WO2023160136A1 - 帧率切换方法及相关装置 - Google Patents

帧率切换方法及相关装置 Download PDF

Info

Publication number
WO2023160136A1
WO2023160136A1 PCT/CN2022/138763 CN2022138763W WO2023160136A1 WO 2023160136 A1 WO2023160136 A1 WO 2023160136A1 CN 2022138763 W CN2022138763 W CN 2022138763W WO 2023160136 A1 WO2023160136 A1 WO 2023160136A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame rate
rate
switching
frame
screen
Prior art date
Application number
PCT/CN2022/138763
Other languages
English (en)
French (fr)
Other versions
WO2023160136A9 (zh
Inventor
郑子易
唐洁华
邓建懂
郑承致
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22928393.2A priority Critical patent/EP4321988A1/en
Publication of WO2023160136A1 publication Critical patent/WO2023160136A1/zh
Publication of WO2023160136A9 publication Critical patent/WO2023160136A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/147Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/451Execution arrangements for user interfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/14Use of low voltage differential signaling [LVDS] for display data communication
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/34Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators for rolling or scrolling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/363Graphics controllers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of terminals, and in particular to a frame rate switching method and a related device.
  • the screen refresh rate adopted by the terminal device in different display scenarios may be different.
  • the terminal device may adopt a higher screen refresh rate when the user slides through the content on the display screen; the terminal device may adopt a lower refresh rate when the displayed content on the display screen is relatively fixed.
  • the screen refresh rate may include 1 Hertz (Hz), 20 Hz, 30 Hz, 60 Hz, 90 Hz, or 120 Hz, etc.
  • the display screen of the terminal device may freeze or flicker.
  • the embodiment of the present application provides a frame rate switching method and a related device
  • the terminal device can realize the smooth switching of the screen refresh rate of the display screen, and maintain the drawing frequency of the application processor (application processor, AP) side in the terminal device during the switching process It changes synchronously with the tearing effect (TE) signal obtained from the integrated circuit (IC) on the AP side to reduce frame loss during smooth switching, thereby improving the freeze or flickering phenomenon of the display screen.
  • application processor application processor, AP
  • TE tearing effect
  • the embodiment of the present application provides a frame rate switching method, which is applied to a terminal device.
  • the terminal device includes an application processor AP and an integrated circuit IC.
  • the AP is electrically connected to the IC, and is used for the AP to obtain the tearing effect TE from the IC.
  • the signal method includes: determining to switch the screen refresh rate.
  • the screen refresh rate is switched from the first frame rate to the second frame rate by using a preset frame rate switching strategy.
  • a plurality of non-continuous transition frame rates are set between the first frame rate and the second frame rate, and the first frame rate is switched to the second frame rate through a plurality of transition frame rate steps in sequence During the process, the difference between any two adjacent frame rates is smaller than the preset value, and the drawing frequency on the AP side of the terminal device changes synchronously with the TE signal obtained from the AP side.
  • the difference between any two adjacent transition frame rates among the multiple transition frame rates is smaller than the preset value, so that the screen refresh rate of the display screen does not span too much and is smoother during the switching process.
  • the drawing frequency on the AP side of the application processor in the terminal device changes synchronously with the TE signal obtained from the IC on the AP side to avoid frame loss during switching. Therefore, the setting of the transitional frame rate is no longer limited to the frame rate corresponding to the integral multiple of the minimum refresh time, and the picture freezing or flickering phenomenon of the display screen can be improved.
  • the frequency control in the embodiment of the present application does not depend on the hardware performance of the terminal device, and has no great requirements on the hardware performance of the terminal device.
  • the multiple transition frame rates include a target frame rate, and the refresh time corresponding to the target frame rate is in a non-integer multiple relationship with the minimum refresh time of the display screen.
  • the process of switching the screen refresh rate from the first frame rate to the second frame rate by using the frame rate switching strategy switch from a frame rate adjacent to the target frame rate to the target frame rate, or switch from the target frame rate to the target frame rate
  • the TE signal obtained by the AP side takes effect in the last two frames of the switching frame, and the switching frame is the frame corresponding to the command to switch the frame rate.
  • the transition frame rate can also make the drawing process on the AP side even when the transition frame rate includes a target frame rate in which the refresh time and the minimum refresh time of the display screen are non-integer multiples. There will be no frame loss problems caused by the out-of-sync drawing frequency and TE signal.
  • the vertical synchronization signal Vsync in the IC is adjusted to the maximum value of the display screen after the period corresponding to the target frame rate ends.
  • Screen refresh rate after the period corresponding to the maximum screen refresh rate of the display screen ends, adjust to a frame rate lower than the target frame rate. In this way, the frame loss problem caused by frame switching confusion caused by the prolongation of the Vsync period of the target frame rate can be improved.
  • the screen refresh rate after the screen refresh rate is switched from the first frame rate to the second frame rate by using the preset frame rate switching strategy, it also includes: when the terminal device has switched to the second frame rate, if the list The sliding speed of the control is greater than the second speed threshold, and the second frame rate is maintained.
  • the sliding speed of the list control is less than or equal to the second speed threshold, the screen display rate of the display screen is switched from the second frame rate to a third frame rate through the IC, and the third frame rate is lower than the second frame rate.
  • the terminal device can still maintain a high screen refresh rate, and improve the interface flickering or freezing problems caused by the screen refresh rate being too low.
  • the list control uses the IC to switch the screen display rate of the display screen from the second frame rate to the third frame rate, and the AP side can be unaware, reducing the resource occupation of the AP side.
  • the second frame rate is a preset frame rate
  • the third frame rate is a minimum screen refresh rate of the terminal device. In this way, it can be applied to the smooth frame rate switching after the user slides away from the list control, reducing the phenomenon of stuttering or flickering.
  • the method further includes: during the process of switching the screen refresh rate from the first frame rate to the second frame rate by using the frame rate switching strategy, if a sliding operation for the list control is received, turning the display screen to The screen refresh rate of the screen is switched to the first frame rate. In this way, the frame rate can be adapted to the sliding list control again, and the display effect can be improved.
  • the screen refresh rate of the display screen is the target frame rate
  • the AP The TE signal obtained by the side takes effect in the last two frames of the switching frame, and the switching frame is the corresponding frame when the switching frame rate command is obtained.
  • the transition frame rate includes the target frame rate whose refresh time and the minimum refresh time of the display screen are non-integer multiples
  • the drawing process on the AP side will not be lost because the drawing frequency is not synchronized with the TE signal. Frame problem.
  • determining to switch the screen refresh rate includes: calculating a sliding speed of the list control on the display screen in response to a lifting event of a sliding operation on the display screen. Among them, the sliding operation acts on the list control. When the sliding speed of the list control is less than or equal to the first speed threshold, it is determined to switch the screen refresh rate. In this way, smooth frame rate switching can be achieved after the user slides away from the list control, reducing stuttering or flickering.
  • the first frame rate is the maximum screen refresh rate of the display screen.
  • the display screen can achieve a better display effect at the maximum screen refresh rate.
  • the embodiment of the present application provides a frame rate switching device, and the frame rate switching device may be a terminal device, or may be a chip or a chip system in the terminal device.
  • the frame rate switching device may include a display unit, a processing unit and an integrated circuit IC.
  • the display unit here may be a display screen.
  • the display unit is configured to perform the step of displaying, so that the terminal device implements the display-related method described in the first aspect or any possible implementation of the first aspect, and the processing unit is configured to implement the first aspect or the first aspect Any method related to processing in any possible implementation of an aspect.
  • the processing unit may be a processor.
  • the frame rate switching device may also include a storage unit, which may be a memory.
  • the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the terminal device implements a method described in the first aspect or any possible implementation manner of the first aspect.
  • the processing unit may be a processor.
  • the processing unit executes the instructions stored in the storage unit, so that the terminal device implements a method described in the first aspect or any possible implementation manner of the first aspect.
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the terminal device outside the chip (for example, a read-only memory, a random access memory, etc.).
  • the processing unit is configured to determine to switch the screen refresh rate, and use a preset frame rate switching policy to switch the screen refresh rate from the first frame rate to the second frame rate.
  • a preset frame rate switching policy to switch the screen refresh rate from the first frame rate to the second frame rate.
  • the frame rate switching strategy a plurality of non-continuous transition frame rates are set between the first frame rate and the second frame rate, and the first frame rate is switched to the second frame rate through a plurality of transition frame rate steps in sequence During the process, the difference between any two adjacent frame rates is smaller than the preset value, and the drawing frequency on the AP side of the terminal device changes synchronously with the TE signal obtained from the AP side.
  • the multiple transition frame rates include a target frame rate, and the refresh time corresponding to the target frame rate is in a non-integer multiple relationship with the minimum refresh time of the display screen.
  • the process of switching the screen refresh rate from the first frame rate to the second frame rate by using the frame rate switching strategy switch from a frame rate adjacent to the target frame rate to the target frame rate, or switch from the target frame rate to the target frame rate
  • the TE signal obtained by the AP side takes effect in the last two frames of the switching frame, and the switching frame is the frame corresponding to the command to switch the frame rate.
  • the vertical synchronization signal Vsync in the IC is adjusted to the maximum value of the display screen after the period corresponding to the target frame rate ends.
  • Screen refresh rate after the period corresponding to the maximum screen refresh rate of the display screen ends, adjust to a frame rate lower than the target frame rate.
  • the processing unit is further configured to, when the terminal device has switched to the second frame rate, if the sliding speed of the list control is greater than the second speed threshold, maintain the second frame rate, and when the sliding speed of the list control When it is less than or equal to the second speed threshold, the screen display rate of the display screen is switched from the second frame rate to a third frame rate through the IC, and the third frame rate is lower than the second frame rate.
  • the second frame rate is a preset frame rate
  • the third frame rate is a minimum screen refresh rate of the terminal device.
  • the processing unit is further configured to, during the process of switching the screen refresh rate from the first frame rate to the second frame rate by using the frame rate switching strategy, if a sliding operation for the list control is received, the The screen refresh rate of the display screen is switched to the first frame rate.
  • the screen refresh rate of the display screen is the target frame rate
  • the AP The TE signal obtained by the side takes effect in the last two frames of the switching frame, and the switching frame is the corresponding frame when the switching frame rate command is obtained.
  • the processing unit is specifically configured to, in response to a lifting event of a sliding operation on the display screen, calculate a sliding speed of the list control on the display screen.
  • the sliding operation acts on the list control. And when the sliding speed of the list control is less than or equal to the first speed threshold, it is determined to switch the screen refresh rate.
  • the first frame rate is the maximum screen refresh rate of the display screen.
  • the embodiment of the present application provides an electronic device, including a processor and a memory, the memory is used to store code instructions, and the processor is used to run the code instructions to execute the first aspect or any possible implementation of the first aspect method described in Methods.
  • an embodiment of the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is run on a computer, the computer executes the first aspect or the first aspect.
  • the embodiment of the present application provides a computer program product including a computer program.
  • the computer program When the computer program is run on the computer, the computer executes the frame described in the first aspect or any possible implementation manner of the first aspect. rate switching method.
  • the present application provides a chip or a chip system, the chip or chip system includes at least one processor and a communication interface, the communication interface and the at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or instructions, To execute the frame rate switching method described in the first aspect or any possible implementation manner of the first aspect.
  • the communication interface in the chip may be an input/output interface, a pin or a circuit, and the like.
  • the chip or the chip system described above in the present application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (eg, a read-only memory, a random access memory, etc.).
  • FIG. 1 is a schematic diagram of a scene applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the principle of a frame skipping mode in an implementation provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of interaction between an AP side and an IC chip provided by an embodiment of the present application
  • FIG. 5 is a timing diagram provided by an embodiment of the present application.
  • FIG. 6 is a sequence diagram provided by an embodiment of the present application.
  • FIG. 7 is a timing diagram provided by an embodiment of the present application.
  • FIG. 8 is a sequence diagram provided by an embodiment of the present application.
  • FIG. 9 is a timing diagram provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a frame rate switching provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Frame refers to a single picture that is the smallest unit in the interface display.
  • a frame can be understood as a still picture, and displaying multiple connected frames in rapid succession can form the illusion of object motion.
  • Frame rate refers to the number of frames that refresh the picture in 1 second, and can also be understood as the number of times the graphics processor in the terminal device refreshes the picture per second.
  • a high frame rate results in smoother and more realistic animations. The more frames per second, the smoother the displayed motion will be.
  • Drawing It can be an abbreviation for image processing processes such as drawing, rendering and/or compositing.
  • the drawing frame rate can be understood as the frame rate adopted by the terminal device when performing processes such as drawing, rendering and/or compositing.
  • TE signal It can be a signal generated by an IC chip, which is used to improve the tearing problem when the screen is refreshed during the image display process. For example, when the terminal device is ready to refresh the next frame of image, the IC chip can generate a TE signal, correspondingly, after the AP monitors the rising edge of the TE signal, it can send the next frame of image data to the IC chip.
  • the IC chip may include a display driver integrated circuit (display driver integrated circuit, DDIC) chip and the like.
  • Vsync Vertical synchronization (vetical synchronization, Vsync) signal
  • the Vsync signal in the embodiment of the present application may be a signal generated by an IC chip, and is used to control the screen display refresh process and the like.
  • the Vsync signal is a periodic signal, and the switching of the screen refresh frame rate can reflect the change of the cycle duration of Vsync.
  • the period of the Vsync signal may be 8.3 ms, that is, the terminal device generates a control signal every 8.3 ms to trigger the period of the Vsync signal.
  • the period of the Vsync signal can be 16.6ms, that is, the terminal device generates a control signal every 16.6ms to trigger the period of the Vsync signal.
  • Refresh time It can be understood as the time required for screen refresh.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first chip and the second chip are only used to distinguish different chips, and their sequence is not limited.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a--c, b-c, or a-b-c, where a, b, c can be single or is multiple.
  • the display interface of terminal equipment is often provided with list controls to support users in The demand for flipping through various content in the display screen.
  • the list control can be understood as a control that supports the user's sliding operation.
  • the sliding operation can include sliding up and down, left and right, or any other type of sliding.
  • the list control can be a horizontal list control or a vertical list control.
  • the content in the list control can be Including social application content, system setting related content, document content, commodity content, pictures or videos, etc.
  • FIG. 1 shows several possible interface diagrams including list controls.
  • the interface of the terminal device including the list control may include: an interface of a social application shown in a in FIG. 1 , or a setting-related interface shown in b in FIG. 1 , or a document interface shown in c in FIG. 1 , or the image browsing interface shown in d in Figure 1, or the desktop interface shown in e in Figure 1, or the video browsing interface shown in f in Figure 1, etc.
  • the terminal device may receive the user's swipe up operation or swipe down operation on any interface in FIG. 1 .
  • the list control can move in the direction of the sliding operation.
  • the sliding speed of the sliding operation is faster, the sliding speed of the list control is faster.
  • Adaptive the sliding speed of the sliding operation
  • the scrolling speed of the list control is slower.
  • the terminal device in order to obtain a better display effect, is configured to have a maximum screen refresh rate when the list control is slid, and the screen refresh rate of the terminal device is rapidly reduced after the list control is slid.
  • the maximum screen refresh rate of the terminal device as 120Hz as an example for illustration, after the list control is slid to receive, the screen refresh rate can decrease in the order of 120Hz ⁇ 30Hz ⁇ 20Hz ⁇ 10Hz.
  • This method of reducing the refresh rate of the screen may also be referred to as a traditional frame skipping mode or a frequency hopping mode.
  • the transitionable screen refresh rate when the screen refresh rate is required to decrease, the transitionable screen refresh rate must be the screen refresh rate corresponding to the multiple of the shortest screen refresh time.
  • FIG. 2 shows a schematic diagram of the principle of the frame skipping mode in this implementation.
  • each source can correspond to the highest screen refresh rate (that is, the minimum refresh time) supported by the device of the terminal device. Taking the maximum screen refresh rate of 120Hz as an example, the minimum refresh time is 8.3ms.
  • the screen refresh rate that can support the transition in the frame skip mode must be the frame rate corresponding to an integer multiple of 8.3ms, such as 60Hz and 40Hz.
  • the range of frame rate switching will be too large, for example, from 120 Hz to 60 Hz or 30 Hz, the span is relatively large, which may easily cause the picture on the display screen to freeze or flicker.
  • PWM pulse width modulation
  • EM pulse electromagnetic pulse
  • the embodiment of the present application provides a frame rate switching method.
  • multiple transition frame rates can be set, and the difference between any two adjacent transition frame rates among the multiple transition frame rates is less than the preset Set the value so that the refresh rate of the display screen does not change too much and is smoother, and during the switching process, the drawing frequency on the AP side of the application processor in the terminal device and the TE signal obtained from the IC on the AP side change synchronously, so as to Avoid frame drops when switching. Therefore, the setting of the transitional frame rate is no longer limited to the frame rate corresponding to the integral multiple of the minimum refresh time, and the picture freezing or flickering phenomenon of the display screen can be improved. It can be understood that the frequency control in this embodiment of the present application does not depend on the hardware performance of the terminal device, and has no great requirements on the hardware performance of the terminal device.
  • the terminal device in this embodiment of the present application may also be any form of electronic device.
  • the electronic device may include a handheld device with an image processing function, a vehicle-mounted device, and the like.
  • some electronic devices are: mobile phone (mobile phone), tablet computer, handheld computer, notebook computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol, SIP) telephone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device , a wearable device, a terminal device in a 5G network or a terminal device in a
  • the electronic device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the electronic device can also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • the electronic equipment in the embodiment of the present application may also be referred to as: terminal equipment, user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal, user unit, Subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the electronic device or each network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • FIG. 3 shows a schematic structural diagram of the electronic device 100 .
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber Identity Module (subscriber)
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor
  • application processor application processor, AP
  • modem processor graphics processing unit
  • graphics processing unit graphics processing unit
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • NPU neural-network processing unit
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the interface connection relationship between the modules shown in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the electronic device 100 realizes the display function through the GPU, the display screen 194 , and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can adopt liquid crystal display (liquid crystal display, LCD), organic light-emitting diode (organic light-emitting diode, OLED), active-matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrixorganic light-emitting diode) , AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diodes (quantum dot light emitting diodes, QLED), low temperature polycrystalline oxide (low temperature polycrystalline oxide, LTPO )wait.
  • the electronic device 100 may include 1 or N display screens 194 , where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store computer-executable program codes including instructions.
  • the internal memory 121 may include an area for storing programs and an area for storing data.
  • the stored program area can store an operating system, at least one application program required by a function (such as a sound playing function, an image playing function, etc.) and the like.
  • the storage data area can store data created during the use of the electronic device 100 (such as audio data, phonebook, etc.) and the like.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the electronic device may also include an IC chip (not shown in the figure), and the IC chip is used to drive the display of the display screen.
  • FIG. 4 shows a schematic diagram of interaction between the AP side and the IC chip of the frame rate switching according to the embodiment of the present application.
  • the APP can draw through the CPU and GPU, for example, to perform drawing rendering.
  • Surface Flinger (SF) synthesizes the rendered image through software, outputs a rasterized image, performs hardware synthesis on the rasterized image through the board support package (BSP) of the driver layer, and sends the image data to To the IC chip (that is, the display process), the IC chip drives the display screen to scan and display the image.
  • BSP board support package
  • the IC chip periodically generates Vsync according to the current screen refresh rate, and the AP transposes the TE signal reported by the IC chip into a software Vsync signal at the driver layer, and reports the software Vsync signal to the Surface Flinger layer for image rendering.
  • the AP When frequency switching is required, the AP sends a frequency switching command to the IC chip through the application, SF, and BSP. Correspondingly, the IC chip adjusts the screen refresh rate after receiving the frequency switching command.
  • S501-S502 exemplarily illustrate a frame rate switching method in the embodiment of the present application.
  • Methods include:
  • S501 The terminal device determines to switch the screen refresh rate.
  • the terminal device may determine that the screen refresh rate needs to be switched in any scene where the screen refresh rate needs to be switched.
  • the screen refresh rate switching may include switching from a high screen refresh rate to a low screen refresh rate, or may include switching from a low screen refresh rate to a high screen refresh rate.
  • the terminal device may determine that it is necessary to switch the screen refresh rate.
  • Scenario A After the terminal device determines that the sliding operation is over, it can further wait for the sliding speed of the list control to be lower than the speed threshold, and determine that the screen refresh rate needs to be switched from high to low.
  • the speed threshold can be a preset constant, and the speed The threshold can be positively related to the next screen refresh rate that will be switched.
  • scenario B when the terminal device determines that the sliding operation starts, it may be determined that the screen refresh rate needs to be switched from low to high. For example, after the last sliding operation of the terminal device, the screen refresh rate has been lowered, and when the sliding operation is received again, the terminal device increases the screen refresh rate again.
  • the terminal device when the terminal device receives the user's sliding operation, the types of input events corresponding to the sliding operation can be press (down), move (move) and lift (up), and when the terminal device receives the press event, it can The start of the sliding operation is confirmed, and when the terminal device gets a lift event, the terminal device can confirm the end of the sliding operation.
  • S502 Use a preset frame rate switching strategy to switch the screen refresh rate from the first frame rate to the second frame rate.
  • a plurality of non-continuous transition frame rates are set between the first frame rate and the second frame rate, and the first frame rate passes through a plurality of transition frame rate steps to the second frame rate in sequence.
  • the difference between any two adjacent frame rates is smaller than a preset value, and the drawing frequency on the AP side of the terminal device changes synchronously with the TE signal obtained from the AP side.
  • the first frame rate may be the current screen refresh rate when the terminal device determines that it is necessary to switch the screen refresh rate.
  • the second frame rate may be a preset experience value, so that the user does not experience flickering or freeze on the display screen after the screen refresh rate is switched to the second frame rate.
  • the setting of the preset value may be related to the characteristics of the terminal equipment. For example, the setting of the preset value satisfies: when the difference between any two adjacent frame rates is less than the preset value, there will be no flickering or freezing in the display screen. Dayton phenomenon.
  • the first frame rate may be the maximum screen refresh rate of the terminal device, and the second frame rate may be a lower frame rate.
  • the value of the frame rate can be changed through the following the process of:
  • transition frame rates all the above discrete values in the process of changing from 90 ⁇ 2 can be referred to as transition frame rates.
  • the transition frame rate can be set for all the above discrete values in the change process from 90 ⁇ 2, so as to achieve better smooth switching.
  • the transition frame rate may also be set for the discrete value part of the above-mentioned change process from 90 ⁇ 2, so as to improve switching efficiency and reduce power consumption.
  • the refresh time corresponding to 90 Hz is 11.1 ms, which is not an integer multiple of the minimum refresh time of 8.3 ms. In this way, the Long_V mode can be used for 90 Hz.
  • the Long_V mode can be understood as extending Vsync on the basis of the minimum period interval, and has no specific multiple relationship with the minimum refresh time.
  • the cycle of Vsync may include a vertical front porch (VFP), a vertical back porch (VBP) and a vertical active line (Vact).
  • VFP vertical front porch
  • VBP vertical back porch
  • Vact vertical active line
  • the extension is based on the minimum cycle interval of Vsync, which can be understood as extending the VFP, so that Vact can remain unchanged, thereby reducing the inconsistency of the row opening time caused by the change of Vact. Splash screen problem.
  • the VFP extension time may be: (1/target frame rate)-(1/maximum refresh rate).
  • the AP acquires the Vsync frame rate on the rising edge of the TE signal, it considers the end of the current frame and the start of the next frame in advance within the Vsync cycle interval corresponding to 90 Hz. Take the switching from 90Hz to 60Hz as an example. If the frequency used for AP drawing is not associated with the TE signal, when the TE signal reaches 90Hz, the frame rate used for AP drawing may have switched to 60Hz.
  • the AP acquires the Vsync frame rate on the rising edge of the TE signal, it considers that the current frame ends and the next frame starts in advance within the Vsync cycle interval corresponding to 90 Hz.
  • the frame rate obtained by the AP at the rising edge of the TE signal is still 120Hz at the Nth frame, and at frame N+1, the AP can only obtain the 90Hz frame at the rising edge of the TE signal Rate. Therefore, it can be understood that the TE signal takes effect in the last two frames of the switching frame, and the switching frame is a frame corresponding to the frame rate switching instruction.
  • FIG. 5 shows a timing diagram of switching from 120 Hz to 90 Hz.
  • the upper square wave signal may be a TE signal
  • the lower dotted line may represent a rising edge or a falling edge of Vsync.
  • the frame rate corresponding to the Vsync period obtained by the AP side is 120 Hz at the rising edge of the TE signal, and the AP side uses 120 Hz for drawing.
  • the terminal device receives the lifting event of the sliding operation, and issues the frame rate switching frame rate Instruction, the Vsync period is switched to 90Hz at the end of the period corresponding to 120Hz, but because of the Long_V characteristic of 90Hz, the rising edge of the TE signal is output about 8.3ms after the start of the Vsync signal, so in the Nth frame, the AP side is on the rise of the TE signal The frame rate corresponding to the Vsync period obtained along the edge is still 120Hz, and the AP side still uses 120Hz for drawing.
  • the frame rate corresponding to the Vsync period obtained by the AP side at the rising edge of the TE signal is 90Hz, and the AP side Use 90Hz for drawing.
  • the TE signal when the screen refresh rate is switched from 90 Hz to 60 Hz, the TE signal also takes effect in the last two frames of the switching frame. Different from the screen refresh rate switching from 120Hz to 90Hz, when switching from 90Hz to 90Hz, in Vsync, after the period corresponding to 90Hz ends, it first adjusts to the maximum screen refresh rate of the display screen at 120Hz, and at the maximum screen refresh rate of the display screen After the cycle corresponding to the target frame rate is over, adjust to a frame rate of 60Hz, which is lower than the target frame rate. This is to ensure that the frame after the switching frame can be kept at 90Hz to avoid abnormal frames.
  • FIG. 6 shows a timing diagram of switching from 90 Hz to 60 Hz.
  • the upper square wave signal may be a TE signal
  • the lower dotted line may represent a rising edge or a falling edge of Vsync.
  • the frame rate corresponding to the Vsync cycle obtained by the AP side is 90Hz at the rising edge of the TE signal, and the AP side uses 90Hz for drawing.
  • the terminal device receives the lifting event of the sliding operation, and issues the frame rate switching frame rate Instruction, the Vsync period is switched to 120Hz at the end of the period corresponding to 90Hz, but because of the Long_V characteristic of 90Hz, the AP counts the Vsync interval of 2.8ms at the back end of the N-1 frame into the Nth frame, so in the Nth frame, Although the Vsync period of the IC has been switched to 120Hz, but the frame rate corresponding to the Vsync period obtained by the AP side at the rising edge of the TE signal is still 90Hz, the AP side still uses 90Hz for drawing, and the terminal device issues the frame rate switching command again.
  • the AP side obtains the frame rate corresponding to the Vsync cycle at 60 Hz on the rising edge of the TE signal, and the AP side uses 60 Hz for drawing.
  • the TE signal can take effect in the next frame of the switching frame.
  • FIG. 7 shows a timing diagram of switching from 60 Hz to 40 Hz.
  • the upper square wave signal may be a TE signal
  • the lower dotted line may represent a rising edge or a falling edge of Vsync.
  • the frame rate corresponding to the Vsync period obtained by the AP side at the rising edge of the TE signal is 60Hz, and the AP side uses 60Hz for drawing.
  • the AP side obtains the Vsync period corresponding to the rising edge of the TE signal.
  • the frame rate is still 60Hz, and the AP side still uses 60Hz for drawing.
  • the terminal device receives the lifting event of the sliding operation, and sends a command to switch the frame rate.
  • the Vsync cycle ends at the end of the period corresponding to 60Hz, it switches to 40Hz.
  • the frame rate corresponding to the Vsync period obtained by the AP side at the rising edge of the TE signal is 40 Hz, and the AP side uses 40 Hz for drawing.
  • frame rate switching of 120 Hz ⁇ 90 Hz ⁇ 60 Hz ⁇ 40 Hz ⁇ 20 Hz is taken as an example for illustration.
  • frame rate switching may also be performed using 120 Hz ⁇ 90 Hz ⁇ 40 Hz ⁇ 20 Hz, or any other frame rate switching manner that satisfies the embodiment of the present application. Switching from 90Hz to 40Hz is similar to 90Hz to 60Hz.
  • FIG. 8 shows a timing diagram of switching from 90 Hz to 40 Hz.
  • the upper square wave signal may be a TE signal
  • the lower dotted line may represent a rising edge or a falling edge of Vsync.
  • the frame rate corresponding to the Vsync cycle obtained by the AP side is 90Hz at the rising edge of the TE signal, and the AP side uses 90Hz for drawing.
  • the terminal device receives the lifting event of the sliding operation, and issues the frame rate switching frame rate command, the Vsync period is switched to 120Hz at the end of the period corresponding to 90Hz, but because of the Long_V characteristic of 90Hz, the AP counts the Vsync interval of 2.8ms at the end of the N-1 frame into the Nth frame, so the Nth frame , although the Vsync period of the IC has been switched to 120Hz, but the frame rate corresponding to the Vsync period obtained by the AP side at the rising edge of the TE signal is still 90Hz, the AP side still uses 90Hz for drawing, and the terminal device issues the frame rate switching command again , when the Vsync cycle ends at the end of the cycle corresponding to 120 Hz, switch to 40 Hz.
  • the terminal device when the screen refresh rate is switched from 120 Hz to 90 Hz, and the terminal device receives a sliding operation again, the terminal device switches from 90 Hz to 120 Hz.
  • FIG. 9 shows a timing diagram for switching from 90 Hz to 120 Hz.
  • the upper square wave signal may be a TE signal
  • the lower dotted line may represent a rising edge or a falling edge of Vsync.
  • the frame rate corresponding to the Vsync cycle obtained by the AP side is 90Hz at the rising edge of the TE signal, and the AP side uses 90Hz for drawing.
  • the terminal device receives the lifting event of the sliding operation, and issues the frame rate switching frame rate Instruction, the Vsync period is switched to 120Hz at the end of the period corresponding to 90Hz, but because of the Long_V characteristic of 90Hz, the AP counts the Vsync interval of 2.8ms at the back end of the N-1 frame into the Nth frame, so in the Nth frame, Although the Vsync period of the IC has been switched to 120Hz, but the frame rate corresponding to the Vsync period acquired by the AP side at the rising edge of the TE signal is still 90Hz, the AP side still uses 90Hz for drawing.
  • the AP side is at The frame rate corresponding to the Vsync cycle obtained from the rising edge of the TE signal is 120 Hz, and the
  • the way for the AP side to obtain the frame rate corresponding to the Vsync cycle can be: calculate the time between two adjacent rising edges of the TE signal, and the frame rate corresponding to this time is the AP The frame rate corresponding to the Vsync cycle obtained by the side.
  • Table 1 summarizes the TE signal changes on the AP side in the embodiment of the present application.
  • the drawing frame rate on the AP side, the TE frame rate on the AP side, and the Vsync frame rate inside the IC correspond to Table 2.
  • the unit of the figures in Table 1 and Table 2 is Hz.
  • the low frequency recorded in Table 1 and Table 2 may refer to a frame rate whose corresponding refresh time and the minimum refresh time of the display screen are integer multiples.
  • the embodiment of the present application provides a frame rate switching method.
  • multiple transition frame rates can be set, and the difference between any two adjacent transition frame rates among the multiple transition frame rates is less than the preset value, so that the screen refresh rate switching will not be too large and smoother, and the drawing frequency on the AP side of the application processor in the terminal device will be kept synchronously with the TE signal obtained from the IC on the AP side during the switching process to avoid Frame drops when switching.
  • the setting of the transitional frame rate is no longer limited to the frame rate corresponding to an integral multiple of the minimum refresh time, and can improve the picture freezing or flickering phenomenon of the display screen.
  • the frequency control in this embodiment of the present application does not depend on the hardware performance of the terminal device, and has no great requirements on the hardware performance of the terminal device.
  • the maximum screen refresh rate of 120 Hz in the embodiment of the present application may also be replaced by a larger or smaller value, such as 480 Hz or 60 Hz.
  • the 90 Hz in the embodiment of the present application can be replaced by any target frame rate whose refresh time is not an integer multiple of the minimum refresh time of the display screen, and the number of target frame rates can be one or multiple.
  • the frame rate switching may also be performed in stages. For example, when the terminal device has switched to the second frame rate, if the sliding speed of the list control is greater than the second speed threshold, maintain the second frame rate; when the sliding speed of the list control is less than or equal to the second speed threshold, the IC will The screen display rate of the display screen is switched from the second frame rate to a third frame rate, and the third frame rate is lower than the second frame rate.
  • the second frame rate may be a higher frame rate, such as 20 Hz
  • the third frame rate may be a relatively small frame rate or a minimum screen refresh rate, such as 1 Hz
  • the second speed threshold may be 0 or a value close to 0.
  • FIG. 10 shows a specific flow chart of frame rate switching in the embodiment of the present application.
  • the methods include:
  • the terminal device obtains a lift event of a sliding operation on a display screen.
  • the terminal device calculates the sliding speed of the list control on the display screen in response to the lifting event of the sliding operation on the display screen.
  • the embodiment of the present application does not specifically limit the manner in which the terminal device detects the lifting event of the sliding operation and calculates the sliding speed of the list control on the display screen.
  • the terminal device uses a preset frame rate switching policy to switch the screen refresh rate from the first frame rate to the second frame rate.
  • the first speed threshold may be a speed threshold related to the buffered frame rate adjacent to the first frame rate, for example, the first speed threshold may be proportional to the size of the buffered frame rate adjacent to the first frame rate Proportional. Because the embodiment of the present application sets that the buffer frame rate adjacent to the first frame rate cannot be too small when the first frame rate drops, in this way, the embodiment of the present application can immediately Adaptively implementing smooth frame rate switching in dynamic content can reduce power consumption of terminal equipment.
  • the terminal device may maintain the first frame rate when the sliding speed of the list control is greater than a first speed threshold.
  • the embodiment of the present application can realize the smooth switching of the refresh rate of the display screen when the user leaves the sliding interface, and keep the drawing frequency of the AP side in the terminal device and the TE signal obtained by the AP side from the IC during the switching process to change synchronously , to reduce the frame loss in smooth switching, so as to improve the picture freezing or flickering phenomenon of the display screen, taking into account the eye protection characteristics of the screen.
  • the embodiment of the present application can divide the functional modules of the device implementing the frame rate switching method according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module .
  • the integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Chip 1100 includes one or more than two (including two) processors 1101 , communication lines 1102 , communication interface 1103 and memory 1104 .
  • the memory 1104 stores the following elements: executable modules or data structures, or subsets thereof, or extensions thereof.
  • the methods described in the foregoing embodiments of the present application may be applied to the processor 1101 or implemented by the processor 1101 .
  • the processor 1101 may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method may be implemented by an integrated logic circuit of hardware in the processor 1101 or instructions in the form of software.
  • the above-mentioned processor 1201 may be a general-purpose processor (for example, a microprocessor or a conventional processor), a digital signal processor (digital signal processing, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate Array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gates, transistor logic devices or discrete hardware components, the processor 1101 can implement or execute the methods and steps related to each process disclosed in the embodiments of the present application and logic block diagrams.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, read-only memory, programmable read-only memory, or electrically erasable programmable read only memory (EEPROM).
  • the storage medium is located in the memory 1104, and the processor 1101 reads the information in the memory 1104, and completes the steps of the above method in combination with its hardware.
  • the processor 1101 , the memory 1104 and the communication interface 1103 may communicate through the communication line 1102 .
  • the instructions stored in the memory for execution by the processor may be implemented in the form of computer program products.
  • the computer program product may be written in the memory in advance, or may be downloaded and installed in the memory in the form of software.
  • the embodiment of the present application also provides a computer program product including one or more computer instructions.
  • the computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g. Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • Computer readable storage medium can be Any available media capable of being stored by a computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • available media may include magnetic media (e.g., floppy disks, hard disks, or tapes), optical media (e.g., A digital versatile disc (digital versatile disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)), etc.
  • Computer-readable media may include computer storage media and communication media, and may include any medium that can transfer a computer program from one place to another.
  • a storage media may be any target media that can be accessed by a computer.
  • the computer-readable medium may include compact disc read-only memory (compact disc read-only memory, CD-ROM), RAM, ROM, EEPROM or other optical disc storage; the computer-readable medium may include a magnetic disk memory or other disk storage devices.
  • any connected cord is properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD), laser disc, compact disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Reproduce data.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processing unit of other programmable data processing equipment to produce a machine such that the instructions executed by the processing unit of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

本申请实施例提供帧率切换方法及相关装置,涉及终端技术领域。在帧率切换过程,可以设置多个过渡帧率,多个过渡帧率中任意两个相邻的过渡帧率之间的差值小于预设值,使得显示屏屏幕刷新率切换时不会跨度过大更为平滑,且在切换过程中保持终端设备中应用处理器AP侧的绘图频率与AP侧从IC得到的TE信号同步变化,以避免切换时丢帧。从而使得过渡帧率的设置不再局限于最小刷新时间整数倍对应的帧率,且可以改善显示屏的画面卡顿或闪烁现象。

Description

帧率切换方法及相关装置
本申请要求于2022年02月28日提交中国国家知识产权局、申请号为202210190777.3、申请名称为“帧率切换方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种帧率切换方法及相关装置。
背景技术
用户可以通过终端设备的显示屏查阅各类内容。当内容较多时,存在显示屏不能一次显示全部内容的情况,用户可在显示屏里滑动翻阅相关内容。
终端设备在不同的显示场景所采用的屏幕刷新率可以不同。例如,终端设备在用户滑动翻阅显示屏中的内容时,可以采用较高的屏幕刷新率;终端设备在显示屏幕中的显示内容相对固定时,可以采用较低的刷新频率。其中,屏幕刷新率可以包括1赫兹(Hz)、20Hz、30Hz、60Hz、90Hz或120Hz等。
但是,在用户从滑动界面离手时,终端设备的显示屏可能会出现卡顿或闪烁现象。
发明内容
本申请实施例提供一种帧率切换方法及相关装置,终端设备可以实现显示屏屏幕刷新率的平滑切换,且在切换过程中保持终端设备中应用处理器(application processor,AP)侧的绘图频率与AP侧从集成电路(integrated circuit,IC)得到的撕裂效应(tearing effect,TE)信号同步变化,减少平滑切换中的丢帧,从而可以改善显示屏的画面卡顿或闪烁现象。
第一方面,本申请实施例提供一种帧率切换方法,应用于终端设备,终端设备包括应用处理器AP和集成电路IC,AP与IC电性连接,用于AP从IC得到撕裂效应TE信号,方法包括:确定进行屏幕刷新率的切换。利用预设的帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换。其中,帧率切换策略中,在第一帧率和第二帧率之间设置有非连续的多个过渡帧率,在第一帧率依次经过多个过渡帧率阶梯向第二帧率切换的过程中,任意两个相邻的帧率之间的差值小于预设值,且终端设备中AP侧的绘图频率与AP侧得到的TE信号同步变化。
这样,多个过渡帧率中任意两个相邻的过渡帧率之间的差值小于预设值,使得显示屏屏幕刷新率切换时不会跨度过大更为平滑,且在切换过程中保持终端设备中应用处理器AP侧的绘图频率与AP侧从IC得到的TE信号同步变化,以避免切换时丢帧。从而使得过渡帧率的设置不再局限于最小刷新时间整数倍对应的帧率,且可以改善显示屏的画面卡顿或闪烁现象。且本申请实施例的频率控制也不依赖于终端设备的硬件性能,对终端设备的硬件性能无较大要求。
一种可能的实现方式中,多个过渡帧率中包括目标帧率,目标帧率所对应的刷新时间与显示屏的最小刷新时间为非整数倍数关系。在利用帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换的过程中,从目标帧率相邻的帧率向目标帧率切换,或者从目标帧率向目标帧率相邻的帧率切换时,AP侧得到的TE信号在切换帧的后两帧生效,切换帧为得到切换帧率指令时所对应的帧。
这样,通过将TE信号在切换帧的后两帧生效,可以在过渡帧率中包括刷新时间与显示屏的最小刷新时间为非整数倍数关系的目标帧率时,也能使得AP侧的绘图过程不会因为绘图频率与TE信号不同步而造成丢帧问题。
一种可能的实现方式中,在目标帧率向比目标帧率小的帧率切换时,IC中的垂直同步信号Vsync中,在目标帧率对应的周期结束后,先调整到显示屏的最大屏幕刷新率,在显示屏的最大屏幕刷新率对应的周期结束后,再调整到比目标帧率小的帧率。这样,可以改善因目标帧率的Vsync周期延长带来的切换帧混乱而导致的丢帧问题。
一种可能的实现方式中,利用预设的帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换之后,还包括:当终端设备已切换到第二帧率时,若列表控件的滑动速度大于第二速度阈值,保持第二帧率。当列表控件的滑动速度小于或等于第二速度阈值时,通过IC将显示屏的屏幕显示率从第二帧率向第三帧率切换,第三帧率小于第二帧率。这样,可以使得列表控件在滑动过程中,终端设备依然能保持较高的屏幕刷新率,改善因屏幕刷新率过低造成的界面闪烁或卡顿问题。在列表控件静止时,利用IC将显示屏的屏幕显示率从第二帧率向第三帧率切换,AP侧可以无感知,减少对AP侧资源的占用。
一种可能的实现方式中,第二帧率为预设的帧率,第三帧率为终端设备的最小屏幕刷新率。这样,可以适用于用户从列表控件中滑动离手后的平滑帧率切换,减少卡顿或闪屏现象。
一种可能的实现方式中,方法还包括:在利用帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换的过程中,若接收到针对列表控件的滑动操作,将显示屏的屏幕刷新率向第一帧率切换。这样,可以使得帧率能够再次适应滑动的列表控件,改善显示效果。
一种可能的实现方式中,若接收到针对列表控件的滑动操作时,显示屏的屏幕刷新率为目标帧率,将显示屏的屏幕刷新率从目标帧率向第一帧率切换时,AP侧得到的TE信号在切换帧的后两帧生效,切换帧为得到切换帧率指令时所对应的帧。这样,可以在过渡帧率中包括刷新时间与显示屏的最小刷新时间为非整数倍数关系的目标帧率时,也能使得AP侧的绘图过程不会因为绘图频率与TE信号不同步而造成丢帧问题。
一种可能的实现方式中,确定进行屏幕刷新率的切换,包括:响应于显示屏中滑动操作的抬起事件,计算显示屏中列表控件的滑动速度。其中,滑动操作作用于列表控件。在列表控件的滑动速度小于或等于第一速度阈值时,确定进行屏幕刷新率的切换。这样,可以使得用户从列表控件中滑动离手后实现平滑帧率切换,减少卡顿或闪屏现象。
一种可能的实现方式中,第一帧率为显示屏的最大屏幕刷新率。这样可以使得显示屏在最大屏幕刷新率下实现较好的显示效果。
第二方面,本申请实施例提供一种帧率切换装置,该帧率切换装置可以是终端设备,也可以是终端设备内的芯片或者芯片系统。该帧率切换装置可以包括显示单元、处理单元和集成电路IC。当该帧率切换装置是终端设备时,该处显示单元可以是显示屏。该显示单元用于执行显示的步骤,以使该终端设备实现第一方面或第一方面的任意一种可能的实现方式中描述的显示相关的方法,处理单元用于实现第一方面或第一方面的任意一种可能的实现方式中与处理相关的任意方法。当该帧率切换装置是终端设备时,该处理单元可以是处理器。该帧率切换装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备实现第一方面或第一方面的任意一种可能的实现方式中描述的一种方法。当该帧率切换装置是终端设备内的芯片或者芯片系统时,该处理单元可以是处理器。该处理单元执行存储单元所存储的指令,以使该终端设备实现第一方面或第一方面的任意一种可能的实现方式中描述的一种方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
示例性的,处理单元用于确定进行屏幕刷新率的切换,利用预设的帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换。其中,帧率切换策略中,在第一帧率和第二帧率之间设置有非连续的多个过渡帧率,在第一帧率依次经过多个过渡帧率阶梯向第二帧率切换的过程中,任意两个相邻的帧率之间的差值小于预设值,且终端设备中AP侧的绘图频率与AP侧得到的TE信号同步变化。
一种可能的实现方式中,多个过渡帧率中包括目标帧率,目标帧率所对应的刷新时间与显示屏的最小刷新时间为非整数倍数关系。在利用帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换的过程中,从目标帧率相邻的帧率向目标帧率切换,或者从目标帧率向目标帧率相邻的帧率切换时,AP侧得到的TE信号在切换帧的后两帧生效,切换帧为得到切换帧率指令时所对应的帧。
一种可能的实现方式中,在目标帧率向比目标帧率小的帧率切换时,IC中的垂直同步信号Vsync中,在目标帧率对应的周期结束后,先调整到显示屏的最大屏幕刷新率,在显示屏的最大屏幕刷新率对应的周期结束后,再调整到比目标帧率小的帧率。
一种可能的实现方式中,处理单元还用于,当终端设备已切换到第二帧率时,若列表控件的滑动速度大于第二速度阈值,保持第二帧率,当列表控件的滑动速度小于或等于第二速度阈值时,通过IC将显示屏的屏幕显示率从第二帧率向第三帧率切换,第三帧率小于第二帧率。
一种可能的实现方式中,第二帧率为预设的帧率,第三帧率为终端设备的最小屏幕刷新率。
一种可能的实现方式中,处理单元还用于,在利用帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换的过程中,若接收到针对列表控件的滑动操作,将显示屏的屏幕刷新率向第一帧率切换。
一种可能的实现方式中,若接收到针对列表控件的滑动操作时,显示屏的屏幕刷新率为目标帧率,将显示屏的屏幕刷新率从目标帧率向第一帧率切换时,AP侧得到的TE信号在切换帧的后两帧生效,切换帧为得到切换帧率指令时所对应的帧。
一种可能的实现方式中,处理单元具体用于,响应于显示屏中滑动操作的抬起事件,计算显示屏中列表控件的滑动速度。其中,滑动操作作用于列表控件。以及在列表控件的滑动速度小于或等于第一速度阈值时,确定进行屏幕刷新率的切换。
一种可能的实现方式中,第一帧率为显示屏的最大屏幕刷新率。
第三方面,本申请实施例提供一种电子设备,括处理器和存储器,存储器用于存储代码指令,处理器用于运行代码指令,以执行第一方面或第一方面的任意一种可能的实现方式中描述的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行第一方面或第一方面的任意一种可能的实现方式中描述的帧率切换方法。
第五方面,本申请实施例提供一种包括计算机程序的计算机程序产品,当计算机程序在计算机上运行时,使得计算机执行第一方面或第一方面的任意一种可能的实现方式中描述的帧率切换方法。
第六方面,本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行第一方面或第一方面的任意一种可能的实现方式中描述的帧率切换方法。其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
在一种可能的实现中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
应当理解的是,本申请的第二方面至第六方面与本申请的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本申请实施例所适用场景示意图;
图2为本申请实施例所提供的一种实现中的跳帧模式原理示意图;
图3为本申请实施例提供的一种电子设备的结构示意图;
图4为本申请实施例提供的一种AP侧和IC芯片之间的交互示意图;
图5为本申请实施例提供的一种时序图;
图6为本申请实施例提供的一种时序图;
图7为本申请实施例提供的一种时序图;
图8为本申请实施例提供的一种时序图;
图9为本申请实施例提供的一种时序图;
图10为本申请实施例提供的一种帧率切换的流程示意图;
图11为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,以下,对本申请实施例中所涉及的部分术语和技术进行简单介绍:
1、帧:是指界面显示中最小单位的单幅画面。一帧可以理解为一副静止的画面, 快速连续地显示多个相连的帧可以形成物体运动的假象。
2、帧率:是指在1秒钟时间里刷新图片的帧数,也可以理解为终端设备中图形处理器每秒钟刷新画面的次数。高的帧率可以得到更流畅和更逼真的动画。每秒钟帧数越多,所显示的动作就会越流畅。
3、绘图:可以是绘制、渲染和/或合成等图像处理过程的简称。绘图帧率可以理解为终端设备在执行绘制、渲染和/或合成等过程时所采用的帧率。
4、TE信号:可以是IC芯片产生的信号,用于改善图像显示过程中画面刷新时的撕裂问题。例如,当终端设备准备好刷新下一帧图像时,IC芯片可以产生TE信号,相应的,AP在监听到TE信号上升沿后,可以向IC芯片发送下一帧图像数据。其中,IC芯片可以包括显示驱动集成电路(display driver integrated circuit,DDIC)芯片等。
5、垂直同步(vetical synchronization,Vsync)信号:本申请实施例的Vsync信号可以是IC芯片产生的信号,用于控制屏幕显示刷新流程等。Vsync信号为周期性信号,屏幕刷新帧率的切换可以体现Vsync的周期时长的变化。例如,屏幕刷新率为120Hz时,Vsync信号周期可以为8.3ms,即终端设备每间隔8.3ms生成一个控制信号使Vsync信号周期触发。挡屏幕刷新率为60Hz时,Vsync信号周期可以为16.6ms,即终端设备每间隔16.6ms生成一个控制信号使Vsync信号周期触发。
6、刷新时间:可以理解为屏幕刷新所需要的时间。屏幕的刷新时间与屏幕刷新率成反比,例如,刷新时间=1/屏幕刷新率。
7、其他术语
在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一芯片和第二芯片仅仅是为了区分不同的芯片,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a--c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
随着终端设备技术的发展,终端设备中应用程序(application,APP)的种类越来越丰富,各APP中的内容也越来越多,终端设备的显示界面往往设置列表控件,以支持用户在显示屏中翻阅各类内容的需求。其中,列表控件可以理解为支持用户滑动操作的控件,滑动操作可以包括上下滑动、左右滑动或其他任意类型滑动,列表控件可以为横向列表控件,也可以为纵向列表控件,列表控件中的内容可以包括社交应用内 容、系统设置相关内容、文档内容、商品内容、图片或视频等。
示例性的,图1示出了几种可能的包括列表控件的界面示意图。例如,包括列表控件的终端设备的界面可以包括:图1中的a所示的社交应用的界面,或图1中的b所示的设置相关界面,或图1中的c所示的文档界面,或图1中的d所示的图片浏览界面,或图1中的e所示的桌面界面,或图1中的f所示的视频浏览界面,等。终端设备可以在图1的任意界面中接收用户上滑操作或下滑操作。
在终端设备接收到用户在列表控件的滑动操作时,列表控件可以随着滑动操作的方向运动,滑动操作的滑动速度较快时,列表控件的滑动速度较快,适应的,滑动操作的滑动速度较慢时,列表控件的滑动速度较慢。
一种实现中,为了得到较好的显示效果,在列表控件的滑动时,配置终端设备为最大屏幕刷新率,在列表控件滑动结束后,迅速降低终端设备的屏幕刷新率。以终端设备的最大屏幕刷新率为120Hz为例进行说明,在列表控件滑动接收后,屏幕刷新率可以按照120Hz→30Hz→20Hz→10Hz的顺序依次下降。该降低屏幕刷新率的方式也可以称为传统的跳帧模式或跳频模式。
该方式中要求屏幕刷新率降低时,所能过渡的屏幕刷新率必须是屏幕最短刷新时间的倍数对应的屏幕刷新率。例如,图2示出了该一种实现中的跳帧模式的原理示意图。
如图2所示,每个源(source)可以对应终端设备的器件所支持的最高屏幕刷新率(即最小刷新时间),以最大屏幕刷新率为120Hz为例,最小刷新时间为8.3ms,该跳帧模式中所能支持过渡的屏幕刷新率必须是整数倍的8.3ms所对应的帧率,例如60Hz和40Hz等。
但是,这样的方式中,会使得帧率切换的幅度过大,例如,从120Hz向60Hz或30Hz时,跨度较大,容易造成显示屏的画面卡顿或闪烁。
另一种实现中,为了使得120Hz向60Hz下降时平缓,可能采用硬件调整的方式,例如通过调整IC的电磁脉冲(EM pulse)进行脉冲宽度调制(pulse width modulation,PWM),通过控制PWM实现帧率的平缓过渡。例如,控制PWM为4pulse时,可以实现120Hz→80Hz→60Hz→48Hz→30Hz→20Hz→10Hz的帧率切换过程,但是该过程需要将PWM全程控制在4pulse,PWM频率仅480Hz,过低的PWM频率依然会造成显示屏闪烁。
当然,理论上如果通过为硬件IC设置更高的PWM值,例如PWM值达到16pulse,则不仅能满足帧率的更平缓切换,也能减少显示屏闪烁,但是这样会对IC的性能要求过高,终端设备的硬件可能不能满足。
有鉴于此,本申请实施例提供帧率切换方法,在帧率切换过程,可以设置多个过渡帧率,多个过渡帧率中任意两个相邻的过渡帧率之间的差值小于预设值,使得显示屏屏幕刷新率切换时不会跨度过大更为平滑,且在切换过程中保持终端设备中应用处理器AP侧的绘图频率与AP侧从IC得到的TE信号同步变化,以避免切换时丢帧。从而使得过渡帧率的设置不再局限于最小刷新时间整数倍对应的帧率,且可以改善显示屏的画面卡顿或闪烁现象。可以理解的是,本申请实施例的频率控制也不依赖于终端设备的硬件性能,对终端设备的硬件性能无较大要求。
本申请实施例的终端设备也可以为任意形式的电子设备,例如,电子设备可以包括具有图像处理功能的手持式设备、车载设备等。例如,一些电子设备为:手机(mobile phone)、平板电脑、掌上电脑、笔记本电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该电子设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,电子设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例中的电子设备也可以称为:终端设备、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,电子设备或各个网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
示例性的,图3示出了电子设备100的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬 声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber
identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器
(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emittingdiode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrixorganic  light emitting diode的,AMOLED),柔性发光二极管(flex light-emittingdiode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot lightemitting diodes,QLED),低温多晶氧化物(low temperature polycrystalline oxide,LTPO)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
电子设备还可以包括IC芯片(图中未示出),IC芯片用于驱动显示屏的显示。
示例性的,如图4示出了本申请实施例的帧率切换的AP侧和IC芯片之间的交互示意图。
如图4所示,AP侧,当显示屏中的图像有更新需求时,APP可以通过CPU以及GPU等进行绘图,例如进行绘图渲染等。Surface Flinger(SF)通过软件对渲染后的图像进行合成,输出栅格化图像,通过驱动层的板级支持包(board support package,BSP)对栅格化图像进行硬件合成,并将图像数据发送至IC芯片(即送显过程),由IC芯片驱动显示屏进行图像扫描显示。
其中,IC芯片根据当前屏幕刷新率周期性生成Vsync,AP根据IC芯片上报的TE信号,在驱动层转置为软件Vsync信号,并将软件Vsync信号上报到Surface Flinger层进行图像绘制渲染。
当需要进行频率切换时,AP通过应用、SF以及BSP,向IC芯片发送频率切换指令,相应的,IC芯片接收到频率切换指令后,调整屏幕刷新率。
下面通过具体的实施例对本申请实施例的帧率切换方法进行详细说明。下面的实施例可以相互结合或独立实施,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
S501-S502示例性说明本申请实施例一种帧率切换的方法。方法包括:
S501:终端设备确定进行屏幕刷新率的切换。
本申请实施例中,终端设备可以在任意需要进行屏幕刷新率切换场景中,确定需要进行屏幕刷新率的切换。屏幕刷新率切换可以包括从高的屏幕刷新率向低的屏幕刷新率切换,也可以包括从低的屏幕刷新率向高的屏幕刷新率切换。示例性的,场景A和场景B中,终端设备均可以确定需要进行屏幕刷新率切换。
场景A,在终端设备确定滑动操作结束后,可以进一步等待列表控件的滑动速度小于速度阈值时,确定需要将屏幕刷新率从高向低切换,该速度阈值可以是预先设定的常量,该速度阈值可以与将要切换的下一个屏幕刷新率正相关。
场景B,在终端设备确定滑动操作开始时,可以确定需要将屏幕刷新率从低向高切换。例如,终端设备在上一次滑动操作结束后,已实现将屏幕刷新率降低一些,这时再次接收到滑动操作,则终端设备再将屏幕刷新率调高。
可以理解的是,当终端设备接收到用户的滑动操作时,滑动操作对应的输入事件的类型可以按压(down)、移动(move)和抬起(up),在终端设备得到按压事件时,可以确认滑动操作开始,在终端设备得到抬起事件时,终端设备可以确认滑动操作结束。
S502:利用预设的帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换。
本申请实施例的帧率切换策略中,在第一帧率和第二帧率之间设置有非连续的多个过渡帧率,在第一帧率依次经过多个过渡帧率阶梯向第二帧率切换的过程中,任意两个相邻的帧率之间的差值小于预设值,且终端设备中AP侧的绘图频率与AP侧得到的TE信号同步变化。
其中,第一帧率可以为终端设备在确定需要进行屏幕刷新率切换时的当前屏幕刷新率。第二帧率可以是预先设定的经验值,使得屏幕刷新率切换到第二帧率后用户在显示屏中感受不到闪屏或卡顿。预设值的设定可以与终端设备的特性有关,例如该预设值的设定满足:任意两个相邻的帧率之间的差值小于预设值时,显示屏中没有闪烁或卡顿现象。
以场景A所描述的降低屏幕刷新率为例,第一帧率可以是终端设备的最大屏幕刷屏率,第二帧率可以为较低的帧率。
示例性的,以第一帧率为120Hz,第二帧率为1Hz,预设值为60为例,从第一帧率向第二帧率切换时,帧率的值的变化可以经过下述的过程:
120→90→60→40→30→24→20→15→12→10→8→6→5→4→3→2→1
可以理解的是,上述从90→2变化过程的离散值都可以称为过渡帧率。一种可能的实现中,可以将上述从90→2变化过程的离散值全部设置过渡帧率,以实现较好的平滑切换。另一种可能的实现中,也可以将上述从90→2变化过程的离散值的部分设置过渡帧率,以提升切换效率,降低功耗。
其中,上述帧率中,90Hz对应的刷新时间为11.1ms,不是最小刷新时间8.3ms的整数倍,这样,可以对90Hz采用Long_V模式。
Long_V模式可以理解为在Vsync的最小周期区间的基础上对进行延长,与最小刷新时间没有特定的倍数关系。其中,Vsync的周期中可以包括垂直同步信号前肩(vertical front porch,VFP)、垂直同步信号后肩(vertical back porch,VBP)以及垂直同步信号有效行数(vertical active,Vact)。本申请实施例Long_V模式中的在Vsync的最小周期区间的基础上对进行延长,可以理解为对VFP进行延长,这样Vact可以保持不变,从而降低因Vact变化引起行开启时间不一致而带来的闪屏问题。
示例性地,对于某一目标帧率,VFP延长的时间可以为:(1/目标帧率)-(1/最大刷新率)。例如,90Hz延长的值可以为11.1ms-8.3ms=2.8ms。
因为90Hz对应的延长后的Vsync周期区间不是Vsync最小周期区间的整数倍,90Hz对应的TE信号中,Vact对应的上升沿到来的时间没有变化,而VFP对应的高电平会延长,这样会使得AP在TE信号的上升沿获取Vsync帧率时,在90Hz对应的Vsync周期区间内,提前认为当前帧结束以及下一帧开始。以90Hz向60Hz切换为例,如果不将AP绘图采用的频率与TE信号关联控制,在TE信号获取到90Hz时,AP绘图采用的帧率可能已经切换到60Hz,两个帧率的不符合,那么AP绘图在60Hz的频率中还未完成绘制,而90Hz对应的Vsync已经到来,这样会导致AP无法发送图像,从而可能导致丢帧引起卡顿,因此,需要将AP绘图的绘图帧率与TE信号同步变化,从而减少丢帧或卡顿。
需要说明的是,AP在TE信号的上升沿获取Vsync帧率时,在90Hz对应的Vsync周期区间内,提前认为当前帧结束以及下一帧开始,那么,假设在N-1帧收到从120Hz向90Hz切换的切换帧率指令时,在第N帧,AP在TE信号的上升沿所得到的帧率仍然是120Hz,在N+1帧时,AP在TE信号的上升沿才能得到90Hz的帧率。因此可以理解为TE信号在切换帧的后两帧生效,切换帧为得到切换帧率指令时所对应的帧。
下面结合图5-图8说明场景A中从低帧率向高帧率切换的时序图。
示例性地,图5示出了从120Hz向90Hz切换的时序图。
如图5所示,上面方波信号可以为TE信号,下面的虚线部分可以代表Vsync的上升沿或下降沿。
在N-1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为120Hz,AP侧采用120Hz进行绘图,这时终端设备得到滑动操作的抬起事件,下发切换帧率的指令,Vsync周期在120Hz对应的周期结束时,切换到90Hz,但是因为90Hz的Long_V特性,TE信号上升沿大约在Vsync信号开始后8.3ms打出,因此在第N帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率仍为120Hz,则AP侧仍然采用120Hz进行绘图,在第N+1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为90Hz,AP侧采用90Hz进行绘图。
类似的,在屏幕刷新率从90Hz向60Hz切换时,TE信号也在切换帧的后两帧生效。与屏幕刷新率从120Hz向90Hz切换不同的是,在90Hz向下切换时,Vsync中,在90Hz对应的周期结束后,先调整到显示屏的最大屏幕刷新率120Hz,在显示屏的最大屏幕刷新率对应的周期结束后,再调整到比目标帧率小的帧率60Hz。这是为了确保切换帧的后一帧能保持在90Hz,避免出现异常帧。
示例性地,图6示出了从90Hz向60Hz切换的时序图。
如图6所示,上面方波信号可以为TE信号,下面的虚线部分可以代表Vsync的上升沿或下降沿。
在N-1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为90Hz,AP侧采用90Hz进行绘图,这时终端设备得到滑动操作的抬起事件,下发切换帧率的指令,Vsync周期在90Hz对应的周期结束时,切换到120Hz,但是因为90Hz的Long_V特性,AP将第N-1帧后端2.8ms的Vsync区间计入到第N帧,因此在第N帧,虽然IC的Vsync周期已经切换到120Hz,但AP侧在TE信号的上升沿获取到Vsync周期对应的帧率仍为90Hz,则AP侧仍然采用90Hz进行绘图,终端设备再次下发切换帧 率指令,Vsync周期在120Hz对应的周期结束时,切换到60Hz,在第N+1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为60Hz,AP侧采用60Hz进行绘图。
在屏幕刷新率从60Hz向40Hz切换时,因为60Hz和40Hz对应的刷新时间均为8.3ms的整数倍,因此TE信号可以在切换帧的下一帧生效。
示例性地,图7示出了从60Hz向40Hz切换的时序图。
如图7所示,上面方波信号可以为TE信号,下面的虚线部分可以代表Vsync的上升沿或下降沿。
在N-1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为60Hz,AP侧采用60Hz进行绘图,在第N帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率仍为60Hz,则AP侧仍然采用60Hz进行绘图,这时终端设备得到滑动操作的抬起事件,下发切换帧率的指令,Vsync周期在60Hz对应的周期结束时,切换到40Hz,在第N+1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为40Hz,AP侧采用40Hz进行绘图。
可以理解的是,在屏幕刷新率从40Hz向20Hz切换时,与在屏幕刷新率从60Hz向40Hz切换时类似,不再赘述。
需要说明的是,上述过程中以120Hz→90Hz→60Hz→40Hz→20Hz进行帧率切换为例进行说明。可能的实现中,也可以采用120Hz→90Hz→40Hz→20Hz进行帧率切换,或其他任意满足本申请实施例的帧率切换方式。在90Hz向40Hz切换时类似于90Hz向60Hz。
示例性地,图8示出了从90Hz向40Hz切换的时序图。
如图8所示,上面方波信号可以为TE信号,下面的虚线部分可以代表Vsync的上升沿或下降沿。
在N-1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为90Hz,AP侧采用90Hz进行绘图,这时终端设备得到滑动操作的抬起事件,下发切换帧率的指令,Vsync周期在90Hz对应的周期结束时,切换到120Hz,但是Vsync因为90Hz的Long_V特性,AP将第N-1帧后端2.8ms的Vsync区间计入到第N帧,因此在第N帧,虽然IC的Vsync周期已经切换到120Hz,但AP侧在TE信号的上升沿获取到Vsync周期对应的帧率仍为90Hz,则AP侧仍然采用90Hz进行绘图,终端设备再次下发切换帧率指令,Vsync周期在120Hz对应的周期结束时,切换到40Hz,在第N+1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为40Hz,AP侧采用40Hz进行绘图。
可以理解的是,在场景A中从屏幕刷新率从高帧率向低帧率变化的过程中,如果终端设备再次接收到滑动操作,则终端设备将屏幕刷新率从低帧率向高帧率切换(即场景B的一种情况)。
例如,在屏幕刷新率从120Hz切换到90Hz时,终端设备再次接收到滑动操作,则终端设备将90Hz向120Hz切换。
示例性地,图9示出了从90Hz向120Hz切换的时序图。
如图9所示,上面方波信号可以为TE信号,下面的虚线部分可以代表Vsync的上升沿或下降沿。
在N-1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为90Hz,AP侧采用90Hz进行绘图,这时终端设备得到滑动操作的抬起事件,下发切换帧率的指令,Vsync周期在90Hz对应的周期结束时,切换到120Hz,但是因为90Hz的Long_V特性,AP将第N-1帧后端2.8ms的Vsync区间计入到第N帧,因此在第N帧,虽然IC的Vsync周期已经切换到120Hz,但AP侧在TE信号的上升沿获取到Vsync周期对应的帧率仍为90Hz,则AP侧仍然采用90Hz进行绘图,在第N+1帧,AP侧在TE信号的上升沿获取到Vsync周期对应的帧率为120Hz,AP侧采用120Hz进行绘图。
需要说明的是,上述图5-图9中,AP侧获得Vsync周期对应的帧率的方式可以为:计算TE信号两个相邻上升沿之间的时间,该时间对应的帧率即为AP侧获得的Vsync周期对应的帧率。
总结来说,本申请实施例的AP侧TE信号变化情况如表1汇总,AP侧绘图帧率、AP侧TE帧率以及IC内部Vsync帧率对应于表2。其中,表1和表2中的数字的单位均为Hz。表1和表2中所记录的低频可以指对应的刷新时间与显示屏的最小刷新时间为整数倍数的帧率。
表1
Figure PCTCN2022138763-appb-000001
Figure PCTCN2022138763-appb-000002
表2
Figure PCTCN2022138763-appb-000003
综上,本申请实施例提供帧率切换方法,在帧率切换过程,可以设置多个过渡帧率,多个过渡帧率中任意两个相邻的过渡帧率之间的差值小于预设值,使得显示屏屏幕刷新率切换时不会跨度过大更为平滑,且在切换过程中保持终端设备中应用处理器AP侧的绘图频率与AP侧从IC得到的TE信号同步变化,以避免切换时丢帧。从而使 得过渡帧率的设置不再局限于最小刷新时间整数倍对应的帧率,且可以改善显示屏的画面卡顿或闪烁现象。可以理解的是,本申请实施例的频率控制也不依赖于终端设备的硬件性能,对终端设备的硬件性能无较大要求。
需要说明的是,本申请实施例的最大屏幕刷新率120Hz也可以替换为更大或更小的值,例如480Hz或60Hz等。本申请实施例的90Hz可以替换为任意对应的刷新时间与显示屏的最小刷新时间为非整数倍数关系的目标帧率,目标帧率的数量可以为1个,也可以为多个。本申请实施例也可以有其他方式使得TE信号在切换帧的后两帧生效。上述替换的内容满足本申请的帧率切换方法的实现即可,本申请实施例对上述内容均不作具体限定。
在本申请实施例的一种可能的实现方式中,帧率切换还可以分阶段进行。例如,当终端设备已切换到第二帧率时,若列表控件的滑动速度大于第二速度阈值,保持第二帧率;当列表控件的滑动速度小于或等于第二速度阈值时,通过IC将显示屏的屏幕显示率从第二帧率向第三帧率切换,第三帧率小于第二帧率。
其中,第二帧率可以为较大一点的帧率,例如20Hz,第三帧率可以为较小帧率或最小屏幕刷新率,例如1Hz,第二速度阈值可以为0或接近0的值。这样,可以使得列表控件在滑动过程中,终端设备依然能保持较高的屏幕刷新率,改善因屏幕刷新率过低造成的界面闪烁或卡顿问题。在列表控件静止时,利用IC将显示屏的屏幕显示率从第二帧率向第三帧率切换,AP侧可以无感知,减少对AP侧资源的占用。
示例性地,图10示出了本申请实施例一种具体的帧率切换流程示意图。如图10所示,方法包括:
S1001:终端设备得到显示屏中滑动操作的抬起事件。
S1002:终端设备响应于显示屏中滑动操作的抬起事件,计算显示屏中列表控件的滑动速度。
本申请实施例对终端设备检测到滑动操作的抬起事件以及计算显示屏中列表控件的滑动速度的方式均不作具体限定。
S1003:在列表控件的滑动速度小于或等于第一速度阈值时,终端设备利用预设的帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换。
本申请实施例中,第一速度阈值可以是与第一帧率相邻的缓冲帧率有关的速度阈值,例如,该第一速度阈值可以与第一帧率相邻的缓冲帧率的大小成正比。因为本申请实施例在第一帧率下降时设定了与第一帧率相邻的缓冲帧率不能过小,这样,本申请实施例就能在列表控件的活动速度还比较大的时候即在动态内容中自适应实现平滑的帧率切换,可以降低终端设备的功耗。
可选的,在列表控件的滑动速度大于第一速度阈值时,终端设备可以保持第一帧率。
终端设备利用预设的帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换的实现具体参照前述实施例的描述,在此不作赘述。
S1004:在利用帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换的过程中,若接收到针对列表控件的滑动操作,将显示屏的屏幕刷新率向第一帧率切换。
S1005:当终端设备已切换到第二帧率时,若列表控件的滑动速度大于第二速度阈 值,保持第二帧率。
S1006:当列表控件的滑动速度小于或等于第二速度阈值时,通过IC将显示屏的屏幕显示率从第二帧率向第三帧率切换,第三帧率小于第二帧率。
S1004以及S1006的具体实现可以参照前述述实施例的描述,在此不作赘述。可以理解的是,图10对应的实施例中与S501及S502不同的步骤均可以作为可选步骤。
本申请实施例可以在用户从滑动界面离手时,实现显示屏屏幕刷新率的平滑切换,且在切换过程中保持终端设备中AP侧的绘图频率与AP侧从IC得到的,TE信号同步变化,减少平滑切换中的丢帧,从而可以改善显示屏的画面卡顿或闪烁现象,兼顾屏幕的护眼特性。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的方法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对实现帧率切换方法的装置进行功能模块的划分,例如可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图11示为本申请实施例提供的一种芯片的结构示意图。芯片1100包括一个或两个以上(包括两个)处理器1101、通信线路1102、通信接口1103和存储器1104。
在一些实施方式中,存储器1104存储了如下的元素:可执行模块或者数据结构,或者他们的子集,或者他们的扩展集。
上述本申请实施例描述的方法可以应用于处理器1101中,或者由处理器1101实现。处理器1101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1201可以是通用处理器(例如,微处理器或常规处理器)、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门、晶体管逻辑器件或分立硬件组件,处理器1101可以实现或者执行本申请实施例中的公开的各处理相关的方法、步骤及逻辑框图。
结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。其中,软件模块可以位于随机存储器、只读存储器、可编程只读存储器或带电可擦写可编程存储器(electrically erasable programmable read only memory,EEPROM)等本领域成熟的存储介质中。该存储介质位于存储器1104,处理器1101读取存储器1104中的信息,结合其硬件完成上述方法的步骤。
处理器1101、存储器1104以及通信接口1103之间可以通过通信线路1102进行通信。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。其中,计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
本申请实施例还提供一种计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。例如,可用介质可以包括磁性介质(例如,软盘、硬盘或磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
作为一种可能的设计,计算机可读介质可以包括紧凑型光盘只读储存器(compact disc read-only memory,CD-ROM)、RAM、ROM、EEPROM或其它光盘存储器;计算机可读介质可以包括磁盘存储器或其它磁盘存储设备。而且,任何连接线也可以被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,DSL或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(digital versatile disc,DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。

Claims (12)

  1. 一种帧率切换方法,其特征在于,应用于终端设备,所述终端设备包括应用处理器AP和集成电路IC,所述AP与所述IC电性连接,用于所述AP从所述IC得到撕裂效应TE信号,所述方法包括:
    确定进行屏幕刷新率的切换;
    利用预设的帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换;
    其中,所述帧率切换策略中,在所述第一帧率和第二帧率之间设置有非连续的多个过渡帧率,在所述第一帧率依次经过所述多个过渡帧率阶梯向所述第二帧率切换的过程中,任意两个相邻的帧率之间的差值小于预设值,且所述终端设备中AP侧的绘图频率与所述AP侧得到的TE信号同步变化。
  2. 根据权利要求1所述的方法,其特征在于,所述多个过渡帧率中包括目标帧率,所述目标帧率所对应的刷新时间与所述显示屏的最小刷新时间为非整数倍数关系;
    在利用所述帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换的过程中,从所述目标帧率相邻的帧率向所述目标帧率切换,或者从所述目标帧率向所述目标帧率相邻的帧率切换时,所述AP侧得到的TE信号在切换帧的后两帧生效,所述切换帧为得到切换帧率指令时所对应的帧。
  3. 根据权利要求2所述的方法,其特征在于,在所述目标帧率向比所述目标帧率小的帧率切换时,所述IC中的垂直同步信号Vsync中,在所述目标帧率对应的周期结束后,先调整到所述显示屏的最大屏幕刷新率,在所述显示屏的最大屏幕刷新率对应的周期结束后,再调整到所述比所述目标帧率小的帧率。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,利用预设的帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换之后,还包括:
    当所述终端设备已切换到所述第二帧率时,若所述列表控件的滑动速度大于第二速度阈值,保持所述第二帧率;
    当所述列表控件的滑动速度小于或等于所述第二速度阈值时,通过所述IC将所述显示屏的屏幕显示率从所述第二帧率向第三帧率切换,所述第三帧率小于所述第二帧率。
  5. 根据权利要求4所述的方法,其特征在于,所述第二帧率为预设的帧率,所述第三帧率为所述终端设备的最小屏幕刷新率。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    在利用所述帧率切换策略将屏幕刷新率从第一帧率向第二帧率切换的过程中,若接收到针对所述列表控件的滑动操作,将所述显示屏的屏幕刷新率向所述第一帧率切换。
  7. 根据权利要求6所述的方法,其特征在于,若接收到针对所述列表控件的滑动操作时,所述显示屏的屏幕刷新率为目标帧率,将所述显示屏的屏幕刷新率从所述目标帧率向所述第一帧率切换时,所述AP侧得到的TE信号在切换帧的后两帧生效,所述切换帧为得到切换帧率指令时所对应的帧。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述确定进行屏幕刷新率的切换,包括:
    响应于显示屏中滑动操作的抬起事件,计算所述显示屏中列表控件的滑动速度;其中,所述滑动操作作用于所述列表控件;
    在所述列表控件的滑动速度小于或等于第一速度阈值时,确定进行屏幕刷新率的切换。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一帧率为所述显示屏的最大屏幕刷新率。
  10. 一种终端设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于执行所述计算机程序,以执行如权利要求1-9任一项所述的帧率切换方法。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被执行时,使得计算机执行如权利要求1-9任一项所述的帧率切换方法。
  12. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被运行时,使得电子设备执行如权利要求1-9任一项所述的方法。
PCT/CN2022/138763 2022-02-28 2022-12-13 帧率切换方法及相关装置 WO2023160136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22928393.2A EP4321988A1 (en) 2022-02-28 2022-12-13 Frame rate switching method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210190777.3A CN116700653B (zh) 2022-02-28 2022-02-28 帧率切换方法及相关装置
CN202210190777.3 2022-02-28

Publications (2)

Publication Number Publication Date
WO2023160136A1 true WO2023160136A1 (zh) 2023-08-31
WO2023160136A9 WO2023160136A9 (zh) 2024-05-10

Family

ID=87764622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138763 WO2023160136A1 (zh) 2022-02-28 2022-12-13 帧率切换方法及相关装置

Country Status (3)

Country Link
EP (1) EP4321988A1 (zh)
CN (1) CN116700653B (zh)
WO (1) WO2023160136A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331145A (zh) * 2020-11-17 2021-02-05 Oppo广东移动通信有限公司 显示屏变频方法、ddic芯片、显示屏模组及终端
CN113050906A (zh) * 2019-12-26 2021-06-29 深圳市万普拉斯科技有限公司 显示屏的帧率调整方法、装置、终端和存储介质
CN113160747A (zh) * 2020-01-22 2021-07-23 Oppo广东移动通信有限公司 显示屏变频方法、显示驱动集成电路芯片及应用处理器
US20210248957A1 (en) * 2020-02-10 2021-08-12 Samsung Electronics Co., Ltd. Electronic device including display and method for operating the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088563B (zh) * 2010-11-26 2012-07-11 无锡银泰微电子有限公司 用于光学图像和光学视频设备中自适应帧率调控方法
KR102299577B1 (ko) * 2014-08-25 2021-09-08 삼성전자주식회사 호스트와 이를 포함하는 멀티 디스플레이 시스템
CN106657680A (zh) * 2017-03-10 2017-05-10 广东欧珀移动通信有限公司 一种移动终端帧率的控制方法、装置及移动终端
KR102527296B1 (ko) * 2018-05-04 2023-05-02 삼성디스플레이 주식회사 표시 시스템 및 이를 위한 프레임 구동 타이밍 동기 방법
CN112445315A (zh) * 2019-08-28 2021-03-05 北京小米移动软件有限公司 屏幕刷新帧率的控制方法、装置及存储介质
CN111968582B (zh) * 2020-01-14 2022-04-15 Oppo广东移动通信有限公司 显示屏变频方法、ddic芯片、显示屏模组及终端
CN113160748B (zh) * 2020-01-22 2022-03-29 Oppo广东移动通信有限公司 显示屏变频方法、显示驱动集成电路芯片及应用处理器
CN114842816A (zh) * 2020-03-06 2022-08-02 华为技术有限公司 刷新率切换方法和电子设备
US11948520B2 (en) * 2020-03-31 2024-04-02 Google Llc Variable refresh rate control using PWM-aligned frame periods
CN113630572B (zh) * 2021-07-09 2022-10-14 荣耀终端有限公司 帧率切换方法和相关装置
CN113608713B (zh) * 2021-07-30 2023-09-26 Oppo广东移动通信有限公司 变频显示方法、ddic、显示屏模组及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050906A (zh) * 2019-12-26 2021-06-29 深圳市万普拉斯科技有限公司 显示屏的帧率调整方法、装置、终端和存储介质
CN113160747A (zh) * 2020-01-22 2021-07-23 Oppo广东移动通信有限公司 显示屏变频方法、显示驱动集成电路芯片及应用处理器
US20210248957A1 (en) * 2020-02-10 2021-08-12 Samsung Electronics Co., Ltd. Electronic device including display and method for operating the same
CN112331145A (zh) * 2020-11-17 2021-02-05 Oppo广东移动通信有限公司 显示屏变频方法、ddic芯片、显示屏模组及终端

Also Published As

Publication number Publication date
CN116700653A (zh) 2023-09-05
EP4321988A1 (en) 2024-02-14
WO2023160136A9 (zh) 2024-05-10
CN116700653B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
CN112331145B (zh) 显示屏变频方法、ddic芯片、显示屏模组及终端
WO2021143676A1 (zh) 显示屏变频方法、ddic芯片、显示屏模组及终端
WO2020187157A1 (zh) 一种控制方法和电子设备
CN113160747B (zh) 显示屏变频方法、显示驱动集成电路芯片及应用处理器
TWI639989B (zh) 以動態框率支援的功率最佳化
CN104932659B (zh) 图像显示方法及显示系统
JP2016024466A (ja) ディスプレイドライバ、ディスプレイシステム、及びディスプレイドライバの動作方法
WO2023005558A1 (zh) 变频显示方法、ddic、显示屏模组及终端
KR20230005337A (ko) 백라이트 구동 방법, 장치 및 컴퓨터 장비
JPWO2016093125A1 (ja) 表示制御装置、表示制御方法及び表示制御プログラム
US10354579B2 (en) Temporarily increased refresh rate for a display panel in low power mode
TW201636821A (zh) 高速顯示器介面
WO2022105485A1 (zh) 图像显示方法、ddic芯片、ap、显示屏模组及终端
WO2023046164A1 (zh) 图像显示方法、ddic、显示屏模组及终端
WO2023040591A1 (zh) 图像显示方法、ddic、显示屏模组及终端
CN114648951A (zh) 控制屏幕刷新率动态变化的方法及电子设备
US20180286345A1 (en) Adaptive sync support for embedded display
WO2023061096A1 (zh) 显示屏刷新帧率的调整方法、装置、处理器、芯片和终端
CN111813490A (zh) 插帧处理方法及装置
RU2665234C2 (ru) Способ и аппарат для отображения контента
US9881566B2 (en) Display device, electronic apparatus, and control method for display device
US20240071283A1 (en) Independent refresh rate for multiple monitors
WO2023160136A1 (zh) 帧率切换方法及相关装置
CN116688495A (zh) 帧率调整方法及相关装置
US11430362B2 (en) Display control device, display control method, and non-transitory recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022928393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18559671

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022928393

Country of ref document: EP

Effective date: 20231107