WO2023160002A1 - 发光器件、发光器件的制备方法及显示装置 - Google Patents

发光器件、发光器件的制备方法及显示装置 Download PDF

Info

Publication number
WO2023160002A1
WO2023160002A1 PCT/CN2022/129098 CN2022129098W WO2023160002A1 WO 2023160002 A1 WO2023160002 A1 WO 2023160002A1 CN 2022129098 W CN2022129098 W CN 2022129098W WO 2023160002 A1 WO2023160002 A1 WO 2023160002A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
insulating
emitting device
nanoparticles
Prior art date
Application number
PCT/CN2022/129098
Other languages
English (en)
French (fr)
Inventor
雷卉
吴龙佳
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023160002A1 publication Critical patent/WO2023160002A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of optoelectronic technology, in particular to a light-emitting device, a method for preparing the light-emitting device, and a display device.
  • Light-emitting devices such as QLED (Quantum Dot Light Emitting Diodes, Quantum Dot Light Emitting Diodes) are prepared by utilizing the light-emitting properties of quantum dots, which have the advantages of long fluorescence lifetime, high brightness, wide color gamut, and low power consumption.
  • QLED Quantum Dot Light Emitting Diodes, Quantum Dot Light Emitting Diodes
  • the present application provides a light emitting device, a method for preparing the light emitting device and a display device, so as to improve the performance of the light emitting device.
  • the present application provides a light emitting device, comprising:
  • an anode a light-emitting layer, an auxiliary function layer, an electron transport layer and a cathode that are sequentially stacked;
  • the auxiliary functional layer includes an insulating nanoparticle film, and the insulating nanoparticle film contains a plurality of insulating nanoparticles.
  • the insulating nanoparticles are nanospheres or nanopillars.
  • the single-layer insulating nanoparticle film includes a plurality of insulating nanoparticles arranged in a single layer, and the plurality of insulating nanoparticles are arranged periodically.
  • a plurality of insulating nanoparticles are arranged in a hexagonal array.
  • the light transmittance of the insulating nanoparticles is greater than 95%.
  • the material for forming the insulating nanoparticles includes one or more of silicon dioxide, polystyrene, PMMA and PGMA.
  • the particle size of the insulating nanoparticles is 10nm-200nm.
  • the thickness of the auxiliary functional layer is 10nm-200nm.
  • the auxiliary functional layer further includes a plurality of bump structures, and the plurality of bump structures are filled in gaps between adjacent insulating nanoparticles;
  • the bump structure is a cross-linked structure of benzene rings.
  • the material of the electron transport layer is selected from one or more of ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , TiLiO, ZnAlO, ZnO, ZnSnO, ZnLiO and InSnO.
  • the present application provides a method for preparing a light-emitting device, comprising the following steps:
  • a single-layer insulating nanoparticle film is formed on the light-emitting layer through self-assembly processing, and the single-layer insulating nanoparticle film includes a plurality of insulating nanoparticles to prepare an auxiliary functional layer;
  • a cathode is formed on the electron transport layer.
  • the preparation method further includes the step of: using an acidic The solution performs a first etching treatment on the plurality of insulating nanoparticles in the single-layer insulating nanoparticle film, and the insulating nanoparticles are inorganic materials.
  • the concentration of the acidic solution is 1-100mg/mL, and the etching time is 10s ⁇ 5min.
  • the preparation method further includes the step of: using a reaction One or more of the ion etching method and the organic solvent method, so as to perform a second etching treatment on the plurality of insulating nanoparticles in the single-layer insulating nanoparticle film, wherein the insulating nanoparticles are organic material.
  • the reactive ion etching method is used to perform a second etching process on the plurality of insulating nanoparticles in the single-layer insulating nanoparticle film, wherein the etching flow rate is 1-200 sccm, and the etching power
  • the etching time is 0.1 ⁇ 100W
  • the etching time is 1 ⁇ 500s
  • the etching gas includes one or more of oxygen and carbon tetrafluoride.
  • the second etching treatment is performed on the plurality of insulating nanoparticles in the single-layer insulating nanoparticle film by using the organic solvent method, wherein the organic solvent includes chlorobenzene and N,N-di One or more of methyl formamide, the etching time is 10s ⁇ 5min.
  • the present application provides a display device, including a light emitting device, and the light emitting device includes:
  • an anode a light-emitting layer, an auxiliary function layer, an electron transport layer and a cathode that are sequentially stacked;
  • the auxiliary functional layer includes an insulating nanoparticle film, and the insulating nanoparticle film contains a plurality of insulating nanoparticles.
  • the auxiliary functional layer is composed of a single layer of insulating nanoparticle film.
  • a plurality of insulating nanoparticles are arranged in a hexagonal array.
  • Fig. 1 is a schematic structural diagram of a light emitting device provided by an embodiment of the present application
  • Fig. 2 is a schematic structural view of an insulating nano-film of a light-emitting device provided in an embodiment of the present application;
  • Fig. 3 is the test result of the brightness of three light-emitting devices provided by the embodiment of the present application, wherein the particle diameters of the insulating nanospheres contained in the three light-emitting devices are different from each other;
  • Fig. 4 is the test result of the external quantum efficiency EQE of three kinds of light-emitting devices provided by the embodiment of the present application, wherein the particle diameters of the insulating nanospheres contained in the three kinds of light-emitting devices are different from each other;
  • Fig. 5 is the test result of the service life LT95@1knit of three kinds of light-emitting devices provided in the embodiment of the present application, wherein the particle sizes of the insulating nanospheres contained in the three kinds of light-emitting devices are different from each other;
  • Fig. 6 is a schematic diagram of a bump structure of a light emitting device provided in an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a "big ⁇ bond" of a light-emitting device provided in an embodiment of the present application.
  • Fig. 8 is a schematic flowchart of a method for manufacturing a light-emitting device provided in an embodiment of the present application.
  • Embodiments of the present application provide a light emitting device, a method for manufacturing the light emitting device, and a display device. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
  • a description of a range from 1 to 6 should be considered to have specifically disclosed subranges, such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., and Single numbers within the stated ranges, eg 1, 2, 3, 4, 5 and 6, apply regardless of the range.
  • a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
  • the term "and/or” is used to describe the relationship between associated objects, indicating that there may be three relationships, for example, "A and/or B" may indicate three situations: the first situation is that A exists alone ; The second case is the presence of A and B at the same time; the third case is the case of B alone, wherein A and B can be singular or plural respectively.
  • one or more (ones) means one (one) or more (ones), “multiple (ones)” means two (ones) or two (ones) above.
  • one or more (individuals) or similar expressions thereof refers to any combination of these species (individuals), including any combination of a single species (individuals) or a plurality of species (individuals).
  • one or more (ones) of a, b or c" or “one or more (ones) of a, b and c” can be expressed as: a, b, c, a-b( That is, a and b), a-c, b-c or a-b-c, wherein, a, b and c can be single (one) or multiple (one) respectively.
  • quantum dots due to the small particle size of quantum dots, when preparing optoelectronic devices such as QLED devices, the quantum dots dispersed in the preparation solution will cause quantum dots to agglomerate due to the influence of surface energy. Agglomeration of quantum dots will lead to uneven distribution of quantum dots, which will adversely affect the performance of light-emitting devices, such as uneven light output and low light output efficiency of the light-emitting device. For example: when a conventional QLED is turned on, electrons are directly injected into the electron input layer from the light-emitting layer to make it recombine with holes to emit light; while in the preparation process of QLED, the quantum dots are scattered in the liquid state, resulting in irregular quantum dots. The agglomerates cannot be arranged evenly, which leads to the problem of uneven light emission when QLED emits light.
  • FIG. 1 is a schematic structural diagram of a light emitting device provided by an embodiment of the present application.
  • the light-emitting device includes an anode 10, a hole injection layer 20, a hole transport layer 30, a light emitting layer 40, an auxiliary function layer 70, an electron transport layer 50, and a cathode 60 that are sequentially stacked, specifically including a stacked stack from bottom to top.
  • the auxiliary function layer 70 includes a film of insulating nanoparticles, and the film of insulating nanoparticles contains a plurality of insulating nanoparticles.
  • the electrons transmitted can be evenly arranged by using the insulating nanoparticle film, which improves the uniformity of the light emission of the device; in addition, the insulating nanoparticle film can focus the light emitted by the quantum dots , and then transmit the focused light through the electron transport layer, thereby improving the uniformity of light output of the light emitting device and further increasing the light output efficiency.
  • the auxiliary function layer 70 is set as an insulating nanoparticle film, so as to concentrate light and obtain higher light extraction efficiency.
  • the insulating nano film can be a transparent material. Since the transparent material can play a lens focusing effect in the light transmission path, the use of a transparent insulating nano film can reduce the loss in the light transmission process and improve the light extraction efficiency.
  • the thickness of the auxiliary function layer 70 may be 10nm-200nm.
  • the auxiliary function layer 70 can be set as a multi-layer insulating nano-film, but in order to ensure its light extraction efficiency, when the multi-layer insulating nano-film is used to prepare the auxiliary function layer 70, the stacked insulating nano-film needs to follow the pre-designed The stacking is carried out in order to prevent the luminous efficiency of the light-emitting device from being affected by stacking misalignment when the insulating nano-films are stacked.
  • the auxiliary function layer 70 can also be set as a single-layer insulating nano-film, by setting a single-layer insulating nano-film, thereby reducing light in the insulation
  • the light loss in the nano-film is concentrated through a simple single-layer film structure to improve the light extraction efficiency, wherein the insulating nano-film can be composed of multiple nanoparticles, and the nanoparticles can be nanospheres or nanocolumns.
  • a plurality of nanoparticles arranged periodically but not uniform in size may be arranged on the light-emitting layer 40 by a self-organization method to prepare an insulating thin nano-film.
  • the light-extracting efficiency of the light-emitting device can be improved by using the nano-particles with non-uniform sizes for periodic arrangement and utilizing the light-guiding properties of the nanoparticles.
  • the insulating nanoparticles in order to meet the requirements of improving the light extraction efficiency while ensuring that the light-emitting device can emit light uniformly and ensure the uniformity of the electron cloud arrangement, it is also possible to uniformly screen the insulating nanoparticles, retain or add insulating nanoparticles of uniform size, and then The insulating nanoparticles with uniform size are arranged on the light-emitting layer 40 through self-organization method, and the insulating nanoparticles are arranged periodically to prepare an insulating nano-film composed of insulating nanoparticles with uniform size.
  • the uniformity of the arrangement of the insulating nanoparticles can also be used to make the light-emitting device emit light uniformly.
  • the nanoparticles may be nanospheres or nanopillars.
  • the shape of the nanoparticles can be a faceted sphere.
  • the nanoparticles are regular hexagonal spheres.
  • the planes of the polyhedral spheres are used to focus the light emitted by the light-emitting layer 40 so as to improve the light extraction efficiency of the light-emitting device.
  • arranging multiple polyhedral spherical nanoparticles on the luminescent layer 40 can make the formed insulating nano film arranged in a hexagonal array, specifically, multiple regular hexagonal spheres can be closely arranged along the boundaries of the spheres.
  • the hexagonal array can be in the shape of a mesh or a honeycomb, see FIG. 2 , which is a schematic diagram of the structure of the insulating nano-film provided by the embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the insulating nano-film provided by the embodiment of the present invention. Utilizing the structural characteristics of the mesh or honeycomb shape facilitates the convergence and transmission of light, thereby facilitating the uniform luminescence of the light-emitting device.
  • the QLED device when the QLED device is turned on, electrons are directly injected into the light-emitting layer from the electron-transporting layer, and recombine with holes to emit light, which causes the problem of uneven light emission.
  • the bumps have a regular hexagonal structure, and the insulating nanoparticles are insulating materials, when this structure is used for QLED devices
  • the electrons tend to be transported along these structures with positive hexagonal distribution, forming an effect similar to the "big ⁇ bond" in the benzene ring, the electron cloud distribution is more uniform and stable, and the device's luminous uniformity is significantly improved.
  • insulating nanospheres when insulating nanospheres are selected as the material for the preparation of insulating nanofilms, since insulating nanospheres have high light transmittance, such as light transmittance > 95%, insulating nanospheres can act as concentrators in the direction of light output.
  • the optical lens reduces the light loss of the light-emitting device and obtains higher light extraction efficiency.
  • the auxiliary functional layer 70 is a single-layer insulating nanoparticle film, and the particle size of the insulating nanoparticles in the single-layer insulating nanoparticle film is 10nm- 200nm (that is, the thickness of the auxiliary function layer 70 is 10nm-200nm), by setting the size of the insulating nanoparticles.
  • the particle size and material of the insulating nanoparticles can also be adaptively selected according to the parameters of other functional layers, so as to ensure the optical performance and electrical performance requirements of the light-emitting device.
  • the particle size of the insulating nanoparticles is 50 nm.
  • the preparation method of the light-emitting device comprises the steps of sequentially preparing a hole injection layer, a hole transport layer, a green quantum dot light-emitting layer, an auxiliary function layer, an electron transport layer and a cathode on an ITO substrate, and performing packaging and testing.
  • Three kinds of light-emitting devices were prepared according to the preparation method.
  • the auxiliary functional layers in the three kinds of light-emitting devices contained insulating (polystyrene) nanospheres, but the sizes of the insulating (polystyrene) nanospheres were different from each other, being 25nm and 50nm respectively. and 100nm.
  • 3 ordinate represents the luminous intensity Luminance of the light-emitting device, and the unit of its luminous intensity is cd/m 2 ; 4
  • the vertical axis represents the external quantum efficiency EQE of the light-emitting device, and its unit is %; the vertical axis of Figure 5 represents the life of the light-emitting device LT95@1knit, and its unit is hr.
  • FIG. 6 shows a schematic diagram of a bump structure of a light emitting device provided in this embodiment.
  • auxiliary function layer 70 a plurality of bump structures 72 are filled in the gaps between adjacent insulating nanoparticles, wherein the bump structures 72 may be cross-linked structures of benzene rings.
  • the bump structures 72 When injected into the electron transport layer 50, electrons tend to be transported along these structures with regular hexagonal distribution.
  • the "big ⁇ bond” can be composed of a single insulating nanoparticle 71 and a plurality of bump structures 72, using the characteristics of the "big ⁇ bond” structure to focus light and transmit light, so that the light emitted by the light-emitting device can be arranged more smoothly. Uniform and more stable.
  • parameters such as the material, size, etching parameters, and light transmittance of the insulating nanosphere layer can also be adjusted to obtain better photoelectric performance.
  • the material for forming the insulating nanoparticles is inorganic nanoparticles, such as silicon dioxide; or organic nanoparticles, such as polystyrene, polymethyl methacrylate (PMMA), polyglycidyl methacrylate (PGMA).
  • inorganic nanoparticles such as silicon dioxide
  • organic nanoparticles such as polystyrene, polymethyl methacrylate (PMMA), polyglycidyl methacrylate (PGMA).
  • the electron transport layer is used to cover the auxiliary functional layer and fill the gap between two adjacent insulating nanoparticles;
  • the light-emitting layer is a quantum dot light-emitting layer, and the material of the quantum dot light-emitting layer is a II-VI compound, One or more of III-V group compounds and I ⁇ III ⁇ VI group compounds;
  • II-VI group compounds are selected from CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, One or more of ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe and CdZnSTe;
  • III-V group compounds are selected from InP, InAs, GaP, GaAs, GaSb, AlN, AlP, In
  • FIG. 8 is a schematic flowchart of a method for manufacturing a light-emitting device provided in an embodiment of the present application.
  • the method for manufacturing a light-emitting device includes the following steps:
  • step S1 an anode and a light-emitting layer are sequentially prepared on the substrate.
  • the type of the substrate is not limited.
  • the substrate may be a commonly used substrate, for example, a rigid substrate made of glass, or a flexible substrate made of polyimide.
  • the preparation method can use any one of the preparation methods in sputtering, evaporation, coating and inkjet printing to prepare anode, hole Injection layer, hole transport layer and light emitting layer.
  • Step S2 forming a single-layer insulating nanoparticle film on the light-emitting layer through self-assembly processing to prepare an auxiliary functional layer.
  • nanoparticles can be provided, placed on the light-emitting layer, and the nanoparticles are arranged by a preset method to prepare an auxiliary functional layer, wherein the self-assembly process used in this step is to use
  • nanomaterials are dispersed on the surface of a liquid, they are affected by surface tension and spontaneously form a hexagonal close-packed structure (such as a honeycomb structure), so that their surface energy is lower and more conducive to the formation of an energy band structure, which facilitates energy transmission (electronic or light source).
  • the obtained nanosphere particles can be directly placed on the light-emitting layer, and the nanoparticles are arranged periodically and orderly by a self-organization method, thereby preparing an insulating nano film.
  • nanoparticles with uniform size can be obtained by means of mechanical equipment or manual screening, and then the nanoparticles are arranged in a periodic and orderly manner by self-organization, thereby preparing a single-layer insulating nano-film.
  • the nanoparticles used include organic nanoparticles and inorganic nanoparticles.
  • the etching conditions include that the concentration of the acidic solution is 0-100 mg/mL, and the etching time is 0-5 minutes; or Reactive ion etching method is used to carry out the second etching treatment on organic nanoparticles, the etching conditions include etching flow rate of 1-200sccm, etching power of 0.1-100W, etching time of 1-500s, etching gas including At least one of oxygen and carbon tetrafluoride.
  • the organic nanoparticles are etched with an organic solvent
  • the organic solvent includes: chlorobenzene or DMF
  • the etching time is 0-5min
  • the reactive ion etching method is used to etch the organic nanoparticles.
  • the reactive gas includes one or more of oxygen and carbon tetrafluoride.
  • Step S3 Covering the electron transport material on the auxiliary functional layer to prepare an electron transport layer.
  • the electron transport material is filled on the auxiliary functional layer to prepare the electron transport layer.
  • the prepared auxiliary functional layer is a nano-film obtained by arranging nanospheres, in order to obtain a good light extraction rate and a uniform light output For this effect, the distance between the nanospheres needs to be filled with an electron-transporting material.
  • the electron transport material may be one or more of ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , TiLiO, ZnAlO, ZnO, ZnSnO, ZnLiO and InSnO.
  • Step S4 forming a cathode on the electron transport layer.
  • the substrate, anode, hole injection layer, hole transport layer, light emitting layer, auxiliary function layer, electron transport layer and cathode need to be packaged to obtain a light emitting device.
  • the packaging material can be acrylic resin or epoxy resin
  • the packaging can be machine packaging or manual packaging, and can be sealed with ultraviolet curing glue. device stability.
  • An embodiment of the present application further provides a display device, including the above optoelectronic device in the embodiment of the present application.
  • the display device can be any electronic product with a display function, including but not limited to smart phones, tablet computers, notebook computers, digital cameras, digital video cameras, smart wearable devices, smart weighing electronic scales, vehicle displays, TVs machine or e-book reader, among which, smart wearable devices can be smart bracelets, smart watches, virtual reality (Virtual Reality, VR) helmets, etc.
  • This embodiment provides a method for preparing a light-emitting device.
  • the light-emitting device may be a QLED.
  • the specific preparation method includes the following steps:
  • nanospheres are hexagonal nanospheres with a size range of 10-200nm.
  • Insulation, nanosphere material can be either inorganic material or organic material.
  • the prepared single-layer and periodically ordered regular hexagonal insulating nanosphere thin film layer it is necessary to etch the prepared single-layer and periodically ordered regular hexagonal insulating nanosphere thin film layer to reduce the size of the nanospheres and increase the direct thickness of the nanospheres. Clearance.
  • the lower bump structure is in a regular hexagonal distribution, which is similar to the distribution structure of C atoms in the benzene ring.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the prepared single-layer and periodically ordered regular hexagonal insulating nanosphere thin film layer it is necessary to etch the prepared single-layer and periodically ordered regular hexagonal insulating nanosphere thin film layer to reduce the size of the nanospheres and increase the direct thickness of the nanospheres. Clearance.
  • the difference between this embodiment and the above-mentioned embodiments is that first, when preparing the hole injection layer, the hole transport layer, and the light-emitting layer, methods such as coating and inkjet printing can also be used; secondly, the nano The ball is an inorganic nanosphere, and when the inorganic nanosphere is processed, the material of the inorganic nanosphere can be silicon dioxide; use acetic acid to partially etch the silicon dioxide nanosphere, and the concentration of the acetic acid solution can be 1 ⁇ 100mg/mL, The etching time is 10s ⁇ 5min. After the etching is completed, the residual acetic acid can be removed with an ethanol solution, and then the substrate can be dried or annealed at a low temperature to remove the residual ethanol.
  • the difference between this embodiment and the above embodiment is that when the nanospheres selected in this embodiment are organic nanospheres, such as polystyrene, PMMA, PGMA, etc., the polystyrene nanospheres can be partially etched with an organic solvent , such as N,N-dimethylformamide (DMF), chlorobenzene, etc., the etching time can be 10s ⁇ 5min, after the etching is completed, the residual organic solvent can be removed with ethanol solution, and then the substrate can be dried or annealed at low temperature , to remove residual ethanol.
  • RIE etching method can also be used to etch polystyrene nanospheres.
  • the etching atmosphere can be a single/mixed flow of oxygen, carbon tetrafluoride, etc., the flow rate can be 1 ⁇ 200sccm, and the etching power can be 0.1 ⁇ 100W , the etching time can be 1 ⁇ 500s.
  • the lower surface of the electron transport layer can be formed by using the thin film layer. It has a lower bump structure with regular hexagonal distribution, thus forming a cross-linked structure similar to benzene rings.
  • a light-emitting device, a method for preparing a light-emitting device, and a display device provided in the embodiments of the present application are described above in detail.
  • specific examples are used to illustrate the principles and implementation methods of the present application.
  • the description of the above embodiments is only It is used to help understand the method and its core idea of this application; at the same time, for those skilled in the art, according to the idea of this application, there will be changes in the specific implementation and application scope.
  • this specification The content should not be construed as a limitation of the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种发光器件、发光器件的制备方法及显示装置,所述发光器件括依次层叠设置的阳极、发光层、辅助功能层、电子传输层和阴极,辅助功能层包括绝缘纳米颗粒薄膜,绝缘纳米颗粒薄膜包含多个绝缘纳米颗粒,以提高发光器件的发光均匀性和发光效率。

Description

发光器件、发光器件的制备方法及显示装置
本申请要求于2022年02月22日在中国专利局提交的、申请号为        202210163180.X、申请名称为“一种发光器件及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,具体涉及一种发光器件、发光器件的制备方法及显示装置。
背景技术
诸如QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)等发光器件是利用量子点发光特性制备的,其具有荧光寿命长,亮度高,色域广,功耗低等优势。
然而,对于发光器件本身来说,由于量子点的尺寸较小,所以在发光器件的制备过程中,量子点的表面能不稳定会引起量子点团聚现象,而该现象会对发光器件的性能造成不利影响。
技术解决方案
鉴于此,本申请提供了一种发光器件、发光器件的制备方法及显示装置,以改善发光器件的性能。
第一方面,本申请提供了一种发光器件,包括:
依次层叠设置的阳极、发光层、辅助功能层、电子传输层和阴极;
其中,所述辅助功能层包括绝缘纳米颗粒薄膜,所述绝缘纳米颗粒薄膜包含多个绝缘纳米颗粒。
可选地,所述绝缘纳米颗粒为纳米球或纳米柱。
可选地,所述单层绝缘纳米颗粒薄膜包括单层排布的多个绝缘纳米颗粒,且多个所述绝缘纳米颗粒呈周期性排列。
可选地,在所述单层绝缘纳米颗粒薄膜中,多个所述绝缘纳米颗粒呈六角阵列排列。
可选地,所述绝缘纳米颗粒的透光率大于95%。
可选地,所述绝缘纳米颗粒的形成材料包括二氧化硅、聚苯乙烯、PMMA以及PGMA中的一种或多种。
可选地,所述绝缘纳米颗粒的粒径为10nm-200nm。
可选地,所述辅助功能层的厚度为10nm-200nm。
可选地,所述辅助功能层还包括多个凸点结构,所述多个凸点结构填充于相邻所述绝缘纳米颗粒的间隙中;
其中,所述凸点结构为苯环的交联结构。
可选地,所述电子传输层的材料选自ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、TiLiO、ZnAlO、ZnO、ZnSnO、ZnLiO以及InSnO中的一种或多种。
第二方面,本申请提供了一种发光器件的制备方法,包括如下步骤:
在基板上依次制备阳极及发光层;
通过自组装处理,在所述发光层上形成单层绝缘纳米颗粒薄膜,所述单层绝缘纳米颗粒薄膜包括多个绝缘纳米颗粒,以制备得到辅助功能层;
在所述辅助功能层上覆盖电子传输材料,以制备得到电子传输层;以及
在所述电子传输层上形成阴极。
可选地,所述通过自组装处理,在所述发光层上形成单层绝缘纳米颗粒薄膜的步骤之后,且在获得所述辅助功能层的步骤之前,所述制备方法还包括步骤:使用酸性溶液对所述单层绝缘纳米颗粒薄膜中的多个所述绝缘纳米颗粒进行第一刻蚀处理,所述绝缘纳米颗粒为无机材料。
可选地,在所述第一刻蚀处理中,所述酸性溶液的浓度为1~100mg/mL,刻蚀时间为10s ~5min。
可选地,所述通过自组装处理,在所述发光层上形成单层绝缘纳米颗粒薄膜的步骤之后,且在获得所述辅助功能层的步骤之前,所述制备方法还包括步骤:使用反应离子刻蚀方法以及有机溶剂方法中的一种或多种,以对所述单层绝缘纳米颗粒薄膜中的多个所述绝缘纳米颗粒进行第二刻蚀处理,其中,所述绝缘纳米颗粒为有机材料。
可选地,采用所述反应离子刻蚀方法对所述单层绝缘纳米颗粒薄膜中的多个所述绝缘纳米颗粒进行第二刻蚀处理,其中,刻蚀流速为1~200sccm,刻蚀功率为0.1~100W,刻蚀时间为1~500s,刻蚀气体包括氧气以及四氟化碳中的一种或多种。
可选地,采用所述有机溶剂方法对所述单层绝缘纳米颗粒薄膜中的多个所述绝缘纳米颗粒进行第二刻蚀处理,其中,所述有机溶剂包括氯苯以及N,N-二甲基甲酰胺中的一种或多种,刻蚀时间为10s ~5min。
第三方面,本申请提供了一种显示装置,包括发光器件,所述发光器件包括:
依次层叠设置的阳极、发光层、辅助功能层、电子传输层和阴极;
其中,所述辅助功能层包括绝缘纳米颗粒薄膜,所述绝缘纳米颗粒薄膜包含多个绝缘纳米颗粒。
可选地,所述辅助功能层由单层绝缘纳米颗粒薄膜组成。
可选地,在所述单层绝缘纳米颗粒薄膜中,多个所述绝缘纳米颗粒呈六角阵列排列。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种发光器件的结构示意图;
图2是本申请实施例提供的一种发光器件的绝缘纳米薄膜的结构示意图;
图3是本申请实施例提供的三种发光器件的亮度的测试结果,其中,三种发光器件中包含的绝缘纳米球的粒径彼此不相同;
图4是本申请实施例提供的三种发光器件的外量子效率EQE的测试结果,其中,三种发光器件中包含的绝缘纳米球的粒径彼此不相同;
图5是本申请实施例提供的三种发光器件的寿命LT95@1knit的测试结果,其中,三种发光器件中包含的绝缘纳米球的粒径彼此不相同;
图6是本申请实施例提供的一种发光器件的凸点结构示意图;
图7是本申请实施例提供的一种发光器件的“大π键”的结构示意图;
图8是本申请实施例提供的一种发光器件的制备方法的流程示意图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供一种发光器件、发光器件的制备方法及显示装置。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
另外,在本申请的描述中,术语“包括”是指“包括但不限于”。本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,术语“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示三种情况:第一种情况是单独存在A;第二种情况是同时存在A和B;第三种情况是单独存在B的情况,其中,A和B分别可以是单数或者复数。
在本申请中,术语“一种或多种(个)”是指一种(个)或多种(个),“多种(个)”是指两种(个)或两种(个)以上。术语“一种或多种(个)”或其类似表达,指的是这些种(个)中的任意组合,包括单种(个)或复数种(个)的任意组合。例如,“a、b或c中的一种或多种(个)”或“a, b和c中的一种或多种(个)”均可表示为:a、b、c、a-b(即a和b)、a-c、b-c或a-b-c,其中,a, b和 c分别可以是单种(个)或多种(个)。
由于量子点的粒径较小,在制备QLED器件等光电器件时,分散于制备溶液中的量子点会因为表面能的影响而产生量子点团聚的现象。量子点团聚现象会导致量子点分布不均匀,从而对发光器件的性能造成不利影响,例如造成发光器件出光不均匀、出光效率低等问题。例如:常规的QLED在导通时,电子是直接从发光层注入电子输入层,使其与空穴复合从而发光;而在QLED的制备过程中,由于量子点分散于液态中导致量子点无规则团聚无法均匀排布,导致QLED在发光时存在发光不均匀的问题。
本申请实施例提供一种发光器件,主要用于光电设备/光电器件中。请参阅图1,图1是本申请实施例提供的一种发光器件的结构示意图。该发光器件包括依次层叠设置的阳极10、空穴注入层20、空穴传输层30、发光层40、辅助功能层70、电子传输层50和阴极60,具体是包括从下至上依次层叠设置的阳极10、空穴注入层20、空穴传输层30、发光层40、电子传输层50和阴极60。其中,辅助功能层70包括绝缘纳米颗粒薄膜,绝缘纳米颗粒薄膜包含多个绝缘纳米颗粒。
在本申请实施例中,通过设置辅助功能层,以利用绝缘纳米颗粒薄膜使传输的电子能够均匀排布,提升了器件发光的均匀性;此外,绝缘纳米颗粒薄膜能够将量子点发出的光线聚焦,再将聚焦后的光线通过电子传输层进行传输,从而改善发光器件的出光均匀性,进一步地增加出光效率。
在一个实施例中,将辅助功能层70设置为绝缘纳米颗粒薄膜,以便对光线进行聚光,以获得更高的出光效率。绝缘纳米薄膜可以为透明材料,由于透明材料在光传输路径中可以起到透镜聚焦的效果,因此使用透明的绝缘纳米薄膜能够减少光传输过程中的损耗,提高出光效率。
可选的,为保证发光器件能够获得较好的出光效率,其辅助功能层70的厚度可以是10nm-200nm。
可选的,辅助功能层70可以设置为多层绝缘纳米薄膜,但为了保证其出光效率,在使用多层绝缘纳米薄膜制备辅助功能层70时,层叠的绝缘纳米薄膜之间需要按照预设计的排列顺序进行层叠,以防止在绝缘纳米薄膜堆叠时,因层叠排列错位影响发光器件的发光效率。
可选的,为了便于电子传输层50与发光层40进行接触,提高出光效率,还可以将辅助功能层70设置为单层绝缘纳米薄膜,通过设置单层绝缘纳米薄膜,从而可以减少光线在绝缘纳米薄膜中的光损失,通过简单的单层薄膜结构进行聚光,以便于提高出光效率,其中,绝缘纳米薄膜可以由多个纳米颗粒组成,其纳米颗粒可以是纳米球或纳米柱。
可选的,为了改善发光器件的出光效率,可以通过自组织的方法在发光层40上设置周期性排列、但尺寸不统一的多个纳米颗粒,以制备得到的绝缘薄纳米膜。通过使用尺寸不统一的纳米颗粒进行周期性排列,利用其纳米颗粒的导光性能,从而可以提高发光器件的出光效率。
可选的,为了能够满足提高出光效率的同时保证发光器件能够均匀出光,以及保证电子云排布的均匀性,还可以对绝缘纳米颗粒进行统一筛选,保留或新增尺寸统一绝缘纳米颗粒,之后将尺寸统一的绝缘纳米颗粒经过自组织的方法设置在发光层40上,并将绝缘纳米颗粒进行周期性排列,以制备得到由尺寸统一的绝缘纳米颗粒组成的绝缘纳米薄膜。由于对纳米颗粒进行了尺寸统一和筛选,当利用绝缘纳米球进行聚光时,其发出的光线更倾向于沿着规则排布的绝缘纳米颗粒进行传输,因此可以提高发光器件的出光效率,同时通过对绝缘纳米颗粒进行规则排布,还能够利用绝缘纳米颗粒排布的均匀性使发光器件均匀发光。
在一实施例中,纳米颗粒可以是纳米球或纳米柱。可选的,纳米颗粒的形状可以为多面球体。纳米颗粒为正六边形的球体,通过使用多面球体,利用多面球体的平面对发光层40所发出的光线进行聚焦从而提高发光器件的出光效率。此外,在发光层40上设置多个多面球体的纳米颗粒,可以使所形成的绝缘纳米薄膜呈六角阵列排列,具体的,可以是多个正六边形的球体沿球体边界紧密排列。例如:六角阵列可以是呈网状或蜂窝状,参见图2,图2是本发明实施例所提供的绝缘纳米薄膜结构示意图。利用呈网状或蜂窝状的结构特点,便于光线进行汇聚传输,从而有利于发光器件进行均匀发光。现有技术中,QLED器件在导通时,电子直接从电子传输层注入发光层,与空穴复合,从而发光,会存在发光不均匀的问题。而本申请中通过设置单层绝缘纳米颗粒薄膜,QLED器件导通时,电子更倾向于沿着设置的单层绝缘纳米颗粒薄膜分布的结构进行传输,电子云分布更均匀、更稳定,显著提升了器件发光均匀性。更具体的,单层绝缘纳米颗粒薄膜中,多个所述绝缘纳米颗粒呈六角阵列排列,由于具有正六角结构的凸点,且绝缘纳米颗粒为绝缘材料,因此,当该结构用于QLED器件时,电子更倾向于沿着这些具有正六角分布的结构进行传输,形成了类似苯环中的“大π键”效果,电子云分布更均匀、更稳定,器件发光均匀性显著提升。
在本实施例中,当绝缘纳米薄膜的制备选取材料为绝缘纳米球时,由于绝缘纳米球具有高透光率,如透光率>95%,所以绝缘纳米球可在光输出方向上充当聚光透镜,降低发光器件的光损失,获得更高的出光效率。
为了进一步地提升发光器件的出光效率和出光均匀性,在一实施例中,辅助功能层70是单层绝缘纳米颗粒薄膜,该单层绝缘纳米颗粒薄膜中的绝缘纳米颗粒的粒径为10nm-200nm(即辅助功能层70的厚度为10nm-200nm),通过对绝缘纳米颗粒的尺寸进行设置。
可选的,绝缘纳米颗粒的粒径和材质还可以根据其他功能层的参数进行适配性选择,以保证发光器件对的光学性能和电学性能的需求。
具体的,绝缘纳米颗粒的粒径为50nm。
发光器件的制备方法包括步骤:在ITO衬底上依次制备空穴注入层、空穴传输层、绿色量子点发光层、辅助功能层、电子传输层和阴极,并进行封装测试。按照所述制备方法制得三种发光器件,三种发光器件中辅助功能层包含绝缘(聚苯乙烯)纳米球,但绝缘(聚苯乙烯)纳米球的尺寸彼此不相同,分别为25nm、50nm和100nm。三种发光器件的发光强度Luminance、外量子效率EQE和寿命LT95@1knit的测试结果分别如图3至图5所示。其中,图3至图5的横坐标表示绝缘纳米球的粒径Diameter,其粒径单位为nm;图3纵坐标表示发光器件的发光强度Luminance,其发光强度的单位为cd/m 2;图4纵坐标表示发光器件的外量子效率EQE,其单位为%;图5纵坐标表示发光器件的寿命LT95@1knit,其单位为hr。
在一实施例中,图6示出了本实施例提供的一种发光器件的凸点结构示意图。在辅助功能层70中,多个凸点结构72填充在相邻绝缘纳米颗粒间隙中,其中,凸点结构72可以是苯环的交联结构,在交联结构下,当电子从发光层40向电子传输层50注入时,电子更倾向于沿着这些具有正六角分布的结构进行传输,图7示出了本实施例提供的一种发光器件的“大π键”的结构示意图,其中“大π键”可以是由单个绝缘纳米颗粒71与多个凸点结构72组成,利用其“大π键”的结构聚焦光线和传输光线的特点,从而使发光器件所发出的光线排布更为均匀、更稳定。
可选的,若需要对发光器件输出光的中心波长进行调整,还可以通过调节绝缘纳米球层的材质、尺寸、刻蚀参数、透光率等参数,以便获得更优的光电性能。
可选的,绝缘纳米颗粒的形成材料为无机纳米颗粒,例如:二氧化硅;或有机纳米颗粒,例如:聚苯乙烯、聚甲基丙烯酸甲酯(PMMA)、聚甲基丙烯酸缩水甘油酯(PGMA)。
可选的,电子传输层用于覆盖辅助功能层,并填充相邻的两个绝缘纳米颗粒之间的间隙;发光层为量子点发光层,量子点发光层的材料为II-VI族化合物、III-V族化合物和I−III−VI族化合物中的一种或多种;II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe以及CdZnSTe中的一种或多种;III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP以及InAlNP中的一种或多种;I−III−VI族化合物选自CuInS 2、CuInSe 2以及AgInS 2中的一种或多种;和/或电子传输层的材料选自ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnO、ZnSnO、ZnLiO以及InSnO中的一种或多种材料的组合。
本申请实施例还提供一种发光器件的制备方法,请参阅图8,图8是本申请实施例提供的一种发光器件的制备方法的流程示意图,该发光器件的制备方法包括如下步骤:
步骤S1,在基板上依次制备阳极及发光层。
本步骤中,基板的种类没有限制。在一实施例中,衬底可以为常规使用的衬底,例如可以是刚性衬底,材料为玻璃;还可以是柔性衬底,材料为聚酰亚胺。之后在基板上依次制备阳极、空穴注入层、空穴传输层及发光层,其制备方法可以使用溅射、蒸镀、涂布及喷墨打印中的任一种制备方法制备阳极、空穴注入层、空穴传输层及发光层。
步骤S2:通过自组装处理,在发光层上形成单层绝缘纳米颗粒薄膜,以制备得到辅助功能层。
在本步骤中,可以是提供纳米颗粒,将纳米颗粒置于发光层上,采用预设方法对纳米颗粒进行排列,以制备得到辅助功能层,其中,本此步骤中使用的自组装处理是利用当纳米材料分散于液体表面时,受到表面张力的作用,而自发形成的六角密排结构(如:蜂窝结构),从而使其表面能更低更有利于形成能带结构,便于能量传输(电子或光源)。
在本步骤中,在得到纳米颗粒后,可以直接将所获得的纳米球颗粒置于发光层上,采用自组织的方法对纳米颗粒进行周期有序的排列,从而制备得到绝缘纳米薄膜。
在一实施例中,可以通过机械设备或人工筛选的方式获得尺寸均一的纳米颗粒,之后采用自组织的方法对纳米颗粒进行周期有序的排列,从而制备得到单层绝缘纳米薄膜。
在一实施例中,所使用的纳米颗粒包括有机纳米颗粒和无机纳米颗粒。
当对无机纳米颗粒进行刻蚀时,则使用酸性溶液对无机纳米颗粒进行第一刻蚀处理,其刻蚀条件包括酸性溶液的浓度为0~100mg/mL,刻蚀时间为0~5min;或使用反应离子刻蚀方法对有机纳米颗粒进行第二刻蚀处理,其刻蚀条件包括刻蚀流速为1-200sccm,刻蚀功率为0.1-100W,刻蚀时间为1-500s,刻蚀气体包括氧气、四氟化碳的至少之一。
当对有机纳米颗粒进行第二刻蚀处理时,则使用有机溶剂对有机纳米颗粒进行刻蚀,其有机溶剂包括:氯苯或DMF,刻蚀时间为0~5min,使用反应离子刻蚀方法对有机纳米颗粒进行刻蚀时,其反应气体包括氧气和四氟化碳中的一种或多种。
步骤S3:在辅助功能层上覆盖电子传输材料,以制备得到电子传输层。
在本步骤中,在辅助功能层上填充电子传输材料以制备得到电子传输层,由于所制备的辅助功能层是通过纳米球排列而得到的纳米薄膜,为了能够获得很好的出光率和均匀出光的效果,需要使用电子传输材料填充纳米球之间的距离。
可选的,在本步骤中,电子传输材料可以是ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、TiLiO、ZnAlO、ZnO、ZnSnO、ZnLiO以及InSnO中的一种或多种。
步骤S4:在电子传输层上形成阴极。
可选的,在电子传输层上制备阴极后,还需要对基板、阳极、空穴注入层、空穴传输层、发光层、辅助功能层、电子传输层及阴极进行封装,得到发光器件。
其中,封装材料可以是丙烯酸树脂或环氧树脂,封装可以是机器封装或手动封装,可以采用紫外固化胶封,进行封装步骤的环境中,氧气和水的浓度均低于0.1ppm,以保证光电器件的稳定性。
本申请实施例还提供一种显示装置,包括本申请实施例中的上述光电器件。该显示装置可以为任何具有显示功能的电子产品,电子产品包括但不限于是智能手机、平板电脑、笔记本电脑、数码相机、数码摄像机、智能可穿戴设备、智能称重电子秤、车载显示器、电视机或电子书阅读器,其中,智能可穿戴设备例如可以是智能手环、智能手表、虚拟现实(Virtual Reality,VR)头盔等。
下面通过具体实施例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
本实施例提供了一种发光器件的制备方法,该发光器件可以是QLED,具体制备方法包括以下步骤:
S11,在透明衬底上通过溅射或蒸镀的制备方法依次制备阳极、空穴注入层、空穴传输层和发光层。
S12,选取尺寸均一的纳米球,采用自组织方法,在发光层上制备呈周期性排列的单层纳米球薄膜,纳米球为正六形纳米球体,其尺寸范围为10~200nm,纳米球材质为绝缘,纳米球材质既可以是无机材料,也可以是有机材料。
可选的,为了能够保证出光效率以及均匀出光,需要刻蚀所制备得到的单层且周期有序排列的正六形的绝缘纳米球薄膜层,以减小纳米球的尺寸,增大纳米球直接的间隙。而为了能够保证出光的均匀性,在制备电子传输层时,还需要使用电子传输材料填充由纳米球排列所留下的纳米球缝隙,并且为了保证发光器件的稳定,需要使用电子传输材料将绝缘纳米球薄膜层完全覆盖。
S13,在绝缘纳米球薄膜层上方,继续制备电子传输层,可获得具有下凸点结构的电子传输层。且下凸点结构呈正六角分布,类似苯环中C原子的分布结构。
S14,在电子传输层上继续制备第二电极,并进行封装,以获得QLED器件。
可选的,在本实施例中,第一电极为阳极,第二电极为阴极。
可选的,为了能够保证出光效率以及均匀出光,需要刻蚀所制备得到的单层且周期有序排列的正六形的绝缘纳米球薄膜层,以减小纳米球的尺寸,增大纳米球直接的间隙。而为了能够保证出光的均匀性,在制备电子传输层时,还需要使用电子传输材料填充由纳米球排列所留下的纳米球缝隙,并且为了保证发光器件的稳定,需要使用电子传输材料将绝缘纳米球薄膜层完全覆盖。
实施例2
本实施例与上述实施例的区别在于,首先制备空穴注入层、空穴传输层、发光层时,还可以采用涂布、喷墨打印等方法,其次,在本实施例中所选用的纳米球为无机纳米球,在对无机纳米进行处理时,其无机纳米球的材质可以是二氧化硅;利用乙酸对二氧化硅纳米球进行部分刻蚀,乙酸溶液浓度可为1~100mg/mL,刻蚀时间为10s ~5min。刻蚀完成后,可用乙醇溶液去除残留乙酸,随后可将基板晾干或低温下退火,以去除残留乙醇。
实施例3
本实施例与上述实施例的区别在于,在本实施例中所选用的纳米球为有机纳米球时,如聚苯乙烯、PMMA、PGMA等,可用有机溶剂对聚苯乙烯纳米球进行部分刻蚀,如N,N-二甲基甲酰胺(DMF)、氯苯等,刻蚀时间可以为10s ~5min,刻蚀完成后可用乙醇溶液去除残留有机溶剂,随后可将基板晾干或低温下退火,以去除残留乙醇。亦可选用RIE刻蚀方法对聚苯乙烯纳米球进行刻蚀,刻蚀气氛可为氧气、四氟化碳等的单一/混合气流,流速可为1~200sccm,刻蚀功率可为0.1~100W,刻蚀时间可为1~500s。
在上述实施例中,通过在电子传输层和发光层之间引入由六边形绝缘纳米球呈周期有序且紧密排列所形成的薄膜层,利用该薄膜层可以使电子传输层的下表面形成具有正六角分布的下凸点结构,从而形成类似于苯环的交联结构。在这种结构下,当电子从发光层向电子传输层注入时,由于交联结构的优势,电子更倾向于沿着这些具有正六角分布的结构进行传输,以形成了类似苯环中的“大π键”效果,进一步使其发光像素点中的电子云排布更为均匀、更稳定,最终使得发光器件的发光均匀性得到极大改善。
以上对本申请实施例所提供的一种发光器件、发光器件的制备方法及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种发光器件,其中,包括:
    依次层叠设置的阳极、发光层、辅助功能层、电子传输层和阴极;
    其中,所述辅助功能层包括绝缘纳米颗粒薄膜,所述绝缘纳米颗粒薄膜包含多个绝缘纳米颗粒。
  2. 根据权利要求1所述的发光器件,其中,所述绝缘纳米颗粒为纳米球或纳米柱。
  3. 根据权利要求1或2所述的发光器件,其中,所述辅助功能层由单层绝缘纳米颗粒薄膜组成。
  4. 根据权利要求3所述的发光器件,其中,所述单层绝缘纳米颗粒薄膜包括单层排布的多个绝缘纳米颗粒,且多个所述绝缘纳米颗粒呈周期性排列。
  5. 根据权利要求3或4所述的发光器件,其中,在所述单层绝缘纳米颗粒薄膜中,多个所述绝缘纳米颗粒呈六角阵列排列。
  6. 根据权利要求1至5任一项中所述的发光器件,其中,所述绝缘纳米颗粒的透光率大于95%。
  7. 根据权利要求1至6任一项中所述的发光器件,其中,所述绝缘纳米颗粒的形成材料包括二氧化硅、聚苯乙烯、PMMA以及PGMA中的一种或多种。
  8. 根据权利要求1至7任一项中所述的发光器件,其中,所述绝缘纳米颗粒的粒径为10nm-200nm。
  9. 根据权利要求1至8任一项中所述的发光器件,其中,所述辅助功能层的厚度为10nm-200nm。
  10. 根据权利要求1至9任一项中所述的发光器件,其中,所述辅助功能层还包括多个凸点结构,所述多个凸点结构填充于相邻所述绝缘纳米颗粒的间隙中;
    其中,所述凸点结构为苯环的交联结构。
  11. 根据权利要求1至10任一项中所述的发光器件,其中,所述电子传输层的材料选自ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、TiLiO、ZnAlO、ZnO、ZnSnO、ZnLiO以及InSnO中的一种或多种。
  12. 一种发光器件的制备方法,其中,包括如下步骤:
    在基板上依次制备阳极及发光层;
    通过自组装处理,在所述发光层上形成单层绝缘纳米颗粒薄膜,所述单层绝缘纳米颗粒薄膜包括多个绝缘纳米颗粒,以制备得到辅助功能层;
    在所述辅助功能层上覆盖电子传输材料,以制备得到电子传输层;以及
    在所述电子传输层上形成阴极。
  13. 根据权利要求12所述的制备方法,其中,所述通过自组装处理,在所述发光层上形成单层绝缘纳米颗粒薄膜的步骤之后,且在获得所述辅助功能层的步骤之前,所述制备方法还包括步骤:使用酸性溶液对所述单层绝缘纳米颗粒薄膜中的多个所述绝缘纳米颗粒进行第一刻蚀处理,所述绝缘纳米颗粒为无机材料。
  14. 根据权利要求13所述的制备方法,其中,在所述第一刻蚀处理中,所述酸性溶液的浓度为1~100mg/mL,刻蚀时间为10s ~5min。
  15. 根据权利要求12所述的制备方法,其中,所述通过自组装处理,在所述发光层上形成单层绝缘纳米颗粒薄膜的步骤之后,且在获得所述辅助功能层的步骤之前,所述制备方法还包括步骤:使用反应离子刻蚀方法以及有机溶剂方法中的一种或多种,以对所述单层绝缘纳米颗粒薄膜中的多个所述绝缘纳米颗粒进行第二刻蚀处理,其中,所述绝缘纳米颗粒为有机材料。
  16. 根据权利要求15所述的制备方法,其中,采用所述反应离子刻蚀方法对所述单层绝缘纳米颗粒薄膜中的多个所述绝缘纳米颗粒进行第二刻蚀处理,其中,刻蚀流速为1~200sccm,刻蚀功率为0.1~100W,刻蚀时间为1~500s,刻蚀气体包括氧气以及四氟化碳中的一种或多种。
  17. 根据权利要求15所述的制备方法,其中,采用所述有机溶剂方法对所述单层绝缘纳米颗粒薄膜中的多个所述绝缘纳米颗粒进行第二刻蚀处理,其中,所述有机溶剂包括氯苯以及N,N-二甲基甲酰胺中的一种或多种,刻蚀时间为10s ~5min。
  18. 一种显示装置,其中,包括发光器件,所述发光器件包括:
    依次层叠设置的阳极、发光层、辅助功能层、电子传输层和阴极;
    其中,所述辅助功能层包括绝缘纳米颗粒薄膜,所述绝缘纳米颗粒薄膜包含多个绝缘纳米颗粒。
  19. 根据权利要求18所述的显示装置,其中,所述辅助功能层由单层绝缘纳米颗粒薄膜组成。
  20. 根据权利要求19所述的显示装置,其中,在所述单层绝缘纳米颗粒薄膜中,多个所述绝缘纳米颗粒呈六角阵列排列。
PCT/CN2022/129098 2022-02-22 2022-11-01 发光器件、发光器件的制备方法及显示装置 WO2023160002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210163180.XA CN116709799A (zh) 2022-02-22 2022-02-22 一种发光器件及其制备方法、显示装置
CN202210163180.X 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023160002A1 true WO2023160002A1 (zh) 2023-08-31

Family

ID=87764606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129098 WO2023160002A1 (zh) 2022-02-22 2022-11-01 发光器件、发光器件的制备方法及显示装置

Country Status (2)

Country Link
CN (1) CN116709799A (zh)
WO (1) WO2023160002A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080218068A1 (en) * 2007-03-05 2008-09-11 Cok Ronald S Patterned inorganic led device
CN105070848A (zh) * 2015-09-11 2015-11-18 上海天马有机发电显示技术有限公司 显示面板、有机发光器件及其制备方法
CN108172603A (zh) * 2018-01-03 2018-06-15 京东方科技集团股份有限公司 一种量子点发光二极管基板及其制备方法、显示面板
CN109196681A (zh) * 2016-04-29 2019-01-11 住友化学株式会社 电致发光器件
CN110021696A (zh) * 2017-11-28 2019-07-16 乐金显示有限公司 发光体以及包括其的发光膜、发光二极管和发光装置
CN111129320A (zh) * 2018-10-31 2020-05-08 Tcl集团股份有限公司 一种量子点发光二极管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080218068A1 (en) * 2007-03-05 2008-09-11 Cok Ronald S Patterned inorganic led device
CN105070848A (zh) * 2015-09-11 2015-11-18 上海天马有机发电显示技术有限公司 显示面板、有机发光器件及其制备方法
CN109196681A (zh) * 2016-04-29 2019-01-11 住友化学株式会社 电致发光器件
CN110021696A (zh) * 2017-11-28 2019-07-16 乐金显示有限公司 发光体以及包括其的发光膜、发光二极管和发光装置
CN108172603A (zh) * 2018-01-03 2018-06-15 京东方科技集团股份有限公司 一种量子点发光二极管基板及其制备方法、显示面板
CN111129320A (zh) * 2018-10-31 2020-05-08 Tcl集团股份有限公司 一种量子点发光二极管

Also Published As

Publication number Publication date
CN116709799A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
Kim et al. Bright and stable quantum dots and their applications in full-color displays
KR102038170B1 (ko) 평탄한 이방성의 콜로이드성 반도체 나노결정들을 포함하는 발광 디바이스 및 이러한 디바이스의 제조 방법
US11069753B2 (en) Display apparatus and method of manufacturing the same
JP2020184544A (ja) 電子素子における半導体粒子
US20080278063A1 (en) Electroluminescent device having improved power distribution
CN1759160A (zh) 带量子点的电致发光器件
JP2010522962A (ja) スペーサ要素を有するエレクトロルミネッセンス・デバイス
KR102607857B1 (ko) 코어쉘 구조의 나노 입자를 포함하는 발광 소자
US11437543B2 (en) Quantum rod light emitting diode device
Wang et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing
WO2022205515A1 (zh) Oled 显示面板与显示装置
WO2023160002A1 (zh) 发光器件、发光器件的制备方法及显示装置
CN113871542A (zh) 发光二极管器件及其制备方法、显示面板
WO2023088022A1 (zh) 发光器件、发光器件的制备方法及显示装置
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
WO2024000305A1 (zh) 发光面板及其制备方法、发光装置
WO2024000304A1 (zh) 发光器件、发光基板及发光装置
WO2023056838A1 (zh) 薄膜及其制备方法、光电器件
WO2023197658A1 (zh) 发光器件、发光器件的制备方法及显示装置
US20240172515A1 (en) Display apparatus
WO2024125109A1 (zh) 发光器件及其制备方法、显示装置
WO2023078138A1 (zh) 一种光电器件及其制备方法、显示装置
CN214012960U (zh) 微发光二极管量子点基板结构
WO2023123251A1 (zh) 显示面板和彩膜基板
Ayoub et al. Metal oxides in quantum-dot-based LEDs and their applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928264

Country of ref document: EP

Kind code of ref document: A1