐射,起初该电磁辐射是在同步加速器上观察到的,因此将该电磁辐射成为“同步辐射”。通过同步辐射可以形成成像视场,以对需要测量的样品进行测量,以获得样品的成像信息。
目前,如图1~6所示,在电子储存环中,产生同步辐射的三种装置分别为弯铁1、波荡器5和扭摆器。这三种装置可以统称为发射件,并且可以将其中的波荡器5和扭摆器称为插入件。
直到现在,产生同步辐射的装置发展总共经历了四代,其中,第一代产 生同步辐射的装置是作为高能物理的副产品出现的,其依附于高能物理装置。自第二代产生同步辐射的装置起,其独立于高能物理装置,拥有了专用电子加速器的同步辐射装置。这一专用电子加速器的同步辐射装置以弯铁1作为同步辐射的主要发射件。在第三代产生同步辐射的装置中,逐渐以插入件作为产生同步辐射装置的主要发射件。在第四代产生同步辐射的装置中,使用的是多弯铁消色散结构等加速器技术,以获得极低的电子束团发射度,使得发出的同步辐射接近或者达到光子衍射极限水平,从而可应用于极高亮度或极高相干性的实验。
在上述提到的各个发射件中,如图1所示,弯铁1为一组沿第一方向z延伸,且沿第三方向y上下排布的二级磁铁3。如图2所示,相对论性的电子e-组成的电子束流2在弯铁1中运动时,在第一方向Z和第二方向x组成的水平面内可以受到洛伦兹力的作用而发生偏转,并在电子束流2轨迹的切线方向上辐射出同步辐射光,以形成成像视场。但是在弯铁1中,电子束流2不会在第一方向z和第三方向y组成的垂直平面内收到洛伦兹力,也就意味着电子束流2不会在第一方向z和第三方向y组成的平面内发生偏转。
在弯铁1中,如图3所示,同步辐射单电子e-光功率的半张角为其中E为电子e-的能量,m为电子e-的静质量,c为光速。
由此可知,通过弯铁1形成的成像视场较小,通常为一条线样式的成像视场。所以利用弯铁1在测量样品8的时候,只能够获得样品8在“一条线”内的成像信息,所以需要进行多次测量,并对多次测量时形成的成像视场进行拼接才能够获得整个样品8的成像信息。也就因此,弯铁1在测量样品8时步骤较繁琐且需要花费大量的时间。虽然在本领域中,也可以通过加入沿第二方向x分布的磁场使成像视场在第三方向y进行展开,但此方法会降低成像分辨率。
上述第一方向Z可以为电子束流2的运动方向。第一方向z、第二方向x和第三方向y之间两两相互正交,且满足右手坐标系。需要说明的是,这里所说的电子束流2的运动方向可以为电子束流2在发射件内的总体运动方向,即:发射件入口指向发射件出口的运动方向,而非电子束流2在发 射件内的偏转方向。
相对于弯铁1来说,如图4~5所示,插入件可以具有磁极沿第一方向z交替排布的磁铁阵列6。因此,相对论性的电子e-在插入件内可以偏转多次。由于相对论性的电子e-在不同磁极与其发出的光子之间产生多普勒压缩并叠加而发出更好性能的同步辐射。
在插入件中,具有扭摆器和波荡器5两种插入件。其中,应用连续的非相干叠加的高次谐波的插入件为扭摆器;应用分立的相干叠加的低次谐波的插入件为振荡器。通常扭摆器的偏转因子较大,其辐射能量主要集中于连续的高次谐波;波荡器5的偏转因子较小,其辐射能量主要集中于分立的低次谐波。
为了获得更高的光子能量,扭摆器通常使用较强的磁场,其往往使用的磁场的周期长度较长,周期数较小,所以在该扭摆器中的电子束团扭摆的幅度较大,也就使得扭摆器产生的同步辐射光的分布较宽。而波荡器5往往使用的磁场的周期长度较短,周期数较多,也就因此波荡器5可以获得更高的光通量和亮度。
但是,由上述可知,如图4和6所示,平面扭摆器4产生的同步辐射光在单次测量样品8时,其产生的同步辐射光在垂直面内的垂直面张角12小于其在水平面内的水平面张角11,所以其只能够形成“窄条带7”样式的成像视场。也就因此,平面扭摆器4在单次测量样品8时,只能够获得样品8在一个“窄条带7”内的成像信息,所以其需要进行多次的测量,并对多次测量时形成的成像视场进行拼接后才能够获得整个样品8的成像信息。因此,平面扭摆器4在测量样品8时步骤较繁琐且需要花费大量的时间。
针对上述各种发射件存在的问题,本公开的发明人花费了大量的时间和大量的创造性劳动。最终本公开的发明人发明了一种芒果扭摆器,如图7~9所示,该芒果扭摆器为一种新型对称大视场成像插入件,其能够很好地适用于同步辐射成像。该芒果扭摆器能够通过改变电子e-运动的偏振态,将电子e-轨迹从二维平面向三维空间展开,从而能够将同步辐射光沿第一方向z和第三方向y组成的垂直平面展开,最终形成一个对称的大成像视场 9,该对称的大成像视场9可以为芒果形状。
并且,由本公开的芒果扭摆器形成的对称的大成像视场9相较于平面扭摆器4形成的“窄条带7”样式的成像视场来说,成像视场范围更大且亮度更高。也就因此,本公开提供的芒果扭摆器在获取样品8的成像信息时,不再需要对样品8进行多次测量,甚至也不再需要对测量形成的成像视场进行拼接,只需要进行少量甚至一次测量即可得到完整的样品8成像信息。从而,本公开提供的芒果扭摆器可以简化测量步骤,并且能够节省花费大量的测量时间。
如图7所示,本公开提供的芒果扭摆器可以包括:至少四排磁铁阵列6。至少四排磁铁阵列6可以围绕电子束流2排列。可以理解的是,至少四排磁铁阵列6可以环绕在电子束流2的周围。每个磁铁阵列6可以均沿第一方向z排布,且芒果扭摆器可以产生随第一方向z交变的沿第二方向x分布的磁场和随第一方向z交变的沿第三方向y分布的磁场。电子束流2可以包括多个电子束团。
其中,第一方向z可以为电子束流2的运动方向;第一方向z、第二方向x和第三方向y之间两两相互正交,且满足右手坐标系。沿第二方向x分布的磁场可以使得电子束流2在第一方向z和第三方向y组成的平面内偏转;沿第三方向y分布的磁场可以使电子束流2在第一方向z和第二方向x组成的平面内偏转。以此,该芒果扭摆器可以使得电子束流2在芒果扭摆器中偏转范围更大,偏转角度也更大,从而使得电子束流2的轨迹从二维平面向三维空间展开,最终形成一个对称的大成像视场9。
需要说明的是,这里所说的电子束流2的运动方向可以为电子束流2在芒果扭摆器内的总体运动方向,即:芒果扭摆器的入口指向芒果扭摆器的出口的运动方向,而非电子束流2在芒果扭摆器内的偏转方向。
在本公开的一个实施例中,第一方向z和第二方向x组成的平面可以为水平平面,第一方向z和第三方向y组成的平面可以为垂直平面。也就因此,本公开的电子束流2可以沿水平和竖直方向均发生偏转。
在本公开的一个实施例中,该芒果扭摆器可以具有四排磁铁阵列6,且其中的两排磁铁阵列6可以沿第二方向x相对设置,另外两排磁铁阵列6可 以沿第三方向y相对设置。沿第二方向x相对设置的两排磁铁阵列6之间的距离与沿第三方向y相对设置的两排磁铁阵列6之间的距离可以相同。并且,任意相邻的两排磁铁阵列6之间的距离也可以相同。
但不限于此,沿第二方向x相对设置的两排磁铁阵列6之间的距离与沿第三方向y相对设置的两排磁铁阵列6之间的距离也可以不同,且任意相邻的两排磁铁阵列6之间的距离也可以不同。同时,本公开对上述沿第二方向x相对设置的两排磁铁阵列6之间的具体距离、沿第三方向y相对设置的两排磁铁阵列6之间的具体距离、任意相邻的两排磁铁阵列6之间的具体距离不做限定,可以根据实际需要进行设置,这均在本公开的保护范围之内。
上述每排磁铁阵列6可以包括多个磁铁3,且相邻两个磁铁3的形状可以相同,磁性可以不同。在本公开的一个实施例中,磁铁3的形状可以为六边形,但不限于此,磁铁3的形状也可以为其他形状,这均在本公开的保护范围之内。
在本公开的一个实施例中,沿第二方向x分布的磁场的磁感应强度峰值和沿第三方向y分布的磁场的磁感应强度峰值可以相同,但不限于此,沿第二方向x分布的磁场的磁感应强度峰值和沿第三方向y分布的磁场的磁感应强度峰值也可以不相同。
另外,沿第二方向x分布的磁场的周期长度和沿第三方向y分布的磁场的周期长度不同。正是因为沿第二方向x分布的磁场的周期长度和沿第三方向y分布的磁场的周期长度不同,以此可以使得电子束流2在该芒果扭摆器中的偏振态发生改变,由线偏振变化为圆偏振,从而能够形成一个范围较大的成像视场。
其中,沿第三方向y分布的磁场的周期长度可以为:
沿第二方向x分布的磁场的周期长度可以为:
且λux≠λuy
其中,λux为沿第二方向x分布的磁场的周期长度,λuy为沿第三方向y分布的磁场的周期长度,N为磁铁阵列6的周期数,L为磁铁阵列6的长度。
但不限于此,沿第二方向x分布的磁场的周期长度可以为:
沿第三方向y分布的磁场的周期长度可以为:
且λuy≠λux.
针对上述发明人提供的芒果扭摆器,本公开的发明人又发现,由于低能端的能谱分布是不均匀的,从而造成了该芒果扭摆器在低能端的能谱和角分布是不均匀的。为解决该问题,本申请的发明人又对上述提供的芒果扭摆器进行了进一步的改进。
在本公开的一个实施例中,可以使得芒果扭摆器的偏转因子、磁铁阵列6的周期数和芒果扭摆器的谐波级数满足第一关系。该第一关系可以为:
其中,χ1为第一系数,N为磁铁阵列6的周期数,n为芒果扭摆器的谐波级数,σδ为电子束团能散,σx′为电子束团在第二方向x的发散角,σy′为电子束团在第三方向y的发散角;
其中,m为电子e-的静质量,c为光速,E为电子e-的能量;

其中,K为芒果扭摆器的偏转因子,e为电子e-的电量,Bx0为沿第二方向x分布的磁场的磁感应强度峰值,By0为沿第三方向y分布的磁场的磁感应强度峰值。
在本公开的一个实施例中,上述芒果扭摆器的谐波级数n可以为低能端的起点。并且,第一系数的取值范围可以为0.5~4。以此,当芒果扭摆器的偏转因子、磁铁阵列6的周期数和芒果扭摆器的谐波级数满足第一关系时,即可使得该芒果扭摆器在低能端获得均匀的能谱和角分布,进而使得成像视场中的光强度分布均匀。
进一步的,为了能够将均匀视场的能量范围向更低能拓展,可以采用破坏低能端的同步辐射纵向相干性的方式,可以调控沿第二方向x分布的磁场的磁感应强度峰值和沿第三方向y分布的磁场的磁感应强度峰值,进而破坏光的相位,从而使得低次谐波展宽,使低能端可以获得平滑连续的能谱以 及连续均匀的光视场分布。
在本实施例中,沿第二方向x分布的磁场中至少两个磁场周期内的磁感应强度峰值可以不同,和/或沿第三方向y分布的磁场中至少两个磁场周期内的磁感应强度峰值可以不同。以此可以使得更低能端获得平滑连续能谱以及连续均匀的光视场分布。
在本公开的一个实施例中,为了更进一步地将均匀视场的能量范围向更低能拓展。沿第二方向x分布的磁场中所有磁场周期内的磁感应强度峰值均可以不同,并且沿第三方向y分布的磁场中所有磁场周期内的磁感应强度峰值也均可以不同。
在本公开中,为了使得上述沿第二方向x分布的磁场中至少两个磁场周期内的磁感应强度峰值不同,可以单独对沿第二方向x分布的磁场的磁感应强度峰值进行偏离调制。
为了使得上述沿第三方向y分布的磁场中至少两个磁场周期内的磁感应强度峰值不同,可以单独对沿第三方向y分布的磁场的磁感应强度峰值进行偏离调制。
另外,为了使得沿第二方向x分布的磁场中至少两个磁场周期内的磁感应强度峰值不同并且沿第三方向y分布的磁场中至少两个磁场周期内的磁感应强度峰值不同,可以同时对沿第二方向x分布的磁场的磁感应强度峰值和沿第三方向y分布的磁场的磁感应强度峰值进行偏离调制。
在本公开的一个实施例中,上述偏离调制的方法可以为倾斜磁间隙(Taper)的方法,但不限于此,上述偏离调制的方法也可以不为Taper法,只要能够满足上述的各个磁场中的磁场磁感应强度峰值不同即可,这均在本公开的保护范围之内,可以根据实际需要进行选择。
除此之外,本公开的发明人又发现,对于该芒果扭摆器,沿电子束流2运动轴向观察电子e-在第二方向x和第三方向y组成的平面内的轨迹变化时可以发现:电子e-经过一个磁周期后,将其运动轨迹指向投影到角分布面上,可以得到两条“经线10”。因为芒果扭摆器可以由N个磁场周期,所以电子e-可以偏转2N次,以此将偏转2N次的电子e-运动轨迹投射到角分布面上时,可以得到2N条“经线10”,最终的光成像视场分布可以由电子e- 的运动轨迹与运动轨迹各个位置上的电子束团发光共同形成。但是,如图10所示,这2N条“经线10”间的间距是不相等的,越靠近中心的“经线10”之间的间距越大,越靠近边缘的“经线10”之间的间距越小。
由于电子束团发光的张角会随着同步辐射光能量的升高而减小,也就因此高能端的电子束团发光的张角有可能会小于“经线10”间的间距,即:电子束团发光的张角无法将角分布面内的各个“经线10”之间的间距填充均匀,进而会造成在高能端整个光成像视场不均匀。
针对上述本公开的发明人发现的技术问题,本公开的发明人又进行了深入的研究,并进一步的对芒果扭摆器进行了改进,从而完美的解决了上述技术问题。
在一些实施例中,可以使得沿第二方向x分布的磁场的磁感应强度峰值、沿第三方向y分布的磁场的磁感应强度峰值、沿第二方向x分布的磁场的周期长度和沿第三方向y分布的磁场的周期长度满足第二关系。
在本公开的一个实施例中,该第二关系可以为:
其中,χ2为第二系数,Bx0为沿第二方向x分布的磁场的磁感应强度峰值,By0为沿第三方向y分布的磁场的磁感应强度峰值,




其中,σv′为芒果扭摆器中任意一个位置处电子束团发光的张角,σr′为单电子e-发光的张角,单电子可以为电子束团中的任意一个电子,m为电子e-的静质量,c为光速,E为电子e-的能量,ε为芒果扭摆器第n级 谐波能量,k为普朗克常数,K5/3(y′)和为第二类分数阶修正贝塞尔函数,e为电子e-的电量,B为磁感应强度。
需要说明的是,此处的B可以为第二方向x和第三方向y任意一磁感应强度,即此处的B可以为Bx或者By
在本公开的一个实施例中,第二系数的取值范围可以为0.5~4。以此,当沿第二方向x分布的磁场的磁感应强度峰值、沿第三方向y分布的磁场的磁感应强度峰值、沿第二方向x分布的磁场的周期长度和沿第三方向y分布的磁场的周期长度满足第二关系时,位于角分布面内最大“经线10”间距可以被电子束团发光张角填充均匀,从而使高能端的同步辐射获得平滑连续的角分布,进而使得成像视场中的光强度分布均匀。
下面利用具体的实施例对上述芒果扭摆器进行具体的说明:
如图7所示,本公开提供的芒果扭摆器可以具有四排磁铁阵列6,且其中的两排磁铁阵列6沿第二方向x相对设置,另外两排磁铁阵列6沿第三方向y相对设置。沿第二方向x相对设置的两排磁铁阵列6之间的距离与沿第三方向y相对设置的两排磁铁阵列6之间的距离相同。并且,任意相邻的两排磁铁阵列6之间的距离也相同。
其中,随所述第一方向z交变的沿第二方向x分布的磁场的表达式可以为:随所述第一方向z交变的沿第三方向y分布的磁场的表达式可以为:其中,Z为电子e-在芒果扭摆器中沿第一方向z运动的距离。
在本实施例中,电子e-的能量E为6GeV,电子束团能散σδ为0.0011,电子束团在第二方向x的发散角σx′=0.0031mrad,电子束团在第三方向Y的发散角σy′=0.0012mrad,当N=18、Bx0=By0=1.8T、λux=60.85mm、λuy=60mm时,磁场分布如图11所示,电子e-运动轨迹角分布图如图12所示。
在本实施例中,令通量立体角密度对比度<1%作为光成像视场均匀的标准。在低能端,系数χ1取2,当芒果扭摆器的谐波级数n满足:
时,低能端的能谱 和角分布均匀。
当n为205时,对应的谐波能量约为11.36keV,不等式左边等于0.0044,不等式右边等于0.0049,不满足第一关系,此时的光成像视场不均匀。经过SPECTRA验证后,此时的芒果扭摆器形成光成像视场的通量密度对比度约为2.4%,如图13所示,通量密度角分布是不均匀的,因此并不满足光成像视场均匀的标准。
当n为289时,对应的谐波能量约为16keV,不等式左边等于0.0044,不等式右边等于0.0035,满足上述第一关系。经过SPECTRA验证后,此时的芒果扭摆器形成光成像视场的通量密度对比度约为0.05%,如图14所示,通量密度角分布是均匀的,因此满足光成像视场均匀的标准。
在此基础上,可以通过Taper的方法,将均匀视场的能量范围向更低能拓展。具体Taper方式如下:在本实例基础上,如图15所示,可以通过倾斜磁间隙的方法令沿第二方向x分布的磁场的磁感应强度峰值和沿第三方向y分布的磁场的磁感应强度峰值从1.78T阶梯式增至1.8T。如前所述,在不进行Taper时,谐波能量为11.36keV时的能谱和角分布是不均匀的;在对磁场进行Taper后,经SPECTRA验证,谐波能量为11.36keV时对应的通量密度对比度约为0.5%,如图16所示,通量密度角分布是均匀的,因此满足光成像视场均匀的标准。
在高能端,系数χ2取1.7,当满足:
时,高能端的能谱和角分布均匀。
在上式中,不等式左边等于53.72μrad。在谐波能量为150keV时,不等式右边等于57.88μrad,此时满足第二关系。经过SPECTRA验证后,此时的通量密度对比度约为0.8%,如图17所示,通量密度角分布是均匀的,因此满足光成像视场均匀的标准。
在谐波能量为300keV时,不等式右边等于39.9μrad,不满足第二关系,经过SPECTRA验证后,此时的通量密度对比度约为2.8%,如图18所示,通量密度角分布是不均匀的,因此不满足光成像视场均匀的标准,此时的 光成像视场是不均匀的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (9)

  1. 一种芒果扭摆器,其中,包括:
    至少四排磁铁阵列,至少四排所述磁铁阵列围绕电子束流排列;各所述磁铁阵列均沿第一方向排布,且所述芒果扭摆器产生随所述第一方向交变的沿第二方向分布的磁场和随所述第一方向交变的沿第三方向分布的磁场;
    其中,所述第一方向为电子束流的运动方向;所述第一方向、所述第二方向和所述第三方向之间两两相互正交,且满足右手坐标系,所述沿第二方向分布的磁场使所述电子束流在第一方向和第三方向组成的平面内偏转,所述沿第三方向分布的磁场使所述电子束流在第一方向和第二方向组成的平面内偏转;所述沿第二方向分布的磁场的周期长度和所述沿第三方向分布的磁场的周期长度不同;所述沿第三方向分布的磁场的周期长度为:
    所述沿第二方向分布的磁场的周期长度为:
    其中,λux为所述沿第二方向分布的磁场的周期长度,λuy为所述沿第三方向分布的磁场的周期长度,N为所述磁铁阵列的周期数,L为所述磁铁阵列的长度。
  2. 根据权利要求1所述的芒果扭摆器,其中,所述芒果扭摆器的偏转因子、所述磁铁阵列的周期数和所述芒果扭摆器的谐波级数满足第一关系,所述第一关系为:
    其中,χ1为第一系数,N为所述磁铁阵列的周期数,n为所述芒果扭摆器的谐波级数,σδ为电子束团能散,σx′为电子束团在所述第二方向的发散角,σy′为电子束团在所述第三方向的发散角,所述电子束流包括多个电子束团;
    其中,m为电子的静质量,c为光速,E为电子的能量;

    其中,K为所述芒果扭摆器的偏转因子,e为电子的电量,Bx0为所述沿第二方向分布的磁场的磁感应强度峰值,By0为所述沿第三方向分布的磁场的磁感应强度峰值。
  3. 根据权利要求2所述的芒果扭摆器,其中,所述第一系数的取值范围为0.5~4。
  4. 根据权利要求1所述的芒果扭摆器,其中,所述沿第二方向分布的磁场的磁感应强度峰值、所述沿第三方向分布的磁场的磁感应强度峰值、所述沿第二方向分布的磁场的周期长度和所述沿第三方向分布的磁场的周期长度满足第二关系,所述第二关系为:
    其中,χ2为第二系数,Bx0为所述沿第二方向分布的磁场的磁感应强度峰值,By0为所述沿第三方向分布的磁场的磁感应强度峰值,




    其中,σv′为所述芒果扭摆器中任意一个位置处电子束团发光的张角,σr′为单电子发光的张角,所述单电子为所述电子束团中的任意一个电子, m为电子的静质量,c为光速,E为电子的能量,ε为所述芒果扭摆器第n级谐波能量,h为普朗克常数,K5/3(y′)和为第二类分数阶修正贝塞尔函数,e为电子的电量,B为磁感应强度。
  5. 根据权利要求4所述的芒果扭摆器,其中,所述第二系数的取值范围 为0.5~4。
  6. 根据权利要求1所述的芒果扭摆器,其中,所述沿第二方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同,和/或所述沿第三方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同。
  7. 根据权利要求6所述的芒果扭摆器,其中,单独对所述沿第二方向分布的磁场的磁感应强度峰值进行偏离调制,以使所述沿第二方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同;或者,单独对所述沿第三方向分布的磁场的磁感应强度峰值进行偏离调制,以使所述沿第三方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同。
  8. 根据权利要求6所述的芒果扭摆器,其中,同时对所述沿第二方向分布的磁场的磁感应强度峰值和所述沿第三方向分布的磁场的磁感应强度峰值进行偏离调制,以使所述沿第二方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同,并且所述沿第三方向分布的磁场中至少两个磁场周期内的磁感应强度峰值不同。
  9. 根据权利要求7或8所述的芒果扭摆器,其中,所述偏离调制的方法为倾斜磁间隙的方法。
PCT/CN2023/077667 2022-02-25 2023-02-22 芒果扭摆器 WO2023160581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210177928.1A CN114501769B (zh) 2022-02-25 2022-02-25 芒果扭摆器
CN202210177928.1 2022-02-25

Publications (2)

Publication Number Publication Date
WO2023160581A1 WO2023160581A1 (zh) 2023-08-31
WO2023160581A9 true WO2023160581A9 (zh) 2023-10-26

Family

ID=81484370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077667 WO2023160581A1 (zh) 2022-02-25 2023-02-22 芒果扭摆器

Country Status (2)

Country Link
CN (1) CN114501769B (zh)
WO (1) WO2023160581A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501769B (zh) * 2022-02-25 2023-05-05 中国科学院高能物理研究所 芒果扭摆器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288200A (ja) * 1994-04-20 1995-10-31 Toshiba Corp 高周波アンジュレータ
JP3296674B2 (ja) * 1995-02-02 2002-07-02 理化学研究所 シンクロトロン放射における挿入光源
JP3242576B2 (ja) * 1996-09-21 2001-12-25 川崎重工業株式会社 2次元走査用ウィグラー
JPH10326700A (ja) * 1997-03-24 1998-12-08 Sumitomo Special Metals Co Ltd 挿入型偏光発生装置
HU230587B1 (hu) * 2011-08-18 2017-02-28 Pécsi Tudományegyetem Rövid periódusú undulátor
CN103337332A (zh) * 2012-11-28 2013-10-02 中国科学院上海应用物理研究所 波荡器
TWI534521B (zh) * 2013-12-09 2016-05-21 國立清華大學 類相對論輻射天線系統
CN104409129B (zh) * 2014-11-17 2017-02-22 中国科学院上海微系统与信息技术研究所 一种波荡器
US10785858B2 (en) * 2015-02-03 2020-09-22 Massachusetts Institute Of Technology Apparatus and methods for generating electromagnetic radiation
WO2019045017A1 (ja) * 2017-08-30 2019-03-07 学校法人工学院大学 電磁装置
CN109561568B (zh) * 2018-11-27 2020-01-24 中国原子能科学研究院 一种产生扭摆轨道并增加轴向聚焦力的周期性磁铁组件
CN109411109B (zh) * 2018-12-24 2020-03-17 中国科学院高能物理研究所 一种偏振可调的永磁波荡器
CN111161937B (zh) * 2019-12-27 2021-04-27 浙江大学 一种基于磁铁阵列的磁场产生和控制系统及其工作方法
CN114501769B (zh) * 2022-02-25 2023-05-05 中国科学院高能物理研究所 芒果扭摆器

Also Published As

Publication number Publication date
CN114501769B (zh) 2023-05-05
WO2023160581A1 (zh) 2023-08-31
CN114501769A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Cerutti et al. Modelling high-energy pulsar light curves from first principles
Hofmann The physics of synchrotron radiation
US6201851B1 (en) Internal target radiator using a betatron
WO2023160581A9 (zh) 芒果扭摆器
Zhou et al. Influence of a large oblique incident angle on energetic protons accelerated from solid-density plasmas by ultraintense laser pulses
Crinquand et al. Synthetic images of magnetospheric reconnection-powered radiation around supermassive black holes
Bandiera et al. Investigation on radiation generated by sub-GeV electrons in ultrashort silicon and germanium bent crystals
Jiang et al. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion
Torrisi Ion acceleration from intense laser-generated plasma: methods, diagnostics and possible applications
Takabayashi et al. First observation of scattering of sub-GeV electrons in ultrathin Si crystal at planar alignment and its relevance to crystal-assisted 1D rainbow scattering
Yang et al. Design for the lattice with 4-DBA structure of the compact laser-electron storage ring
US9215790B2 (en) Formation of multiple proton beams using particle accelerator and stripper elements
Capdessus et al. γ-ray generation enhancement by the charge separation field in laser-target interaction in the radiation dominated regime
JP6393929B1 (ja) アンジュレータ用磁石、アンジュレータおよび、放射光発生装置
Speirs et al. A laboratory experiment to investigate auroral kilometric radiation emission mechanisms
Hadjisolomou et al. Effect of ultrastrong magnetic fields on laser-produced gamma-ray flashes
US7381967B2 (en) Non-axisymmetric charged-particle beam system
Jeon et al. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters
Brodin et al. Laboratory soft x-ray emission due to the Hawking–Unruh effect?
Schillaci et al. ELIMED: medical application at eli-beamlines. Status of the collaboration and first results
Schütz Simulation of particle fluxes at the DESY-II test beam facility
Nardi et al. Electron beam therapy with coil‐generated magnetic fields
Osipowicz et al. Electron optical imaging properties of the KATRIN high field solenoid chain
Zhang et al. Experimental Polarization Control of Thomson Scattering X/{\gamma}-ray Source
Nishikawa et al. New Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759206

Country of ref document: EP

Kind code of ref document: A1