WO2023159800A1 - 电解液添加剂、锂离子电池电解液及锂离子电池 - Google Patents

电解液添加剂、锂离子电池电解液及锂离子电池 Download PDF

Info

Publication number
WO2023159800A1
WO2023159800A1 PCT/CN2022/097322 CN2022097322W WO2023159800A1 WO 2023159800 A1 WO2023159800 A1 WO 2023159800A1 CN 2022097322 W CN2022097322 W CN 2022097322W WO 2023159800 A1 WO2023159800 A1 WO 2023159800A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ion battery
electrolyte
lithium ion
compound
Prior art date
Application number
PCT/CN2022/097322
Other languages
English (en)
French (fr)
Inventor
欧霜辉
王霹霹
毛冲
黄秋洁
王晓强
戴晓兵
Original Assignee
珠海市赛纬电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市赛纬电子材料股份有限公司 filed Critical 珠海市赛纬电子材料股份有限公司
Publication of WO2023159800A1 publication Critical patent/WO2023159800A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of lithium-ion batteries, and in particular relates to an electrolyte additive, a lithium-ion battery electrolyte and a lithium-ion battery.
  • Lithium-ion batteries are widely used in 3C digital, power tools, aerospace, energy storage, power vehicles and other fields due to their advantages such as high specific energy, no memory effect, and long cycle life.
  • high-voltage ternary cathode materials are widely used in portable electronic devices such as mobile phones and notebook computers and large energy storage devices due to their high energy density, environmental friendliness, and long cycle life.
  • the rapid development of lithium-ion batteries has put forward higher requirements for high voltage and high energy density.
  • the energy density of lithium-ion batteries is often increased by increasing the charge cut-off voltage, but there are also some problems with nickel-cobalt-manganese ternary cathode materials at high voltages: when the voltage reaches 4.45V, the conventional electrolyte will oxidize and decompose on the surface of the cathode material. Side reactions, especially under high temperature conditions, will accelerate the oxidative decomposition of the electrolyte, and the side reactions of the electrolyte will intensify, and at the same time promote the deterioration reaction of the nickel-cobalt-manganese ternary positive electrode material.
  • the nickel-cobalt-manganese ternary positive electrode material will , the irreversible phase transition of H2-H3 is prone to occur, resulting in the precipitation of oxygen, the interface between the electrolyte and the electrode is unstable, and the battery faces the problems of poor high-temperature storage and serious cycle gas production.
  • the internal impedance of the lithium-ion battery increases, and the low-temperature discharge performance of the lithium-ion battery is obviously insufficient. Therefore, how to ensure the high and low temperature characteristics and cycle characteristics of lithium-ion batteries under the premise of increasing the cut-off voltage has become the focus of research.
  • the purpose of this application is to provide a kind of electrolytic solution additive, and this electrolytic solution additive can improve the high and low temperature performance and cycle performance of high-voltage lithium-ion battery.
  • Another object of the present application is to provide an electrolyte solution for a lithium ion battery, which can improve the high and low temperature performance and cycle performance of a high voltage lithium ion battery.
  • Another object of the present application is to provide a lithium ion battery, which has better high and low temperature performance and cycle performance under a high voltage system.
  • an electrolyte additive including compound A shown in structural formula 1 or structural formula 2,
  • R 1 -R 12 are each independently selected from hydrogen, halogen, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 unsaturated group, substituted or unsubstituted amino group.
  • the electrolyte additive of the present application includes compound A shown in structural formula 1 or structural formula 2, and this compound A is reduced to form the interfacial film of moderate thickness at the electrode/electrolyte interface, because this interfacial film thickness is moderate , which can improve the thermal stability of the N-C structure on compound A, so the interface film has good thermal stability, isolates the direct contact between the electrolyte and the electrode at high temperature, and inhibits the decomposition of the electrolyte, so the compound A can increase the high voltage
  • the high-temperature performance of lithium-ion batteries at the same time, the interfacial film formed by compound A has good lithium-ion conduction channels, and the lithium-ion conduction channels are not easy to shrink at low temperatures, and the lithium-ion transport channels are not easy to collapse and close during cycling, so compound A is also It can improve the low-temperature performance and cycle performance of high-voltage lithium-ion batteries.
  • R 3 to R 6 and R 10 to R 12 in this application are all H, and R 1 , R 2 , R 7 to R 9 are each independently selected from halogen, substituted or unsubstituted C1-C6 alkyl , a substituted or unsubstituted C1-C6 unsaturated group, a substituted or unsubstituted amino group.
  • compound A of the present application is selected from any one of compounds 1 to 6:
  • the present application provides a lithium ion battery electrolyte, including lithium salt and organic solvent, and also includes the above-mentioned electrolyte additive.
  • the lithium-ion battery electrolyte of the present application includes the compound A shown in structural formula 1 or structural formula 2, so the lithium-ion battery electrolyte of the present application is applied to the lithium-ion battery, and the lithium-ion battery is at 4.45V high It has good high and low temperature performance and cycle performance under voltage.
  • the mass of the electrolyte additive of the present application accounts for 0.1-5% of the sum of the mass of the lithium salt and the organic solvent.
  • the lithium salt of the present application is selected from lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), trifluoromethane Lithium sulfonate (LiCF 3 SO 3 ), lithium dioxalate borate (LiC 4 BO 8 ), lithium difluorooxalate borate (LiC 2 BF 2 O 4 ), lithium difluorophosphate (LiPO 2 F 2 ), difluorobis At least one of lithium oxalate phosphate (LiDFBP), lithium bisfluorosulfonyl imide (LiFSI), lithium bistrifluoromethylsulfonyl imide (LiTFSI).
  • the concentration of the lithium salt is 0.5-1.5M.
  • the organic solvent in the present application is at least one selected from chain carbonates, carboxylates, ethers and heterocyclic compounds.
  • the organic solvent of the present application is selected from ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), propylene carbonate (PC), butyl acetate At least one of ester (n-Ba), ⁇ -butyrolactone ( ⁇ -Bt), propyl propionate (n-PP), ethyl propionate (EP) and ethyl butyrate (Eb).
  • the present application also includes auxiliary agents selected from vinylene carbonate (VC), vinylidene ethylene carbonate (VEC), fluoroethylene carbonate (FEC), vinyl sulfite (ES), At least one of 1,3 propane sultone (PS) and vinyl sulfate (DTD).
  • auxiliary agents selected from vinylene carbonate (VC), vinylidene ethylene carbonate (VEC), fluoroethylene carbonate (FEC), vinyl sulfite (ES), At least one of 1,3 propane sultone (PS) and vinyl sulfate (DTD).
  • the present application provides a lithium ion battery, including positive electrode material, negative electrode material, and the lithium ion battery electrolyte mentioned above, and the maximum charging voltage is 4.45V.
  • the lithium ion battery of the present application includes the compound A shown in structural formula 1 or structural formula 2, and the compound A is reduced at the electrode/electrolyte interface to form an interfacial film with a moderate thickness, because the interfacial film thickness is moderate , which can improve the thermal stability of the N-C structure on compound A, so the interface film has good thermal stability, isolates the direct contact between the electrolyte and the electrode at high temperature, and inhibits the decomposition of the electrolyte, so the high-voltage lithium-ion battery has Better high-temperature performance; at the same time, the interfacial film formed by the compound A has good lithium-ion conduction channels, and the lithium-ion conduction channels are not easy to shrink at low temperatures, and the lithium-ion transport channels are not easy to collapse and close during the cycle, so high-voltage lithium-ion The battery has good low temperature performance and cycle performance.
  • the positive electrode material of this application is LiNi x Co y Mn (1-xy) M z O 2 , where 0.6 ⁇ x ⁇ 0.9, x+y ⁇ 1, 0 ⁇ z ⁇ 0.08, M is Al, Mg, At least one of Zr and Ti.
  • the negative electrode material of the present application is at least one selected from artificial graphite, natural graphite, lithium titanate, silicon-carbon composite material and silicon oxide.
  • LiPF 6 lithium hexafluorophosphate
  • VC vinylene carbonate
  • FEC additive fluoroethylene carbonate
  • composition of the electrolyte of Examples 2-10 and Comparative Examples 1-6 is as shown in Table 1, and the preparation method of the electrolyte of Examples 2-10 and Comparative Examples 1-6 is carried out with reference to the preparation method of Example 1.
  • the lithium-ion batteries were subjected to normal temperature cycle test, high-temperature cycle test, low-temperature test, and high-temperature storage test according to the following test conditions. The test results are shown in Table 2. Show.
  • the lithium-ion batteries of the examples have better high and low temperature performance, storage performance and cycle performance, because the lithium-ion batteries of the examples include structural formula 1 or structural formula 2.
  • Compound A the compound A is reduced at the electrode/electrolyte interface to form an interfacial film with a moderate thickness, which can improve the thermal stability of the N-C structure on the compound A due to the moderate thickness of the interfacial film, so the interfacial film has good thermal stability Stability, isolate the direct contact between the electrolyte and the electrode at high temperature, and inhibit the decomposition of the electrolyte, so the compound A can improve the high-temperature performance of the high-voltage lithium-ion battery; at the same time, the interface film formed by the compound A has good conduction lithium ion channels , Lithium ion conduction channels are not easy to shrink at low temperature, and lithium ion transport channels are not easy to collapse and close during cycling, so lithium ion batteries have
  • the lithium ion battery of Example 2 has the best overall performance, which may be because the side chain of compound 2 has less steric hindrance, which is more conducive to the transmission of lithium ions, and at the same time Compound 2 can also form more LiN3, which further improves the high and low temperature performance of lithium-ion batteries.
  • Comparing Example 1 with Comparative Example 3 it can be found that the performance of the lithium-ion battery of Example 1 is better than that of Comparative Example 3. This is because the thickness of the interfacial film formed by Compound 7 is relatively weak, and N-C develops under high voltage and high temperature simultaneously. Gas is produced, and the high-temperature characteristics of the battery cannot be improved. At the same time, the pores on the interfacial film formed by compound 7 are easy to condense at low temperatures, so that the SEI film has better lithium ion transport capacity at low temperatures, but after the pores condense , leading to the blockage of Li-ion transport, which cannot improve the low-temperature performance of Li-ion batteries.
  • Example 1 Comparing Example 1, Example 6, and Comparative Examples 3 to 5, it can be seen that the electrochemical performance of the lithium-ion battery of Comparative Examples 4 to 5 is worse than that of Example 1 and Example 6, which indicates that increasing the concentration of Compound 7 Doubling or increasing twice so that the concentration of the sulfonimide group remains the same as in Example 1 or Example 6, that is, increasing the thickness of the interfacial film formed by compound 7, but the electrochemical performance of the lithium ion battery is still higher than that of the implementation Example 1 and Example 6 are poor, which may be that the interface film formed by compound 7 has weak high voltage resistance and high temperature resistance, and has a weak protective effect on the electrode/electrolyte under extreme conditions, and the pores of the interface film are easy to Condensation, which also shows that the reason why compound A of the present application can effectively improve the electrochemical performance of high-voltage lithium-ion batteries is not only related to the thickness of the interfacial film formed by it, but also related to the components of the interfacial film formed by it,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电解液添加剂、锂离子电池电解液及锂离子电池,其中电解液添加剂包括结构式1或结构式2所示的化合物A,其中R1~R12各自独立地选自氢、卤素、取代或未取代的C1~C6烷基、取代或未取代的C2~C6不饱和基、取代或未取代的氨基。该化合物A在电极/电解液界面处被还原形成厚度适中的界面膜,因而可改善化合物A上N-C结构的热稳定性,故可提高高电压锂离子电池的高温性能;同时该化合物A形成的界面膜具有良好的传导锂离子孔道,低温下锂离子传导孔道不容易缩孔、循环过程中锂离子传输孔道不容易坍塌闭合,因此化合物A还可提高高电压锂离子电池的低温性能和循环性能。

Description

电解液添加剂、锂离子电池电解液及锂离子电池 技术领域
本申请属于锂离子电池技术领域,尤其涉及一种电解液添加剂、锂离子电池电解液及锂离子电池。
背景技术
锂离子电池由于具有高比能量、无记忆效应、循环寿命长等优点被广泛应用于3C数码、电动工具、航天、储能、动力汽车等领域。在锂离子电池中,高电压三元正极材料由于能量密度高、环境友好、循环寿命长等优点,被广泛的应用于手机、笔记本电脑等便携式电子设备以及大型储能装置中,而电子信息技术的快速发展对锂离子电池高电压以及高能量密度能提出了更高的要求。
目前常通过提高充电截止电压以提高锂离子电池的能量密度,但镍钴锰三元正极材料在高电压下也存在一些问题:当电压达到4.45V时常规电解液会在正极材料表面发生氧化分解副反应,特别在高温条件下,会加速电解液的氧化分解,电解液副反应加剧,同时促使镍钴锰三元正极材料的恶化反应,同时镍钴锰三元正极材料在高电压,高温下,容易发生H2-H3的不可逆相变,导致氧气的析出,电解液与电极界面不稳定,电池面临高温存储差、循环产气严重的问题。特别是低温下,锂离子电池内部的阻抗增大,锂离子电池的低温放电性能明显不足。因此,如何在提高截止电压的前提下,保证锂离子电池的高低温特性以及循环特性成为研究的重点。
因此,亟需一种电解液添加剂、锂离子电池电解液及锂离子电池,以解决现有技术问题的不足。
申请内容
本申请的目的是提供一种电解液添加剂,该电解液添加剂可提高高电压锂 离子电池的高低温性能以及循环性能。
本申请的又一目的是提供一种锂离子电池电解液,该锂离子电池电解液可提高高电压锂离子电池的高低温性能以及循环性能。
本申请的另一目的是提供一种锂离子电池,该锂离子电池于高电压体系下具有较好的高低温性能以及循环性能。
为实现以上目的,本申请提供了一种电解液添加剂,包括结构式1或结构式2所示的化合物A,
Figure PCTCN2022097322-appb-000001
其中,R 1~R 12各自独立地选自氢、卤素、取代或未取代的C1~C6烷基、取代或未取代的C2~C6不饱和基、取代或未取代的氨基。
与现有技术相比,本申请的电解液添加剂包括结构式1或结构式2所示的化合物A,该化合物A在电极/电解液界面处被还原形成厚度适中的界面膜,由于该界面膜厚度适中,因而可改善化合物A上N-C结构的热稳定性,因此该界面膜具有良好的热稳定性,在高温下隔绝电解液和电极的直接接触,抑制电解液的分解,故化合物A可提高高电压锂离子电池的高温性能;同时该化合物A形成的界面膜具有良好的传导锂离子孔道,低温下锂离子传导孔道不容易缩孔、循环过程中锂离子传输孔道不容易坍塌闭合,因此化合物A还可提高高电压锂离子电池的低温性能和循环性能。
较佳地,本申请的R 3~R 6和R 10~R 12皆为H,R 1、R 2、R 7~R 9各自独立地选自卤素、取代或未取代的C1~C6烷基、取代或未取代的C1~C6不饱和基、取代或未取代的氨基。
较佳地,本申请的化合物A选自化合物1~化合物6中的任一种:
Figure PCTCN2022097322-appb-000002
为实现以上目的,本申请提供了一种锂离子电池电解液,包括锂盐和有机溶剂,还包括上述提及的电解液添加剂。
与现有技术相比,本申请的锂离子电池电解液包括结构式1或结构式2所示的化合物A,因此将本申请的锂离子电池电解液应用于锂离子电池,锂离子电池于4.45V高电压下具有较好的高低温性能和循环性能。
较佳地,本申请的电解液添加剂的质量占锂盐和有机溶剂质量之和的0.1~5%。
较佳地,本申请的锂盐选自六氟磷酸锂(LiPF 6)、高氯酸锂(LiClO 4)、四氟硼酸锂(LiBF 4)、甲基磺酸锂(LiCH 3SO 3)、三氟甲基磺酸锂(LiCF 3SO 3)、二草酸硼酸锂(LiC 4BO 8)、二氟草酸硼酸锂(LiC 2BF 2O 4)、二氟磷酸锂(LiPO 2F 2)、二氟双草酸磷酸锂(LiDFBP)、双氟磺酰亚胺锂(LiFSI)、双三氟甲基磺酰亚胺锂(LiTFSI)中的至少一种。较佳地,锂盐的浓度为0.5~1.5M。
较佳地,本申请的有机溶剂选自链状碳酸酯类、羧酸酯类、醚类和杂环化合物中的至少一种。具体地,本申请的有机溶剂选自碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、乙酸丁酯(n-Ba)、γ-丁内酯(γ-Bt)、丙酸丙酯(n-PP)、丙酸乙酯(EP)和丁酸乙酯(Eb)中的至少一种。
较佳地,本申请还包括助剂,助剂选自碳酸亚乙烯酯(VC)、亚乙烯基碳酸乙烯酯(VEC)、氟代碳酸乙烯酯(FEC)、亚硫酸乙烯酯(ES)、1,3丙磺酸内 酯(PS)、硫酸乙烯酯(DTD)中的至少一种。
为实现以上目的,本申请提供了一种锂离子电池,包括正极材料、负极材料,还包括上述提及的锂离子电池电解液,且最高充电电压为4.45V。
与现有技术相比,本申请的锂离子电池包括结构式1或结构式2所示的化合物A,该化合物A在电极/电解液界面处被还原形成厚度适中的界面膜,由于该界面膜厚度适中,因而可改善化合物A上N-C结构的热稳定性,因此该界面膜具有良好的热稳定性,在高温下隔绝电解液和电极的直接接触,抑制电解液的分解,故高电压锂离子电池具有较佳的高温性能;同时该化合物A形成的界面膜具有良好的传导锂离子孔道,低温下锂离子传导孔道不容易缩孔、循环过程中锂离子传输孔道不容易坍塌闭合,因此高电压锂离子电池具有较好的低温性能和循环性能。
较佳地,本申请的正极材料为LiNi xCo yMn (1-x-y)M zO 2,其中0.6≤x<0.9,x+y<1,0≤z<0.08,M为Al、Mg、Zr和Ti中的至少一种。
较佳地,本申请的负极材料选自人造石墨、天然石墨、钛酸锂、硅碳复合材料和氧化亚硅中的至少一种。
具体实施方式
下面通过具体实施例来进一步说明本申请的目的、技术方案及有益效果,但不构成对本申请的任何限制。实施例中未注明具体条件者,可按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可通过市售而获得的常规产品。
实施例1
电解液的制备:
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=29.16:29.16:29.16进行混合,制得87.48g有机溶剂,混合后加入1M的六氟磷酸锂(LiPF 6),待锂盐完全溶解后,再加入1g的碳酸亚乙烯酯(VC)和5g的添加剂氟代碳酸乙烯酯(FEC)及0.5g的化合物1。
实施例2~10和对比例1~6的电解液组成成分如表1所示,实施例2~10和 对比例1~6的电解液配制方法参照实施例1的配制方法进行。
表1实施例和对比例的电解液组成成分
Figure PCTCN2022097322-appb-000003
Figure PCTCN2022097322-appb-000004
将实施例1-10和对比例1-6的电解液参照下述锂电池制备方法制成锂离子电池。
锂离子电池的制备方法:
1.将镍钴锰酸锂三元材料LiNi 0.6Co 0.2Mn 0.2O 2、导电剂SuperP、粘接剂PVDF和碳纳米管(CNT)按质量比97.5:1.5:1:1混合均匀制成一定粘度的锂离子电池正极浆料,涂布在集流体用铝箔上,其涂布量为324g/m 2,在85℃下烘干后进行冷压;然后进行切边、裁片、分条,分条后在真空条件下85℃烘干4小时,焊接极耳,制成满足要求的锂离子电池正极片;
2.将天然石墨与导电剂SuperP、增稠剂CMC、粘接剂SBR(丁苯橡胶乳液)按质量比95:1.4:1.4:2.2的比例制成浆料,混合均匀,用混制的浆料涂布在铜箔的两面后,并在85℃下烘干,涂布量为168g/m 2;进行切边、裁片、分条,分条后在真空条件下110℃烘干4h,焊接极耳,制成满足要求的锂离子电池负极片;
3.将根据上述工艺制备的正极片、负极片和隔膜经叠片工艺制作成厚度为4.7mm,宽度为55mm,长度为60mm的锂离子电池,在75℃下真空烘烤10小时,注入电解液。静置24小时后,用0.lC(180mA)的恒流充电至4.45V,然后以4.45V恒压充电至电流下降到0.05C(90mA);然后以0.2C(180mA)放电至3.0V,重复2次充放电,最后再以0.2C(180mA)将电池充电至3.8V,完成锂离子电池制备。
上述实施例和对比例中的电解液经制成锂离子电池后,分别按照下述测试条件对锂离子电池进行常温循环测试、高温循环测试、低温测试、高温存储测 试,测试结果如表2所示。
常温循环测试:
在常温(25℃)条件下,对锂离子电池进行一次1.0C/1.0C充电和放电(电池放电容量为C0),上限电压为4.45V,然后在常温条件下进行1.0C/1.0C充电和放电500周(电池放电容量为C1);
容量保持率=(C1/C0)*100%
高温循环测试:
在过高温(45℃)条件下,对锂离子电池进行一次1.0C/1.0C充电和放电(电池放电容量为C0),上限电压为4.45V,然后在常温条件下进行1.0C/1.0C充电和放电300周(电池放电容量为C1);
容量保持率=(C1/C0)*100%
低温测试:
在常温(25℃)条件下,对锂离子电池进行一次0.3C/0.3C充电和放电(电池放电容量记录为C0),上限电压为4.45V;将电池放置于-20℃烘箱中搁置4h,进行0.3C放电,放电容量记录为C1;
低温放电率=(C1/C0)*100%
高温存储测试:
在常温(25℃)条件下,对锂离子电池进行一次0.3C/0.3C充电和放电(电池放电容量记录为C0),上限电压为4.45V;将电池放置于60℃烘箱中搁置15d,取出电池,将电池放置于25℃环境中,进行0.3C放电,放电容量记录为C1;然后对锂离子电池进行一次0.3C/0.3C充电和放电(电池放电容量记录为C2);
容量保持率=(C1/C0)*100%
容量恢复率=(C2/C0)*100%
表2实施例和对比例的锂离子电池的性能测试结果
Figure PCTCN2022097322-appb-000005
Figure PCTCN2022097322-appb-000006
由表2可知,相对于对比例,实施例的锂离子电池都具有较好的高低温性能、存储性能和循环性能,这是因为实施例的锂离子电池中包括结构式1或结构式2所示的化合物A,该化合物A在电极/电解液界面处被还原形成厚度适中的界面膜,由于该界面膜厚度适中,因而可改善化合物A上N-C结构的热稳定性,因此该界面膜具有良好的热稳定性,在高温下隔绝电解液和电极的直接接触,抑制电解液的分解,故化合物A可提高高电压锂离子电池的高温性能;同时该化合物A形成的界面膜具有良好的传导锂离子孔道,低温下锂离子传导孔道不容易缩孔、循环过程中锂离子传输孔道不容易坍塌闭合,因此锂离子电池于高电压体系下具有较好的高低温性能、存储性能和循环性能。
将实施例1~实施例10进行对比,可发现实施例2的锂离子电池的综合性能最佳,这可能是因为化合物2的侧链的空间位阻较小,更利于锂离子的传输,同时化合物2还能形成更多的LiN3,进而进一步改善锂离子电池的高低温性能。
将实施例1与对比例3相比,可发现实施例1的锂离子电池的性能优于对 比例3,这是因为化合物7形成的界面膜的厚度较薄弱,同时N-C在高电压高温下发生产气,进而无法改善电池的高温特性,同时化合物7形成的界面膜上的孔洞在低温下容易缩合,以致于该SEI膜在低温下,虽然具有较优的锂离子传输能力,但孔洞缩合后,导致锂离子传输受阻,进而无法改善锂离子电池的低温性能。
将实施例1、实施例6、对比例3~5进行比较,可知对比例4~5的锂离子电池的电化学性能比实施例1、实施例6差,这表明将化合物7的浓度增大一倍或增大两倍从而将磺酰亚胺基团的浓度保持和实施例1或实施例6相同,即增加化合物7形成的界面膜的厚度,但是锂离子电池的电化学性能仍比实施例1、实施例6差,这可能是化合物7形成的界面膜耐高电压、耐高温性能较弱,在极端条件下对电极/电解液的保护作用较为微弱,且在低温下界面膜的孔洞容易缩合,这也表明本申请的化合物A之所以能有效改善高压锂离子电池的电化学性能,不仅和其形成的界面膜的厚度有关,还和其形成的界面膜的组分有关,即化合物A是作为一个化合物整体发挥作用的,其上的磺酰亚胺基团和自身特有的结构对有效改善高电压锂离子电池的电化学性能皆起到重要作用。
将实施例1与对比例6相比,可发现实施例1的锂离子电池的电化学性能优于对比例6,这是因为化合物8形成的界面膜的厚度较薄弱,同时含N-C的界面膜在高电压高温下不稳定,容易消耗活性锂,产生气体,而且化合物8形成的界面膜于低温下锂离子传导孔道容易缩孔、循环过程中锂离子传输孔道容易坍塌闭合,造成锂离子电池的电化学性能下降。
最后应当说明的是,以上实施例仅用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的实质和范围。

Claims (10)

  1. 一种电解液添加剂,其特征在于,包括结构式1或结构式2所示的化合物A,
    Figure PCTCN2022097322-appb-100001
    其中,R 1~R 12各自独立地选自氢、卤素、取代或未取代的C1~C6烷基、取代或未取代的C2~C6不饱和基、取代或未取代的氨基。
  2. 如权利要求1所述的电解液添加剂,其特征在于,R 3~R 6和R 10~R 12皆为H,R 1、R 2、R 7~R 9各自独立地选自卤素、取代或未取代的C1~C6烷基、取代或未取代的C1~C6不饱和基、取代或未取代的氨基。
  3. 如权利要求1所述的电解液添加剂,其特征在于,所述化合物A选自化合物1~化合物6中的任一种:
    Figure PCTCN2022097322-appb-100002
  4. 一种锂离子电池电解液,包括锂盐和有机溶剂,其特征在于,还包括如权利要求1~3任一项所述的电解液添加剂。
  5. 如权利要求4所述的锂离子电池电解液,其特征在于,所述电解液添加剂的质量占所述锂盐和所述有机溶剂质量之和的0.1~5%。
  6. 如权利要求4所述的锂离子电池电解液,其特征在于,所述锂盐选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、甲基磺酸锂、三氟甲基磺酸锂、二草酸硼酸锂、二氟草酸硼酸锂、二氟磷酸锂、二氟双草酸磷酸锂、双氟磺酰亚胺锂和双三氟甲基磺酰亚胺锂中的至少一种。
  7. 如权利要求4所述的锂离子电池电解液,其特征在于,所述有机溶剂选自链状碳酸酯类、羧酸酯类、醚类和杂环化合物中的至少一种。
  8. 如权利要求4所述的锂离子电池电解液,其特征在于,还包括助剂,所述助剂选自碳酸亚乙烯酯、亚乙烯基碳酸乙烯酯、氟代碳酸乙烯酯、亚硫酸乙烯酯、1,3丙磺酸内酯和硫酸乙烯酯中的至少一种。
  9. 一种锂离子电池,包括正极材料、负极材料,其特征在于,还包括如权利要求4~8任一项所述的锂离子电池电解液,且最高充电电压为4.45V。
  10. 如权利要求9所述的锂离子电池,其特征在于,所述正极材料为LiNi xCo yMn (1-x-y)M zO 2,其中0.6≤x<0.9,x+y<1,0≤z<0.08,M为Al、Mg、Zr和Ti中的至少一种。
PCT/CN2022/097322 2022-02-25 2022-06-07 电解液添加剂、锂离子电池电解液及锂离子电池 WO2023159800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210184500.XA CN114552016B (zh) 2022-02-25 2022-02-25 电解液添加剂、锂离子电池电解液及锂离子电池
CN202210184500.X 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023159800A1 true WO2023159800A1 (zh) 2023-08-31

Family

ID=81679481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097322 WO2023159800A1 (zh) 2022-02-25 2022-06-07 电解液添加剂、锂离子电池电解液及锂离子电池

Country Status (2)

Country Link
CN (1) CN114552016B (zh)
WO (1) WO2023159800A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552016B (zh) * 2022-02-25 2022-11-18 珠海市赛纬电子材料股份有限公司 电解液添加剂、锂离子电池电解液及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357877A (ja) * 2000-06-16 2001-12-26 Mitsubishi Chemicals Corp 非水電解液及び非水電解液二次電池
US20150064578A1 (en) * 2013-08-30 2015-03-05 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2019050135A (ja) * 2017-09-11 2019-03-28 コニカミノルタ株式会社 非水系電解液組成物、及び、非水系電解液二次電池
CN111349058A (zh) * 2018-12-21 2020-06-30 石家庄圣泰化工有限公司 1,4-双(甲基磺酰基)哌嗪的合成方法
CN114552016A (zh) * 2022-02-25 2022-05-27 珠海市赛纬电子材料股份有限公司 电解液添加剂、锂离子电池电解液及锂离子电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3129401A1 (de) * 1981-07-25 1983-02-24 Hoechst Ag, 6000 Frankfurt Wasserloesliche disazoverbindungen und aromatische diamine als deren vorprodukte, verfahren zur herstellung dieser verbindungen und die verwendung der disazoverbindungen als farbstoffe
KR102233777B1 (ko) * 2014-08-25 2021-03-30 삼성에스디아이 주식회사 리튬 전지 전해질용 첨가제, 이를 포함하는 리튬 전지용 전해질 및 상기 전해질을 채용한 리튬 전지
US12021215B2 (en) * 2018-10-10 2024-06-25 Zeon Corporation Conductive paste for electrode mixed material layer, slurry for electrode mixed material layer, electrode for electrochemical device, and electrochemical device
CN113851713B (zh) * 2021-09-17 2022-05-17 珠海市赛纬电子材料股份有限公司 电解液添加剂和含有该添加剂的电解液及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357877A (ja) * 2000-06-16 2001-12-26 Mitsubishi Chemicals Corp 非水電解液及び非水電解液二次電池
US20150064578A1 (en) * 2013-08-30 2015-03-05 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2019050135A (ja) * 2017-09-11 2019-03-28 コニカミノルタ株式会社 非水系電解液組成物、及び、非水系電解液二次電池
CN111349058A (zh) * 2018-12-21 2020-06-30 石家庄圣泰化工有限公司 1,4-双(甲基磺酰基)哌嗪的合成方法
CN114552016A (zh) * 2022-02-25 2022-05-27 珠海市赛纬电子材料股份有限公司 电解液添加剂、锂离子电池电解液及锂离子电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MCMANUS, J. M. ET AL.: "Piperazinesulfamylurea hypoglycemic agents. V.", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 6, 30 November 1966 (1966-11-30), US , pages 967, XP009548467, ISSN: 0022-2623 *
RIVERO, B. E. ET AL.: "Stereochemistry of tri-n-sulphonylhexahydro-s-triazines", TETRAHEDRON, vol. 34, no. 23, 31 December 1978 (1978-12-31), pages 3413, XP027031560, ISSN: 0040-4020 *

Also Published As

Publication number Publication date
CN114552016B (zh) 2022-11-18
CN114552016A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
EP3419096A1 (en) Electrolyte and and lithium-ion battery
CN107834110A (zh) 锂离子电池电解液及锂离子电池
CN111883839B (zh) 高压电解液及基于其的锂离子电池
WO2023040119A1 (zh) 电解液添加剂和含有该添加剂的电解液及锂离子电池
WO2023236509A1 (zh) 一种电解液及其制备方法、锂离子电池
WO2022213667A1 (zh) 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
CN116387622A (zh) 一种锂离子电池用电解液及包含该电解液的锂离子电池
WO2023050597A1 (zh) 添加剂和含有该添加剂的电解液及锂离子电池
CN113851642B (zh) 非水电解液及其锂离子电池
WO2022213668A1 (zh) 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
CN112615056B (zh) 一种用于制备电解液的添加剂组合物、及包含添加剂组合物的电解液、锂离子二次电池
WO2023159800A1 (zh) 电解液添加剂、锂离子电池电解液及锂离子电池
CN111883834A (zh) 一种非水锂离子电池电解液添加剂、包含其的电解液以及锂离子电池
WO2023123841A1 (zh) 电解液添加剂和含有该添加剂的电解液及锂离子电池
CN113964385B (zh) 电解液及其制备方法和用途
CN115360424A (zh) 电解液及含该电解液的锂离子电池
CN114520371A (zh) 一种非水电解液及包含其的锂离子电池
CN112038697A (zh) 一种锂离子电池非水电解液及锂离子电池
CN114552015B (zh) 电解液添加剂、锂离子电池电解液及锂离子电池
CN113839089B (zh) 一种锂离子电池电解液及含该电解液的锂离子电池
CN114464959B (zh) 锂离子电池
CN109309250A (zh) 电解液及二次锂电池
CN118136961A (zh) 一种提高钴酸锂电池高低温性能的电解液及应用
CN116315107A (zh) 电解液及其锂离子电池
CN115425293A (zh) 电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928071

Country of ref document: EP

Kind code of ref document: A1