WO2023159996A1 - 一种水合盐热化学储热复合材料及其制备方法与应用 - Google Patents

一种水合盐热化学储热复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023159996A1
WO2023159996A1 PCT/CN2022/128475 CN2022128475W WO2023159996A1 WO 2023159996 A1 WO2023159996 A1 WO 2023159996A1 CN 2022128475 W CN2022128475 W CN 2022128475W WO 2023159996 A1 WO2023159996 A1 WO 2023159996A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
hydrated salt
composite material
thermochemical
thermochemical heat
Prior art date
Application number
PCT/CN2022/128475
Other languages
English (en)
French (fr)
Inventor
张正国
林绍
凌子夜
方晓明
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023159996A1 publication Critical patent/WO2023159996A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the field of thermochemical heat storage and the field of battery thermal runaway, and relates to a hydrated salt thermochemical heat storage composite material and its preparation method and application.
  • the application relates to a thermochemical heat storage model and its establishment process.
  • lithium-ion battery accidents continue to occur frequently, such as damage to electric vehicle battery packs and fires, and fires in energy storage power station battery modules.
  • lithium-ion batteries are subjected to thermal abuse, electrical abuse, and mechanical abuse, the internal substances continue to decompose and generate heat, which makes the battery temperature continue to rise, causing thermal runaway and the spread of thermal runaway.
  • the decomposition process of the internal materials of the battery is mainly divided into four parts: the decomposition of the SEI film occurs at 70 ⁇ 120°C, the decomposition of the negative electrode occurs at 120 ⁇ 200°C, the decomposition of the positive electrode occurs at 200 ⁇ 230°C, and the decomposition occurs at 230 ⁇ 200°C.
  • Decomposition of the electrolyte occurs at 243°C. After a series of reactions, the temperature of the battery can reach 700°C and above, which is seriously harmful (Qingsong Wang, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73:95-131). Therefore, how to alleviate battery thermal runaway and curb the spread of battery thermal runaway is an important research field.
  • the current solutions can be divided into internal measures and external measures.
  • Internal measures are to improve the stability of battery electrodes, electrolytes, and diaphragms, thereby increasing the temperature critical point at which irreversible thermal runaway occurs in the battery, such as microencapsulation of electrode materials (Jinyun Liu, et al. A Polysulfides-Confined All-in-One Porous Microcapsule Lithium–Sulfur Battery Cathode[J]. Small, 2021, 17(41), 2103051), electrolyte adding flame retardant (L.Kong, et al. Li-ion battery fire hazards and safety strategies[J].
  • the second is to fill the battery cells with low thermal conductivity endothermic phase change materials or high thermal conductivity endothermic phase change materials to alleviate thermal runaway and thermal runaway spread through the heat storage process of the material itself, basically fumed silica or expanded graphite Composites with paraffin phase change materials (Wilke S, Schweitzer B, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources.
  • the hydrated salt material will thermally decompose at a high temperature (about 100°C), and its crystal water will volatilize and escape, taking away a large amount of heat.
  • Common hydrated salt thermochemical heat storage models are all kinetic models, and their modeling methods are to test the thermal decomposition of materials at different temperature rise rates (such as 5 K/min, 10 K/min, 15 K/min, etc.), and then calculate its activation energy, pre-exponential factor and other parameters through the Arrhenius formula.
  • the obtained model parameters are extremely dependent on the material test conditions, and the calculation is cumbersome.
  • the amount of heat released is huge, and the heating rate of the material is relatively fast. It is difficult to match the test heating rate with the actual application scenario.
  • the obtained thermochemical heat storage model may not be applicable to the actual situation where the material is rapidly heated and decomposed. Therefore, a more simple and effective thermochemical heat storage model is needed to describe the thermochemical heat storage process of hydrated salts.
  • the present invention aims to provide a hydrated salt thermochemical heat storage composite material whose decomposition temperature is relatively matched with the starting temperature of battery thermal runaway, and whose decomposition enthalpy is relatively large, and its preparation method, which is filled between battery modules and used It is used to alleviate battery thermal runaway and curb the spread of thermal runaway.
  • the invention provides a hydrated salt thermochemical heat storage composite material, which comprises a high thermal conductivity porous adsorption carrier, a hydrated salt heat storage material and a reinforcing material.
  • the porous adsorption carrier with high thermal conductivity serves as the basic support framework, which provides a thermal conduction path and also prevents the leakage of hydrated salts.
  • the highly thermally conductive porous adsorption carrier is one of hydrophilic modified expanded graphite, hydrophilic modified silicon nitride, and hydrophilic modified silicon carbide, accounting for 10% to 20% of the total.
  • the hydrated salt heat storage material is filled in the carrier to play the role of thermochemical heat storage.
  • the hydrated salt heat storage material is a blended salt of disodium hydrogen phosphate dodecahydrate and sodium acetate trihydrate, the mass ratio of disodium hydrogen phosphate dodecahydrate is 90% ⁇ 98%, and the mass ratio of sodium acetate trihydrate The proportion is 2% ⁇ 10%; the blended salt accounts for 70% ⁇ 80% of the total.
  • Reinforcement materials are used to enhance the thermal conduction pathways and to enhance the mechanical properties of the material after compression molding.
  • the reinforcing material is one or more of alumina fibers, aluminum nitride fibers, carbon fibers, alumina particles, and fine graphite powder, accounting for 5-10% of the total.
  • the present invention provides a preparation method of the above-mentioned hydrated salt thermochemical heat storage composite material, comprising the following steps:
  • the drying temperature in step (1) is 100-120° C.
  • the drying time is 24-48 hours.
  • the surfactant in step (1) is Tween 60 or octylphenyl polyoxyethylene ether.
  • the heating and stirring temperature in step (1) is 60-70° C., and the heating and stirring time is 1-3 hours.
  • the melting temperature in step (2) is 60-70°C.
  • the drying temperature in step (3) is 100-120° C.
  • the drying time is 24-48 hours.
  • the heating and stirring temperature in step (4) is 60-70°C, and the heating and stirring time is 4-6h; the cooling temperature in step (4) is 10-20°C, and the stirring time is 1-2h .
  • the present invention also provides the application of the above-mentioned hydrated salt thermochemical heat storage composite material in the prevention of battery thermal runaway.
  • the present invention also provides a simple and effective hydrated salt thermochemical heat storage model, which is used to describe the thermochemical heat storage process of hydrated salt thermochemical heat storage composite materials by constructing a hydrated salt thermochemical heat storage model, so as to facilitate optimization The amount of hydrated salt thermochemical heat storage composite in the module and the estimated temperature in case of thermal runaway of the battery.
  • thermochemical heat storage model of salt hydrate is a lumped model, which combines the sensible heat and latent heat of the material into the apparent specific heat capacity, and regards the thermochemical heat storage process as a relationship between the thermochemical decomposition start temperature, termination temperature, and decomposition enthalpy. value, real-time temperature-related quasi-linear process.
  • the present invention has the following advantages and beneficial effects:
  • the hydrated salt thermochemical heat storage composite material prepared by the present invention has a latent heat value of 110 ⁇ 150J/g at 34 ⁇ 60°C, and a decomposition enthalpy of 1100 ⁇ 1300J/g at 85 ⁇ 110°C; its decomposition temperature and The decomposition enthalpy matches the starting temperature of the thermal runaway of the battery and the unit heat release when the battery is out of control.
  • the hydrated salt thermochemical heat storage composite material prepared by the present invention can be filled in battery modules.
  • the battery When the battery is subjected to electrical abuse, mechanical abuse, and thermal abuse and thermal runaway occurs, it can effectively alleviate the thermal runaway of the battery and curb the spread of thermal runaway .
  • the hydrated salt thermochemical heat storage composite material prepared by the present invention has good thermal conductivity (when the density is 600 ⁇ 1000kg/m3, the thermal conductivity is 6.26 ⁇ 14.56 W/(m ⁇ K)) and compressive strength .
  • Fig. 1 is the DSC-TG figure of the hydrated salt thermochemical heat storage composite material that embodiment 1 gains;
  • Fig. 2 is the thermal conductivity diagram under the different densities of the hydrated salt thermochemical heat storage composite material gained in embodiment 1;
  • Fig. 3 is the compressive strength figure of the hydrated salt thermochemical heat storage composite material gained in embodiment 1;
  • Fig. 4 is the modeling process chart of hydrated salt thermochemical heat storage model
  • Fig. 5 is the actual temperature curve of the hydrated salt thermochemical heat storage composite material obtained in Example 1 in the battery module and the simulated temperature curve predicted by the model in the hydrated salt thermochemical heat storage model.
  • Figure 1 is the DSC-TG diagram of the hydrated salt thermochemical heat storage composite material obtained in Example 1.
  • the thermochemical heat storage composite material has a latent heat value of 116J/g at 34 ⁇ 60°C and a latent heat value of 1100J/g at 85 ⁇ 110°C.
  • Fig. 2 is the thermal conductivity diagram of the hydrated salt thermochemical heat storage composite material obtained in Example 1. As shown in Fig.
  • thermochemical heat storage composite material has a density of 600 kg/m3, 700 kg/m kg/m3, 800 kg/m3, 900
  • the thermal conductivity of kg/m3 and 1000kg/m3 are 6.26 respectively W/(m ⁇ K), 9.21 W/(m ⁇ K), 10.97 W/(m ⁇ K), 12.71 W/(m K), 14.56W/(m K), can quickly guide heat to the entire module to avoid heat accumulation.
  • Fig. 3 is the compressive strength diagram of the hydrated salt thermochemical heat storage composite material obtained in Example 1, as can be seen from Fig. 3, compared with the paraffin-based heat-absorbing material, the hydrated salt thermochemical heat storage composite material has better Compression resistance can effectively resist the pressure shock generated when the battery is out of control, and avoid serious damage to the material as a whole.
  • thermochemical heat storage composite material obtained in this example has a latent heat value of 132 J/g at 34-60°C, and a decomposition enthalpy of 1250 J/g at 85-110°C; its DSC-TG diagram is similar to that in Figure 1; its thermal Conductivity is close to Example 1.
  • thermochemical heat storage composite material obtained in this example has a latent heat value of 130 J/g at 34-60°C, and a decomposition enthalpy of 1230 J/g at 85-100°C; its DSC-TG diagram is similar to that in Figure 1; its thermal conductivity Rate is close to Example 1.
  • the hydrated salt thermochemical heat storage material obtained in Example 1 is pressed at a density of 600kg/m3 into a block with a width and height of 125mm*110mm*57mm, and a total of 20 complete holes with a diameter of 18mm in 4*5 are distributed in the block.
  • the pitch is 7mm.
  • 18650 batteries with a diameter of 18mm and a height of 65mm are placed in the holes. Trigger the thermal runaway of the battery, as shown in Figure 5, its maximum temperature is about 130°C, far lower than 700°C, and the temperature of adjacent batteries (adjacent electric heating rods) is all lower than 100°C, indicating that the hydrated salt thermochemical heat storage Composite materials can effectively alleviate battery thermal runaway and inhibit the spread of thermal runaway.
  • FIG 4 is the modeling process diagram of the hydrated salt thermochemical heat storage model.
  • the total heat storage is composed of sensible heat storage, latent heat storage and thermochemical heat storage.
  • the thermochemical heat storage process is regarded as a quasi-linear process, which is only related to the decomposition start temperature, end temperature, decomposition enthalpy, and real-time temperature.
  • the latent heat storage and sensible heat storage are combined into the apparent specific heat capacity.
  • thermochemical heat storage composite material obtained in Example 1 was tested by TG-DSC, and its decomposition initiation temperature was 85°C, decomposition termination temperature was 110°C, and decomposition enthalpy was 1100J/g; according to the modeling in Figure 4 Process diagram, the mathematical expression of its thermochemical decomposition process is , where T is the real-time temperature of the material; the temperature curve predicted by the model is shown in Figure 5, which is highly consistent with the actual temperature curve, indicating that the modeling method can effectively predict the temperature change of the battery and the material, and is reliable and simple sex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

一种水合盐热化学储热复合材料及其制备方法与应用。通过把水合盐与高导热材料、增强材料进行复合,得到具有优异热化学储热性能、良好导热性能与抗压性能的水合盐热化学储能复合材料。该复合材料可填充于电池模组,当电池受到电滥用、机械滥用、热滥用发生热失控时,可以缓解电池热失控与遏制电池热失控蔓延。此外,提出了热化学储热原理可用于电池热失控防护中,并构建一种用于描述材料热化学储热过程的简易模型,以便于快速合理地预估电池的温度以及优化模组中复合材料的用量。

Description

一种水合盐热化学储热复合材料及其制备方法与应用 技术领域
本发明涉及热化学储热领域以及电池热失控领域,涉及一种水合盐热化学储热复合材料及其制备方法与应用,所述应用涉及一种热化学储热模型及其建立过程。
背景技术
随着锂离子电池的大规模应用与锂离子电池容量的不断提升,锂离子电池事故不断频发,比如电动汽车电池包受损起火、储能电站电池模组失火等。锂离子电池在受到热滥用、电气滥用、机械滥用时,内部物质不断分解产热,使得电池温度不断上升从而引起热失控以及热失控蔓延。有文献指出,电池内部物质分解过程主要分为四部分:在70~120℃时发生SEI膜的分解,在120~200℃发生负极的分解,在200~230℃发生正极的分解,在230~243℃发生电解液的分解。经过一系列反应后,电池的温度可以达到700℃及以上,具有严重的危害性(Qingsong Wang, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019,73:95-131)。因此,如何缓解电池热失控以及遏制电池热失控蔓延是一个重要的研究领域。
目前的解决措施可以分为内部措施与外部措施。内部措施为提高电池电极、电解液、隔膜的稳定性,从而提高电池发生不可逆的热失控的温度临界点,如电极材料微封装(Jinyun Liu, et al. A Polysulfides-Confined All-in-One Porous Microcapsule Lithium–Sulfur Battery Cathode[J]. Small, 2021, 17(41), 2103051)、电解液添加阻燃剂(L.Kong, et al. Li-ion battery fire hazards and safety strategies[J]. Energies, 2018, 11:1-11)、选用陶瓷隔膜或多层隔膜(C.J.Orendorff, et al. The role of separators in lithium-ion cell safety[J]. Electrochem Soc Inter face, 2012, 12:61-65)等,但工艺复杂成本高、电池种类繁多无统一的衡量标准,普适性较差,且电池单体在遭受机械滥用,结构发生破坏,热失控已经发生的情况下,内部措施对于遏制热失控蔓延的效果不大。外部措施为把单体电池热失控产生的大量热量移走,且尽可能不波及相邻电池,避免热失控蔓延。外部措施大致分为以下两种:一是在电池单体间设置隔热层,如气凝胶层,采用风冷或者液冷移走热量;但风冷基本不能遏制热失控蔓延,反而会促进热失控的传播(张志鸿, 牟俊彦, 孟玉发, 风冷圆柱形锂离子电池系统热失控扩展特性[J].储能科学与技术,2021,10(02):658-663);液冷可以缓解热失控以及遏制热失控蔓延,但对冷却部件的密封性能要求较高,此外由于电池热失控放热量巨大,会导致冷却液流量、泵功、压降迅速增加,对液冷组件的损耗很大(Xu J, Lan C, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Applied Thermal Engineering. 2017, 110:883-90);此外,电池热失控伴随着气体喷射情况,容易损坏液冷组件引起冷却液泄露。二是在电池单体间填充低热导吸热相变材料或者高热导吸热相变材料,通过材料本身的储热过程来缓解热失控与热失控蔓延,基本上是气相二氧化硅或者膨胀石墨与石蜡类相变材料的复合材料(Wilke S, Schweitzer B, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources. 2017;340:51-9),其固液相变温度均低于50℃,远低于电池的热失控起始温度(120℃),其相变潜热值为150J/g,远低于电池热失控时释放的热量(~880J/g),因此缓解热失控蔓延的效果一般。相比于风冷以及液冷,填充吸热相变材料在电池间不需要设置额外的动力源,且结构上更为方便,但需要找到相变温度与热失控起始温度相匹配,相变焓值较大的材料。
水合盐材料在温度较高的情况下(100℃左右)会发生热分解,其结晶水会挥发逃逸,带走大量的热量。常见的水合盐热化学储热模型均为动力学模型,其建模方法均为测试不同温升速率下材料的加热分解情况(如5 K/min,10 K/min,15 K/min不等),然后通过阿伦尼乌斯公式计算其活化能、指前因子等参数,得到的模型参数极其依赖于材料测试条件,且计算繁琐。此外,电池热失控时放热量巨大,对材料的加热速度较快,测试加热速率难以于实际应用场景匹配,所获得的热化学储热模型不一定适用于材料被快速加热分解的实际情况。因此,需要有更为简易有效的热化学储热模型来描述水合盐的热化学储热过程。
技术解决方案
本发明旨在提供一种分解温度与电池热失控起始温度较为匹配,且分解焓值较大的水合盐热化学储热复合材料及其制备方法,并将其填充在电池模组间,用于缓解电池热失控以及遏制热失控传播。
为了实现上述目的,本发明的技术方案如下:
本发明提供一种水合盐热化学储热复合材料,所述复合材料包括高导热多孔吸附载体、水合盐储热材料以及增强材料。
高导热多孔吸附载体作为基本支撑骨架,提供导热通路的同时也可防止水合盐泄露。
优选地,所述高导热多孔吸附载体为亲水改性膨胀石墨、亲水改性氮化硅、亲水改性碳化硅的其中一种,占总量的10%~20%。
水合盐储热材料填充在载体中发挥热化学储热作用。
优选地,所述水合盐储热材料为十二水合磷酸氢二钠以及三水醋酸钠的共混盐,十二水合磷酸氢二钠质量占比为90%~98%,三水醋酸钠质量占比为2%~10%;共混盐占总量的70%~80%。
增强材料用于增强导热通路以及增强材料压制成型后的力学性能。
优选地,所述增强材料为氧化铝纤维、氮化铝纤维、碳纤维、氧化铝颗粒、细石墨粉中的一种或几种,占总量的5~10%。
本发明提供了上述一种水合盐热化学储热复合材料的制备方法,包括如下步骤:
(1)将膨胀石墨、氮化硅粉末、碳化硅粉末其中一种烘干后与表面活性剂混合,密封加热搅拌,随后烘干得到高导热多孔吸附载体材料,备用;
(2)将十二水合磷酸氢二钠与三水醋酸钠分别溶于水后共混并完全熔化,得到水合盐储热材料,备用;
(3)将增强材料烘干,备用;
(4)将高导热多孔吸附载体材料、水合盐储热材料、增强材料一起密封加热搅拌,随后冷却并搅拌,得到所述水合盐热化学储热复合材料。
优选地,步骤(1)所述烘干的温度为100~120℃,烘干的时间为24~48h。
优选地,步骤(1)所述表面活性剂为吐温60或辛基苯基聚氧乙烯醚。
优选地,步骤(1)所述加热搅拌的温度为60~70℃,加热搅拌的时间为1~3h。
优选地,步骤(2)所述熔化的温度为60~70℃。
优选地,步骤(3)所述烘干的温度为100~120℃,烘干的时间为24~48h。
优选地,步骤(4)所述加热搅拌的温度为60~70℃,加热搅拌的时间为4~6h;步骤(4)所述冷却的温度为10~20℃,搅拌的时间为1~2h。
本发明还提供了上述水合盐热化学储热复合材料在电池热失控防护中的应用。
此外,本发明还提供了一种简易有效的水合盐热化学储热模型,通过构建水合盐热化学储热模型用于描述水合盐热化学储热复合材料的热化学储热过程,以便于优化模组中水合盐热化学储热复合材料的用量以及预估电池热失控情况下的温度。
所述的水合盐热化学储热模型为集总模型,把材料的显热、潜热合并为表观比热容,把热化学储热过程看作一个与热化学分解起始温度、终止温度、分解焓值、实时温度有关的类线性过程。
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明制备的水合盐热化学储热复合材料,在34~60℃具有110~150J/g的潜热值,在85~110℃具有1100~1300J/g的分解焓;其分解温度以及分解焓均与电池热失控的起始温度以及失控时的单位放热量较为匹配。
(2)本发明制备的水合盐热化学储热复合材料,可填充于电池模组,当电池受到电滥用、机械滥用、热滥用发生热失控时,可以有效缓解电池热失控与遏制热失控蔓延。
(3)本发明制备的水合盐热化学储热复合材料具有良好的热导率(密度为600~1000kg/m³时,热导率为6.26~14.56 W/(m·K))以及抗压强度。
(4)本发明提出的水合盐热化学储热模型的模拟结果与实验的相对误差不超过5%,该模型可以准确描述材料的储热量,相比于常见的描述热化学过程的繁复的动力学模型要更为简单有效。
附图说明
图1为实施例1所得的水合盐热化学储热复合材料的DSC-TG图;
图2为实施例1所得的水合盐热化学储热复合材料不同密度下的热导率图;
图3为实施例1所得的水合盐热化学储热复合材料的抗压强度图;
图4为水合盐热化学储热模型的建模过程图;
图5为实施例1所得的水合盐热化学储热复合材料在电池模组中的实际温度曲线以及在水合盐热化学储热模型中通过模型预测的模拟温度曲线。
本发明的实施方式
实施例 1
(1)选用100目膨胀石墨,把膨胀石墨置于120℃烘箱中烘干24h,以去除吸附的空气中的水分。将膨胀石墨与吐温60按照96:4的质量比混合于密封的搅拌釜中,在60℃下搅拌3h,其中吐温60需先溶解于纯水中,并保证吐温60的水溶液完全润湿膨胀石墨。随后将改性后的膨胀石墨在120℃烘箱中烘干24h,以去除改性剂,从而获取亲水改性膨胀石墨。
(2)将十二水合磷酸氢二钠以及三水醋酸钠按照97:3的质量比共混,在65℃烘箱中完全熔融;将切成小段的氧化铝纤维在120℃烘箱中烘干24h。
(3)取亲水改性膨胀石墨、共混盐、氧化铝纤维按照20:70:10的比例混合于密封的搅拌釜中,在70℃下密封搅拌4h;随后在10℃下搅拌1h。从而获得所述水合盐热化学储热复合材料。
图1为实施例1所得的水合盐热化学储热复合材料的DSC-TG图,该热化学储热复合材料在34~60℃具有116J/g的潜热值,在85~110℃具有1100J/g的分解焓。图2为实施例1所得的水合盐热化学储热复合材料的热导率图,如图2所示,该热化学储热复合材料在密度600 kg/m³、700 kg/m³、800 kg/m³、900 kg/m³、1000kg/m³的热导率分别为6.26 W/(m·K)、9.21 W/(m·K)、10.97 W/(m·K)、12.71 W/(m·K)、14.56W/(m·K),可以快速地把热量引导至整个模组,避免热量的聚集。图3为实施例1所得的水合盐热化学储热复合材料的抗压强度图,从图3可以看出,相比于石蜡基吸热材料,水合盐热化学储热复合材料具有更好的抗压性能,可以有效抵御电池失控时所产生的压力冲击,避免材料整体出现严重破损。
实施例 2
(1)选用50目膨胀石墨,把膨胀石墨置于100℃烘箱中烘干48h,以去除吸附的空气中的水分。将膨胀石墨与辛基苯基聚氧乙烯醚按照96:4的质量比混合于密封的搅拌釜中,在65℃下搅拌2h,其中辛基苯基聚氧乙烯醚需先溶解于纯水中,并保证辛基苯基聚氧乙烯醚的水溶液完全润湿膨胀石墨。随后将改性后的膨胀石墨在110℃烘箱中烘干36h,以去除改性剂,从而获取亲水改性膨胀石墨。
(2)将十二水合磷酸氢二钠以及三水醋酸钠按照90:10的质量比共混,在70℃烘箱中完全熔融;将切成小段的氮化铝纤维在110℃烘箱中烘干36h。
(3)取亲水改性膨胀石墨、共混盐、氮化铝纤维按照10:80:10的比例混合于密封的搅拌釜中,在65℃下密封搅拌5h;随后在15℃下搅拌1.5h。从而获得所述水合盐热化学储热复合材料。
本实施例所得的热化学储热复合材料在34~60℃具有132J/g的潜热值,在85~110℃具有1250 J/g的分解焓;其DSC-TG图与图1类似;其热导率与实施例1相近。
实施例 3
(1)选用碳化硅粉末,把碳化硅粉末置于110℃烘箱中烘干36h,以去除吸附的空气中的水分。将碳化硅与吐温60按照96:4的质量比混合于密封的搅拌釜中,在70℃下搅拌1h,其中吐温60需先溶解于纯水中,并保证吐温60的水溶液完全润湿碳化硅粉末。随后将改性后的碳化硅在100℃烘箱中烘干48h,以去除改性剂,从而获取亲水改性碳化硅。
(2)将十二水合磷酸氢二钠以及三水醋酸钠按照98:2的质量比共混,在60℃烘箱中完全熔融;将切成小段的氧化铝纤维在100℃烘箱中烘干48h。
(3)取亲水改性碳化硅、共混盐、氧化铝纤维按照15:80:5的比例混合于密封的搅拌釜中,在60℃下密封搅拌6h;随后在20℃下搅拌2h。从而获得所述水合盐热化学储热复合材料。
本实施例所得热化学储热复合材料在34~60℃具有130J/g的潜热值,在85~100℃具有1230 J/g的分解焓;其DSC-TG图与图1类似;其热导率与实施例1相近。
实施例 4
将实施例1所得的水合盐热化学储热材料以600kg/m³的密度压制成长宽高为125mm*110mm*57mm的块体,块体中分布4*5共20个18mm直径的完全孔,孔间距为7mm。孔中均放置直径18mm,高度65mm的18650电池。触发电池发生热失控,如图5所示,其最高温度为130℃左右,远低于700℃,相邻电池(相邻电热棒)温度均低于100℃,说明该水合盐热化学储热复合材料可以有效缓解电池热失控与抑制热失控蔓延。
图4为水合盐热化学储热模型的建模过程图,总储热量由显热储热量、潜热储热量以及热化学储热量组成。把热化学储热过程看作一个类线性过程,只和分解起始温度,终止温度、分解焓值、实时温度有关,潜热储热量以及显热储热量则合并为表观比热容。将实施例1所得的水合盐热化学储热复合材料进行TG-DSC测试,得到其分解起始温度为85℃,分解终止温度为110℃,分解焓为1100J/g;根据图4的建模过程图,其热化学分解过程的数学表达式为 ,其中T为材料的实时温度;通过模型预测温度曲线如图5所示,与实际温度曲线的吻合度很高,说明该建模方法可以有效预测电池以及材料的温度变化,具有可靠性与简易性。
通过图4建立的模型对实施例1所得的水合盐热化学储热复合材料块体进行优化,在600 kg/m³的压实密度下,放入100个18650电池的模组,电池间填充水合盐热化学储热复合材料,把电池间距缩短至3mm。通过该模型优化模组中水合盐热化学储热复合材料的用量,仍然可以保证热失控触发电池温度在140℃左右,周围电池温度不低于100℃。
上述实施例用来解释说明本发明,本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明权力要求的保护范围之内。

Claims (10)

  1. 一种水合盐热化学储热复合材料,其特征在于,所述复合材料包括高导热多孔吸附载体、水合盐储热材料以及增强材料。
  2. 根据权利要求1所述的一种水合盐热化学储热复合材料,其特征在于,所述高导热多孔吸附载体为亲水改性膨胀石墨、亲水改性氮化硅、亲水改性碳化硅的其中一种。
  3. 根据权利要求1所述的一种水合盐热化学储热复合材料,其特征在于,所述水合盐储热材料为十二水合磷酸氢二钠以及三水醋酸钠的共混盐;其中,十二水合磷酸氢二钠的质量占比为90%~98%,三水醋酸钠的质量占比为2%~10%。
  4. 根据权利要求1所述的一种水合盐热化学储热复合材料,其特征在于,所述增强材料为碳纤维、氧化铝纤维、氮化铝纤维、氧化铝颗粒、细石墨粉中的一种或几种。
  5. 一种权利要求1-4任一项所述的水合盐热化学储热复合材料的制备方法,其特征在于,包括如下步骤:
    (1)将膨胀石墨、氮化硅粉末、碳化硅粉末其中一种烘干后与表面活性剂混合,密封加热搅拌,随后烘干得到高导热多孔吸附载体材料,备用;
    (2)将十二水合磷酸氢二钠与三水醋酸钠分别溶于水后共混并完全熔化,得到水合盐储热材料,备用;
    (3)将增强材料烘干,备用;
    (4)将高导热多孔吸附载体材料、水合盐储热材料、增强材料一起密封加热搅拌,随后冷却并搅拌,得到所述水合盐热化学储热复合材料。
  6. 根据权利要求5所述的一种水合盐热化学储热复合材料的制备方法,其特征在于,步骤(1)所述烘干的温度为100~120℃,烘干的时间为24~48 h;步骤(1)所述表面活性剂为吐温60或辛基苯基聚氧乙烯醚;步骤(1)所述加热搅拌的温度为60~70℃,加热搅拌的时间为1~3h。
  7. 根据权利要求5所述的一种水合盐热化学储热复合材料的制备方法,其特征在于,步骤(2)所述熔化的温度为60~70℃;步骤(3)所述烘干的温度为100~120℃,烘干的时间为24~48h。
  8. 根据权利要求5所述的一种水合盐热化学储热复合材料的制备方法,其特征在于,步骤(4)所述加热搅拌的温度为60~70℃,加热搅拌的时间为4~6h;步骤(4)所述冷却的温度为10~20℃,搅拌的时间为1~2h。
  9. 一种权利要求1-4任一项所述的水合盐热化学储热复合材料在电池热失控防护中的应用。
  10. 根据权利要求9所述的应用,其特征在于,通过构建水合盐热化学储热模型用于描述水合盐热化学储热复合材料的热化学储热过程;所述水合盐热化学储热模型把材料的显热、潜热合并为表观比热容,把热化学储热过程看作一个与热化学分解起始温度、终止温度、分解焓值、实时温度有关的类线性过程。
PCT/CN2022/128475 2022-02-28 2022-10-31 一种水合盐热化学储热复合材料及其制备方法与应用 WO2023159996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210193382.9 2022-02-28
CN202210193382.9A CN114539983A (zh) 2022-02-28 2022-02-28 一种水合盐热化学储热复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023159996A1 true WO2023159996A1 (zh) 2023-08-31

Family

ID=81661934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128475 WO2023159996A1 (zh) 2022-02-28 2022-10-31 一种水合盐热化学储热复合材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114539983A (zh)
WO (1) WO2023159996A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539983A (zh) * 2022-02-28 2022-05-27 华南理工大学 一种水合盐热化学储热复合材料及其制备方法与应用
CN115449351A (zh) * 2022-10-11 2022-12-09 湖南工程学院 一种水合盐复合相变材料及其制备方法与应用
CN115975604B (zh) * 2023-01-13 2024-03-19 武汉长盈通热控技术有限公司 一种用于弹载电子器件的超大容量化学储热材料及超大容量储热式无源散热系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084658A1 (en) * 2002-10-28 2004-05-06 Oswin Ottinger Material mixtures for heat storage systems and production method
CN101805591A (zh) * 2010-04-19 2010-08-18 中国人民解放军理工大学工程兵工程学院 一种无机水合盐膨胀石墨复合相变储热材料及制备方法
JP2019137854A (ja) * 2018-02-07 2019-08-22 株式会社ヤノ技研 蓄熱材組成物
CN110551485A (zh) * 2019-07-31 2019-12-10 华南理工大学 一种水合盐相变储能材料及其制备方法、电池热管理系统
CN112480874A (zh) * 2020-12-10 2021-03-12 安徽工业大学 一种三水醋酸钠/膨胀石墨复合相变储能材料的制备方法
CN113372884A (zh) * 2021-06-30 2021-09-10 中国地质大学(北京) 一种膨胀石墨复合无机水合盐相变材料及其制备方法
CN114539983A (zh) * 2022-02-28 2022-05-27 华南理工大学 一种水合盐热化学储热复合材料及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087254A (zh) * 2014-07-29 2014-10-08 江苏启能新能源材料有限公司 一种高导热无机相变储能材料
CN106947434B (zh) * 2017-04-14 2020-07-14 华南理工大学 一种水合盐-改性膨胀石墨复合相变材料及其制备方法
CN110079278B (zh) * 2019-04-30 2020-12-08 国电南瑞科技股份有限公司 一种高导热复合水合盐相变储热材料及其制备方法
CN113234421A (zh) * 2021-05-11 2021-08-10 南京理工大学 三水醋酸钠相变储热材料及其制备方法
CN113429941A (zh) * 2021-07-14 2021-09-24 东南大学 一种复合相变材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084658A1 (en) * 2002-10-28 2004-05-06 Oswin Ottinger Material mixtures for heat storage systems and production method
CN101805591A (zh) * 2010-04-19 2010-08-18 中国人民解放军理工大学工程兵工程学院 一种无机水合盐膨胀石墨复合相变储热材料及制备方法
JP2019137854A (ja) * 2018-02-07 2019-08-22 株式会社ヤノ技研 蓄熱材組成物
CN110551485A (zh) * 2019-07-31 2019-12-10 华南理工大学 一种水合盐相变储能材料及其制备方法、电池热管理系统
CN112480874A (zh) * 2020-12-10 2021-03-12 安徽工业大学 一种三水醋酸钠/膨胀石墨复合相变储能材料的制备方法
CN113372884A (zh) * 2021-06-30 2021-09-10 中国地质大学(北京) 一种膨胀石墨复合无机水合盐相变材料及其制备方法
CN114539983A (zh) * 2022-02-28 2022-05-27 华南理工大学 一种水合盐热化学储热复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN114539983A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023159996A1 (zh) 一种水合盐热化学储热复合材料及其制备方法与应用
Lyu et al. Recent advances of thermal safety of lithium ion battery for energy storage
Cao et al. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite
Jiang et al. Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions
Lei et al. Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions
CN104617272B (zh) 一种多孔硅碳复合材料的制备方法
Wang et al. Application of polymer-based phase change materials in thermal safety management of power batteries
Deng et al. Simulation study on internal short circuit of lithium ion battery caused by lithium dendrite
Ding et al. Experimental study on the burning behaviors of 21700 lithium-ion batteries with high specific energy after different immersion duration
Tianyu et al. Recent progress on thermal runaway propagation of lithium-ion battery
Ouyang et al. Electrochemical-thermal coupled modelling and multi-measure prevention strategy for Li-ion battery thermal runaway
KR20240058810A (ko) 리튬 배터리의 열 폭주 억제제 및 관련 응용
Xiao et al. Effect of composite cooling strategy including phase change material and liquid cooling on the thermal safety performance of a lithium-ion battery pack under thermal runaway propagation
Liu et al. Modelling for the mitigation of lithium ion battery thermal runaway propagation by using phase change material or liquid immersion cooling
Liu et al. Temperature mitigation effect of phase change material on overcharging lithium-ion batteries: an experimental study
Li et al. Transient thermomechanical analysis of a solid oxide fuel cell stack based on 3D multiphysical field model
WO2024139667A1 (zh) 一种耐温变储能器件及其制备方法
Sun et al. Effects of thermal insulation layer material on thermal runaway of energy storage lithium battery pack
Hong et al. Synergistic effect of inorganic Mg (OH) 2 and organic triphenyl phosphate based coating layers on flame-retardant separator for high-voltage Li|| LiNi0. 8Co0. 1Mn0. 1O2 cell
CHANG et al. Progress in thermal runaway simulation of lithium-ion batteries
Jie et al. Thermal runaway and combustion characteristics, risk and hazard evaluation of lithium‑iron phosphate battery under different thermal runaway triggering modes
CN113948767A (zh) 含有微胶囊体的安全锂电池电解液的制备方法及其锂电池
WO2023179338A1 (zh) 一种电池
Jun et al. Simulation of thermal runaway gas diffusion in LiFePO4 battery module
Jianglong et al. Application of simulation in thermal safety design of lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928258

Country of ref document: EP

Kind code of ref document: A1