WO2023159825A1 - 一种具有行程精确自学习功能的管状电机及行程学习方法 - Google Patents

一种具有行程精确自学习功能的管状电机及行程学习方法 Download PDF

Info

Publication number
WO2023159825A1
WO2023159825A1 PCT/CN2022/100919 CN2022100919W WO2023159825A1 WO 2023159825 A1 WO2023159825 A1 WO 2023159825A1 CN 2022100919 W CN2022100919 W CN 2022100919W WO 2023159825 A1 WO2023159825 A1 WO 2023159825A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
stroke
tubular
current
control unit
Prior art date
Application number
PCT/CN2022/100919
Other languages
English (en)
French (fr)
Inventor
李宁
常县伟
徐加祥
刘波
Original Assignee
南京工程学院
浙江强伟五金有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工程学院, 浙江强伟五金有限公司 filed Critical 南京工程学院
Publication of WO2023159825A1 publication Critical patent/WO2023159825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/03Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • E05F15/668Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings for overhead wings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/20Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors for controlling one motor used for different sequential operations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/281Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices the DC motor being operated in four quadrants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/40Motors; Magnets; Springs; Weights; Accessories therefor
    • E05Y2201/43Motors
    • E05Y2201/434Electromotors; Details thereof
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/32Position control, detection or monitoring
    • E05Y2400/35Position control, detection or monitoring related to specific positions
    • E05Y2400/354End positions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • E05Y2800/26Form or shape
    • E05Y2800/28Form or shape tubular, annular
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/106Application of doors, windows, wings or fittings thereof for buildings or parts thereof for garages

Definitions

  • the invention belongs to the technical field of intelligent equipment, and in particular relates to a tubular motor with an accurate stroke self-learning function.
  • tubular motors are widely used in garages, curtains, electric curtains and other occasions.
  • existing tubular motors have certain defects, mainly in the following aspects:
  • the existing tubular motors usually use mechanical stoppers to solve the stroke adjustment problem.
  • the adjustment is cumbersome and has a great impact on practical applications. Its two, when the existing tubular motor is in operation, because the speed cannot be changed during operation, when the upper and lower limit positions are reached, the limit device will be easily worn because the speed is too high.
  • the technical problem to be solved by the present invention is to solve the problems of poor positioning accuracy and invariable speed during operation of the existing tubular motors.
  • a tubular motor with accurate stroke self-learning function comprising an intelligent voice recognition unit, a DC motor speed control unit, a DC motor, a reducer, a current sensor, a temperature sensor, and a magnetic encoder with multiple readout heads, the intelligent voice recognition unit Connect with the DC motor speed control unit through the serial interface, the DC motor speed control unit controls the operation of the DC motor, the reducer is connected with the DC motor, the current sensor is connected in series in the armature circuit of the DC motor, and the DC motor is a double-ended output shaft.
  • the motor, the magnetic encoder with multiple read heads is installed on one end of the motor shaft, the reducer is installed on the other end of the motor shaft, and the temperature sensor is mounted on the DC motor; the DC motor speed control unit has a double closed-loop structure of speed and current ;
  • the tubular motor realizes the precise self-learning function of stroke through two processes of rough positioning and fine positioning.
  • the current sensor detects the armature current of the DC motor, sends the current feedback signal to the speed control unit of the DC motor, and realizes the limitation of the locked-rotor current and locked-rotor torque of the DC motor through the current feedback signal, and realizes the DC motor. Stall function.
  • the magnetic encoder with multiple reading heads includes two parts, the stator and the rotor.
  • the stator is an annular circuit board, and the Hall switch elements are evenly distributed on the circuit board.
  • the rotor is a multi-stage magnetized magnetic ring, and the inner circumference of the magnetic ring is embedded There is a magnetic cover.
  • the output signals of the magnetic encoders of the multi-reading heads are sent to the DC motor speed control unit through the parallel interface to detect the rotation angle of the DC motor and the total stroke of the tubular motor.
  • the magnetic encoder with multiple readout heads calculates the rotation speed of the DC motor to form a feedback signal of the rotation speed of the DC motor, so as to realize the closed-loop speed regulation control of the DC motor.
  • tubular motor is powered by a power adapter.
  • the tubular motor also includes a motor sleeve, a transmission shaft and a connecting ring, an intelligent voice recognition unit, a DC motor speed control unit, and a magnetic encoder with multiple readout heads are installed at the rear end of the DC motor, and the reducer is installed at the rear end of the DC motor.
  • the front end of the drive shaft is connected to the output shaft of the reducer, the connecting ring is fixedly connected to the end of the drive shaft, and the motor sleeve is set on the outside of the intelligent voice recognition unit, the DC motor speed control unit, the reducer and the connecting shaft.
  • a bearing bracket and a motor fixing bracket are formed in the motor sleeve, a bearing is installed in the bearing bracket, the transmission shaft is installed in the bearing, and the DC motor is fixedly installed in the electrode sleeve through the motor fixing bracket.
  • a stroke learning method of a tubular motor with a stroke accurate self-learning function comprising the following steps,
  • the DC motor speed control unit controls the DC motor to run at a normal operating speed until it reaches the positioning end point, and continuously records the positioning distance;
  • the DC motor speed control unit controls the reverse operation of the DC motor, breaks away from the stall point, and continuously records the positioning distance;
  • the beneficial effect of the invention is that the tubular motor has a self-learning function of stroke accuracy, which effectively solves the problems of poor positioning accuracy and invariable speed during operation of the tubular motor.
  • Figure 1 is a block diagram of a tubular motor system with a stroke-accurate self-learning function.
  • Figure 2 is a schematic diagram of the double closed-loop control of the DC motor.
  • Fig. 3 is a flow chart of the stroke self-learning of the tubular motor with the stroke accurate self-learning function.
  • Fig. 4 is an assembly diagram of the tubular motor system with the function of accurate self-learning of stroke.
  • Fig. 5 is a schematic diagram of the appearance of the tubular motor system with the function of accurate self-learning of stroke.
  • a tubular motor with accurate stroke self-learning function including an intelligent voice recognition unit, a DC motor speed control unit, a DC motor 2, a reducer 3, a current sensor, a temperature sensor, a magnetic encoder with multiple readout heads, and an intelligent voice recognition unit
  • the radio used to receive voice information and send it to the intelligent voice recognition unit; the speaker: used to respond to the received voice command; the intelligent voice recognition unit: used to recognize the radio voice information and Convert it into a command signal, and send the command signal to the DC motor speed control unit through the serial port;
  • DC motor speed control unit used to receive the output signal of the intelligent voice recognition unit and the magnetic encoder of the multi-reading head, and generate the DC motor according to these signals Control commands, and send control commands to the DC motor;
  • DC motor used to output torque, drive the reducer to rotate; current sensor: used for current feedback, send the current feedback signal to the DC motor speed control unit; reducer: used for Transmit and increase the torque to drive the output shaft to move; magnetic encoder with
  • the intelligent speech recognition unit is connected with the DC motor speed control unit through the serial interface, the DC motor speed control unit controls the operation of the DC motor 2, the reducer 3 is connected with the DC motor, and the power is output after the reducer is decelerated, and the current sensor is connected in series In the armature circuit of the DC motor, the current signal is fed back to the DC motor speed control unit.
  • the DC motor is a motor with double-ended shafts.
  • the magnetic encoder with multiple readout heads is installed on one end of the motor shaft, and the reducer is installed on the motor shaft. The other end of the DC motor makes the installation of components on the DC motor more reasonable.
  • the temperature sensor is mounted on the DC motor to monitor the working temperature of the DC motor; the DC motor speed control unit has a double closed-loop structure of speed and current.
  • the rotation speed and current protect the DC motor and improve the service life of the DC motor; the tubular motor realizes the precise self-learning function of stroke through two processes of rough positioning and fine positioning.
  • a stroke learning method of a tubular motor with a stroke accurate self-learning function comprising the following steps,
  • the DC motor speed control unit controls the DC motor to run at a normal operating speed until it reaches the positioning end point, and continuously records the positioning distance;
  • the DC motor speed control unit controls the reverse operation of the DC motor, breaks away from the stall point, and continuously records the positioning distance;
  • the rough positioning of the motor is carried out through step (1), and the precise positioning learning of the motor is carried out through steps (2) to (6), so as to effectively solve the problem of poor positioning accuracy of the tubular motor.
  • the current sensor detects the armature current of the DC motor, sends the current feedback signal to the speed control unit of the DC motor, and realizes the limitation of the stall current and torque of the DC motor through the current feedback signal, and realizes the stallable function of the DC motor , which is convenient for the motor to carry out accurate self-learning of the stroke through the stall point.
  • the magnetic encoder with multiple read heads includes two parts, the stator and the rotor.
  • the stator is a circular circuit board, and the Hall switch elements are evenly distributed on the circuit board.
  • the rotor is a multi-stage magnetized magnetic ring, and the inner circumference of the magnetic ring is embedded with magnetic isolation The set is convenient for recording the running distance and calculating the speed of the DC motor to form the speed feedback signal of the motor.
  • the output signal of the magnetic encoder of the multi-reading head is sent to the DC motor speed control unit through the parallel interface to detect the rotation angle of the DC motor and the total stroke of the tubular motor.
  • the magnetic encoder with multiple read heads calculates the speed of the DC motor through the above-mentioned rotation angle of the DC motor and the total stroke of the tubular motor, and forms a feedback signal of the speed of the DC motor to realize the closed-loop speed control of the DC motor.
  • the tubular motor is powered by a universal power adapter, which is convenient for supplying power to the tubular motor and reduces the potential safety hazards caused by the built-in power supply.
  • the tubular motor also includes a motor sleeve 8, a transmission shaft 4 and a connecting ring 9, an intelligent voice recognition unit, a DC motor speed control unit, and a magnetic encoder with multiple readout heads are installed on the rear end of the DC motor through the installation casing 1, and the The setting of the installation casing 1 is convenient for the storage and protection of the intelligent voice recognition unit, the DC motor speed control unit, and the magnetic encoder with multiple readout heads.
  • the output shaft is connected, and the connecting ring 9 is fixedly connected to the end of the transmission shaft 4. Through the setting of the connecting ring 9, it is convenient to connect the transmission shaft 4 with external components.
  • the motor sleeve 8 is set on the intelligent voice recognition unit and the DC motor speed control unit. , reducer, the outside of connecting shaft, be convenient to protect the parts in this tubular motor by motor cover 8.
  • the motor sleeve 8 is formed with a bearing bracket 5 and a motor fixing bracket 7, the bearing bracket 5 is equipped with a bearing 6, the transmission shaft 4 is installed in the bearing 6, and the DC motor is fixed and installed in the electrode sleeve through the motor fixing bracket 7, which is convenient for passing through the electrode.
  • Cover 8 is installed to the parts of this tubular motor.
  • the DC motor operates with a speed-up and down curve.
  • the positioning section and the speed-up section are used to start when the motor has just started and the distance from the target position is far away, so as to improve the working efficiency of the tubular motor.
  • the constant speed section is used to keep the motor running at a faster speed
  • the speed-down section corresponds to the speed-up section , which is used to reduce the faster working speed to the low-speed positioning section.
  • the low-speed positioning section is started when it is close to the target position, and the lower operating speed is used to improve the positioning accuracy of the tubular motor, which is convenient for the tubular motor to adapt to different work requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明提供了一种具有行程精确自学习功能的管状电机及其行程学习方法,以解决现有的管状电机定位精度差、运行时速度不可变等问题。管状电机系统包括智能语音识别单元、直流电机调速单元、直流电机、减速器、电流传感器、温度传感器、多读出头的磁编码器。智能语音识别单元通过串行接口与直流电机调速单元相连,直流电机调速单元驱动直流电机,电流传感器串接在直流电机的电枢回路中,直流电机为双端出轴的电机,电机轴的一端与多读出头的磁编码器相连,电机轴的另一端与减速器相连,经减速器输出动力,温度传感器贴装在直流电机上,直流电机调速单元具有转速电流双闭环的结构,管状电机系统通过粗定位和精定位两个过程来实现行程精确自学习功能。

Description

一种具有行程精确自学习功能的管状电机及行程学习方法 技术领域
本发明属于智能装备技术领域,具体涉及一种具有行程精确自学习功能的管状电机。
背景技术
随着工业技术的发展,管状电机广泛应用于车库、窗帘、电动幕布等场合。但是现有的管状电机是存在一定的缺陷的,主要有以下几个方面:其一,现有的管状电机通常采用机械式限位器解决行程调整问题,缺点是限位机构比较复杂且限位调整比较繁琐,对实际应用有较大影响。其二,现有的管状电机运行时,由于运行时不可变速,在到达上下限位时,由于速度过高很容易对限位装置造成磨损。其三,现有的管状电机对初始最大行程进行定位时,由于速度过快,造成定位精度较差。
发明内容
针对以上不足,本发明所要解决的技术问题是提供以解决现有的管状电机定位精度差、运行时速度不可变等问题。
为解决以上技术问题,本发明采用的技术方案是,
一种具有行程精确自学习功能的管状电机,包括智能语音识别单元、直流电机调速单元、直流电机、减速器、电流传感器、温度传感器、多读出头的磁编码器,所述智能语音识别单元通过串行接口与直流电机调速单元连接,直流电机调速单元控制直流电机工作,减速器与直流电机连接,电流传感器串接在直流电机的电枢回路中,直流电机为双端出轴的电机,多读出头的磁编码器安装在电机轴的一端,减速器安装在电机轴的另一端,温度传感器贴装在直流电机上;所述直流电机调速单元具有转速、电流双闭环的结构;所述管状电机通过粗定位和精定位两个过程来实现行程精确自学习功能。
进一步的,电流传感器检测直流电机的电枢电流,将电流反馈信号发送到直流电机调速单元,并通过电流反馈信号来实现对直流电机堵转电流和堵转力矩的限制,实现直流电机的可堵转功能。
进一步的,多读出头的磁编码器包括定子和转子两部分,定子为圆环状电路板,电路板上均匀分布霍尔开关元件,转子为多段充磁的磁环,磁环的内圆周嵌有隔磁套。
进一步的,多读出头的磁编码器的输出信号通过并行接口发送到直流电机调速单元,以检测直流电机的转角、管状电机的总行程。
进一步的,多读出头的磁编码器推算直流电机转速,形成直流电机转速反馈信号,以实现直流电机的闭环调速控制。
进一步的,管状电机是采用电源适配器供电。
进一步的,所述管状电机还包括电机套、传动轴和连接环,智能语音识别单元、直流电机调速单元、多读出头的磁编码器安装在直流电机的后端,减速器安装在直流电机的前端,传动轴与减速器的输出轴连接,连接环固定连接在传动轴的端部,电机套套设在智能语音识别单元、直流电机调速单元、减速器、连接轴的外侧。
进一步的,电机套内成形有轴承支架和电机固定支架,轴承支架内安装有轴承,传动轴安装在轴承内,直流电机通过电机固定支架固定安装在电极套内。
一种具有行程精确自学习功能的管状电机的行程学习方法,包括以下步骤,
(一)直流电机调速单元控制直流电机以正常运行速度运行,直至到达定位终点,并连续记录定位距离;
(二)判断电机是否到达堵转点,如果到达堵转点,则运行步骤(三),如果未到达堵转点,则运行步骤(一);
(三)直流电机调速单元控制直流电机反向运行,脱离堵转点,并连续记录定位距离;
(四)判断电机是否脱离堵转点,如果脱离堵转点,则运行步骤(五),如果未到达堵转点,则运行步骤(三);
(五)当直流电机脱离堵转后,再次控制直流电机反向转动,以低速向堵转点运行,并连续记录定位距离;
(六)判断电机是否到达堵转点,如果到达堵转点,此时的定位距离就是精确的定位行程,则行程精确自学习结束,如果未到达堵转点,则运行步骤(五)。
本发明的有益效果是,本管状电机具有行程精确自学习功能,有效解决管状电机定位精度差、运行过程成中速度不可变的问题。
附图说明
图1是具有行程精确自学习功能的管状电机系统框图。
图2是直流电机双闭环控制原理图。
图3是具有行程精确自学习功能的管状电机行程自学习流程图。
图4是具有行程精确自学习功能的管状电机系统装配图。
图5是具有行程精确自学习功能的管状电机系统外形示意图。
附图标记:安装套壳1,直流电机2,减速器3,传动轴4,轴承支架5,轴承6,电 机固定支架7,电机套8,连接环9。
具体实施方式
下面结合附图对本发明进行进一步描述。
一种具有行程精确自学习功能的管状电机,包括智能语音识别单元、直流电机调速单元、直流电机2、减速器3、电流传感器、温度传感器、多读出头的磁编码器,智能语音识别单元上安装有收音器和扬声器,收音器:用于接收语音信息并发送给智能语音识别单元;扬声器:用于针对接收到的语音命令发出应答;智能语音识别单元:用于识别收音器语音信息并转换成命令信号,通过串口将命令信号发送给直流电机调速单元;直流电机调速单元:用于接收智能语音识别单元和多读出头的磁编码器的输出信号,根据这些信号生成直流电机的控制命令,并向直流电机发送控制命令;直流电机:用于输出转矩,带动减速器转动;电流传感器:用于电流反馈,把电流反馈信号发送到直流电机调速单元;减速器:用于传递并增大转矩带动输出轴运动;多读出头的磁编码器:用于记录运行距离并推算直流电机的转速形成电机的速度反馈信号;温度传感器:用于监测直流电机2的温度,当直流电机温度过高时,将直流电机断电以防止直流电机过温烧毁。
所述智能语音识别单元通过串行接口与直流电机调速单元连接,直流电机调速单元控制直流电机2工作,减速器3与直流电机连接,经减速器减速后输出动力,电流传感器串接在直流电机的电枢回路中,将电流信号反馈至直流电机调速单元内,直流电机为双端出轴的电机,多读出头的磁编码器安装在电机轴的一端,减速器安装在电机轴的另一端,使得直流电机上的部件安装更为合理,温度传感器贴装在直流电机上,用于监测直流电机的工作温度;所述直流电机调速单元具有转速、电流双闭环的结构,通过转速、电流对直流电机进行保护,提高直流电机的使用寿命;所述管状电机通过粗定位和精定位两个过程来实现行程精确自学习功能。
一种具有行程精确自学习功能的管状电机的行程学习方法,包括以下步骤,
(一)直流电机调速单元控制直流电机以正常运行速度运行,直至到达定位终点,并连续记录定位距离;
(二)判断电机是否到达堵转点,如果到达堵转点,则运行步骤(三),如果未到达堵转点,则运行步骤(一);
(三)直流电机调速单元控制直流电机反向运行,脱离堵转点,并连续记录定位距离;
(四)判断电机是否脱离堵转点,如果脱离堵转点,则运行步骤(五),如果未到达堵转点,则运行步骤(三);
(五)当直流电机脱离堵转后,再次控制直流电机反向转动,以低速向堵转点运行,并连续记录定位距离;
(六)判断电机是否到达堵转点,如果到达堵转点,此时的定位距离就是精确的定位行程,则行程精确自学习结束,如果未到达堵转点,则运行步骤(五)。
通过步骤(一)对电机进行粗定位,通过步骤(二)~步骤(六)来对电机进行精确定位学习,有效解决管状电机定位精度差的问题。
电流传感器检测直流电机的电枢电流,将电流反馈信号发送到直流电机调速单元,并通过电流反馈信号来实现对直流电机堵转电流和堵转力矩的限制,实现直流电机的可堵转功能,便于电机通过堵转点来进行行程精确自学习。
多读出头的磁编码器包括定子和转子两部分,定子为圆环状电路板,电路板上均匀分布霍尔开关元件,转子为多段充磁的磁环,磁环的内圆周嵌有隔磁套,便于记录运行距离、并推算直流电机的转速,形成电机的速度反馈信号。
多读出头的磁编码器的输出信号通过并行接口发送到直流电机调速单元,以检测直流电机的转角、管状电机的总行程。
多读出头的磁编码器通过上述的直流电机的转角、管状电机的总行程来推算直流电机转速,形成直流电机转速反馈信号,以实现直流电机的闭环调速控制。
管状电机是采用通用的电源适配器供电,便于对管状电机进行供电,减小电源内置产生的安全隐患。
所述管状电机还包括电机套8、传动轴4和连接环9,智能语音识别单元、直流电机调速单元、多读出头的磁编码器通过安装套壳1安装在直流电机的后端,通过安装套壳1的设置,便于对智能语音识别单元、直流电机调速单元、多读出头的磁编码器进行收纳、保护,减速器3安装在直流电机2的前端,传动轴4与减速器3的输出轴连接,连接环9固定连接在传动轴4的端部,通过连接环9的设置,便于传动轴4与外部部件连接,电机套8套设在智能语音识别单元、直流电机调速单元、减速器、连接轴的外侧,便于通过电机套8对本管状电机内的部件进行保护。
电机套8内成形有轴承支架5和电机固定支架7,轴承支架5内安装有轴承6,传动轴4安装在轴承6内,直流电机通过电机固定支架7固定安装在电极套内,便于通过电极套8对本管状电机的部件进行安装。
在管状电机系统的工作运行过程中,所述直流电机是升降速曲线变速运行的,在本实施例中,直流电机调速单元的调速包括升速段、恒速段、降速段、低速定位段,升速段用 于在电机刚启动并且距离目标位置距离较远时启动,提高管状电机的工作效率,恒速段用于保持电机以较快速度运行,降速段与升速段对应,用于将较快的工作速度降低至低速定位段,低速定位段在靠近目标位置时启动,用较低的运行速度提高本管状电机的定位精度,便于本管状电机适配不同的工作需求。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现;因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
尽管本文较多地使用了图中附图标记对应的术语,但并不排除使用其它术语的可能性;使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (8)

  1. 一种具有行程精确自学习功能的管状电机,其特征在于,包括智能语音识别单元、直流电机调速单元、直流电机、减速器、电流传感器、温度传感器、多读出头的磁编码器,所述智能语音识别单元通过串行接口与直流电机调速单元连接,直流电机调速单元控制直流电机工作,减速器与直流电机连接,电流传感器串接在直流电机的电枢回路中,直流电机为双端出轴的电机,多读出头的磁编码器安装在电机轴的一端,减速器安装在电机轴的另一端,温度传感器贴装在直流电机上;所述直流电机调速单元具有转速、电流双闭环的结构;所述管状电机通过粗定位和精定位两个过程来实现行程精确自学习功能。
  2. 根据权利要求1所述的一种具有行程精确自学习功能的管状电机,其特征在于,电流传感器检测直流电机的电枢电流,将电流反馈信号发送到直流电机调速单元,并通过电流反馈信号来实现对直流电机堵转电流和堵转力矩的限制,实现直流电机的可堵转功能。
  3. 根据权利要求1所述的一种具有行程精确自学习功能的管状电机,其特征在于,多读出头的磁编码器包括定子和转子两部分,定子为圆环状电路板,电路板上均匀分布霍尔开关元件,转子为多段充磁的磁环,磁环的内圆周嵌有隔磁套。
  4. 根据权利要求1或3所述的一种具有行程精确自学习功能的管状电机,其特征在于,多读出头的磁编码器的输出信号通过并行接口发送到直流电机调速单元,以检测直流电机的转角、转速及管状电机的总行程。
  5. 根据权利要求1所述的一种具有行程精确自学习功能的管状电机,其特征在于,所述管状电机还包括电机套、传动轴和连接环,智能语音识别单元、直流电机调速单元、多读出头的磁编码器安装在直流电机的后端,减速器安装在直流电机的前端,传动轴与减速器的输出轴连接,连接环固定连接在传动轴的端部,电机套套设在智能语音识别单元、直流电机调速单元、减速器、连接轴的外侧。
  6. 根据权利要求5所述的一种具有行程精确自学习功能的管状电机,其特征在于,电机套内成形有轴承支架和电机固定支架,轴承支架内安装有轴承,传动轴安装在轴承内,直流电机通过电机固定支架固定安装在电极套内。
  7. 根据权利要求1所述的一种具有行程精确自学习功能的管状电机,其特征在于,管状电机是采用电源适配器供电。
  8. 一种具有行程精确自学习功能的管状电机的行程学习方法,其特征在于,包括以下步骤,
    步骤一、直流电机调速单元控制直流电机以正常运行速度运行,直至到达定位终点,并连续记录定位距离;
    步骤二、判断电机是否到达堵转点,如果到达堵转点,则运行步骤三,如果未到达堵转点,则运行步骤一;
    步骤三、直流电机调速单元控制直流电机反向运行,脱离堵转点,并连续记录定位距离;
    步骤四、判断电机是否脱离堵转点,如果脱离堵转点,则运行步骤五,如果未到达堵转点,则运行步骤三;
    步骤五、当直流电机脱离堵转后,再次控制直流电机反向转动,以低速向堵转点运行,并连续记录定位距离;
    步骤六、判断电机是否到达堵转点,如果到达堵转点,此时的定位距离就是精确的定位行程,则行程精确自学习结束,如果未到达堵转点,则运行步骤五。
PCT/CN2022/100919 2022-02-23 2022-06-23 一种具有行程精确自学习功能的管状电机及行程学习方法 WO2023159825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210165516.6A CN114499296A (zh) 2022-02-23 2022-02-23 一种具有行程精确自学习功能的管状电机及行程学习方法
CN202210165516.6 2022-02-23

Publications (1)

Publication Number Publication Date
WO2023159825A1 true WO2023159825A1 (zh) 2023-08-31

Family

ID=81482370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100919 WO2023159825A1 (zh) 2022-02-23 2022-06-23 一种具有行程精确自学习功能的管状电机及行程学习方法

Country Status (3)

Country Link
CN (1) CN114499296A (zh)
FR (1) FR3132995A3 (zh)
WO (1) WO2023159825A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114499296A (zh) * 2022-02-23 2022-05-13 南京工程学院 一种具有行程精确自学习功能的管状电机及行程学习方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145280A (ja) * 1998-11-04 2000-05-26 Minolta Co Ltd 自動ドア装置
CN1983086A (zh) * 2005-12-14 2007-06-20 刘方楷 电动卷门控制机的控制方法
CN102244435A (zh) * 2011-07-11 2011-11-16 宁波杜亚机电技术有限公司 自动设置行程的管状电机及其行程设置方法
CN114499296A (zh) * 2022-02-23 2022-05-13 南京工程学院 一种具有行程精确自学习功能的管状电机及行程学习方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145280A (ja) * 1998-11-04 2000-05-26 Minolta Co Ltd 自動ドア装置
CN1983086A (zh) * 2005-12-14 2007-06-20 刘方楷 电动卷门控制机的控制方法
CN102244435A (zh) * 2011-07-11 2011-11-16 宁波杜亚机电技术有限公司 自动设置行程的管状电机及其行程设置方法
CN114499296A (zh) * 2022-02-23 2022-05-13 南京工程学院 一种具有行程精确自学习功能的管状电机及行程学习方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU SHENGHUA, SHUNLI GUO, DONG CHEN, YAONAN WEI: "Design of Driving System for platform screen door of metro", RAILWAY COMPUTER APPLICATION., vol. 22, no. 9, 25 September 2013 (2013-09-25), pages 23 - 25, 29, XP093086671 *

Also Published As

Publication number Publication date
FR3132995A3 (fr) 2023-08-25
CN114499296A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023159825A1 (zh) 一种具有行程精确自学习功能的管状电机及行程学习方法
CN104795958A (zh) 一种应用机械臂的具有空心轴电机的无刷直流伺服系统
WO2021082609A1 (zh) 一种农业机械自动转向装置
CN102996336A (zh) 一种风力发电机控制方法
WO2021147182A1 (zh) 一种农机电驱动方向盘自感式换向装置及方法
CN204591750U (zh) 一种鼓风机叶轮气隙实时检测和调整装置
CN207354032U (zh) 一种吸尘器电机及吸尘器
CN107332389A (zh) 一种吹风机电机及吹风机
CN201151059Y (zh) 机床主轴定向系统
CN112177518A (zh) 一种钻井驱动电机主机与散热风机联动控制方法
CN207353982U (zh) 一种吹风机电机及吹风机
CN207218449U (zh) 一种新型限位控制电动提升机
DE60208645D1 (de) Sensorsystem zur Regelung eines Motors
CN210839402U (zh) 一种应用于云台的步进电机控制电路
CN204761236U (zh) 一种抗干扰的伺服电机
CN107370321A (zh) 一种吸尘器电机及吸尘器
CN210503148U (zh) 一种节能型船舶机舱通风控制系统
CN201490952U (zh) 恒速电动工具
WO2023159826A1 (zh) 一种具有智能语音识别功能的手自动两用开合窗帘机系统
CN106452209A (zh) 一种双永磁无刷电机同步驱动控制装置
CN207353983U (zh) 一种吹风机电机及吹风机
CN107601284B (zh) 塔式起重机回转控制单元
CN217789580U (zh) 一种步进电机组合装置
CN206140532U (zh) 一种检测机器人头部初始位置及控制其头部转动的装置
CN216672805U (zh) 一种晾衣架电机的传感机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928095

Country of ref document: EP

Kind code of ref document: A1