WO2023160242A1 - 电路结构、电池和电子设备 - Google Patents

电路结构、电池和电子设备 Download PDF

Info

Publication number
WO2023160242A1
WO2023160242A1 PCT/CN2022/143850 CN2022143850W WO2023160242A1 WO 2023160242 A1 WO2023160242 A1 WO 2023160242A1 CN 2022143850 W CN2022143850 W CN 2022143850W WO 2023160242 A1 WO2023160242 A1 WO 2023160242A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode sheet
conductive structure
battery
current
load
Prior art date
Application number
PCT/CN2022/143850
Other languages
English (en)
French (fr)
Inventor
孙健
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220373908.7U external-priority patent/CN217215005U/zh
Priority claimed from CN202210167885.9A external-priority patent/CN116683123A/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023160242A1 publication Critical patent/WO2023160242A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/181Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells

Definitions

  • the present application relates to the field of battery technology, in particular to a circuit structure, battery and electronic equipment.
  • Electronic products such as wireless Bluetooth headsets use built-in battery cells to supply power to loads such as microphones. Due to the manufacturing method of the battery cells, the current passing through the cells will generate interference magnetic fields during the working process of the batteries. To solve the noise problem, it is often designed with a coil to generate a reverse magnetic field to weaken the interference magnetic field generated by the core.
  • Embodiments of the present application provide a circuit structure, a battery, and an electronic device.
  • the circuit structure of the embodiment of the present application includes a battery cell and a conductive structure.
  • the cell includes a positive electrode sheet and a negative electrode sheet, the positive electrode sheet and the negative electrode sheet are wound, and along the winding direction of the negative electrode sheet, the outer end of the negative electrode sheet passes over the outer end of the positive electrode sheet
  • the part of the part is the extension section.
  • the conductive structure includes a first end portion and a second end portion, at least one of the first end portion and the second end portion is connected to the positive electrode sheet or the negative electrode sheet, and the conductive structure is configured to generate The electromagnetic field and the electromagnetic field generated by the extension section weaken each other.
  • the wiring of the conductive structure is simple, and at least one of the first end and the second end of the conductive structure is connected to the positive electrode or the negative electrode.
  • the generated electromagnetic fields weaken each other, so the conductive structure and the electric core form a magnetic field offset, which can fully offset the external magnetic field radiation generated by the extension section, and reduce the current noise when the electronic device is used.
  • Embodiments of the present application provide a battery, and the battery includes the circuit structure provided in the embodiments of the present application.
  • the electromagnetic field generated by the extension section of the battery inside the battery can weaken each other with the electromagnetic field generated by the conductive structure, so as to reduce the interference magnetic field generated by the battery.
  • the electronic device in the embodiments of the present application includes the circuit structure provided in the present application.
  • the magnetic field provided by the conductive structure can well offset the magnetic field generated by the electric core, so that The noise of electronic equipment is effectively eliminated, improving equipment performance and user experience.
  • FIG. 1 is a schematic structural view of a battery in an embodiment of the present application
  • FIG. 2 is a schematic top view of a wound battery cell in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a conductive structure in an embodiment of the present application.
  • Fig. 4 is another structural schematic diagram of the conductive structure in the embodiment of the present application.
  • Fig. 5 is another structural schematic diagram of the conductive structure in the embodiment of the present application.
  • Fig. 6 is another structural schematic diagram of the conductive structure in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of the internal wiring of the electronic device in the embodiment of the present application.
  • FIG. 8 is another schematic diagram of internal wiring of the electronic device in the embodiment of the present application.
  • FIG. 9 is another schematic diagram of the internal routing of the electronic device in the embodiment of the present application.
  • FIG. 10 is another schematic diagram of the internal routing of the electronic device in the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • Electronic equipment 10000 battery 1000, circuit structure 100, battery cell 11, positive electrode sheet 110, outer end 1100 of positive electrode sheet 110, negative electrode sheet 111, outer end 1110 of negative electrode sheet 111, extension section 1111, positive electrode ear 112, negative electrode ear 113, positive pad 114, negative pad 115, conductive structure 12, first end 120, second end 121, third end 122, fourth end 123, first part 124, second part 125, The first connection structure 126 , the second connection structure 127 , the load 200 , the Bluetooth module 21 , and the speaker 300 .
  • a technical feature of a circuit structure can be combined with a technical feature of a battery or an electronic device , that is to say, the features in the above-mentioned technical solutions of different themes can be combined with each other; it is understandable that the technical features in the subject of circuit structure may be the same as those in the subject of a battery or an electronic device, for example, the technical features in the subject of circuit structure Static technical characteristics may be non-static technical characteristics in the subject of a battery or an electronic device.
  • the embodiment of the present application provides a circuit structure 100, the circuit structure 100 includes a battery cell 11 and a conductive structure 12, the battery cell 11 includes a positive electrode sheet 110 and a negative electrode sheet 111, and the positive electrode sheet 110 and the negative electrode sheet 111 Winding arrangement, along the winding direction of the negative electrode sheet 111, the part where the outer end 1110 of the negative electrode sheet 111 crosses the outer end 1100 of the positive electrode sheet 110 is an extension section 1111; the conductive structure 12 includes a first end 120 and a second end portion 121, at least one of the first end portion 120 and the second end portion 121 is connected to the positive electrode sheet 110 or the negative electrode sheet 111, and the conductive structure 12 is configured such that the electromagnetic field generated by the extension section 1111 weakens each other.
  • an embodiment of the present application provides a battery 1000 , and the battery 1000 includes the circuit structure 100 provided in the embodiment of the present application.
  • the embodiment of the present application further provides an electronic device 10000, and the electronic device 10000 includes the circuit structure 100 provided in some embodiments of the present application.
  • the electronic device 1000 in the present application further includes a load 200 , and the battery cell 11 is configured to supply power to the load.
  • the load may include the Bluetooth module 21
  • the changing current may include the fluctuating current generated by the battery cell 21 due to the Bluetooth module 21 sending and receiving Bluetooth signals when the battery cell 11 supplies power to the Bluetooth module 21 . It can be easily understood that the load included in the electronic device 1000 may be the same load as the load 200 involved in the circuit structure 100 .
  • the position of the first end 120 corresponds to the outer end 1110 of the negative electrode sheet 111
  • the position of the second end 121 corresponds to the outer end 1100 of the positive electrode sheet 110
  • the current of the conductive structure 12 is configured to be opposite to the direction of the current of the extension segment 1111 of the negative electrode sheet 111 .
  • the first end portion 120 is configured to connect to the outer end portion 1110 of the negative electrode sheet 111 , and/or, the second end portion 120 is configured to connect to the outer end portion of the positive electrode sheet 110 1100.
  • the second end portion 121 is located at the outer end portion 1110 of the positive electrode sheet 110 .
  • the first end 120 is located at the outer end 1110 of the negative electrode sheet 111 .
  • the cell 11 is configured to supply power to the load 200
  • the first end 120 is configured to connect to the outer end 1110 of the negative electrode sheet 111
  • the outer end 1100 of the positive electrode sheet 110 is configured to connect to the load 200
  • the second end 121 is configured to be connected to the current output end of the load 200 .
  • the first end 120 is configured to connect to the outer end 1110 of the negative electrode sheet 111
  • the second end 121 is configured to connect to the outer end of the positive electrode sheet 110.
  • the conductive structure 12 also includes a third end 122 and a fourth end 123, the first end 120 to the third end 122 constitute the first part 124 of the conductive structure 12, the second end 121 to the fourth The end portion 123 constitutes the second portion 125 of the conductive structure 12 , and the third end portion 122 and the fourth end portion 123 are spaced apart.
  • the third end portion 122 and the fourth end portion 123 can be disposed at any position of the conductive structure 12; and/or, the length of the first portion 124 and the length of the second portion 125 the same or different lengths.
  • the cell 11 is configured to supply power to the load 200
  • the third end 122 is configured to connect to the current output end of the load 200
  • the fourth end 123 is configured to Connect to the current input terminal of the load 200 .
  • the third end 122 is configured to be connected to the current output end of the load 200 through the first connection structure 126
  • the fourth end 124 is configured to be connected through the second
  • the connection structure 127 is connected to the current input end of the load 200 , and the first connection structure 126 and the second connection structure 127 overlap and route.
  • the shape of the conductive structure 12 may correspond to the shape of the extension segment 1111 .
  • the conductive structure 12 may be configured as an arc-shaped structure with no more than one turn.
  • the curvature of the conductive structure 12 is the same or similar to that of the extension section 1111 , or the length of the conductive structure 12 is the same or similar to that of the extension section 1111 .
  • the arc or length of the conductive structure 12 is configured to be determined according to the current sound emitted by the speaker 300 , wherein the battery cell 11 supplies power to the load 200 , and the load 200 is connected to the speaker 300 .
  • the battery cell 11 may include a positive tab 112 and a negative tab 113 (as shown in FIG. 2 ), and the outer end 1100 of the positive tab 110 is configured to pass through the positive tab 112 and/or, the outer end 1110 of the negative electrode sheet 111 is configured to be connected to the first end 120 through the negative tab 113 .
  • the positive pole ear 112 can be connected with the second end 121 through the positive pole pad 114; One end 120 is connected.
  • the battery cell 11 and the conductive structure 12 are packaged inside the battery 1000 ; or, the battery cell 11 is packaged inside the battery 1000 , and the conductive structure 12 is arranged outside the battery 1000 .
  • the conductive structure 12 may be disposed on the side of the cell 11 close to the speaker 300 ; or, the conductive structure 12 may be disposed between the battery 1000 and the speaker 300 .
  • the plane where the conductive structure 12 is located is parallel or substantially parallel to the plane formed by winding the negative electrode sheet 111 .
  • the conductive structure 12 is configured to generate a first electromagnetic field when a varying current is applied, and the cell 11 is configured to generate a second electromagnetic field when a varying current is applied, the first electromagnetic field and the second electromagnetic field weaken each other, and the second The second electromagnetic field includes the electromagnetic field generated by the extension section 1111 when a varying current is applied.
  • the electric core 11 supplies power to the load 200
  • the load 200 may include a Bluetooth module 21
  • the changing current may include that when the electric core 11 supplies power to the Bluetooth module 21, the bluetooth module 21 sends and receives Bluetooth signals to cause the electric core 11 fluctuating currents.
  • the electronic device 10000 may include earphones.
  • the fluctuating current caused by the Bluetooth module 21 sending and receiving Bluetooth signals may include: the fluctuating current generated by the battery cell 11 during the Bluetooth connection back process.
  • the arrangement of the conductive structure 12 can prevent the electronic device 10000 from generating current noise caused by the current fluctuation of the battery 1000 caused when the Bluetooth module 21 is used to connect back to the external device.
  • the Bluetooth module 21 may include a Bluetooth codec, and the changing current may include fluctuating current caused by sending and receiving files in LHDC format when the battery cell 11 supplies power to the Bluetooth module 21 .
  • the arrangement of the conductive structure 12 can prevent the electronic device 10000 from generating current noise when the electronic device 10000 transmits and receives files in LHDC format.
  • the second electromagnetic field interferes with the horn 300 to cause noise
  • the frequency of the changing current, the second electromagnetic field and the noise are the same, and the frequency includes at least one of the following: 800Hz, 1.6KHz, 3.2KHz and any multiple of them.
  • the embodiment of the present application provides a circuit structure 100, the circuit structure 100 includes a battery cell 11 and a conductive structure 12, the battery cell 11 includes a positive electrode sheet 110 and a negative electrode sheet 111, and the positive electrode sheet 110 and the negative electrode sheet 111 Winding arrangement, along the winding direction of the negative electrode sheet 111, the part where the outer end 1110 of the negative electrode sheet 111 crosses the outer end 1100 of the positive electrode sheet 110 is an extension section 1111; the conductive structure 12 includes a first end 120 and a second end portion 121, at least one of the first end portion 120 and the second end portion 121 is connected to the positive electrode sheet 110 or the negative electrode sheet 111, and the conductive structure 12 is configured such that the electromagnetic field generated by the extension section 1111 weakens each other.
  • the wiring of the conductive structure 12 is simple, and at least one of the first end 120 and the second end 121 of the conductive structure 12 is connected to the positive electrode sheet 110 or the negative electrode sheet 111, which may include There are situations where one end of the conductive structure 12 is connected to the positive electrode sheet and the other end is connected to the negative electrode sheet.
  • the conductive structure 12 is configured such that the electromagnetic field generated by the conductive structure 12 and the electromagnetic field generated by the extension section 1111 weaken each other. The mutual weakening here can be understood as the electromagnetic field generated by the conductive structure 12 partially cancels the electromagnetic field generated by the extension section 1111, or it can be generated by the conductive structure 12.
  • the electromagnetic field generated by the extension section 1111 completely cancels the electromagnetic field generated by the extension section 1111.
  • the setting of the conductive structure 12 can reduce the interference of the magnetic field radiation generated by the extension section 1111 on sensitive devices such as speakers, and reduce the current noise when the electronic device 10000 is used.
  • an embodiment of the present application provides a battery 1000 , and the battery 1000 includes the circuit structure 100 provided in the embodiment of the present application.
  • the electromagnetic field generated by the extension section 1111 of the battery cell 11 inside the battery 1000 can weaken each other with the electromagnetic field generated by the conductive structure 12, so as to reduce the generation of the battery cell 11. It can be understood that encapsulating the circuit structure 100 in the battery 1000 can effectively reduce the magnetic flux leakage of the battery.
  • the embodiment of the present application further provides an electronic device 10000, and the electronic device 10000 includes the circuit structure 100 provided in some embodiments of the present application.
  • the magnetic field provided by the conductive structure 12 can be compared with the magnetic field generated by the extension section 1111 of the electric core 11 Mutual weakening, such as partial cancellation or complete cancellation, thereby reducing the interference of the magnetic field radiation generated by the extension section 1111 on sensitive devices such as speakers, thereby effectively weakening or even eliminating the noise of the electronic equipment 10000, improving equipment performance and user experience .
  • the built-in battery cells provide power for microphones, speakers, Bluetooth, etc.
  • the built-in batteries of small electronic products are generally small rechargeable batteries (such as steel case batteries or pouch batteries), and the production method of battery cells is generally winding type, although the related technology reduces the magnetic flux leakage of the battery by improving some winding methods , but magnetic flux leakage is still unavoidable.
  • Electromagnetic fields may be generated, causing magnetic flux leakage.
  • TWS Truste Wireless Stereo, true wireless stereo Bluetooth headsets
  • the compact size of TWS Bluetooth headsets makes the stacking distance between the battery and the speaker close. may also cause noise.
  • most Bluetooth headsets also have noise reduction functions. When using related functions of wireless Bluetooth headsets, and in specific usage scenarios such as connecting back and playing audio in a specific format, the noise is more obvious.
  • the reasons for the above noise include: in the Bluetooth headset, the current of the battery may fluctuate due to the Bluetooth signal emitted by the Bluetooth chip. In the case of changes, the electromagnetic field leaked from the battery also changes, and the changing magnetic field will interfere with sensitive devices such as speakers and generate noise.
  • the current fluctuations caused by the Bluetooth module are more likely to cause noise caused by the interference of the electromagnetic field generated by the battery on the acoustic and electrical devices such as microphones and speakers connected to the Bluetooth module.
  • a reverse coil can be designed, and then through a certain arrangement, the coil can generate a magnetic field opposite to that of the battery core after power-on, thereby offsetting the magnetic field generated by the battery core.
  • the design requirements for the offset coil are getting higher and higher.
  • the present application provides an improved circuit structure 100, at least one of the first end 120 and the second end 121 of the conductive structure 12 is connected to the positive electrode sheet 110 or the negative electrode sheet 111, and the conductive structure 12 is It is configured to weaken the electromagnetic field generated by the extension section 1111 and the electromagnetic field generated by each other.
  • the mutual weakening here can be understood as canceling each other.
  • the electromagnetic field generated by the conductive structure 12 and the electromagnetic field generated by the extension section 1111 can be completely canceled, or the conductive The electromagnetic field generated by the structure 12 partially offsets the electromagnetic field generated by the extension section 1111.
  • the conductive structure 12 provided in the present application is designed for the magnetic field interference generated by the extension section of the negative electrode sheet, and the offset is more targeted, which can effectively improve the extension.
  • the interference magnetic field generated by the section 1111 interferes with sensitive components such as the speaker 300 and causes problems such as noise.
  • the electronic device 10000 in this application can be a mobile phone, a tablet computer, an audio player, a video player, a wired headset, a wireless Bluetooth headset such as a TWS headset, a speaker, etc.
  • the battery 1000 of the electronic device 10000 in this application can be For self-contained battery.
  • the load 200 included in the electronic device 10000 may include the Bluetooth module 21 .
  • the speaker 300 may also be regarded as a part of the load 200 , and may also be understood as a part other than the load 200 .
  • the electronic device 10000 is applied with the circuit structure 100 in this application.
  • the conductive structure 12 is used to weaken the interference electromagnetic field generated by the extension section 1111 (including partial or full cancellation of the interference electromagnetic field), so as to suppress the interference caused by the load 200.
  • the electric core 11 produces an interference magnetic field to affect the acoustic and electric devices such as the speaker 300 due to the change of the current, thereby improving problems such as the current noise emitted by the speaker 300 .
  • the electronic device 10000 mentioned below is explained by taking a TWS earphone as an example.
  • the electronic device 1000 in the present application further includes a load 200, and the battery cell 11 is configured to supply power to the load.
  • the load may include the Bluetooth module 21
  • the changing current may include the fluctuating current generated by the battery cell 21 due to the Bluetooth module 21 sending and receiving Bluetooth signals when the battery cell 11 supplies power to the Bluetooth module 21 .
  • the load included in the electronic device 1000 may be the same load as the load 200 involved in the circuit structure 100 .
  • the battery 1000 in this application can specifically be a winding battery, such as a steel shell button battery and a miniature pouch battery, etc.
  • the battery 11 can be located inside the battery 1000, and the battery 11 can be a winding battery 11,
  • current flowing through the battery cell 11 may generate a magnetic field perpendicular to the top cover of the battery 1000 or the bottom case of the battery 1000 .
  • the winding form and safety requirements of the cell 11 in FIG. 2 determine that the outer end 1110 of the negative electrode sheet 111 of the cell 11 passes over the outer end 1100 of the positive electrode sheet 110 .
  • the alternating current will generate a magnetic field on the closed coil, so for the wound battery 1000, when the current of the battery 1000 fluctuates, most of the positive electrode sheet 110 and the negative electrode sheet 111 of the battery cell 11 are generated.
  • the magnetic fields will cancel each other, and at this time, since the outer end 1110 of the negative electrode sheet 111 passes over the outer end 1100 of the positive electrode sheet 110, the passing part is not canceled, and magnetic field radiation will be generated to the outside. That is to say, the magnetic field generated by the epitaxial section 1111 will not be canceled when the electric core 11 passes a changing current, but will generate magnetic field radiation to the outside.
  • the circuit structure 100 in the battery 1000 is also designed with a conductive structure 12 , and the conductive structure 12 can be connected in series with the cell 11 .
  • the battery cell 11 can be a battery cell of a pouch battery or a steel case battery
  • the conductive structure 12 can be a wire, an FPC or a circuit board
  • the conductive structure 12 can be arranged on the side of the battery cell 11 close to the speaker 200 , or the conductive structure 12 can be arranged between the battery 1000 and the speaker 200 .
  • the first end 120 and the second end 121 of the conductive structure 12 can be connected to the positive electrode sheet 110 or the negative electrode sheet 111 of the battery cell 11, further, the first end 120 of the conductive structure 12 At least one of the second ends 121 may be connected to the outer end 1100 of the positive electrode sheet 110 or the outer end 1110 of the negative electrode sheet 111 .
  • the conductive structure 12 may be realized by means of a flexible circuit board, a printed circuit board, copper wire winding, and the like. When the battery cell 11 is energized, current also exists in the conductive structure 12 .
  • the conductive structure 12 can be a conductive coil with a certain radian, and the diameter, thickness and material of the conductive structure 12 can be comprehensively determined according to the magnetic field radiation intensity to be offset.
  • the conductive structure 12 is configured such that the electromagnetic field generated by the extension section 1111 and the electromagnetic field generated by the extension section 1111 weaken each other, which can be understood as partial or full cancellation of the electromagnetic field generated by the extension section 1111, so that the load 200 (that is, the circuit structure) included in the electronic device 10000 100 connected load 200), for example, after the changing current generated by the Bluetooth module 21 is passed to the cell 11, the electromagnetic field generated by the extension section 1111 of the cell 11 can be weakened by the electromagnetic field generated by the conductive structure 12, thereby reducing the
  • the influence of the interference magnetic field on components such as the speaker 300 connected to the load 200 can further improve problems such as current noise emitted by the speaker 300 .
  • the position of the first end 120 corresponds to the outer end 1110 of the negative electrode sheet 111
  • the position of the second end 121 corresponds to the outer end 1100 of the positive electrode sheet 110
  • the current of the conductive structure 12 is configured to be opposite to the direction of the current of the extension segment 1111 of the negative electrode sheet 111 .
  • the setting of the conductive structure 12 can accurately align the position of the epitaxial segment 1111 (of course, a certain degree of deviation is allowed, which can be adjusted according to the actual needs of noise control), and at the same time, because the current of the conductive structure 12 is configured to be in line with the negative plate 111
  • the current direction of the extension section 1111 is opposite, and the conductive structure 12 can generate a magnetic field opposite to the magnetic field generated by the extension section 1111, thereby offsetting the interference magnetic field generated by the extension section 1111 and reducing the impact of the magnetic field on the speaker 300 connected to the load 200, etc.
  • the interference of acoustic and electrical devices thereby reducing the current noise generated by acoustic and electrical devices.
  • the position of the first end 120 corresponds to the outer end 1110 of the negative electrode sheet 111
  • the position of the second end 121 corresponds to the outer end 1100 of the positive electrode sheet 110
  • the above correspondence refers to the first end
  • the projection of the portion 120 and the projection of the outer end 1110 of the negative electrode sheet 111 are completely overlapped in position.
  • a stagger within a certain error range can also be allowed, which can be determined according to actual design requirements.
  • the conductive structure 12 can be connected to the outer end 1100 of the positive electrode sheet 110 or the outer end 1110 of the negative electrode sheet 111 through two pads. Since the pad has a certain area, the conductive structure The ends of 12 (for example, the first end 120 or the second end 121) can be respectively arranged at any position in the two pads, and the first end 120 to the second end can also be adjusted by setting at different positions of the pads. The length or radian of the two ends 121 meet the requirement of canceling the electromagnetic field of the extension section 1111 . The establishment of connections between the two ends of the conductive structure 12 (for example, the first end 120 or the second end 121 ) on the two pads and the two pads at different positions can be considered as belonging to the above-mentioned category of "correspondence".
  • the position of the first end 120 corresponds to the outer end 1110 of the negative electrode sheet 111
  • the position of the second end 121 corresponds to the outer end 1100 of the positive electrode sheet 110, which may be set at the position of the first end 120
  • the second end 121 can be positioned near the outer end 1100 of the positive electrode sheet 110, so that between the first end 120 and the second end 121
  • a conductive structure 12 similar in shape to the epitaxial segment 1111 can be formed, and the electric current of the conductive structure 12 is opposite to that of the epitaxial segment 1111 , so that the electromagnetic fields generated by the two can cancel each other (including partial cancellation or full cancellation).
  • the position of the first end 120 corresponds to the outer end 1110 of the negative electrode sheet 111
  • the position of the second end 121 corresponds to the outer end 1100 of the positive electrode sheet 110, and may also be the position of the first end 120.
  • the position of the second end 121 can be set at the position corresponding to the outer end 1100 of the positive electrode sheet 110 (for example, the position of the outer end 1100 of the battery cell 11
  • the center of the circle formed by winding and the outer end 1100 of the positive electrode piece 110 are connected at the intersection point of the negative electrode piece 111, or it can be understood that the starting position of the extension section 1111 corresponds to the position of the second end portion 121, and the extension section 1111
  • the termination position of that is, the position of the outer end 1110 of the negative electrode sheet 111 corresponds to the first end 120, so that the conductive structure 12 can be set so that the projection on the plane where the extension segment 1111 is located completely overlaps or partially overlaps with the extension segment 1111 Overlapping, when completely overlapping, the canceling effect of the magnetic field generated by the conductive structure 12 and the magnetic field generated by the epitaxial segment 1111 may be more obvious.
  • the current flowing through the cell 11 will also flow through the conductive structure 12, and the current of the conductive structure 12 is configured to be opposite to the current direction of the extension section 1111 of the negative electrode sheet 111.
  • the conductive structure 12 will generate a magnetic field opposite to the direction of the magnetic field generated by the electric core 11, so that the magnetic field generated by the conductive structure 12 can offset (partially or completely offset) the externally generated magnetic field radiation of the extension section 1111.
  • FIG. 2 also shows that the inner end of the negative electrode sheet 111 of the battery cell 11 will also exceed the inner end of the positive electrode sheet 110, but due to the actual situation, the inner circle of the battery cell 11, that is, the inner arc is very small , the excess part can be ignored; and, the current flowing through the inner ring of the battery cell 11 is also small, and the current of the battery cell 11 gradually increases from the inner ring to the outer ring.
  • the inner ring of the battery cell 11 The strength of the magnetic field is relatively weak, so when designing the conductive structure 12 , the specific structure of the conductive structure 12 can be designed only considering the elimination of the external radiating magnetic field from the extension section 1111 .
  • the first end portion 120 is configured to connect to the outer end portion 1110 of the negative electrode sheet 111 , and/or, the second end portion 120 is configured to connect to the outer end portion of the positive electrode sheet 110 1100.
  • first end 120 is configured to connect to the outer end 1110 of the negative electrode sheet 111
  • second end 120 is configured to connect to the outer end 1100 of the positive electrode sheet 110
  • first end The portion 120 is configured to be connected to the outer end portion 1110 of the negative electrode sheet 111
  • second end portion 120 is configured to be connected to the outer end portion 1100 of the positive electrode sheet 110 .
  • the first end portion 120 is connected to the outer end portion 1110 of the negative electrode sheet 111, which may be communicated through connection methods such as pads and nickel sheets; similarly, the second end portion 121 is connected to the outer end portion 1100 of the positive electrode sheet 110, which may be through Connection methods such as pads and nickel sheets are connected.
  • the outer end 1100 of the positive electrode sheet 110 is connected to the positive electrode tab and the outer end 1110 of the negative electrode sheet 111 is connected to the negative electrode ear.
  • the positive electrode ear can be directly connected to the positive electrode pad or connected to the positive electrode pad through a nickel sheet.
  • the negative tab can be directly connected to the negative pad or connected to the negative pad through a nickel sheet.
  • the second end portion 121 is located at the outer end portion 1110 of the positive electrode sheet 110 .
  • the first end 120 is located at the outer end 1110 of the negative electrode sheet 111 .
  • the first end 120 is configured to be connected (either directly or indirectly, for example, through at least one indirect connection such as tabs, nickel sheets, pads, etc.) to the outer end 1110 of the negative electrode sheet 111
  • the position of the second end portion 121 is set at the outer end portion 1100 of the positive electrode sheet 110, that is, the position of the second end portion 121 corresponds to the outer end portion 1100 of the positive electrode sheet 110; the second end portion 121 is configured to connect
  • the position of the first end 120 is set at the outer end 1110 of the negative electrode sheet 111, that is, the position of the first end 120 corresponds to the outer end 1110 of the negative electrode sheet 111.
  • the second end 121 is located at the outer end 1100 of the positive electrode sheet 110.
  • the second end portion 121 is located at one end of the extension section 1111 close to the outer end portion 1100 of the positive electrode sheet 110 .
  • the conductive structure 12 and the electrode sheets may not be on the same plane, so “corresponding” or “at” can also be understood as overlap or partial overlap on projection.
  • the setting of the conductive structure 12 can correspond to the position of the extension section 1111; meanwhile, because the electric current of the conductive structure 12 is configured to be opposite to the current direction of the extension section 1111 of the negative electrode sheet 111, the conductive structure 12 can generate the same as the extension section 1111.
  • the generated magnetic field is opposite to the magnetic field, thereby offsetting the interference magnetic field generated by the epitaxial section 1111, preventing the interference magnetic field from affecting the acoustic-electric devices such as the speaker 300 connected to the load and causing the acoustic-electric devices to generate current noise.
  • the current inside the battery cell 11 flows from the negative electrode sheet 111 to the positive electrode sheet 110, so that the current direction of the negative electrode sheet 111 of the battery cell 11 is counterclockwise, and the current direction of the positive electrode sheet 110 is clockwise. Therefore, part of the magnetic fields generated by the positive electrode sheet 110 and the negative electrode sheet 111 can cancel each other out, but the magnetic field generated by the extension section 1111 cannot be offset by the design of the battery 1000 itself, so the conductive structure 12 designed in this application is required to further offset the electromagnetic field generated by the extension section 1111 (including partial offsets or full offsets). Then, as shown in FIG.
  • the direction of the current flowing on the conductive structure 12 needs to be clockwise, that is, when the first end 120 is configured to connect to the outer end 1110 of the negative electrode sheet 111 , the second end 121
  • the position is set at the outer end portion 1100 of the positive electrode sheet 110; or as shown in FIG. Located at the outer end 1110 of the negative electrode sheet 111, the direction of the current flowing through the conductive structure 12 is still clockwise. It should be noted that in FIG. Shown in dashed form and does not represent the actual structure.
  • the positive and negative electrodes of the battery 1000 are located on different sides.
  • the battery core 11 and the conductive structure 12 are combined as In the case of a module, the outlet position of the negative pole of the battery 1000 is equivalent to extending to the second end 121, so that it is on the same side as the positive pole of the battery 1000.
  • the conductive mechanism 12 and the battery cell 11 are packaged inside the battery 1000, then Through this design, the positive pole and the negative pole of the battery 1000 are located on the same side. Therefore, it is convenient for subsequent lead wires to connect with other components.
  • the outlet position of the positive pole of the battery 1000 is equivalent to extending to the first end 120, so that it is located at the same position as the negative pole of the battery 1000.
  • the positive and negative poles of the final outlet of the battery 1000 can be located on the same side, therefore, it is convenient for the subsequent lead wires to connect with other components.
  • the cell 11 is configured to supply power to the load 200
  • the first end 120 is configured to connect to the outer end 1110 of the negative electrode sheet 111
  • the outer end 1100 of the positive electrode sheet 110 is configured to connect to the load 200
  • the second end 121 is configured to be connected to the current output end of the load 200 .
  • the electronic device 10000 can be a headset, such as a wireless Bluetooth headset
  • the load 200 can include a Bluetooth module 21
  • the battery 11 can be configured to supply power to the Bluetooth module 21
  • the first end 120 is configured to connect to the negative pole
  • the outer end 1110 of the sheet 111 the outer end 1100 of the positive electrode sheet 110 is configured to be connected to the current input end of the load 200
  • the second end 121 is configured to be connected to the current output end of the load 200 .
  • the battery cell 11 and the conductive structure 12 are integrated, it is equivalent to that the overall outgoing wires of the battery 1000 are located on the same side.
  • the cell 11 is configured to supply power to the load 200
  • the second end 121 is configured to connect to the outer end 1110 of the positive electrode sheet 110
  • the first end 120 is configured to connect to the current input of the load 200
  • the outer end 1110 of the negative electrode sheet 111 is configured to be connected to the output end of the load 200 .
  • the electronic device 10000 can be a headset, such as a wireless Bluetooth headset
  • the load 200 can include a Bluetooth module 21
  • the battery 11 can be configured to supply power to the Bluetooth module 21
  • the second end 121 is configured to connect to the positive electrode
  • the first end 120 is configured to be connected to the current input end of the load 200
  • the outer end 1110 of the negative electrode sheet 111 is configured to be connected to the output end of the load 200 .
  • the first end 120 is configured to connect to the outer end 1110 of the negative electrode sheet 111
  • the second end 121 is configured to connect to the outer end of the positive electrode sheet 110.
  • the conductive structure 12 also includes a third end 122 and a fourth end 123, the first end 120 to the third end 122 constitute the first part 124 of the conductive structure 12, the second end 121 to the fourth The end portion 123 constitutes the second portion 125 of the conductive structure 12 , and the third end portion 122 and the fourth end portion 123 are spaced apart.
  • the spacing can be set at a short distance to avoid the effect of the entire length of the conductive structure 12 affecting the magnetic field cancellation.
  • the third end 122 and the fourth end 123 are not directly connected, such as forming a loop through a load.
  • the third end portion 122 and the fourth end portion 123 can be disposed at any position of the conductive structure 12; and/or, the length of the first portion 124 and the length of the second portion 125 the same or different lengths.
  • the conductive structure 12 and the battery cell 11 are packaged inside the battery, you can choose to lead the positive and negative electrode wiring of the battery 1000 at any position of the conductive structure 12; if The conductive structure 12 is located outside the battery 1000 , which means that the positive and negative terminals of the battery 1000 can be drawn out from any position of the conductive structure 12 .
  • the current inside the cell 11 flows from the negative electrode sheet 111 to the positive electrode sheet 110, so that the current direction of the negative electrode sheet 111 of the cell 11 is counterclockwise, and the current direction of the positive electrode sheet 110 is clockwise. direction, so that part of the magnetic fields generated by the positive electrode sheet 110 and the negative electrode sheet 111 can cancel each other out, but the magnetic field generated by the extension section 1111 cannot be offset by the design of the battery 1000 itself, so it is necessary to further offset the generation of the extension section 1111 through the conductive structure 12 designed in this application. Electromagnetic field (including partial offset or full offset).
  • the conductive structure 12 may include The first part 124 and the second part 125 .
  • the first portion 124 includes a first end portion 120 to a third end portion 122, and the first end portion 120 can be configured to electrically connect the outer end portion 1110 of the negative electrode sheet 111, so that the first portion 124 is connected to the negative electrode sheet 111 of the cell 11 Electrical connection, the wiring of the first part 124 starts from the position of the outer end 1111 of the negative electrode sheet 111 of the corresponding cell 11 and ends at the third end 122; the second part 125 may include the second end 121 to the fourth end 123, the second end 121 can be electrically connected to the outer end 1100 of the positive electrode sheet 110, so that the second part 125 is electrically connected to the positive electrode sheet 110 of the cell 11, and the wiring of the second part 125 is connected to the positive electrode sheet of the corresponding cell 11 The position of the outboard end 1100 of 110 begins and ends at the fourth end 123 .
  • the positive and negative electrodes of the battery 1000 that are finally connected to the line are also formed on the first part 124 and the second part 125, that is, the connection between the first part 124 and the second part 125.
  • the third end 122 and the fourth end 123 of the line stop position are respectively the final negative electrode connection position and the positive electrode connection position of the battery 1000; if the conductive structure 12 is arranged outside the battery 1000, the third end 122 and the fourth end 123 It is equivalent to extending the negative pole connection position and the positive pole connection position of the battery 1000 .
  • the third end 122 and the fourth end 123 can be located at any position of the conductive structure 12, or in other words, the first The length of the portion 124 is the same as or different from the length of the second portion 125 .
  • the length of first part 124 is greater than the length of second part 125, among Fig. 6, the length of first part 124 is less than the length of second part 125, and the current direction of flowing through on first part 124 and second part 125 at this moment All clockwise.
  • the cell 11 is configured to supply power to the load 200
  • the third end 122 is configured to connect to the current output end of the load 200
  • the fourth end 123 is configured to Connect to the current input terminal of the load 200 .
  • the positive and negative electrodes of the final outlet of the battery 1000 are also formed on the first part 124 and the second part 125, that is, the wiring of the first part 124 and the second part 125
  • the third end portion 122 and the fourth end portion 123 of the stop position are respectively the final negative electrode connection position and the positive electrode connection position of the battery 1000 .
  • the cell 11 supplies power to the load 200, such as the Bluetooth module 21, the third end 122 is configured to connect to the current output end of the load 200, and the fourth end 123 is configured to connect to the current input end of the load 200.
  • the current The current from the first end flows into the load 200 through the fourth end 123 , and then flows out of the load 200 through the third end 122 .
  • connection may be a direct connection or an indirect connection, for example, a connection through a connection structure.
  • first end 120 and the second end 121 are designated points on the conductive structure 12, and such ends may be integrally formed with the parts connected thereto, for example, the first end 120 and the second end
  • the end portions 121 are integrally formed with their respective connection mechanisms, for example, a wire.
  • connection structure which is not limited here.
  • the third end 122 is configured to be connected to the current output end of the load 200 through the first connection structure 126
  • the fourth end 124 is configured to be connected through the second
  • the connection structure 127 is connected to the current input end of the load 200 , and the first connection structure 126 and the second connection structure 127 overlap and route. In this way, the overlapping routing of the first connection structure 126 and the second connection structure 127 can make the electromagnetic field generated by the first connection structure 126 and the electromagnetic field generated by the second connection structure 127 cancel each other, thereby reducing or avoiding the load 200 or load 200.
  • Other modules such as the speaker 300 produce an interfering magnetic field, causing problems such as current sound.
  • FIG. 7 and FIG. 8 are respectively schematic diagrams of the internal wiring of the left earphone and the right earphone in an implementation manner
  • FIG. 9 and FIG. 10 are respectively the diagrams of the left earphone and the right earphone.
  • the lengths of the first portion 124 and the second portion 125 are substantially the same, and in FIGS. 9 and 10 , the length of the traces of the first portion 124 is greater than the length of the traces of the second portion 125 .
  • the first end 120 is configured to connect to the outer end 1110 of the negative electrode sheet 111
  • the second end 121 is configured to connect to the outer end of the positive electrode sheet 110 1100
  • the conductive structure 12 also includes a third end 122 and a fourth end 123, and when the third end 122 and the fourth end 123 are connected to the load 200, the internal wiring needs to pass through the load 200
  • the connected speaker 300 covers the place.
  • the third end 122 is configured to be connected to the current output end of the load 200 through the first connection structure 126
  • the fourth end 124 is configured to be connected to the current output end of the load 200 through the second connection structure 127.
  • the first connection structure 126 and the second connection structure 127 need to overlap and route, so as to cancel the electromagnetic fields generated by the first connection structure 126 and the second connection structure 127 respectively.
  • the positive pad 114 connected to the positive tab 112 (shown in FIG. 2 ) shown in FIGS. 7-10 and the negative pad 115 connected to the negative tab 113 (shown in FIG. 2 ) can be used to connect Conductive structure 12 or other external devices.
  • the shape of the conductive structure 12 may correspond to the shape of the extension segment 1111 .
  • the magnetic field generated by the flow guide structure 12 and the direction of the magnetic field generated by the extension section 1111 are opposite to each other to cancel each other (partially or completely). , so as to effectively suppress the interference magnetic field generated by the epitaxial segment 1111 .
  • the extension section 1111 It can be understood that when the battery 1000 is working, the alternating current will generate a magnetic field on the closed coil, so for the wound battery 1000, when the current of the battery 1000 fluctuates, most of the magnetic fields generated by the positive electrode sheet 110 and the negative electrode sheet 111 of the battery cell 11 They all cancel each other out, and at this time, due to the existence of the extension section 1111 of the negative electrode sheet 111, the magnetic field generated by the extension section 1111 cannot be canceled out, and the extension section 1111 will generate magnetic field radiation to the outside.
  • a conductive structure 12 is provided.
  • the shape of the extension section 1111 and the conductive structure 12 can correspond to each other. It should be noted that the correspondence here may be that the projection of the conductive structure 12 on the winding plane of the negative electrode sheet 111 overlaps partly or completely with the extension section 12 .
  • the conductive structure 12 may be configured as an arc-shaped structure with no more than one turn.
  • the extension section 1111 of the negative electrode piece 111 can be an arc-shaped structure; in order to make the conductive structure 12 fully offset the magnetic field radiated from the extension section 1111, the conductive structure 12 can correspond to the shape of the extension section 1111 , so the conductive structure 12 may also be arc-shaped.
  • the conductive structure 12 may be configured as an arc-shaped structure that does not exceed one circle.
  • the curvature of the conductive structure 12 is the same or similar to that of the extension section 1111 , or the length of the conductive structure 12 is the same or similar to that of the extension section 1111 .
  • the extension section 1111 corresponds to the shape of the conduction structure 12, and the curvature of the conductive structure 12 may be the same or similar to that of the extension section 1111, or the length of the conductive structure 12 may be the same or similar to that of the extension section 1111.
  • the direction of the magnetic field generated by the current guiding structure 12 and the magnetic field generated by the extension section 1111 are opposite to each other and can cancel each other, thereby effectively suppressing the interference magnetic field generated by the extension section 1111 .
  • the arc or length of the conductive structure 12 is configured to be determined according to the current sound emitted by the speaker 300 , wherein the battery cell 11 supplies power to the load 200 , and the load 200 is connected to the speaker 300 .
  • the load 200 may include a Bluetooth module 21, and the load 200 may be connected to the speaker 300.
  • the changing current caused by the load 200 during operation will cause the speaker 300 to be affected and generate current noise.
  • Current noise needs to counteract the disturbing magnetic field caused by the changing current. Therefore, in order to counteract better, the arc or length of the conductive structure 12 is configured to be determined according to the current sound emitted by the horn 300 . For example, before leaving the factory, adjust the length, radian, position and other parameters of the conductive structure by detecting the current sound generated by the speaker. When a certain parameter is adjusted to make the current sound meet the design requirements, for example, it exceeds the range of human hearing or is relatively small. If most people cannot hear it, then it is determined that the conductive structure 12 under this parameter is a conductive structure that meets the requirements.
  • the curvature of the conductive structure 12 can also be adjusted according to the strength of the radiation magnetic field generated by the extension section 1111. For example, if the external radiation intensity of the extension section 1111 is too large, the curvature of the conductive structure 12 can be adjusted as For a larger arc, if the external radiation intensity of the extension section 1111 is low, the arc of the conductive structure 12 can be correspondingly adjusted to a smaller arc. At this time, the arc can be adjusted such that the first end 120 and the second end 121 remain electrically connected to the outer end 1110 of the negative electrode sheet 111 and the outer end 1100 located at the positive electrode sheet 110, and the adjustment is from the first end 120 to the outer end 1100 of the positive electrode sheet 110. The arc of the conductive structure 12 extending from the second end portion 121 .
  • the battery cell 11 may include a positive tab 112 and a negative tab 113 (as shown in FIG. 2 ), and the outer end 1100 of the positive tab 110 is configured to pass through the positive tab 112 and/or, the outer end 1110 of the negative electrode sheet 111 is configured to be connected to the first end 120 through the negative tab 113 .
  • the positive tab 112 can be connected to the second end 121 through the positive pad 114; and/or, the negative tab 113 can be connected through the negative pad 115 is connected to the first end portion 120 .
  • the outer end 1100 of the positive electrode sheet 110 is configured to be connected to the second end 121 through the positive tab 112 and the outer end 1110 of the negative electrode sheet 111 is configured to be connected to the first end 120 through the negative tab 113
  • Either the outer end 1100 of the positive electrode sheet 110 is configured to be connected to the second end 121 through the positive tab 112
  • the outer end 1110 of the negative electrode sheet 111 is configured to be connected to the first end 120 through the negative tab 113
  • the positive tab 112 may be connected to the second end 121 through the positive pad 114
  • the negative tab 113 may be connected to the first end 120 through the negative pad 115 .
  • the second end 121 can adjust the connection position on the positive electrode pad 114.
  • the connection position of the one end portion 120 on the negative pad 115 can also be adjusted.
  • the positive pad 114 can be connected to the positive tab 112 through the nickel sheet, and the negative pad 115 can also be connected to the negative tab 113 through the nickel sheet.
  • the first end 120 and/or the second end 121 may not be connected to the negative pole pad 115 and/or the positive pole pad 114, directly connected to the negative pole ear 113 and/or The positive tabs 112 are connected together.
  • both the positive electrode pad 114 and the negative electrode pad 115 have a certain area, so that a more suitable connection position of the conductive structure 12 can be selected on the pad, so that the conductive structure 12 is connected to the positive electrode sheet 110 or the negative electrode. There is a certain deviation in the position of the outer end 1110 of the sheet 111, but it still belongs to the corresponding range.
  • the battery cell 11 and the conductive structure 12 are packaged inside the battery 1000 ; or, the battery cell 11 is packaged inside the battery 1000 , and the conductive structure 12 is arranged outside the battery 1000 .
  • the conductive structure 12 can be disposed on the side of the cell 11 close to the speaker 300 ; or, the conductive structure 12 can be disposed between the battery 1000 and the speaker 300 .
  • the conductive structure 12 is arranged on the side of the battery cell 11 close to the speaker 300, which may include the case where the battery cell 11 and the conductive structure 12 are packaged inside the battery; the conductive structure 12 is arranged between the battery 1000 and the speaker 300, and may include The case where the conductive structure 12 is disposed outside the battery 1000 .
  • the conductive structure 12 can better offset the interference magnetic field, and can reduce or eliminate the noise generated by the horn 300 caused by the interference magnetic field.
  • the electric core 11 of the built-in battery of the TWS earphone type electronic device 10000 has a higher height, which makes it possible to conduct electricity if the conductive structure 12 is arranged on the side of the electric core 11 away from the speaker 300. Since the structure 12 is far away from the speaker 300, the magnetic field offset effect generated by the conductive structure 12 will be weakened during the operation of the electronic device 10000, which may easily cause insufficient magnetic field offset, thereby affecting the noise reduction effect on the noise generated by the speaker 300, or in order to meet The effect of controlling noise requires an enlarged coil, which makes it difficult to stack the structure, and also increases the weight and cost of the earphone.
  • the conductive structure 12 is arranged between the battery core 11 and the load 200, so that the distance between the conductive structure 12 and the horn 300 is relatively close, and the problem of insufficient offset of the reverse magnetic field generated by the conductive structure 12 is avoided.
  • the conductive structure 12 can be smaller, and the magnetic field cancellation effect is better.
  • the plane where the conductive structure 12 is located is parallel or substantially parallel to the plane formed by winding the negative electrode sheet 111 .
  • the conductive structure 12 can control the stacking space while ensuring the weakening effect of the magnetic field generated by the epitaxial section 1111 .
  • the battery cell 11 is a wound battery cell 11, and the conductive structure 12 may be arc-shaped.
  • the plane where the conductive structure 12 is located is parallel or substantially parallel to the plane formed by winding the negative electrode sheet 111, for example, it is arranged on the top surface of the electric core 11 on the side away from the horn 300 and is parallel to the top surface of the electric core 11, or arranged on
  • the bottom surface of the electric core 11 on the side close to the horn 300 is parallel to the bottom surface of the electric core 11, so that the conductive structure 12 can be better arranged, the space occupied by the conductive structure 12 can be reduced, the overall volume of the device can be reduced, and the It is better to counteract the interference magnetic field generated by the part where the outer end 1110 of the negative electrode sheet 111 of the battery cell 11 crosses the outer end 1100 of the positive electrode sheet 110, so that the interior of the electronic device 10000 avoids arranging complex anti-magnetic field interference structures, thereby reducing
  • the cost of electronic equipment is 10000.
  • the conductive structure 12 when the conductive structure 12 is packaged inside the cell 11, it can be embedded in the cell 11, similar to the way of offsetting the length of the negative electrode sheet 111 of the cell 11 or complementing the length of the positive electrode sheet 110 of the cell 11, setting Conductive structure 12.
  • the conductive structure 12 is configured to generate a first electromagnetic field when a varying current is applied, and the cell 11 is configured to generate a second electromagnetic field when a varying current is applied, the first electromagnetic field and the second electromagnetic field weaken each other, and the second The second electromagnetic field includes the electromagnetic field generated by the extension section 1111 when a varying current is applied.
  • mutual weakening includes mutual cancellation, and the cancellation can be partial or complete.
  • the electric core 11 supplies power to the load 200
  • the load 200 may include the Bluetooth module 21
  • the changing current may include the situation that the electric core 11 supplies power to the Bluetooth module 21, caused by the Bluetooth module 21 sending and receiving Bluetooth signals.
  • the conductive structure 12 is connected in series with the battery cell 11 , and the current of the conductive structure 12 can be configured to be opposite to the direction of the current of the extension section 1111 of the negative electrode sheet 111 .
  • the Bluetooth module 21 can be connected with a speaker 300, a microphone, etc. It can be understood that in some embodiments, the electronic device 10000 can include an earphone, and the earphone can be a Bluetooth earphone, such as a TWS Bluetooth earphone. When the Bluetooth module 21 is working, the battery cell 11 The Bluetooth module 21 can be powered. At this time, the Bluetooth module 21 will send and receive Bluetooth signals, thereby causing the electric core 11 to generate current fluctuations, that is, fluctuating currents, that is, changing currents.
  • the conductive structure 12 generates a first magnetic field when a variable current is passed through, and a second electromagnetic field is generated when the electric core 11 is passed a variable current, that is, it extends from the position corresponding to the outer end 1100 of the positive electrode sheet 110 on the negative electrode sheet 111
  • the fluctuating current caused by the Bluetooth module 21 sending and receiving Bluetooth signals may include: the fluctuating current generated by the battery cell 11 during the Bluetooth connection back process.
  • the arrangement of the conductive structure 12 can prevent the electronic device 10000 from generating current noise caused by the current fluctuation of the battery 1000 caused when the Bluetooth module 21 is used to connect back to the external device.
  • the electronic device 10000 may include a Bluetooth module 21 , and the electronic device 10000 may be used to wirelessly communicate with an external device through the Bluetooth module 21 .
  • the wireless connection of the electronic device 10000 can be realized, bringing users a more convenient experience of using the electronic device 10000,
  • the external device may be a mobile phone, a tablet computer, an audio player, and the like.
  • the electronic device 10000 can be a TWS earphone, and the electronic device 10000 communicates wirelessly with external devices through the Bluetooth module 21, so that the user can use it portable, avoid the trouble of earphone wire winding, and enhance user experience.
  • the electronic device 10000 can be a headset, further can be a wireless bluetooth headset, and the external device can be a mobile phone.
  • the electronic device 10000 after the electronic device 10000 is paired with the external device to establish a connection, save Connection record, when disconnected from the external device, when reconnected, for example, when the Bluetooth TWS headset is opened, it will automatically connect to the last connected device or reconnect over a long distance, which can be understood as a reconnection.
  • the electronic device 10000 when the electronic device 10000 is in the connection-back mode, it will generate a current fluctuation at a frequency of 800 Hz and 3.2 KHz, and the battery 1000 will generate an alternating magnetic field at a frequency of 800 Hz and 3.2 KHz.
  • the noise reduction mode when the noise reduction mode is turned on so that the codec of the Bluetooth module 21 needs to be turned on, since the acoustic-electric devices such as the speaker 300 and the microphone are connected to the Bluetooth module 21, the speaker 300 and the Bluetooth module 21 form a closed loop, and the speaker The 300 will vibrate and emit noise under the action of the disturbing magnetic field (for example, the first magnetic field), and the frequency of the noise is 800Hz, 3.2KHz and their multiples.
  • the disturbing magnetic field for example, the first magnetic field
  • the battery 1000 of the electronic device 10000 is provided with a conductive structure 12.
  • the conductive structure 12 can form an induced magnetic field with the negative plate 111 to cancel each other out.
  • the second induced magnetic field, the first induced magnetic field and the second induced magnetic field weaken each other, thereby offsetting (partially offsetting or completely offsetting) the interference magnetic field produced by the extension section 1111 of the negative pole of the electric core 11, and avoiding the interference magnetic field affecting the speaker 300 to make the electronic device 10000 produces current noise.
  • the Bluetooth module 21 may include a Bluetooth codec, and the changing current may include fluctuating current caused by sending and receiving files in LHDC format when the battery cell 11 supplies power to the Bluetooth module 21 .
  • the arrangement of the conductive structure 12 can prevent the electronic device 10000 from generating current noise when the electronic device 10000 transmits and receives files in LHDC format.
  • the battery 1000 of the electronic device 10000 or the outside of the battery 1000 is provided with a conductive structure 12, the conductive structure 12 can form an induced magnetic field with the negative plate 111 to cancel each other out, that is, the battery cell 11 generates a first induced magnetic field, conducts electricity
  • the structure 12 generates a second induced magnetic field, thereby canceling the interference magnetic field generated by the negative extension section 1111 of the cell 11, reducing the interference magnetic field affecting the speaker 300 and causing the electronic device 10000 to generate current noise when sending and receiving files in LHDC format.
  • the second electromagnetic field interferes with the horn 300 to cause noise
  • the frequency of the changing current, the second electromagnetic field and the noise are the same, and the frequency includes at least one of the following: 800Hz, 1.6KHz, 3.2KHz and any multiple of them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电路结构(100)、电池(1000)和电子设备(10000)。电路结构(100)包括电芯(11)和导电结构(12),电芯(11)包括正极片(110)和负极片(111),正极片(110)和负极片(111)卷绕设置,沿负极片(111)的卷绕方向,负极片(111)的外侧端部(1110)越过正极片(110)的外侧端部(1100)的部分为外延段(1111);导电结构(12)包括第一端部(120)和第二端部(121),第一端部(120)和第二端部(121)中的至少一端与正极片(110)或负极片(111)连接,导电结构(12)产生的电磁场与外延段(1111)产生的电磁场相互削弱。

Description

电路结构、电池和电子设备
优先权信息
本申请请求2022年02月23日向中国国家知识产权局提交的、专利申请号为2022101678859及2022203739087的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及电池技术领域,尤其涉及一种电路结构、电池和电子设备。
背景技术
无线蓝牙耳机一类的电子类产品在工作过程中,由内置的电池电芯为麦克风等负载供电,受碍于电池电芯的制作方式,在电池工作过程中电流通过电芯会产生干扰磁场带来噪声问题,因此常通过设计有线圈以产生反向磁场来减弱电芯产生的干扰磁场。
发明内容
本申请实施方式提供一种电路结构、电池和电子设备。
本申请实施方式的电路结构包括电芯和导电结构。所述电芯包括正极片和负极片,所述正极片和所述负极片卷绕设置,沿所述负极片的卷绕方向,所述负极片的外侧端部越过所述正极片的外侧端部的部分为外延段。导电结构包括第一端部和第二端部,所述第一端部和所述第二端部中的至少一端与所述正极片或所述负极片连接,所述导电结构被配置为产生的电磁场与所述外延段产生的电磁场相互削弱。
本申请实施方式的电路结构中,导电结构走线简单同时导电结构的第一端部和第二端部中的至少一端与正极片或负极片连接,导电结构被配置为产生的电磁场与外延段产生的电磁场相互削弱,因此导电结构与电芯形成磁场抵消,从而能够充分抵消外延段部分对外产生的磁场辐射,降低电子设备使用时的电流噪声。
本申请实施方式提供一种电池,所述电池包括本申请实施方式中提供的电路结构。
本申请实施方式中的电池因为应用有本申请中提供的电路结构,电池内部电芯外延段部分产生的电磁场能够与导电结构产生的电磁场相互削弱,达到降低电芯产生的干扰磁场的作用。
本申请实施方式的电子设备包括本申请提供的电路结构。
本申请实施方式的电子设备中,由于应用有本申请中的电路结构,在电芯通过导电结构为负载供电的情况下,导电结构所提供磁场能够很好地抵消电芯产生的磁场,从而使得电子设备的噪声得到有效消除,提高设备性能和用户使用体验。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式中的电池的结构示意图;
图2是本申请实施方式中的卷绕式电芯的俯视示意图;
图3是本申请实施方式中的导电结构的结构示意图;
图4是本申请实施方式中的导电结构的另一结构示意图;
图5是本申请实施方式中的导电结构的又一结构示意图;
图6是本申请实施方式中的导电结构的又一结构示意图;
图7是本申请实施方式中的电子设备的内部走线示意图;
图8是本申请实施方式中的电子设备的另一内部走线示意图;
图9是本申请实施方式中的电子设备的又一内部走线示意图;
图10是本申请实施方式中的电子设备的又一内部走线示意图;
图11是本申请实施方式中的电子设备的结构示意图。
主要元件符号说明:
电子设备10000、电池1000、电路结构100、电芯11、正极片110、正极片110的外侧端部1100、负极片111、负极片111的外侧端部1110、外延段1111、正极耳112、负极耳113、正极焊盘114、负极焊盘115、导电结构12、第一端部120、第二端部121、第三端部122、第四端部123、第一部分124、第二部分125、第一连接结构126、第二连接结构127、负载200、蓝牙模块21、喇叭300。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
需要说明的是,本申请实施例、实施方式及其中的特征在不冲突的情况下可以相互组合,例如一种电路结构的技术特征可以与一种电池或一种电子设备中的技术特征进行组合,也就是说上述不同主题技术方案中的特征可以相互组合;可以理解的,电路结构主题中的技术特征可能与一种电池或一种电子设备主题中的技术特征相同,例如电路结构主题中的静态技术特征可能是一种电池或一种电子设备主题中的非静态技术特征。
请参阅图1和图2,本申请实施方式提供一种电路结构100,电路结构100包括电芯11和导电结构12,电芯11包括正极片110和负极片111,正极片110和负极片111卷绕设置,沿负极片111的卷绕方向,负极片111的外侧端部1110越过正极片110的外侧端部1100的部分为外延段1111;导电结构12包括第一端部120和第二端部121,第一端部120和第二端部121中的至少一端与正极片110或负极片111连接,导电结构12被配置为产生的电磁场与外延段1111产生的电磁场相互削弱。
请参阅图1,本申请实施方式提供一种电池1000,电池1000包括本申请实施方式中所提供的电路结构100。
请参阅图11,本申请实施方式还提供一种电子设备10000,电子设备10000包括本申请一些实施方式中所提供的电路结构100。
在某些实施方式中,本申请中的电子设备1000还包括负载200,电芯11被配置为负载供电。负载可以包括蓝牙模块21,变化电流可以包括电芯11为蓝牙模块21供电的情况下,由于蓝牙模块21收发蓝牙信号引起电芯21产生的波动电流。可以容易理解,电子设备1000中所包括的负载可以与电路结构100中所涉及的负载200为同一负载。
请参阅图3-图5,在某些实施方式中,第一端部120的位置与负极片111的外侧端部1110对应,第二端部121的位置与正极片110的外侧端部1100对应,导电结构12的电流被配置为与负极片111的外延段1111的电流方向相反。
请参阅图3,在某些实施方式中,第一端部120被配置为连接负极片111的外侧端部1110,和/或,第二端部120被配置为连接正极片110的外侧端部1100。
请参阅图2与图3,在某些实施方式中,在第一端部120被配置为连接负极片111的外侧端部1110的情况下,第二端部121的位置设于正极片110的外侧端部1100处;或者,在第二端部121被配置为连接正极片110的外侧端部1100的情况下,第一端部120的位置设于负极片111的外侧端部1110处。
在某些实施方式中,电芯11被配置为给负载200供电,第一端部120被配置为连接负极片111的外侧端部1110,正极片110的外侧端部1100被配置为连接负载200的电流输入端,第二端部121被配置为连接负载200的电流输出端。
请参阅图5与图6,在某些实施方式中,在第一端部120被配置为连接负极片111的外侧端部1110,第二端部121被配置为连接正极片110的外侧端部1100的情况下,导电结构12还包括第三端部122和第四端部123,第一端部120至第三端部122构成导电结构12的第一部分124,第二端部121至第四端部123构成导电结构12的第二部分125,第三端部122与第四端部123间隔设置。
请参阅图5与图6,在某些实施方式中,第三端部122和第四端部123能够设置于导电结构12的任意位置;和/或,第一部分124的长度和第二部分125的长度相同或不同。
请参阅图7-图10,在某些实施方式中,电芯11被配置为给负载200供电,第三端部122被配置为连接负载200的电流输出端,第四端部123被配置为连接负载200的电流输入端。
请参阅图7-图10,在某些实施方式中,第三端部122被配置为通过第一连接结构126与负载200的电流输出端连接,第四端部124配被配置为通过第二连接结构127与负载200的电流输入端连接,第一连接结构126与第二连接结构127重叠走线。
请参阅图3-图10,在某些实施方式中,导电结构12的形状可以与外延段1111的形状对应。
请参阅图3-图10,在某些实施方式中,导电结构12可以被配置为不超过一圈的弧状结构。
请参阅图2与图3,在某些实施方式中,导电结构12的弧度与外延段1111相同或相近,或者,导电结构12的长度与外延段1111的长度相同或相近。
在某些实施方式中,导电结构12的弧度或长度被配置为根据喇叭300发出的电流声确定,其中,电芯11为负载200供电,负载200与喇叭300连接。
请参阅图2-图6,在某些实施方式中,电芯11可以包括正极耳112和负极耳113(如图2所示),正极片110的外侧端部1100被配置为通过正极耳112和第二端部121连接;和/或,负极片111的外侧端部1110被配置为通过负极耳113与第一端部120连接。
请参阅图2、图7-图10,在某些实施方式中,正极耳112可以通过正极焊盘114与第二端部121连接;和/或,负极耳113可以通过负极焊盘115与第一端部120连接。
在某些实施方式中,电芯11与导电结构12封装在电池1000内部;或者,电芯11封装在电池1000内部,导电结构12设置在电池1000外部。
请参阅图1,在某些实施方式中,导电结构12可以设置在电芯11靠近喇叭300的一侧;或者,导电结构12可以设置在电池1000和喇叭300之间。
请参阅图1,在某些实施方式中,导电结构12所在的平面与负极片111卷绕形成的平面平行或基本平行。
在某些实施方式中,导电结构12被配置为在通变化电流时产生第一电磁场,电芯11被配置为在通变化电流时产生第二电磁场,第一电磁场与第二电磁场相互削弱,第二电磁场包括在通变化电流时外延段1111产生的电磁场。
在某些实施方式中,电芯11为负载200供电,负载200可以包括蓝牙模块21,变化电流可以包括电芯11为蓝牙模块21供电的情况下,蓝牙模块21收发蓝牙信号引起的电芯11产生的波动电流。
在某些实施方式中,电子设备10000可以包括耳机。
在某些实施方式中,由于蓝牙模块21收发蓝牙信号引起的波动电流可以包括:在蓝牙回连过程中引起的电芯11产生的波动电流。如此,导电结构12的设置可以避免在使用蓝牙模块21回连外部设备时引起的电池1000的电流波动导致电子设备10000产生电流噪声。
在某些实施方式中,蓝牙模块21可以包括蓝牙编解码器,变化电流可以包括电芯11为蓝牙模块21供电时,收发LHDC格式的文件引起的波动电流。如此,导电结构12的设置可以避免电子设备10000通过收发LHDC格式的文件时,电子设备10000产生电流噪声。
在某些实施方式中,第二电磁场干扰喇叭300引起噪声,变化电流、第二电磁场和噪声的频率相同,频率至少包括以下一种:800Hz、1.6KHz、3.2KHz及其中任一个的倍频。
请参阅图1和图2,本申请实施方式提供一种电路结构100,电路结构100包括电芯11和导电 结构12,电芯11包括正极片110和负极片111,正极片110和负极片111卷绕设置,沿负极片111的卷绕方向,负极片111的外侧端部1110越过正极片110的外侧端部1100的部分为外延段1111;导电结构12包括第一端部120和第二端部121,第一端部120和第二端部121中的至少一端与正极片110或负极片111连接,导电结构12被配置为产生的电磁场与外延段1111产生的电磁场相互削弱。
本申请实施方式中的电路结构100中,导电结构12走线简单同时导电结构12的第一端部120和第二端部121中的至少一端与正极片110或负极片111连接,其中可以包括有导电结构12的一端连正极片,另一端连负极片等情况。导电结构12被配置为产生的电磁场与外延段1111产生的电磁场相互削弱,此处的相互削弱可以理解为导电结构12产生的电磁场与外延段1111产生的电磁场部分抵消,或者可以是导电结构12产生的电磁场完全抵消外延段1111产生的电磁场,这样,导电结构12的设置可以降低外延段1111部分产生的磁场辐射对喇叭等敏感器件的干扰,降低电子设备10000使用时的电流噪声。
请参阅图1,本申请实施方式提供一种电池1000,电池1000包括本申请实施方式中所提供的电路结构100。
本申请实施方式中的电池1000因为应用有本申请中提供的电路结构100,电池1000内部电芯11外延段1111部分产生的电磁场能够与导电结构12产生的电磁场相互削弱,达到降低电芯11产生的磁场对外干扰的作用,可以理解的,将电路结构100封装在电池1000中可以有效降低电池的漏磁。
请参阅图11,本申请实施方式还提供一种电子设备10000,电子设备10000包括本申请一些实施方式中所提供的电路结构100。
本申请实施方式的电子设备10000中,由于应用有本申请中的电路结构100,在电子设备10000工作的情况下,导电结构12所提供的磁场能够与电芯11的外延段1111部分产生的磁场相互削弱,例如部分抵消或者完全抵消,从而可以降低外延段1111部分产生的磁场辐射对喇叭等敏感器件的干扰,进而使得电子设备10000的噪声得到有效削弱,甚至消除,提高设备性能和用户使用体验。
随着技术的发展,电子类产品广泛应用在人们生活中,在使用耳机等小型电子产品时,内置的电池电芯为麦克风、喇叭、蓝牙等供电。小型电子产品的内置电池一般为小型充电电池(例如钢壳电池或软包电池),电池电芯的制作方式一般为卷绕式,虽然相关技术通过一些绕卷方式的改善来降低电池的漏磁,但是漏磁仍难以避免。申请人发现,由于负电极片与正电极片长度不同,或者为了安全负电极片要包裹住正极片的外侧端部,从而负极片的外侧端部越正极片的外侧端部的部分在使用时可能会产生电磁场,造成漏磁。
然而,近年来TWS(True Wireless Stereo,真无线立体声)蓝牙耳机被广泛地使用,TWS蓝牙耳机的体积紧凑,使得电池与喇叭的堆叠距离近,因此,申请人发现上述少量的漏磁在TWS耳机中也可能引起噪声。特别地,随着技术的发展使得大多数蓝牙耳机也带有降噪功能,在使用无线蓝牙耳机的相关功能时,以及在特定使用场景如回连、播放特定格式音频时,噪声更为明显。
经申请人研究发现,引起上述噪声的原因包括:在蓝牙耳机中,由于蓝牙芯片发射蓝牙信号可能会引起电池的电流发生波动,基于前面所述由于电池电芯设计的原因导致漏磁,当电流为变化的情况下,电池漏出的电磁场也是变化的,变化的磁场会对喇叭等敏感器件进行干扰产生噪声。申请人进一步研究发现,在蓝牙芯片进行蓝牙连接,例如蓝牙回连时(例如Page寻呼阶段),会由于频繁发送ID包和等待接收导致电流波动明显,产生的噪声也更明显。
因此,蓝牙模块引起的电流波动更容易使得与蓝牙模块连接的麦克风、喇叭等声电器件受电池产生电磁场的干扰引发噪声。经过申请人仔细研究发现,针对卷绕电池带来的噪声问题,可以设计有反向线圈,然后通过一定的布置方式使得通电后线圈可以产生与电芯相反的磁场,从而抵消电芯产生的磁场,以减弱对负载的干扰,但受限于空间的影响,以及为了保证对电芯产生的磁场的良好抵消作用,对抵消线圈的设计要求越来越高。
有鉴于此,本申请中提供一种改进后的电路结构100,导电结构12的第一端部120和第二端部121中的至少一端与正极片110或负极片111连接,导电结构12被配置为产生的电磁场与外延段1111产生的电磁场相互削弱,此处的相互削弱可以理解为相互抵消,进一步地,可以是导电结构12产生的电磁场与外延段1111产生的电磁场全部抵消,或者,导电结构12产生的电磁场与外延段1111 产生的电磁场部分抵消,可见,本申请中提供的导电结构12是针对负极片外延段产生的磁场干扰而设计的,抵消的更有针对性,能够有效改善外延段1111产生的干扰磁场对喇叭300等敏感器件的干扰使其产生的噪声等问题。
具体地,本申请中的电子设备10000可以为手机、平板电脑、音频播放器、视频播放器、有线耳机、无线蓝牙耳机例如TWS耳机、音箱等设备,本申请中的电子设备10000的电池1000可以为自带电池。电子设备10000包括的负载200可以包括蓝牙模块21,此外,喇叭300也可以认为是负载200的一部分,也可以理解为负载200以外的部分。电子设备10000应用有本申请中的电路结构100,电路结构100中采用导电结构12针对外延段1111产生的干扰电磁场进行削弱(包括对干扰电磁场的部分抵消或全部抵消),从而实现抑制负载200引起的电流变化导致电芯11产生干扰磁场对喇叭300等声电器件的影响,进而改善喇叭300发出电流噪声等问题。
下文所提及的电子设备10000以TWS耳机为例进行解释说明。
需要说明的是,在某些实施方式中,本申请中的电子设备1000还包括负载200,电芯11被配置为负载供电。负载可以包括蓝牙模块21,变化电流可以包括电芯11为蓝牙模块21供电的情况下,由于蓝牙模块21收发蓝牙信号引起电芯21产生的波动电流。可以容易理解,电子设备1000中所包括的负载可以与电路结构100中所涉及的负载200为同一负载。
本申请中的电池1000具体可以为卷绕式电池,例如可以为钢壳纽扣电池和微型软包电池等,电芯11可以位于电池1000的内部,电芯11可以为卷绕式电芯11,在电池1000正常工作时,基于电芯的设计,电流流过电芯11可能会产生一个垂直于电池1000顶盖或者电池1000底壳的磁场。
如图2所示,图2的电芯11的卷绕形式和安全要求决定了电芯11的负极片111的外侧端部1110越过正极片110的外侧端部1100。可以理解,电池1000工作时,交变的电流在闭合线圈上会产生磁场,那么对于卷绕式电池1000而言,电池1000电流波动时电芯11正极片110和负极片111所产生的大部分磁场都会相互抵消,而此时,由于负极片111的外侧端部1110越过正极片110的外侧端部1100,越过的部分则没有被抵消,会对外产生磁场辐射。也即是说,外延段1111部分在电芯11通有变化电流时所产生的磁场不会被抵消,而是会对外产生磁场辐射。
因此,电池1000中的电路结构100还设计有导电结构12,导电结构12可以与电芯11串联。需要说明的是,在某些实施方式中,电芯11可以为软包电池或钢壳电池的电芯,和/或,导电结构12可以为导线、FPC或电路板;和/或,导电结构12可以设置在电芯11靠近喇叭200的一侧,或者,导电结构12可以设置在电池1000和喇叭200之间。
可以理解的,导电结构12的第一端部120和第二端部121中的至少一端可以与电芯11的正极片110或负极片111连接,进一步地,导电结构12的第一端部120和第二端部121中的至少一端可以与正极片110的外侧端部1100或负极片111的外侧端部1110连接。导电结构12的实现形式可以是通过柔性电路板、印刷电路板、铜丝绕线等方式。当电芯11通电时,导电结构12中同样存在电流。导电结构12可以为一定弧度的导电线圈,导电结构12的直径、粗细和材料等可以根据需要抵消的磁场辐射强度来综合确定。
导电结构12被配置为产生的电磁场与外延段1111产生的电磁场相互削弱,可以理解为对外延段1111产生的电磁场的部分抵消或全部抵消,从而电子设备10000所包括的负载200(也即电路结构100连接的负载200),如蓝牙模块21在工作时产生的变化电流通到电芯11后,电芯11的外延段1111部分产生的电磁场可以被导电结构12产生的电磁场所削弱,从而减少了干扰磁场对负载200所连接的喇叭300等器件的影响,进而改善喇叭300发出电流噪声等问题。
请参阅图3-图5,在某些实施方式中,第一端部120的位置与负极片111的外侧端部1110对应,第二端部121的位置与正极片110的外侧端部1100对应,导电结构12的电流被配置为与负极片111的外延段1111的电流方向相反。
如此,导电结构12的设置能够准确对齐外延段1111的位置(当然也允许一定程度的偏离,可根据对噪声控制的实际需要调整),同时由于将导电结构12的电流被配置为与负极片111的外延段1111的电流方向相反,导电结构12能够产生与外延段1111产生的磁场相反的磁场,从而对外延段1111产生的干扰磁场起到抵消作用,减少磁场对负载200所连接的喇叭300等声电器件的干扰,从 而降低声电器件产生的电流噪声。
可以理解的,第一端部120的位置与负极片111的外侧端部1110对应,第二端部121的位置与正极片110的外侧端部1100对应,上述对应所指代的是第一端部120的投影与负极片111的外侧端部1110的投影在位置上为完全重叠,当然也可以允许有一定误差范围内的错开,可以根据实际设计需求而定。
例如,在一些可行的实施方案中,导电结构12可以通过两个焊盘与正极片110的外侧端部1100或负极片111的外侧端部1110连接,由于焊盘有一定的面积,因此导电结构12的端部(例如第一端部120或第二端部121)可以分别设置在两个焊盘中的任何位置,也可以通过在焊盘不同位置的设置来调整第一端部120到第二端部121的长度或弧度,从而满足抵消外延段1111电磁场的需要。上述在两个焊盘上导电结构12的两个端部(例如第一端部120或第二端部121)与两个焊盘不同的位置建立连接都可认为属于上述“对应”的范畴。
可以理解的,第一端部120的位置与负极片111的外侧端部1110对应,第二端部121的位置与正极片110的外侧端部1100对应,可以是第一端部120的位置设置在靠近负极片111的外侧端部1110的位置,第二端部121的位置可以设置在靠近正极片110的外侧端部1100的位置,这样在第一端部120和第二端部121之间可以形成与外延段1111形状类似的导电结构12,加之导电结构12与外延段1111的电流相反,从而二者产生的电磁场可以相互抵消(包括部分抵消或者全部抵消)。
可以理解的,第一端部120的位置与负极片111的外侧端部1110对应,第二端部121的位置与正极片110的外侧端部1100对应,还可以是第一端部120的位置设置在负极片111的外侧端部1110的位置(例如二者在不同平面上重叠),第二端部121的位置可以设置于正极片110的外侧端部1100对应的位置(例如电芯11的绕线形成圆的圆心和正极片110的外侧端部1100连线于负极片111的交点处,或者可以理解为,外延段1111的起始位置与第二端部121的位置对应,外延段1111的终止位置,也即负极片111的外侧端部1110所在位置,与第一端部120对应,从而可以将导电结构12设置为在外延段1111所在平面上的投影与外延段1111完全重叠或部分重叠,当完全重叠时,导电结构12产生的磁场和外延段1111产生的磁场的抵消效果可能更明显。
可以理解的,当电池1000正常工作时,流经电芯11的电流也将流过导电结构12,而导电结构12的电流被配置为与负极片111的外延段1111的电流方向相反,在此情况下,导电结构12会产生一个与电芯11所产生的磁场方向相反的磁场,这样导电结构12所产生的磁场便可以抵消(部分抵消或者完全抵消)外延段1111部分对外产生的磁场辐射。
特别地,图2也示出了,电芯11的负极片111的内侧端部也会超出正极片110的内侧端部,但是由于实际情况中电芯11的内圈,即内侧的弧度非常小,超出部分可以忽略不计;并且,电芯11内圈所流过的电流也较小,电芯11的电流由内圈到外圈逐渐增大,对于电池1000而言,电芯11内圈的磁场强度较弱,因此在设计导电结构12时,可以仅考虑消除外延段1111部分对外的辐射磁场来设计导电结构12的具体结构。
请参阅图3,在某些实施方式中,第一端部120被配置为连接负极片111的外侧端部1110,和/或,第二端部120被配置为连接正极片110的外侧端部1100。
可以理解的,第一端部120被配置为连接负极片111的外侧端部1110,第二端部120被配置为连接正极片110的外侧端部1100第一端部120;或者,第一端部120被配置为连接负极片111的外侧端部1110;或者,第二端部120被配置为连接正极片110的外侧端部1100。
其中,第一端部120连接负极片111的外侧端部1110,可以是通过焊盘、镍片等连接方式连通;同样,第二端部121连接正极片110的外侧端部1100,可以是通过焊盘、镍片等连接方式连通。一般来说,正极片110的外侧端部1100与正极耳连接和负极片111的外侧端部1110与负极耳连接,此外,正极耳可以直接与正极焊盘连接或通过镍片与正极焊盘连接,同样的,负极耳可以直接与负极焊盘连接或通过镍片与负极焊盘连接。
请参阅图2与图3,在某些实施方式中,在第一端部120被配置为连接负极片111的外侧端部1110的情况下,第二端部121的位置设于正极片110的外侧端部1100处;或者,在第二端部121被配置为连接正极片110的外侧端部1100的情况下,第一端部120的位置设于负极片111的外侧端 部1110处。
可以理解的,在第一端部120被配置为连接(可以直接连接也可以间接连接,例如通过极耳、镍片、焊盘等至少一种间接连接)负极片111的外侧端部1110的情况下,第二端部121的位置设于正极片110的外侧端部1100处,即第二端部121的位置与正极片110的外侧端部1100对应;在第二端部121被配置为连接正极片110的外侧端部1100的情况下,第一端部120的位置设于负极片111的外侧端部1110处,即第一端部120的位置与负极片111的外侧端部1110对应。
可以理解的,由于正极片110的外侧端部1100与外延段1111靠近正极片110的外侧端部1100的一端比较接近,因此第二端部121的位置设于正极片110的外侧端部1100处,也可以包括第二端部121的位置设于外延段1111靠近正极片110的外侧端部1100的一端。
可以理解的,导电结构12与电极片(正极片110和负极片111)可以不在一个平面,因此“对应”或者“处”也可以理解为投影上的重叠或部分重叠。
这样,导电结构12的设置能够对应外延段1111的位置;同时,又由于将导电结构12的电流被配置为与负极片111的外延段1111的电流方向相反,导电结构12能够产生与外延段1111产生的磁场相反的磁场,从而对外延段1111产生的干扰磁场起到抵消作用,避免干扰磁场影响负载所连接的喇叭300等声电器件使声电器件产生电流噪声。
另外,如图2所示,在电芯11内部电流由负极片111流向正极片110,从而电芯11的负极片111的电流方向为逆时针方向,正极片110的电流方向为顺时针方向,从而正极片110和负极片111产生的部分磁场可以相互抵消,但外延段1111产生的磁场无法被电池1000本身的设计抵消,因此需要通过本申请设计的导电结构12进一步抵消外延段1111产生的电磁场(包括部分抵消或全部抵消)。那么如图3所示,导电结构12上流过的电流方向需要为顺时针方向,即,在第一端部120被配置为连接负极片111的外侧端部1110的情况下,第二端部121的位置设于正极片110的外侧端部1100处;或者如图4所示,在第二端部121被配置为连接正极片110的外侧端部1100的情况下,第一端部120的位置设于负极片111的外侧端部1110处,导电结构12上流过的电流方向仍为顺时针方向,需要另外说明的是,图4中为区别导电结构12与电芯11,将导电结构12以虚线形式表示,并不代表实际结构。
这样,如图2所示,未设置导电结构12前电池1000出线的正极与负极位于不同侧,在经过导电结构12的绕线后,如图3所示,电芯11与导电结构12结合作为一个模组的情况下,电池1000负极的出线位置相当于延长到了第二端部121,从而与电池1000的正极位于同一侧,当然如果将导电机构12和电芯11封装在电池1000内部,则通过该设计可使得电池1000最终出线的正极与负极位于同一侧,因此,都可以方便后续引出导线与其他元件相接。当然也可以如图4所示,在电芯11与导电结构12结合作为一个模组的情况下,电池1000正极的出线位置相当于延长到了第一端部120,从而与电池1000的负极位于同一侧,当然如果将导电机构12和电芯11封装在电池1000内部,则通过该设计可使得电池1000最终出线的正极与负极位于同一侧,因此,都可以方便后续引出导线与其他元件相接。
在某些实施方式中,电芯11被配置为给负载200供电,第一端部120被配置为连接负极片111的外侧端部1110,正极片110的外侧端部1100被配置为连接负载200的电流输入端,第二端部121被配置为连接负载200的电流输出端。
可以理解的,电子设备10000可以为耳机,例如可以为无线蓝牙耳机,那么负载200可以包括蓝牙模块21,电芯11可以被配置为蓝牙模块21供电,在第一端部120被配置为连接负极片111的外侧端部1110的情况下,正极片110的外侧端部1100被配置为连接负载200的电流输入端,第二端部121被配置为连接负载200的电流输出端。在电芯11与导电结构12形成一个整体时,相当于电池1000的整体出线位于同一侧。
在某些实施方式中,电芯11被配置为给负载200供电,第二端部121被配置为连接正极片110的外侧端部1110,第一端部120被配置为连接负载200的电流输入端,负极片111的外侧端部1110被配置为连接负载200的输出端。
可以理解的,电子设备10000可以为耳机,例如可以为无线蓝牙耳机,那么负载200可以包括 蓝牙模块21,电芯11可以被配置为蓝牙模块21供电,在第二端部121被配置为连接正极片110的外侧端部1100的情况下,第一端部120被配置为连接负载200的电流输入端,负极片111的外侧端部1110被配置为连接负载200的输出端。
请参阅图5与图6,在某些实施方式中,在第一端部120被配置为连接负极片111的外侧端部1110,第二端部121被配置为连接正极片110的外侧端部1100的情况下,导电结构12还包括第三端部122和第四端部123,第一端部120至第三端部122构成导电结构12的第一部分124,第二端部121至第四端部123构成导电结构12的第二部分125,第三端部122与第四端部123间隔设置。
可以理解的,间隔设置可以间隔一小段距离,避免导致导电结构12的整体长度影响磁场的抵消效果,此外第三端部122和第四端部123不直接连接,例如通过负载形成环路。
请参阅图5与图6,在某些实施方式中,第三端部122和第四端部123能够设置于导电结构12的任意位置;和/或,第一部分124的长度和第二部分125的长度相同或不同。
如此,可以实现导电结构12的负极走线与正极走线结合,如果导电结构12和电芯11封装在电池内部,则可以选择在导电结构12的任意位置引出电池1000的正负极接线;如果导电结构12位于电池1000外部,则相当于可以在导电结构12的任意位置引出电池1000的正负极接线。
可以理解的,如图2所示,在电芯11内部电流由负极片111流向正极片110,从而电芯11的负极片111的电流方向为逆时针方向,正极片110的电流方向为顺时针方向,从而正极片110和负极片111产生的部分磁场可以相互抵消,但外延段1111产生的磁场无法被电池1000本身的设计抵消,因此需要通过本申请设计的导电结构12进一步抵消外延段1111产生的电磁场(包括部分抵消或全部抵消)。
那么如图5和图6所示,为了能够与外延段1111的磁场形成抵消作用,导电结构12上流过的电流方向需要为顺时针方向,进一步的为了方便与负载连接,导电结构12可以包括有第一部分124和第二部分125。其中,第一部分124包括第一端部120至第三端部122,第一端部120可以被配置为电连接负极片111的外侧端部1110,从而第一部分124与电芯11的负极片111电连接,第一部分124的走线由对应电芯11的负极片111的外侧端部1111的位置开始到第三端部122结束;第二部分125可以包括第二端部121至第四端部123,第二端部121可以电连接正极片110的外侧端部1100,从而第二部分125与电芯11的正极片110电连接,第二部分125的走线由对应电芯11的正极片110的外侧端部1100的位置开始到第四端部123结束。
进一步地,若导电结构12和电芯11封装在电池1000中,则第一部分124与第二部分125上还形成有电池1000最终出线的正负电极,即第一部分124和第二部分125的走线停止位置第三端部122和第四端部123分别为电池1000最终的负极接线位置和正极接线位置;如果导电结构12设置在电池1000外部,则第三端部122和第四端部123相当于延长了电池1000的负极接线位置和正极接线位置。
如图5和图6所示,电芯11串联有第一部分124和第二部分125的情况下,第三端部122和第四端部123能够位于导电结构12的任意位置,或者说,第一部分124的长度与第二部分125的长度相同或者不同。如图5中,第一部分124的长度大于第二部分125的长度,图6中,第一部分124的长度小于第二部分125的长度,此时第一部分124和第二部分125上流过的电流方向均为顺时针方向。
可以理解的,无论第三端部122和第四端部124位于导电结构12的哪个位置,导电结构12所起的作用在电池1000中是相同的,即导电结构12所产生的磁场抵消效果一致。上述实施例或实施方式中(包括但不限于图3-图6的任一方案),无论导电结构12采用哪种与电池的连接方式及与负载连接的出线方式,其形状(例如长度或弧度)的设置要与外延段1111对应,从而使得导电结构12与外延段1111产生的电磁场可以相互削弱(包括部分抵消或全部抵消的情况)。且导电结构12的形状设计(例如长度或弧度)可以根据需要抵消磁场的程度进行调整。
请参阅图7-图10,在某些实施方式中,电芯11被配置为给负载200供电,第三端部122被配置为连接负载200的电流输出端,第四端部123被配置为连接负载200的电流输入端。
可以理解的,如上文所提及的,在一些实施例中,第一部分124与第二部分125上还形成有电 池1000最终出线的正负电极,即第一部分124和第二部分125的走线停止位置第三端部122和第四端部123分别为电池1000最终的负极接线位置和正极接线位置。在电芯11为负载200,如蓝牙模块21供电的情况下,第三端部122被配置为连接负载200的电流输出端,第四端部123被配置为连接负载200的电流输入端,电流由第一端部电流由第四端部123流入负载200,然后由第三端部122流出负载200。需要说明的是,上述连接可以是直接连接也可以是间接连接,例如通过连接结构进行连接。可以理解的,本申请实施例中第一端部120和第二端部121是导电结构12上的指定点,这种端部可能与其连接的部分一体成型,例如第一端部120和第二端部121分别与其各自的连接机构一体成型,例如为一根导线。当然也可以是能够与连接结构进行拆分的形式,在此不做限制。
请参阅图7-图10,在某些实施方式中,第三端部122被配置为通过第一连接结构126与负载200的电流输出端连接,第四端部124配被配置为通过第二连接结构127与负载200的电流输入端连接,第一连接结构126与第二连接结构127重叠走线。如此,将第一连接结构126与第二连接结构127重叠走线可以使得第一连接结构126产生的电磁场和第二连接结构127产生的电磁场相互抵消,从而降低或避免对负载200或负载200连接的喇叭300等其他模块产生干扰磁场,引起电流声等问题。
具体地,在电子设备10000为耳机的情况下,图7与图8为分别为左耳机、右耳机在一种实施方式下的内部走线示意图,图9与图10分别为左耳机、右耳机在另一种实施方式下的内部走线示意图。在图7与图8中,第一部分124与第二部分125的长度基本相同,在图9与图10中,第一部分124的走线长度大于第二部分125的走线长度。
在图7-图10示出的两种走线方案中,第一端部120被配置为连接负极片111的外侧端部1110,第二端部121被配置为连接正极片110的外侧端部1100的情况下,那么导电结构12还包括第三端部122和第四端部123,第三端部122与第四端部123与负载200连接的情况下,内部走线需要经过与负载200连接的喇叭300所覆盖的地方。
此时为了避免产生新的干扰磁场,在第三端部122被配置为通过第一连接结构126与负载200的电流输出端连接,第四端部124配被配置为通过第二连接结构127与负载200的电流输入端连接的情况下,第一连接结构126与第二连接结构127需要重叠走线,来对第一连接结构126和第二连接结构127各自产生的电磁场进行相互抵消。特别地,图7-图10中所示的连接正极耳112(如图2所示)的正极焊盘114,以及连接负极耳113(如图2所示)的负极焊盘115可以用于连接导电结构12或者其他外部器件。
请参阅图3-图10,在某些实施方式中,导电结构12的形状可以与外延段1111的形状对应。如此,通过将外延段1111与导流结构12的形状对应,使得电池1000工作时,导流结构12所产生的磁场与外延段1111所产生的磁场方向相反以相互抵消(部分抵消或全部抵消),从而有效抑制外延段1111产生的干扰磁场。
具体地,如图2所示的电芯11卷绕形式和安全要求决定了电芯11的负极片111的外侧端部1110越过正极片110的外侧端部1100,也即是负极片111所包括的外延段1111。可以理解,电池1000工作时交变的电流在闭合线圈上会产生磁场,那么对于卷绕式电池1000而言,电池1000电流波动时电芯11正极片110和负极片111所产生的大部分磁场都会相互抵消,而此时,由于负极片111的外延段1111的存在,外延段1111部分对应所产生的磁场无法被抵消,外延段1111处会对外产生磁场辐射。
为了抵消外延段1111对外产生的磁场辐射设置有导电结构12,为了保证导电结构12所产生的磁场尽可能的与外延段1111对外辐射的磁场相互抵消,外延段1111与导电结构12的形状可以对应,需要说明的是,此处的对应可以是将导电结构12在负极片111卷绕平面的投影与外延段12部分重叠或全部重叠。
请参阅图3-图10,在某些实施方式中,导电结构12可以被配置为不超过一圈的弧状结构。具体地,由于电芯11为卷绕形式,负极片111的外延段1111可以为弧状结构;由于为了使导电结构12充分抵消外延段1111对外辐射的磁场,导电结构12可以与外延段1111形状对应,因此导电结构12也可以呈弧状结构。特别地,为了保证导电结构12的走线简单,避免多圈绕线导致的无法布线、布 线困难,以及绕线圈数过多导致电池走线过长带来导通阻抗变大等问题,以及考虑到外延段1111的长度、形状,导电结构12可以被配置为不超过一圈的弧状结构。
进一步地,请参阅图2与图3,在某些实施方式中,导电结构12的弧度与外延段1111相同或相近,或者,导电结构12的长度与外延段1111的长度相同或相近。具体地,外延段1111与导流结构12的形状对应,可以是导电结构12的弧度与外延段1111相同或相近,或者,导电结构12的长度与外延段1111的长度相同或相近。这样,使得电池1000工作时,导流结构12所产生的磁场与外延段1111所产生的磁场方向相反,可以相互抵消,从而有效抑制外延段1111产生的干扰磁场。
在某些实施方式中,导电结构12的弧度或长度被配置为根据喇叭300发出的电流声确定,其中,电芯11为负载200供电,负载200与喇叭300连接。
可以理解的,负载200可以包括蓝牙模块21,负载200可以与喇叭300连接,负载200在工作时所引起的变化电流会导致喇叭300受到影响产生电流噪声,因此导电结构12为了消除喇叭300产生的电流噪声,需要抵消变化电流引起的干扰磁场,因此为了抵消效果更好,导电结构12的弧度或长度被配置为根据喇叭300发出的电流声确定。例如在出厂前通过检测喇叭产生电流声的情况来调整导电结构的长度、弧度、位置等参数,当调整到某个参数使得电流声满足设计要求时,例如超出人耳听到的范围或者比较微小大部分人听不到的情况,则确定该参数下的导电结构12为满足需要的导电结构。
特别地,在一些实施方式中,还可以根据外延段1111所产生的辐射磁场的强度,调整导电结构12的弧度,例如,若是外延段1111对外辐射强度过大,导电结构12的弧度可以调整为较大的弧度,若是外延段1111对外辐射强度较小,导电结构12的弧度可以对应调整为小弧度。此时,调整弧度可以是第一端部120与第二端部121保持电连接负极片111的外侧端部1110以及位于正极片110的外侧端部1100不变,调整由第一端部120向第二端部121延伸的导电结构12的弧度。
请参阅图2-图6,在某些实施方式中,电芯11可以包括正极耳112和负极耳113(如图2所示),正极片110的外侧端部1100被配置为通过正极耳112和第二端部121连接;和/或,负极片111的外侧端部1110被配置为通过负极耳113与第一端部120连接。
请参阅图2、图7-图10,进一步地,在某些实施方式中,正极耳112可以通过正极焊盘114与第二端部121连接;和/或,负极耳113可以通过负极焊盘115与第一端部120连接。
可以理解的,正极片110的外侧端部1100被配置为通过正极耳112和第二端部121连接以及负极片111的外侧端部1110被配置为通过负极耳113与第一端部120连接,或者正极片110的外侧端部1100被配置为通过正极耳112和第二端部121连接,或者负极片111的外侧端部1110被配置为通过负极耳113与第一端部120连接等情况下,正极耳112可以通过正极焊盘114与第二端部121连接;和/或,负极耳113可以通过负极焊盘115与第一端部120连接。其中,如前面所描述的,由于焊盘具有一定的面积,为了调整导体结构12的参数(例如长度、弧度、位置等),第二端部121可以在正极焊盘114上调整连接位置,第一端部120也可以在负极焊盘115上调整连接位置。
此时,正极焊盘114可以通过镍片与正极耳112连接,负极焊盘115也可以通过镍片和负极耳113连接,当然也可以不通过镍片直接将正极焊盘114、负极焊盘115分别与正极耳112和负极耳113连接,又或者,第一端部120和/或第二端部121可以不连接负极焊盘115和/或正极焊盘114,直接与负极耳113和/或正极耳112连接在一起。
可以理解的,无论是正极焊盘114还是负极焊盘115,都有一定的面积,从而可以在焊盘上选取更合适的导电结构12的连接位置,从而使得导电结构12与正极片110或者负极片111的外侧端部1110位置有一定的偏差,但也仍属于对应的范围。
在某些实施方式中,电芯11与导电结构12封装在电池1000内部;或者,电芯11封装在电池1000内部,导电结构12设置在电池1000外部。
请参阅图1,在某些实施方式中,导电结构12可以设置在电芯11靠近喇叭300的一侧;或者,导电结构12可以设置在电池1000和喇叭300之间。
可以理解的,导电结构12设置在电芯11靠近喇叭300的一侧,可以包括电芯11和导电结构12封装在电池内部的情况;导电结构12设置在电池1000和喇叭300之间,可以包括导电结构12 设置在电池1000外部的情况。
上述,通过将导电结构12靠近喇叭300设置,使得导电结构12起到的抵消干扰磁场的作用更好,可以降低或消除干扰磁场引起喇叭300产生的噪声。
具体地,在一个实施例中,TWS耳机一类电子设备10000的内置电池的电芯11具有更高的高度,这使得如果将导电结构12设置在电芯11远离喇叭300的一侧上,导电结构12由于距离喇叭300较远,在电子设备10000工作过程中导电结构12所产生的磁场抵消作用会减弱,容易造成磁场抵消不足,从而影响对喇叭300产生的噪声的降噪效果,或者为了满足控制噪声的效果,需要加大的线圈,导致结构堆叠困难,也增加耳机的重量和成本等。
因此,本申请中将导电结构12设置在电芯11和负载200之间,从而使得导电结构12距离喇叭300的距离较近,避免导电结构12产生的反向磁场出现抵消不足的问题,此外,导电结构12可以更小巧,磁场抵消效果较好。
请参阅图1,在某些实施方式中,导电结构12所在的平面与负极片111卷绕形成的平面平行或基本平行。如此,导电结构12在保证对外延段1111产生的磁场的削弱效果的同时可以控制堆叠空间。
可以理解的,在一个实施例中,电芯11为卷绕式电芯11,导电结构12可以为弧线状。将导电结构12所在的平面与负极片111卷绕形成的平面平行或基本平行,例如设置在远离喇叭300一侧的电芯11的顶面并且平行于电芯11的顶面设置,或者设置在靠近喇叭300一侧的电芯11的底面并平行于电芯11的底面,这样,可以更好地布置导电结构12,减小导电结构12占用的空间,减小设备的整体体积,并且还能更好地对应抵消电芯11的负极片111的外侧端部1110越过正极片110的外侧端部1100的部分产生的干扰磁场,从而电子设备10000的内部避免布置复杂的防磁场干扰结构,进而降低了电子设备10000的成本。
可以理解的,当导电结构12封装在电芯11内部时,可以嵌入到电芯11中,类似于抵消电芯11的负极片111长度或补齐电芯11的正极片110长度的方式,设置导电结构12。
在某些实施方式中,导电结构12被配置为在通变化电流时产生第一电磁场,电芯11被配置为在通变化电流时产生第二电磁场,第一电磁场与第二电磁场相互削弱,第二电磁场包括在通变化电流时外延段1111产生的电磁场。
需要说明的是,相互削弱包括相互抵消,其中抵消可以是部分抵消,也可以是全部抵消。
进一步地,在某些实施方式中,电芯11为负载200供电,负载200可以包括蓝牙模块21,变化电流可以包括电芯11为蓝牙模块21供电的情况下,蓝牙模块21收发蓝牙信号引起的电芯11产生的波动电流。
具体地,导电结构12与电芯11串联,导电结构12的电流可以被配置为与负极片111的外延段1111的电流方向相反。蓝牙模块21可以与喇叭300、麦克风等连接,可以理解,在某些实施方式中,电子设备10000可以包括耳机,耳机可以为蓝牙耳机,例如TWS蓝牙耳机,在蓝牙模块21工作时,电芯11可以为蓝牙模块21供电,此时蓝牙模块21会进行蓝牙信号的收发从而引起电芯11产生电流波动,即波动电流,也即形成变化电流。
因此,导电结构12在被通变化电流时产生第一磁场,电芯11被通变化电流时产生第二电磁场,也即是,自负极片111上与正极片110的外侧端部1100对应位置延伸至负极片111的外侧端部1110形成的外延段1111通变化电流时产生的电磁场,此时,第一电磁场与第二电磁场的方向相反,第一电磁场与第二电磁场相互削弱。
在某些实施方式中,由于蓝牙模块21收发蓝牙信号引起的波动电流可以包括:在蓝牙回连过程中引起的电芯11产生的波动电流。如此,导电结构12的设置可以避免在使用蓝牙模块21回连外部设备时引起的电池1000的电流波动导致电子设备10000产生电流噪声。
请参阅图11,具体地,电子设备10000可以包括蓝牙模块21,电子设备10000可以用于通过蓝牙模块21与外部设备无线通信连接。如此,可以实现电子设备10000的无线连接,为用户带来更方便的使用电子设备10000的体验,
具体地,外部设备可以是手机、平板电脑、音频播放器等设备。在一个实施中,电子设备10000可以为TWS耳机,电子设备10000通过蓝牙模块21与外部设备无线通信连接,从而使用户使用便 携、摒弃耳机线材缠绕的烦恼,增强用户体验。
在一个实施例中,电子设备10000可以为耳机,进一步地可以为无线蓝牙耳机,外部设备可以为手机,在电子设备10000的使用过程中,电子设备10000在与外部设备配对建立连接后,保存有连接记录,当与外部设备断开连接后,重新连接时,例如蓝牙TWS耳机的开盖自动连接到上一个连接过的设备或超距重连,可以理解为回连。进一步地,电子设备10000在回连模式时会产生800Hz,3.2KHz频率的电流波动,电池1000就会产生800Hz,3.2KHz频率的交变磁场。然而,在开启降噪模式使得蓝牙模块21的编码译码器需要打开的情况下,由于如喇叭300、麦克风等声电器件连接到蓝牙模块21,喇叭300与蓝牙模块21构成闭合的回路,喇叭300在干扰磁场(例如第一磁场)的作用下会振动发出噪声,噪声的频率即为800Hz,3.2KHz以及它们的倍频。
此时,为了避免电流噪声的产生,电子设备10000的电池1000设置有导电结构12,导电结构12可以和负极片111形成感应磁场相互抵消,即电芯11产生第一感应磁场,导电结构12产生第二感应磁场,第一感应磁场与第二感应磁场相互削弱,从而抵消(部分抵消或完全抵消)电芯11的负极的外延段1111所产生的干扰磁场,避免干扰磁场影响喇叭300使电子设备10000产生电流噪声。
在某些实施方式中,蓝牙模块21可以包括蓝牙编解码器,变化电流可以包括电芯11为蓝牙模块21供电时,收发LHDC格式的文件引起的波动电流。如此,导电结构12的设置可以避免电子设备10000通过收发LHDC格式的文件时,电子设备10000产生电流噪声。
那么为了避免电流噪声的产生,电子设备10000的电池1000内或电池1000外部设置有导电结构12,导电结构12可以和负极片111形成感应磁场相互抵消,即电芯11产生第一感应磁场,导电结构12产生第二感应磁场,从而抵消电芯11的负极的外延段1111所产生的干扰磁场,降低干扰磁场影响喇叭300使电子设备10000在收发LHDC格式的文件的情况下产生电流噪声。
在某些实施方式中,第二电磁场干扰喇叭300引起噪声,变化电流、第二电磁场和噪声的频率相同,频率至少包括以下一种:800Hz、1.6KHz、3.2KHz及其中任一个的倍频。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (28)

  1. 一种电路结构,其特征在于,包括:
    电芯,所述电芯包括正极片和负极片,所述正极片和所述负极片卷绕设置,沿所述负极片的卷绕方向,所述负极片的外侧端部越过所述正极片的外侧端部的部分为外延段;
    导电结构,所述导电结构包括第一端部和第二端部,所述第一端部和所述第二端部中的至少一端与所述正极片或所述负极片连接,所述导电结构被配置为产生的电磁场与所述外延段产生的电磁场相互削弱。
  2. 根据权利要求1所述的电路结构,其特征在于,所述第一端部的位置与所述负极片的外侧端部对应,所述第二端部的位置与所述正极片的外侧端部对应,所述导电结构的电流被配置为与所述负极片的所述外延段的电流方向相反。
  3. 根据权利要求1所述的电路结构,其特征在于,所述第一端部被配置为连接所述负极片的外侧端部;和/或,所述第二端部被配置为连接所述正极片的外侧端部。
  4. 根据权利要求3所述的电路结构,其特征在于,在所述第一端部被配置为连接所述负极片的外侧端部的情况下,所述第二端部的位置设于所述正极片的外侧端部处;或者,在所述第二端部被配置为连接所述正极片的外侧端部的情况下,所述第一端部的位置设于所述负极片的外侧端部处。
  5. 根据权利要求3所述的电路结构,其特征在于,在所述第一端部被配置为连接所述负极片的外侧端部,所述第二端部被配置为连接所述正极片的外侧端部的情况下,所述导电结构还包括第三端部和第四端部,所述第一端部至所述第三端部构成所述导电结构的第一部分,所述第二端部至所述第四端部构成所述导电结构的第二部分,所述第三端部和所述第四端部间隔设置。
  6. 根据权利要求5所述的电路结构,其特征在于,所述第三端部和所述第四端部能够设置于所述导电结构的任意位置;和/或,所述第一部分的长度和所述第二部分的长度相同或不同。
  7. 根据权利要求5所述的电路结构,其特征在于,所述电芯被配置为给负载供电,所述第三端部被配置为连接所述负载的电流输出端,所述第四端部被配置为连接所述负载的电流输入端。
  8. 根据权利要求7所述的电路结构,其特征在于,所述第三端部被配置为通过第一连接结构与所述负载的电流输出端连接,所述第四端部配被配置为通过第二连接结构与所述负载的电流输入端连接,所述第一连接结构与所述第二连接结构重叠走线。
  9. 根据权利要求2或3所述的电路结构,其特征在于,所述电芯被配置为给负载供电,所述第一端部被配置为连接所述负极片的外侧端部,所述正极片的外侧端部被配置为连接所述负载的电流输入端,所述第二端部被配置为连接所述负载的电流输出端。
  10. 根据权利要求2或3所述的电路结构,其特征在于,所述电芯被配置为给负载供电,所述第二端部被配置为连接所述正极片的外侧端部,所述第一端部被配置为连接负载的电流输入端,所述负极片的外侧端部被配置为连接所述负载的输出端。
  11. 根据权利要求1所述的电路结构,其特征在于,所述导电结构的形状与所述外延段形状对应。
  12. 根据权利要求1或11所述的电路结构,其特征在于,所述导电结构被配置为不超过一圈的弧状结构。
  13. 根据权利要求1或11所述的电路结构,其特征在于,所述导电结构的弧度与所述外延段相同或相近;或者,所述导电结构的长度与所述外延段的长度相同或相近。
  14. 根据权利要求1或11所述的电路结构,其特征在于,所述导电结构的弧度或长度被配置为根据喇叭发出的电流声确定,其中,所述电芯为负载供电,所述负载与所述喇叭连接。
  15. 根据权利要求2或3所述的电路结构,其特征在于,所述电芯包括正极耳和负极耳,所述正极片的外侧端部被配置为通过所述正极耳与所述第二端部连接;和/或,所述负极片的外侧端部被配置为通过所述负极耳与所述第一端部连接。
  16. 根据权利要求15所述的电路结构,其特征在于,所述正极耳通过正极焊盘与所述第二端部连接;和/或,所述负极耳通过负极焊盘与所述第一端部连接。
  17. 根据权利要求1所述的电路结构,其特征在于,所述导电结构所在平面与所述负极片绕卷 形成的平面平行或基本平行。
  18. 根据权利要求1所述的电路结构,其特征在于,所述导电结构被配置为在通变化电流时产生第一电磁场,所述电芯被配置为在通所述变化电流时产生第二电磁场,所述第一电磁场与所述第二电磁场相互削弱,所述第二电磁场包括在通所述变化电流时所述外延段产生的电磁场。
  19. 根据权利要求18所述的电路结构,其特征在于,所述电芯为负载供电,所述负载包括蓝牙模块,所述变化电流包括所述电芯为所述蓝牙模块供电的情况下,由于所述蓝牙模块收发蓝牙信号引起电芯产生的波动电流。
  20. 根据权利要求19所述的电路结构,其特征在于,所述由于所述蓝牙模块收发蓝牙信号引起的波动电流包括:在蓝牙回连过程中引起电芯产生的波动电流。
  21. 根据权利要求19所述的电路结构,其特征在于,所述蓝牙模块包括蓝牙编解码器,所述变化电流包括所述电芯为蓝牙模块供电时,收发LHDC格式的文件引起的波动电流。
  22. 根据权利要求18所述的电路结构,其特征在于,所述第二电磁场干扰喇叭引起噪声,所述变化电流、所述第二电磁场和所述噪声的频率相同,所述频率至少包括以下一种:800Hz、1.6KHz、3.2KHz及其中任一个的倍频。
  23. 根据权利要求1所述的电路结构,其特征在于,所述电芯为软包电池或钢壳电池的电芯;和/或,所述导电结构为导线、FPC或电路板;和/或,
    所述导电结构设置在所述电芯靠近喇叭的一侧;或者,所述导电结构设置在所述电池和喇叭之间。
  24. 一种电池,其特征在于:包括权利要求1-23任一项所述的电路结构。
  25. 一种电子设备,其特征在于:包括
    权利要求1-23任一项所述的电路结构。
  26. 根据权利要求25所述的电子设备,其特征在于,所述导电结构被配置为在通变化电流时产生第一电磁场,所述电子设备还包括负载,所述电芯被配置为所述负载供电;所述负载包括蓝牙模块,所述变化电流包括所述电芯为所述蓝牙模块供电的情况下,由于所述蓝牙模块收发蓝牙信号引起电芯产生的波动电流。
  27. 根据权利要求25所述的电子设备,其特征在于,所述电子设备包括喇叭,所述导电结构设置在所述电芯靠近所述喇叭的一侧;或者,所述导电结构设置在电池和所述喇叭之间。
  28. 根据权利要求25所述的电子设备,其特征在于,所述电子设备包括耳机。
PCT/CN2022/143850 2022-02-23 2022-12-30 电路结构、电池和电子设备 WO2023160242A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202220373908.7U CN217215005U (zh) 2022-02-23 2022-02-23 电路结构、电池和电子设备
CN202210167885.9A CN116683123A (zh) 2022-02-23 2022-02-23 电路结构、电池和电子设备
CN202220373908.7 2022-02-23
CN202210167885.9 2022-02-23

Publications (1)

Publication Number Publication Date
WO2023160242A1 true WO2023160242A1 (zh) 2023-08-31

Family

ID=87764653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143850 WO2023160242A1 (zh) 2022-02-23 2022-12-30 电路结构、电池和电子设备

Country Status (1)

Country Link
WO (1) WO2023160242A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200162807A1 (en) * 2018-11-21 2020-05-21 ESI Cases & Accessories Headphone charging apparatus
CN214124061U (zh) * 2020-12-24 2021-09-03 比亚迪股份有限公司 电池及采用该电池的电子设备
CN215070172U (zh) * 2021-06-30 2021-12-07 比亚迪股份有限公司 电池以及具有电池的耳机
CN216528992U (zh) * 2021-11-29 2022-05-13 广东微电新能源有限公司 一种电池装置以及电子设备
CN216958145U (zh) * 2021-12-31 2022-07-12 惠州亿纬锂能股份有限公司 锂离子电池
CN217215005U (zh) * 2022-02-23 2022-08-16 Oppo广东移动通信有限公司 电路结构、电池和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200162807A1 (en) * 2018-11-21 2020-05-21 ESI Cases & Accessories Headphone charging apparatus
CN214124061U (zh) * 2020-12-24 2021-09-03 比亚迪股份有限公司 电池及采用该电池的电子设备
CN215070172U (zh) * 2021-06-30 2021-12-07 比亚迪股份有限公司 电池以及具有电池的耳机
CN216528992U (zh) * 2021-11-29 2022-05-13 广东微电新能源有限公司 一种电池装置以及电子设备
CN216958145U (zh) * 2021-12-31 2022-07-12 惠州亿纬锂能股份有限公司 锂离子电池
CN217215005U (zh) * 2022-02-23 2022-08-16 Oppo广东移动通信有限公司 电路结构、电池和电子设备

Similar Documents

Publication Publication Date Title
CN217215005U (zh) 电路结构、电池和电子设备
US20210289280A1 (en) Earphone
CN213343218U (zh) 电路结构、电池及电子设备
CN114554367A (zh) 发声装置和电子设备
JP6115696B1 (ja) スピーカーモジュール及び電子機器
US11582567B2 (en) Hearing device with an antenna
CN215070172U (zh) 电池以及具有电池的耳机
CN114697825B (zh) 扬声器及电子设备
WO2023221385A1 (zh) 软包扣式电池模块、发声装置及电子设备
WO2021258653A1 (zh) 扬声器和耳机
JP2021168468A (ja) プリント回路基板アセンブリを備える聴覚装置
JP2021168469A (ja) プリント回路基板アセンブリ及び出力トランスデューサを備える聴覚装置
WO2023160242A1 (zh) 电路结构、电池和电子设备
US20230187714A1 (en) Circuit structure, battery, and electronic device
WO2023005759A1 (zh) 扬声器及电子设备
CN217691453U (zh) 用于电池的卷绕结构、电池及具有其的耳机
CN115002590B (zh) 一种扬声器模组和耳机
CN116683123A (zh) 电路结构、电池和电子设备
JP6394807B2 (ja) 携帯端末機器
CN102378089A (zh) 扬声器与电子装置
US20230109385A1 (en) Electronic device including coin-cell battery
AU2020104095A4 (en) Headphone system
KR100716804B1 (ko) 보청기 호환성을 갖는 이동통신단말기
JP2012039594A (ja) スピーカーおよび電子装置
KR20230124444A (ko) 스피커를 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928478

Country of ref document: EP

Kind code of ref document: A1