WO2023158273A1 - Method for manufacturing transparent antenna substrate and transparent antenna manufactured therefrom - Google Patents

Method for manufacturing transparent antenna substrate and transparent antenna manufactured therefrom Download PDF

Info

Publication number
WO2023158273A1
WO2023158273A1 PCT/KR2023/002362 KR2023002362W WO2023158273A1 WO 2023158273 A1 WO2023158273 A1 WO 2023158273A1 KR 2023002362 W KR2023002362 W KR 2023002362W WO 2023158273 A1 WO2023158273 A1 WO 2023158273A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
thin film
forming
layer
transparent antenna
Prior art date
Application number
PCT/KR2023/002362
Other languages
French (fr)
Korean (ko)
Inventor
양주웅
허정욱
정상천
전용선
Original Assignee
주식회사 루미디아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루미디아 filed Critical 주식회사 루미디아
Publication of WO2023158273A1 publication Critical patent/WO2023158273A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means

Definitions

  • the present invention relates to a method for manufacturing a transparent antenna substrate and a transparent antenna manufactured therefrom. It relates to a method for manufacturing a transparent antenna substrate capable of outputting a high-power signal by adjusting the thickness and forming a metal mesh antenna pattern having a fine line width, and a transparent antenna manufactured therefrom.
  • An antenna is an essential component for wireless communication.
  • communication technology applied to mobile devices and vehicles develops and internet on things (IoT) technology develops, demands for antenna performance are also increasing.
  • IoT internet on things
  • a technique of applying an antenna to a display, window, etc. has been attempted. To this end, the antenna needs to be implemented transparently.
  • a transparent antenna may be implemented by coating silver (Ag) nanowires on a glass substrate.
  • concentration and thickness of the silver (Ag) nanowires must be increased.
  • transmittance of the antenna decreases.
  • the transparent antenna may be implemented by depositing a silver (Ag) alloy on a film by sputtering and then patterning the silver (Ag) alloy. At this time, it may take a lot of time to deposit the silver (Ag) alloy to a predetermined thickness or more using the sputtering technique, and since a large amount of silver (Ag) alloy may be lost by patterning, there is a problem that is not efficient in terms of cost. there is.
  • the problem to be solved by the present invention is to provide a method for manufacturing a transparent antenna substrate capable of outputting a large power signal by generating a copper electrode through a simple process and forming a metal mesh antenna pattern with a fine line width, and a transparent antenna manufactured therefrom. will be.
  • the present invention forms a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of a copper (Cu) thin film having a thickness of 12 to 100 ⁇ m; bonding an adhesive surface of the copper (Cu) thin film to one surface of a glass base substrate to form a copper (Cu) thin film layer; forming a photoresist layer on the copper (Cu) thin film layer; exposing the photoresist layer to light; developing the exposed photoresist layer and removing a portion of the adhesive layer and the thin film layer in the exposed area by etching; peeling the unexposed portion of the photoresist layer; and forming a metal mesh antenna pattern on the portion from which the photoresist layer is peeled off.
  • the metal mesh antenna pattern may be a grid pattern made of copper (Cu) wires having a thickness of 12 to 100 ⁇ m.
  • the copper (Cu) wire forming the metal mesh antenna pattern may satisfy the following relational expression 1.
  • the forming of the copper (Cu) thin film is performed by hot-pressing or laminating a thermosetting adhesive layer in a roll form on one surface of the copper (Cu) thin film. It can be done by doing
  • thermosetting adhesive layer is polyolefin-based, urea-based, melamine-based, phenol-based, unsaturated polyester-based, epoxy-based, resorcinol-based, polyimide-based resins, modified products thereof, and these It may be any one or more of mixtures of
  • the thickness of the thermosetting adhesive layer may be 10 to 25 ⁇ m.
  • the step of forming the copper (Cu) thin film layer is the adhesive surface of the copper (Cu) thin film on one surface of the glass base substrate through a hot-press or laminating process. It can be performed by bonding and bonding.
  • the step of forming the copper (Cu) thin film layer after bonding the adhesive surface of the copper (Cu) thin film to one surface of the glass base substrate, one surface of the glass base substrate and a degassing process for removing microbubbles generated between the adhesive surface of the copper (Cu) thin film.
  • the degassing process may be performed by applying heat and pressure in an autoclave to remove microbubbles by moving residual bubbles to the outside of the bonded surface.
  • the degassing process may be performed by applying heat and pressure in a hot-press equipment to remove microbubbles by moving residual bubbles to the outside of the bonded surface.
  • forming an overcoat layer in a form surrounding the transparent antenna may further include.
  • the overcoat layer in the step of forming the overcoat layer, may be formed by any one coating method among liquid coating, film coating, and thermoplastic resin coating.
  • performing a surface treatment process on the terminal portion of the antenna may further include.
  • the surface treatment process may be performed using any one metal selected from the group consisting of tin, nickel, gold, silver and palladium.
  • the present invention provides a transparent antenna manufactured from any one of the above manufacturing methods.
  • a copper electrode is produced through a relatively simple process, and the line resistance of the base electrode is maintained within a certain range by adjusting the thickness of the electrode, thereby enabling the antenna to output a high-power signal.
  • the present invention can prevent deterioration of adhesion between glass and copper (Cu) due to alkaline substances precipitated from glass, and thus maintain constant adhesion between the glass base substrate and the copper (Cu) thin film layer.
  • FIG. 1 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention.
  • FIG. 2 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention.
  • FIG. 3 shows a metal mesh antenna pattern of a transparent antenna according to a preferred embodiment of the present invention.
  • FIG. 4 shows a metal mesh antenna pattern of a transparent antenna according to a preferred embodiment of the present invention.
  • FIG. 5 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention.
  • FIG. 6 shows a transparent antenna substrate in a process step before forming a metal mesh antenna pattern according to a preferred embodiment of the present invention.
  • FIG. 7 is a diagram showing a transparent antenna according to a preferred embodiment of the present invention.
  • FIG. 8 shows a transparent antenna substrate in a process step before forming a metal mesh antenna pattern according to a preferred embodiment of the present invention.
  • FIG. 9 is a diagram showing a transparent antenna according to a preferred embodiment of the present invention.
  • the present invention comprises the steps of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of a copper (Cu) thin film having a thickness of 12 to 100 ⁇ m; bonding an adhesive surface of the copper (Cu) thin film to one surface of a glass base substrate to form a copper (Cu) thin film layer; forming a photoresist layer on the copper (Cu) thin film layer; exposing the photoresist layer to light; developing the exposed photoresist layer and removing a portion of the adhesive layer and the thin film layer in the exposed area by etching; peeling the unexposed portion of the photoresist layer; And forming a metal mesh antenna pattern on the portion from which the photoresist layer was peeled off.
  • the present invention can produce a copper electrode through a relatively simple process without using a sputter process, and can easily adjust the thickness of the electrode. Through this, the present invention can achieve a high power signal output of an antenna pattern having a fine line width while maintaining the line resistance of the base electrode within a certain range.
  • the present invention can prevent deterioration of adhesion between glass and copper (Cu) due to alkaline substances precipitated from glass, and thus maintain constant adhesion between the glass base substrate and the copper (Cu) thin film layer.
  • the base substrate in order to form a metal mesh antenna pattern having a fine line width to enable high power signal output, the base substrate must maintain line resistance within an appropriate range by adjusting the electrode thickness and line width.
  • the present invention includes the steps of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of a copper (Cu) thin film having a thickness of 12 to 100 ⁇ m; bonding an adhesive surface of the copper (Cu) thin film to one surface of a glass base substrate to form a copper (Cu) thin film layer; forming a photoresist layer on the copper (Cu) thin film layer; exposing the photoresist layer to light; developing the exposed photoresist layer and removing a portion of the adhesive layer and the thin film layer in the exposed area by etching; peeling the unexposed portion of the photoresist layer; And forming a metal mesh antenna pattern on the portion from which the photoresist layer was peeled off.
  • the present invention can produce a copper electrode through a relatively simple process without using a sputter process, and can easily adjust the thickness of the electrode. Through this, the present invention can achieve a high power signal output of an antenna pattern having a fine line width while maintaining the line resistance of the base electrode within a certain range.
  • the present invention can prevent deterioration of adhesion between glass and copper (Cu) due to alkaline substances precipitated from glass, and thus maintain constant adhesion between the glass base substrate and the copper (Cu) thin film layer.
  • the present invention is a step of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film (S10), copper on one surface of the glass base substrate (Cu) Forming a copper (Cu) thin film layer by bonding the adhesive surfaces of the thin films (S20), forming a photoresist layer on the copper (Cu) thin film layer (S30), exposing the photoresist layer to light (S40) , developing the exposed photoresist layer, removing a portion of the adhesive layer and the thin film layer in the exposed area by etching (S50), peeling the unexposed portion of the photoresist layer (S60), and photoresist Forming a metal mesh antenna pattern on the part where the layer is separated (S70).
  • a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film (S10), copper on one surface of the glass base substrate (Cu)
  • the copper (Cu) thin film layer is formed on one surface of the glass base substrate. This is a step of preparing in the form of a thin film.
  • the present invention does not form a copper (Cu) thin film layer by a sputter process, but forms a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of the copper (Cu) thin film, and then Similarly, it is formed by bonding it to one side of a glass base substrate.
  • a copper (Cu) thin film layer can be formed with only a relatively simple process without performing a sputtering process.
  • a thickness range of the copper (Cu) thin film itself it is possible to easily implement a desired electrode thickness control.
  • the present invention can reduce process cost and significantly improve process efficiency.
  • the thickness of the copper (Cu) thin film is 12 to 100 ⁇ m. Preferably it may be 15 ⁇ 60 ⁇ m, more preferably it may be 18 ⁇ 35 ⁇ m. If the thickness of the copper (Cu) thin film is less than the above range, the lamination process is not easy, and the required current range may not be satisfied, so that smooth power supply may be difficult. In addition, if the thickness of the copper (Cu) thin film exceeds the above range, the adhesive strength of the copper (Cu) thin film is lowered, and the manufacturing process cost may increase more than necessary, such as collapse of the thin film or peeling of the micropattern.
  • the thermosetting adhesive layer is formed to include a thermosetting adhesive, and the thermosetting adhesive is a material that is resistant to a high-temperature environment such as an etching process and an antenna pattern formation, as will be described later, and may be commonly used in the related art.
  • the thermosetting adhesive is a material that is resistant to a high-temperature environment such as an etching process and an antenna pattern formation, as will be described later, and may be commonly used in the related art.
  • at least one of polyolefin-based, urea-based, melamine-based, phenolic, unsaturated polyester-based, epoxy-based, resorcinol-based, polyimide-based resins, modified products thereof, and mixtures thereof may be used.
  • there is an advantage in that the adhesive strength can be maintained even in a high-temperature environment during the manufacturing process and an external force received during operation.
  • the thickness of the thermosetting adhesive layer may be 10 to 25 ⁇ m. More preferably, the thickness of the thermosetting adhesive layer may be 10 to 15 ⁇ m. In this case, contact between the copper (Cu) thin film and the thermosetting adhesive layer may be improved. In particular, when the alkali material is discharged from the glass surface of the glass base substrate, the adhesive strength between the glass and the copper (Cu) thin film may be reduced. In the present invention, the glass and copper ( Cu) to prevent deterioration of adhesion between thin films.
  • thermosetting adhesive layer If the thickness of the thermosetting adhesive layer is less than the above range, contact between the copper (Cu) thin film and the thermosetting adhesive layer and adhesion between the glass and the copper (Cu) thin film may deteriorate. In addition, if the thickness of the thermosetting adhesive layer exceeds the above range, the transfer type of heat generated in the circuit is deteriorated and bubbles may be generated in the hot-pressing or laminating process.
  • forming the copper (Cu) thin film (S10) may be performed by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film in a roll form by hot-pressing or laminating.
  • aging may be performed for a certain period of time.
  • the material of the glass base substrate is preferably soda lime (soda lime glass) glass or borosilicate (borosilicate glass), and glass whose rigidity is secured through chemical strengthening or thermal strengthening may be used.
  • a glass substrate having a low dielectric constant can be used. Performance of the antenna may be improved as the permittivity of the base glass substrate used as the dielectric material of the antenna is lower.
  • forming a copper (Cu) thin film layer (S20) is an adhesive surface of the copper (Cu) thin film on one surface of a glass base substrate through a hot-press process. It can be performed by bonding and bonding. In this case, the adhesive force between the mediums of each material can be remarkably improved.
  • a pre-lamination process may be performed first.
  • the pre-lamination process may be performed by adhering the adhesive surface of the copper (Cu) thin film to the glass surface in a temperature range of 100 to 150 ° C. and temporarily curing the glass surface.
  • the hot-press process may be performed after performing the pre-lamination process.
  • the hot-press process may be performed for about 30 to 50 minutes at a heating temperature of 120 to 180° C. and a pressing pressure of 50 to 70 kgf.
  • a degassing process for removing microbubbles generated between the adhesive surfaces of the thin films may be further included.
  • the degassing process may be performed by applying heat and pressure in an autoclave to move residual bubbles to the outside of the bonded surface to remove microbubbles.
  • the degassing process may be performed in a manner in which heat and pressure are applied in a hot-press equipment to move residual bubbles to the outside of the bonded surface to remove microbubbles.
  • adhesion and adhesion between the glass base substrate and the copper (Cu) thin film can be further improved.
  • a fine pattern may be formed using a wet process to form a metal mesh antenna pattern.
  • a step of washing one surface of the copper (Cu) thin film layer may be further performed.
  • surface cleaning may be performed through a soft etching process.
  • the present invention has the advantage of being able to form or implement a copper electrode having a target thickness. As a result, the present invention can adjust the line width or thickness of the metal mesh antenna pattern by adjusting the thickness of the copper (Cu) electrode.
  • the line resistance of the base electrode can be maintained at 1 ⁇ /m or less, and a current of several amperes (A) or several tens of amperes (A) can flow through the mesh electrode pattern to the fine mesh electrode pattern.
  • a high power signal can be output in a pattern.
  • the present invention may further include forming a copper (Cu) plating layer on the copper (Cu) thin film layer.
  • copper (Cu) has a feature that allows an additional copper (Cu) plating process on the copper (Cu) surface.
  • the present invention utilizes this feature to additionally plate copper (Cu) on the copper (Cu) thin film layer. By doing so, it was possible to adjust the thickness of the copper (Cu) electrode.
  • FIG. 2 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention.
  • the present invention includes forming a copper (Cu) thin film layer by bonding the adhesive surface of a copper (Cu) thin film to one surface of a glass base substrate (S20) and forming a photoresist layer on the copper (Cu) thin film layer. Between the forming step (S30), a step (S21) of forming a copper (Cu) plating layer on the copper (Cu) thin film layer may be further performed.
  • the step of forming a photoresist layer on the copper (Cu) thin film layer (S30) may be performed by applying a photoresist liquid to form a photoresist layer, or dry film photoresist (DFR) It may also be performed by laminating on a copper (Cu) thin film layer.
  • various conventional techniques can be widely applied if it is a photoresist capable of forming a circuit pattern through photosensitization.
  • exposing the photoresist layer (S40) is a step of exposing the photoresist layer to ultraviolet (UV) light. At this time, the photoresist under the UV blocking portion of the photomask remains unexposed. In the area where UV is irradiated, the photoresist layer is exposed to ultraviolet (UV) light.
  • UV ultraviolet
  • the exposed photoresist layer is developed and the adhesive layer and the thin film layer are removed. Etching is performed on a portion in the exposed area.
  • step S60 of stripping the unexposed portion of the photoresist layer the remaining portion of the photoresist layer is stripped. Through this, the copper (Cu) thin film layer is exposed.
  • the metal mesh antenna pattern is formed on the portion where the photoresist layer is peeled off.
  • the metal mesh antenna pattern provides conductivity and may be composed of a conductive material applicable as a transparent electrode.
  • the metal mesh patterns may include, for example, silver (Ag), copper (Cu), aluminum (Al), gold (Au), nickel (Ni), titanium (Ti), molybdenum (Mo), tungsten ( W), chromium (Cr), platinum (Pt), or an alloy thereof; and carbon-based materials such as graphene, carbon nanotubes, carbon nanoribbons, carbon nanowires, carbon fibers, and carbon black; It may include one or more selected from the group consisting of.
  • the metal mesh patterns may be made of copper (Cu).
  • the present invention makes it possible to adjust the thickness of the copper (Cu) electrode by forming both the thin film layer and the metal mesh antenna pattern with copper (Cu) metal, and furthermore, the metal mesh antenna pattern is also formed of copper (Cu) This made it easy to adjust the line width or thickness of the metal mesh antenna pattern.
  • the metal mesh antenna pattern 40 includes a plurality of first metal lines 410 extending in a first direction and a plurality of second metal lines 420 extending in a second direction. can include Each of the plurality of first metal lines 410 and each of the plurality of second metal lines 420 intersect, and these intersection areas may form the shape of a metal mesh antenna pattern.
  • the size and shape of the metal mesh antenna pattern 40 according to an embodiment of the present invention may vary depending on the frequency band of the signal to be transmitted and received, the field of application, and the like.
  • the metal mesh antenna pattern according to an embodiment of the present invention may be implemented with a fine line width for high power signal output, and may have a circular, elliptical, curved, or polygonal shape, but is not limited thereto.
  • the metal mesh antenna pattern 40 may have a rectangular lattice shape.
  • the metal mesh antenna pattern 40 may have a diamond lattice shape.
  • the metal mesh antenna pattern 40 may be a grid pattern made of copper (Cu) wires having a thickness of 12 to 100 ⁇ m. More preferably, the metal mesh antenna pattern 40 may be a lattice pattern made of copper (Cu) wires having a thickness of 18 to 35 ⁇ m. In addition, the line width of the metal mesh antenna pattern 40 is preferably 12 to 140 ⁇ m, more preferably 20 to 100 ⁇ m.
  • a copper (Cu) wire forming the metal mesh antenna pattern 40 may satisfy the following relational expression 1.
  • the line width and thickness of the copper (Cu) wire forming the metal mesh antenna pattern 40 are can be satisfied.
  • the metal mesh antenna pattern 40 is formed with a fine line width, a transparent antenna can be implemented, and at the same time, a high-power signal can be output.
  • the present invention may further include forming an overcoat layer in a form surrounding the transparent antenna (S80).
  • the overcoat layer may be formed in a form surrounding the transparent antenna.
  • characteristics such as waterproofness, dustproofness, and moistureproofness may be satisfied.
  • the overcoat layer may be formed by any one of a liquid coating method, a film coating method, and a thermoplastic resin coating method.
  • the overcoat layer can be applied in an appropriate thickness range using a spray or dispenser.
  • the overcoat layer is made of a thermoplastic resin
  • the thermoplastic resin may be melted and adhered to the base substrate by applying heat and pressure.
  • a step of performing a surface treatment process on the terminal portion of the antenna may be further included.
  • FIG. 5 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention.
  • the present invention is a step of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film (S10), copper on one surface of the glass base substrate (Cu) Forming a copper (Cu) thin film layer by bonding the adhesive surfaces of the thin films (S20), forming a photoresist layer on the copper (Cu) thin film layer (S30), exposing the photoresist layer to light (S40) , developing the exposed photoresist layer, removing the portion in the exposed area among the adhesive layer and the thin film layer by etching (S50), peeling the unexposed portion of the photoresist layer (S60), photoresist Forming a metal mesh antenna pattern on the part where the layer is separated (S70), forming an overcoat layer in a form surrounding the transparent antenna (S80
  • the present invention has an antenna frequency characteristic and terminal protection effect by additionally performing a surface treatment process after forming the overcoat layer.
  • the surface treatment process may be performed using any one metal selected from the group consisting of tin, nickel, gold, silver and palladium.
  • the present invention provides a transparent antenna manufactured by any one of the above-described transparent antenna substrate manufacturing methods.
  • FIG. 6 shows a transparent antenna substrate in a process step prior to forming a metal mesh antenna pattern according to a preferred embodiment of the present invention.
  • the present invention before forming the metal mesh antenna pattern, the present invention includes a transparent base substrate 10, an adhesive layer 20 attached to a copper (Cu) thin film, and a copper (Cu) thin film layer 30. can do.
  • the metal mesh antenna pattern is formed by etching the copper (Cu) thin film layer 30 according to the process sequence of steps S40 to S70.
  • FIG. 7 shows a transparent antenna according to a preferred embodiment of the present invention.
  • the transparent antenna is an antenna using a transparent electrode, and includes a base substrate 10 made of a transparent material, an adhesive layer 20 attached to a copper (Cu) thin film, a metal mesh antenna pattern 40, and an overcoat layer ( 50) included.
  • the metal mesh antenna pattern 40 may be formed by etching the copper (Cu) thin film layer 30 .
  • FIG. 8 shows a transparent antenna substrate in a process step before forming a metal mesh antenna pattern according to a preferred embodiment of the present invention.
  • the present invention includes a transparent base substrate 10, an adhesive layer 20 attached to a copper (Cu) thin film, and a copper (Cu) thin film layer 30 before forming the metal mesh antenna pattern.
  • a copper (Cu) plating layer 31 may be additionally formed on the copper (Cu) thin film layer 30 .
  • the metal mesh antenna pattern is formed by etching the copper (Cu) thin film layer 30 and the copper (Cu) plating layer 31 according to the above-described process sequence.
  • FIG. 9 shows a transparent antenna according to a preferred embodiment of the present invention.
  • a copper (Cu) plating layer 31 is additionally formed on the copper (Cu) thin film layer 30
  • the copper (Cu) thin film layer 30 and the copper (Cu) plating layer 31 are metal together.
  • a mesh antenna pattern 40' may be formed.
  • the metal mesh antenna pattern 40' satisfying the target thickness can be formed through the formation of an additional copper (Cu) plating layer. there is.
  • an insulating part and a ground part may be further included.
  • the antenna unit may be formed symmetrically with the ground unit having a corresponding shape and structure with the insulating unit interposed therebetween.
  • the insulating unit is in contact with the antenna unit to insulate the ground unit and the antenna unit, and has an effect of adhering the antenna unit and the ground unit.
  • the ground unit may provide a ground for the transparent antenna.
  • the antenna unit may include the metal mesh antenna pattern 40 .
  • the ground may include a metal mesh ground pattern.
  • the present invention can provide a transparent antenna including a metal mesh antenna pattern with a fine line width capable of outputting a high-power signal, and accordingly, the transparent antenna of the present invention is implemented to be visually substantially transparent and is useful in various places. It can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Details Of Aerials (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

In the present invention, a copper electrode is formed through a relatively simple process, and the line resistance of a base electrode is maintained within a certain range by adjusting the thickness of the electrode, thereby enabling an antenna to output a high-power signal. In addition, the present invention can prevent the deterioration of adhesion between glass and copper (Cu) due to alkali substances precipitated from glass, and thus can maintain constant adhesion between a glass base substrate and a copper (Cu) thin-film layer.

Description

투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나Method for manufacturing a transparent antenna substrate and a transparent antenna manufactured therefrom
본 발명은 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나에 관한 것으로, 보다 상세하게는 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 공정을 통해 전극의 두께를 조절하고, 미세 선폭을 가진 메탈 메쉬 안테나 패턴을 형성하여 대전력 신호 출력이 가능한 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나에 관한 것이다.The present invention relates to a method for manufacturing a transparent antenna substrate and a transparent antenna manufactured therefrom. It relates to a method for manufacturing a transparent antenna substrate capable of outputting a high-power signal by adjusting the thickness and forming a metal mesh antenna pattern having a fine line width, and a transparent antenna manufactured therefrom.
안테나는 무선통신을 위한 필수적인 구성이다. 모바일 장치 및 차량에 적용되는 통신 기술이 발전하고, IoT(internet on things) 기술이 발전함에 따라 안테나 성능에 대한 요구도 증가하고 있다. 특히, 디스플레이, 윈도우 등에 안테나를 적용하는 기술이 시도되고 있다. 이를 위하여, 안테나는 투명으로 구현될 필요가 있다.An antenna is an essential component for wireless communication. As communication technology applied to mobile devices and vehicles develops and internet on things (IoT) technology develops, demands for antenna performance are also increasing. In particular, a technique of applying an antenna to a display, window, etc. has been attempted. To this end, the antenna needs to be implemented transparently.
일반적으로, 은(Ag) 나노 와이어를 글래스 기판 상에 코팅하는 방법으로 투명 안테나가 구현될 수 있다. 이때, 안테나의 성능을 높이기 위하여 은(Ag) 나노와이어의 농도 및 두께를 높여야 하지만, 은(Ag) 나노와이어의 농도 및 두께가 높아지면 안테나의 투과도가 낮아지는 문제가 있다.In general, a transparent antenna may be implemented by coating silver (Ag) nanowires on a glass substrate. At this time, in order to improve the performance of the antenna, the concentration and thickness of the silver (Ag) nanowires must be increased. However, when the concentration and thickness of the silver (Ag) nanowires increase, transmittance of the antenna decreases.
또는, 은(Ag) 합금을 필름 상에 스퍼터링 기법으로 증착한 후, 은(Ag) 합금을 패터닝하는 방법으로 투명 안테나가 구현될 수도 있다. 이때, 스퍼터링 기법을 이용하여 소정 두께 이상으로 은(Ag) 합금을 증착시키기 위하여 많은 시간이 소요될 수 있으며, 패터닝에 의하여 다량의 은(Ag) 합금이 소실될 수 있으므로 비용 측면에서 효율적이지 않은 문제가 있다.Alternatively, the transparent antenna may be implemented by depositing a silver (Ag) alloy on a film by sputtering and then patterning the silver (Ag) alloy. At this time, it may take a lot of time to deposit the silver (Ag) alloy to a predetermined thickness or more using the sputtering technique, and since a large amount of silver (Ag) alloy may be lost by patterning, there is a problem that is not efficient in terms of cost. there is.
본 발명이 해결하고자 하는 과제는 간단한 공정을 통해 구리 전극을 생성하고, 미세 선폭을 가진 메탈 메쉬 안테나 패턴을 형성하여 대전력 신호 출력이 가능한 투명 안테나 기판 제조방법 및 이로부터 제조된 투명 안테나를 제공하는 것이다.The problem to be solved by the present invention is to provide a method for manufacturing a transparent antenna substrate capable of outputting a large power signal by generating a copper electrode through a simple process and forming a metal mesh antenna pattern with a fine line width, and a transparent antenna manufactured therefrom. will be.
상술한 과제를 해결하기 위하여, 본 발명은 12 ~ 100㎛ 두께의 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계; 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계; 상기 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계; 상기 포토레지스트층을 노광시키는 단계; 노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계; 상기 포토레지스트층의 노광되지 않은 부분을 박리하는 단계; 및 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계;를 포함하는 투명 안테나 기판 제조방법을 제공한다.In order to solve the above problems, the present invention forms a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of a copper (Cu) thin film having a thickness of 12 to 100 μm; bonding an adhesive surface of the copper (Cu) thin film to one surface of a glass base substrate to form a copper (Cu) thin film layer; forming a photoresist layer on the copper (Cu) thin film layer; exposing the photoresist layer to light; developing the exposed photoresist layer and removing a portion of the adhesive layer and the thin film layer in the exposed area by etching; peeling the unexposed portion of the photoresist layer; and forming a metal mesh antenna pattern on the portion from which the photoresist layer is peeled off.
본 발명의 바람직한 일실시예에 따르면, 상기 메탈 메쉬 안테나 패턴은 12 ~ 100㎛ 두께의 구리(Cu) 도선으로 이루어진 격자 패턴일 수 있다.According to a preferred embodiment of the present invention, the metal mesh antenna pattern may be a grid pattern made of copper (Cu) wires having a thickness of 12 to 100 μm.
본 발명의 바람직한 일실시예에 따르면, 상기 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu) 도선은 하기의 관계식 1을 만족할 수 있다.According to a preferred embodiment of the present invention, the copper (Cu) wire forming the metal mesh antenna pattern may satisfy the following relational expression 1.
[관계식 1][Relationship 1]
Figure PCTKR2023002362-appb-img-000001
Figure PCTKR2023002362-appb-img-000001
(LWCu : 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu)의 선폭, TCu : 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu) 도선의 두께) (LW Cu : Line width of copper (Cu) forming the metal mesh antenna pattern, T Cu : thickness of copper (Cu) wire forming the metal mesh antenna pattern)
본 발명의 바람직한 일실시예에 따르면, 상기 구리(Cu) 박막을 형성하는 단계는 구리(Cu) 박막의 일 면에 열경화성 접착제층을 롤 형태로 핫-프레스(hot-press) 또는 라미네이팅 방식으로 접합함으로써 수행될 수 있다.According to a preferred embodiment of the present invention, the forming of the copper (Cu) thin film is performed by hot-pressing or laminating a thermosetting adhesive layer in a roll form on one surface of the copper (Cu) thin film. It can be done by doing
본 발명의 바람직한 일실시예에 따르면, 상기 열경화성 접착제층은 폴리올레핀계, 요소계, 멜라민계, 페놀계, 불포화 폴리에스테르 계, 에폭시계, 레졸시놀계, 폴리이미드계 수지, 이들의 변성물 및 이들의 혼합물 중 어느 하나 이상일 수 있다.According to a preferred embodiment of the present invention, the thermosetting adhesive layer is polyolefin-based, urea-based, melamine-based, phenol-based, unsaturated polyester-based, epoxy-based, resorcinol-based, polyimide-based resins, modified products thereof, and these It may be any one or more of mixtures of
본 발명의 바람직한 일실시예에 따르면, 상기 열경화성 접착제층의 두께는 10 ~ 25㎛일 수 있다.According to a preferred embodiment of the present invention, the thickness of the thermosetting adhesive layer may be 10 to 25 μm.
본 발명의 바람직한 일실시예에 따르면, 상기 구리(Cu) 박막층을 형성하는 단계는 핫-프레스(hot-press) 또는 라미네이팅 공정을 통해 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 접착시켜 합착하는 방식으로 수행될 수 있다.According to a preferred embodiment of the present invention, the step of forming the copper (Cu) thin film layer is the adhesive surface of the copper (Cu) thin film on one surface of the glass base substrate through a hot-press or laminating process. It can be performed by bonding and bonding.
본 발명의 바람직한 일실시예에 따르면, 상기 구리(Cu) 박막층을 형성하는 단계는, 상기 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착한 후 상기 유리 베이스 기판의 일 면과 상기 구리(Cu) 박막의 접착면 사이에 발생하는 미세 기포를 제거하기 위한 탈포 공정을 더 포함할 수 있다.According to a preferred embodiment of the present invention, in the step of forming the copper (Cu) thin film layer, after bonding the adhesive surface of the copper (Cu) thin film to one surface of the glass base substrate, one surface of the glass base substrate and a degassing process for removing microbubbles generated between the adhesive surface of the copper (Cu) thin film.
본 발명의 바람직한 일실시예에 따르면, 상기 탈포 공정은 오토크레이브(Autoclave) 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행될 수 있다.According to a preferred embodiment of the present invention, the degassing process may be performed by applying heat and pressure in an autoclave to remove microbubbles by moving residual bubbles to the outside of the bonded surface.
본 발명의 바람직한 일실시예에 따르면, 상기 탈포 공정은 핫-프레스 장비 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행될 수 있다.According to a preferred embodiment of the present invention, the degassing process may be performed by applying heat and pressure in a hot-press equipment to remove microbubbles by moving residual bubbles to the outside of the bonded surface.
본 발명의 바람직한 일실시예에 따르면, 상기 메탈 메쉬 안테나 패턴을 형성하는 단계 이후에, 투명 안테나를 감싸는 형태로 오버코트층을 형성하는 단계;를 더 포함할 수 있다. According to a preferred embodiment of the present invention, after the step of forming the metal mesh antenna pattern, forming an overcoat layer in a form surrounding the transparent antenna; may further include.
본 발명의 바람직한 일실시예에 따르면, 상기 오버코트층을 형성하는 단계에서 상기 오버코트층은 액상 코팅, 필름 코팅 및 열가소성 수지 코팅 중 어느 하나의 코팅 방법으로 형성될 수 있다.According to a preferred embodiment of the present invention, in the step of forming the overcoat layer, the overcoat layer may be formed by any one coating method among liquid coating, film coating, and thermoplastic resin coating.
본 발명의 바람직한 일실시예에 따르면, 상기 오버코트층을 형성하는 단계 이후에, 안테나의 단자부에 대하여 표면 처리 공정을 수행하는 단계;를 더 포함할 수 있다.According to a preferred embodiment of the present invention, after the step of forming the overcoat layer, performing a surface treatment process on the terminal portion of the antenna; may further include.
본 발명의 바람직한 일실시예에 따르면, 상기 표면 처리 공정은 주석, 니켈, 금, 은 및 팔라듐으로 이루어진 군으로부터 선택되는 어느 하나의 금속을 이용하여 수행될 수 있다. According to a preferred embodiment of the present invention, the surface treatment process may be performed using any one metal selected from the group consisting of tin, nickel, gold, silver and palladium.
나아가, 본 발명은 상술한 어느 하나의 제조방법으로부터 제조된 투명 안테나를 제공한다.Furthermore, the present invention provides a transparent antenna manufactured from any one of the above manufacturing methods.
본 발명은 비교적 간단한 공정을 통해 구리 전극을 생성하고, 전극의 두께를 조절함으로써, 베이스 전극의 선로 저항을 일정 범위 이하로 유지하도록 하여 안테나의 대전력 신호 출력이 가능하다.In the present invention, a copper electrode is produced through a relatively simple process, and the line resistance of the base electrode is maintained within a certain range by adjusting the thickness of the electrode, thereby enabling the antenna to output a high-power signal.
또한, 본 발명은 유리로부터 석출되는 알칼리 물질에 의한 유리와 구리(Cu) 간 접착력 저하를 방지할 수 있어 유리 베이스 기판과 구리(Cu) 박막층 간 접착력을 일정하게 유지할 수 있다.In addition, the present invention can prevent deterioration of adhesion between glass and copper (Cu) due to alkaline substances precipitated from glass, and thus maintain constant adhesion between the glass base substrate and the copper (Cu) thin film layer.
도 1은 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다.1 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다.2 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 일실시예에 따른 투명 안테나의 메탈 메쉬 안테나 패턴을 나타낸다.3 shows a metal mesh antenna pattern of a transparent antenna according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 일실시예에 따른 투명 안테나의 메탈 메쉬 안테나 패턴을 나타낸다.4 shows a metal mesh antenna pattern of a transparent antenna according to a preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다. 5 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 일실시예에 따른 메탈 메쉬 안테나 패턴을 형성하기 이전 공정 단계에서의 투명 안테나 기판을 나타낸다.6 shows a transparent antenna substrate in a process step before forming a metal mesh antenna pattern according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 일실시예에 따른 투명 안테나를 나타낸 도면이다.7 is a diagram showing a transparent antenna according to a preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 일실시예에 따른 메탈 메쉬 안테나 패턴을 형성하기 이전 공정 단계에서의 투명 안테나 기판을 나타낸다.8 shows a transparent antenna substrate in a process step before forming a metal mesh antenna pattern according to a preferred embodiment of the present invention.
도 9는 본 발명의 바람직한 일실시예에 따른 투명 안테나를 나타낸 도면이다.9 is a diagram showing a transparent antenna according to a preferred embodiment of the present invention.
본 발명은 12 ~ 100㎛ 두께의 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계; 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계; 상기 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계; 상기 포토레지스트층을 노광시키는 단계; 노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계; 상기 포토레지스트층의 노광되지 않은 부분을 박리하는 단계; 및 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계;를 포함하는 투명 안테나 기판 제조방법을 제공하여 상술한 한계점의 해결책을 모색하였다.The present invention comprises the steps of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of a copper (Cu) thin film having a thickness of 12 to 100 μm; bonding an adhesive surface of the copper (Cu) thin film to one surface of a glass base substrate to form a copper (Cu) thin film layer; forming a photoresist layer on the copper (Cu) thin film layer; exposing the photoresist layer to light; developing the exposed photoresist layer and removing a portion of the adhesive layer and the thin film layer in the exposed area by etching; peeling the unexposed portion of the photoresist layer; And forming a metal mesh antenna pattern on the portion from which the photoresist layer was peeled off.
이에 따라, 본 발명은 스퍼터 공정을 이용하지 않고, 비교적 간단한 공정을 통해 구리 전극을 생성할 수 있고, 전극의 두께를 용이하게 조절할 수 있다. 이를 통해 본 발명은 베이스 전극의 선로 저항을 일정 범위 이하로 유지함과 동시에 미세 선폭을 가진 안테나 패턴의 대전력 신호 출력을 달성할 수 있다. Accordingly, the present invention can produce a copper electrode through a relatively simple process without using a sputter process, and can easily adjust the thickness of the electrode. Through this, the present invention can achieve a high power signal output of an antenna pattern having a fine line width while maintaining the line resistance of the base electrode within a certain range.
또한, 본 발명은 유리로부터 석출되는 알칼리 물질에 의한 유리와 구리(Cu) 간 접착력 저하를 방지할 수 있어 유리 베이스 기판과 구리(Cu) 박막층 간 접착력을 일정하게 유지할 수 있다.In addition, the present invention can prevent deterioration of adhesion between glass and copper (Cu) due to alkaline substances precipitated from glass, and thus maintain constant adhesion between the glass base substrate and the copper (Cu) thin film layer.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, an embodiment of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention.
상술한 바와 같이 미세 선폭을 가진 메탈 메쉬 안테나 패턴을 형성하여 대전력 신호 출력이 가능하도록 하기 위해서는 전극 두께와 선폭을 조절함으로써 베이스 기판이 적정 범위 이하의 선로 저항을 유지하도록 하여야 한다. 또한, 비교적 간단한 공정을 통해 구리 전극을 생성하고, 목표하는 적정 두께의 전극을 형성하는 방법이 필요한 실정이다.As described above, in order to form a metal mesh antenna pattern having a fine line width to enable high power signal output, the base substrate must maintain line resistance within an appropriate range by adjusting the electrode thickness and line width. In addition, there is a need for a method of generating a copper electrode through a relatively simple process and forming an electrode having an appropriate target thickness.
이에 본 발명은 12 ~ 100㎛ 두께의 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계; 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계; 상기 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계; 상기 포토레지스트층을 노광시키는 단계; 노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계; 상기 포토레지스트층의 노광되지 않은 부분을 박리하는 단계; 및 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계;를 포함하는 투명 안테나 기판 제조방법을 제공하여 상술한 한계점의 해결책을 모색하였다.Accordingly, the present invention includes the steps of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of a copper (Cu) thin film having a thickness of 12 to 100 μm; bonding an adhesive surface of the copper (Cu) thin film to one surface of a glass base substrate to form a copper (Cu) thin film layer; forming a photoresist layer on the copper (Cu) thin film layer; exposing the photoresist layer to light; developing the exposed photoresist layer and removing a portion of the adhesive layer and the thin film layer in the exposed area by etching; peeling the unexposed portion of the photoresist layer; And forming a metal mesh antenna pattern on the portion from which the photoresist layer was peeled off.
이에 따라, 본 발명은 스퍼터 공정을 이용하지 않고, 비교적 간단한 공정을 통해 구리 전극을 생성할 수 있고, 전극의 두께를 용이하게 조절할 수 있다. 이를 통해 본 발명은 베이스 전극의 선로 저항을 일정 범위 이하로 유지함과 동시에 미세 선폭을 가진 안테나 패턴의 대전력 신호 출력을 달성할 수 있다. Accordingly, the present invention can produce a copper electrode through a relatively simple process without using a sputter process, and can easily adjust the thickness of the electrode. Through this, the present invention can achieve a high power signal output of an antenna pattern having a fine line width while maintaining the line resistance of the base electrode within a certain range.
또한, 본 발명은 유리로부터 석출되는 알칼리 물질에 의한 유리와 구리(Cu) 간 접착력 저하를 방지할 수 있어 유리 베이스 기판과 구리(Cu) 박막층 간 접착력을 일정하게 유지할 수 있다.In addition, the present invention can prevent deterioration of adhesion between glass and copper (Cu) due to alkaline substances precipitated from glass, and thus maintain constant adhesion between the glass base substrate and the copper (Cu) thin film layer.
도 1은 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다. 도 1을 참조하면, 본 발명은 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계(S10), 유리 베이스 기판의 일 면에 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계(S20), 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계(S30), 포토레지스트층을 노광시키는 단계(S40), 노광된 포토레지스트층을 현상하고, 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계(S50), 포토레지스트층의 노광되지 않은 부분을 박리하는 단계(S60) 및 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계(S70)를 포함한다.1 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention. Referring to FIG. 1, the present invention is a step of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film (S10), copper on one surface of the glass base substrate (Cu) Forming a copper (Cu) thin film layer by bonding the adhesive surfaces of the thin films (S20), forming a photoresist layer on the copper (Cu) thin film layer (S30), exposing the photoresist layer to light (S40) , developing the exposed photoresist layer, removing a portion of the adhesive layer and the thin film layer in the exposed area by etching (S50), peeling the unexposed portion of the photoresist layer (S60), and photoresist Forming a metal mesh antenna pattern on the part where the layer is separated (S70).
먼저, 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계(S10)는, 유리 베이스 기판의 일 면 위에 형성되는 구리(Cu) 박막층을 박막 형태로 준비하는 단계이다.First, in the step of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film (S10), the copper (Cu) thin film layer is formed on one surface of the glass base substrate. This is a step of preparing in the form of a thin film.
본 발명은 구리(Cu) 박막층을 스퍼터 공정으로 형성하는 것이 아니라, 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합함으로써 접착면을 구비한 구리(Cu) 박막을 형성한 후, 후술하는 바와 같이 이를 유리 베이스 기판의 일 면에 합착함으로써 형성한다. The present invention does not form a copper (Cu) thin film layer by a sputter process, but forms a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of the copper (Cu) thin film, and then Similarly, it is formed by bonding it to one side of a glass base substrate.
즉, 본 발명은 스퍼터 공정을 수행하지 않고, 비교적 간단한 공정만으로 구리(Cu) 박막층을 형성할 수 있다. 또한, 구리(Cu) 박막 자체의 두께 범위를 조절함으로써 목표하는 전극 두께 조절을 용이하게 구현할 수 있다.That is, according to the present invention, a copper (Cu) thin film layer can be formed with only a relatively simple process without performing a sputtering process. In addition, by adjusting the thickness range of the copper (Cu) thin film itself, it is possible to easily implement a desired electrode thickness control.
이에 따라, 본 발명은 공정 비용을 절감할 수 있고, 공정 효율을 현저히 향상시킬 수 있다. 또한, 제작하고자 하는 베이스 기판의 제작 크기가 각 공정별 장비의 크기에 영향을 받는 것을 방지할 수 있다. Accordingly, the present invention can reduce process cost and significantly improve process efficiency. In addition, it is possible to prevent the production size of the base substrate to be manufactured from being influenced by the size of equipment for each process.
구리(Cu) 박막의 두께는 12 ~ 100㎛이다. 바람직하게는 15 ~ 60㎛일 수 있고, 보다 바람직하게는 18 ~ 35㎛ 일 수 있다. 만일 구리(Cu) 박막의 두께가 상기 범위 미만인 경우에는 합지 공정이 용이하지 않으며, 요구 전류 범위를 충족하지 못하여 원활한 전원 공급이 어려운 한계점이 있을 수 있다. 또한, 만일 구리(Cu) 박막의 두께가 상기 범위를 초과하는 경우에는 구리(Cu) 박막의 접착력이 낮아지면서 박막이 무너지거나 미세패턴이 박리되는 등 필요 이상의 제조 공정 비용이 증가할 수 있다. The thickness of the copper (Cu) thin film is 12 to 100 μm. Preferably it may be 15 ~ 60㎛, more preferably it may be 18 ~ 35㎛. If the thickness of the copper (Cu) thin film is less than the above range, the lamination process is not easy, and the required current range may not be satisfied, so that smooth power supply may be difficult. In addition, if the thickness of the copper (Cu) thin film exceeds the above range, the adhesive strength of the copper (Cu) thin film is lowered, and the manufacturing process cost may increase more than necessary, such as collapse of the thin film or peeling of the micropattern.
열경화성 접착제층은 열경화성 접착제를 포함하도록 형성되며, 열경화성 접착제는 후술하는 바와 같이 에칭 공정, 안테나 패턴 형성 등의 고온 환경에서 잘 견디는 물질로 해당 기술 분야에서 통상적으로 사용되는 것을 사용할 수 있다. 바람직하게는, 폴리올레핀계, 요소계, 멜라민계, 페놀계, 불포화 폴리에스테르계, 에폭시계, 레졸시놀계, 폴리이미드계 수지, 이들의 변성물 및 이들의 혼합물 중 어느 하나 이상을 사용할 수 있다. 이 경우 제조 공정 상에서의 고온 환경 및 작업 중 받게 되는 외력에도 접착력을 유지할 수 있는 장점이 있다.The thermosetting adhesive layer is formed to include a thermosetting adhesive, and the thermosetting adhesive is a material that is resistant to a high-temperature environment such as an etching process and an antenna pattern formation, as will be described later, and may be commonly used in the related art. Preferably, at least one of polyolefin-based, urea-based, melamine-based, phenolic, unsaturated polyester-based, epoxy-based, resorcinol-based, polyimide-based resins, modified products thereof, and mixtures thereof may be used. In this case, there is an advantage in that the adhesive strength can be maintained even in a high-temperature environment during the manufacturing process and an external force received during operation.
본 발명의 바람직한 일실시예에 따르면, 열경화성 접착제층의 두께는 10 ~ 25㎛일 수 있다. 보다 바람직하게는, 열경화성 접착제층의 두께는 10 ~ 15㎛일 수 있다. 이 경우 구리(Cu) 박막과 열경화성 접착제층 간의 접촉성이 향상될 수 있다. 특히, 유리 베이스 기판의 유리 표면에서 알칼리 물질이 토출됨으로써 유리와 구리(Cu) 박막 간의 접착력이 저하되는 경우가 발생할 수 있는데, 본 발명은 열경화성 접착제층의 두께를 상기 범위 내로 함으로써 이러한 유리와 구리(Cu) 박막 간의 접착력 저하를 방지할 수 있도록 하였다. According to a preferred embodiment of the present invention, the thickness of the thermosetting adhesive layer may be 10 to 25 μm. More preferably, the thickness of the thermosetting adhesive layer may be 10 to 15 μm. In this case, contact between the copper (Cu) thin film and the thermosetting adhesive layer may be improved. In particular, when the alkali material is discharged from the glass surface of the glass base substrate, the adhesive strength between the glass and the copper (Cu) thin film may be reduced. In the present invention, the glass and copper ( Cu) to prevent deterioration of adhesion between thin films.
만일 열경화성 접착제층의 두께가 상기 범위 미만인 경우에는 구리(Cu) 박막과 열경화성 접착제층 간의 접촉성 및 유리와 구리(Cu) 박막 간의 접착력이 저하되는 한계점이 발생할 수 있다. 또한, 만일 열경화성 접착제층의 두께가 상기 범위를 초과하는 경우에는 회로에서 발생한 열의 전달형이 저하되고 핫-프레스 또는 라미네이팅 공정에서 기포가 발생할 수 있다. If the thickness of the thermosetting adhesive layer is less than the above range, contact between the copper (Cu) thin film and the thermosetting adhesive layer and adhesion between the glass and the copper (Cu) thin film may deteriorate. In addition, if the thickness of the thermosetting adhesive layer exceeds the above range, the transfer type of heat generated in the circuit is deteriorated and bubbles may be generated in the hot-pressing or laminating process.
한편, 구리(Cu) 박막을 형성하는 단계(S10)는 구리(Cu) 박막의 일 면에 열경화성 접착제층을 롤 형태로 핫-프레스(hot-press) 또는 라미네이팅 방식으로 접합함으로써 수행될 수 있다. 또한 접합 후에는 일정 시간동안 숙성의 시간을 가질 수 있다.Meanwhile, forming the copper (Cu) thin film (S10) may be performed by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film in a roll form by hot-pressing or laminating. In addition, after bonding, aging may be performed for a certain period of time.
다음으로, 유리 베이스 기판의 일 면에 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계(S20)는, 접착면을 구비한 구리(Cu) 박막의 접착면과 유리 베이스 기판의 일 면을 합착하여 유리 베이스 기판 위에 구리(Cu) 박막층을 형성하는 단계이다.Next, in the step of forming a copper (Cu) thin film layer by bonding the adhesive surface of the copper (Cu) thin film to one surface of the glass base substrate (S20), the adhesive surface of the copper (Cu) thin film having the adhesive surface and the glass This is a step of forming a copper (Cu) thin film layer on the glass base substrate by bonding one surface of the base substrate.
이 경우, 상술한 바와 같이 별도의 스퍼터 공정 없이 비교적 간단한 합착 공정만으로 유리 베이스 기판 위에 구리(Cu) 박막층을 형성할 수 있는 효과가 있다. 또한, 구리(Cu) 박막의 두께를 사전에 조절함으로써 목표하는 전극 두께를 용이하게 구현할 수 있는 장점이 있다.In this case, as described above, there is an effect of forming a copper (Cu) thin film layer on the glass base substrate only through a relatively simple bonding process without a separate sputtering process. In addition, there is an advantage in that a target electrode thickness can be easily implemented by adjusting the thickness of the copper (Cu) thin film in advance.
유리 베이스 기판의 재질은 소다라임(Sodalime, 소다석회유리) 유리 또는 보로실리케이트(Borosilicate, 붕규산 유리)를 사용함이 바람직하며, 화학 강화 또는 열 강화를 통해 강성이 확보된 유리를 사용할 수 있다.The material of the glass base substrate is preferably soda lime (soda lime glass) glass or borosilicate (borosilicate glass), and glass whose rigidity is secured through chemical strengthening or thermal strengthening may be used.
또한, 바람직하게는 유전율이 낮은 유리 기판을 사용할 수 있다. 안테나의 유전 물질로 사용되는 베이스 유리 기판의 유전율이 낮을수록 안테나의 성능이 향상될 수 있다.Also, preferably, a glass substrate having a low dielectric constant can be used. Performance of the antenna may be improved as the permittivity of the base glass substrate used as the dielectric material of the antenna is lower.
본 발명의 바람직한 일실시예에 따르면, 구리(Cu) 박막층을 형성하는 단계(S20)는 핫-프레스(hot-press) 공정을 통해 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 접착시켜 합착하는 방식으로 수행될 수 있다. 이 경우 각 소재의 매질 간 접착력을 현저히 향상시킬 수 있다.According to a preferred embodiment of the present invention, forming a copper (Cu) thin film layer (S20) is an adhesive surface of the copper (Cu) thin film on one surface of a glass base substrate through a hot-press process. It can be performed by bonding and bonding. In this case, the adhesive force between the mediums of each material can be remarkably improved.
이 때, 바람직하게는 사전 합지 공정을 먼저 수행할 수 있다. 사전 합지 공정은 100 ~ 150℃ 온도 범위로 구리(Cu) 박막의 접착면을 유리 표면에 접착시켜 가경화하여 수행될 수 있다.At this time, preferably, a pre-lamination process may be performed first. The pre-lamination process may be performed by adhering the adhesive surface of the copper (Cu) thin film to the glass surface in a temperature range of 100 to 150 ° C. and temporarily curing the glass surface.
사전 합지 공정 수행 후에 상기 핫-프레스 공정을 수행할 수 있다. 상기 핫-프레스 공정은, 바람직하게는 120 ~ 180℃의 가열 온도, 50 ~ 70kgf의 가압 압력으로 약 30 ~ 50분 간 수행될 수 있다.The hot-press process may be performed after performing the pre-lamination process. The hot-press process may be performed for about 30 to 50 minutes at a heating temperature of 120 to 180° C. and a pressing pressure of 50 to 70 kgf.
한편, 구리(Cu) 박막층을 형성하는 단계(S20)는, 상기 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착한 후 상기 유리 베이스 기판의 일 면과 상기 구리(Cu) 박막의 접착면 사이에 발생하는 미세 기포를 제거하기 위한 탈포 공정을 더 포함할 수 있다.On the other hand, in the step of forming a copper (Cu) thin film layer (S20), after bonding the adhesive surface of the copper (Cu) thin film to one surface of the glass base substrate, the one surface of the glass base substrate and the copper (Cu) A degassing process for removing microbubbles generated between the adhesive surfaces of the thin films may be further included.
이 때, 상기 탈포 공정은 오토크레이브(Autoclave) 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행될 수 있다. 또한, 상기 탈포 공정은 핫-프레스 장비 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행될 수도 있다. 이 경우 유리 베이스 기판과 구리(Cu) 박막 간의 부착력 및 접착력을 보다 향상시킬 수 있다. In this case, the degassing process may be performed by applying heat and pressure in an autoclave to move residual bubbles to the outside of the bonded surface to remove microbubbles. In addition, the degassing process may be performed in a manner in which heat and pressure are applied in a hot-press equipment to move residual bubbles to the outside of the bonded surface to remove microbubbles. In this case, adhesion and adhesion between the glass base substrate and the copper (Cu) thin film can be further improved.
이와 같이, 유리 베이스 기판 위에 구리(Cu) 박막을 합착하여 구리(Cu) 박막층을 형성한 후에는 메탈 메쉬 안테나 패턴 형성을 위해 웻공정(Wet) 공정을 이용하여 미세 패턴을 형성할 수 있다. In this way, after forming a copper (Cu) thin film layer by bonding a copper (Cu) thin film on a glass base substrate, a fine pattern may be formed using a wet process to form a metal mesh antenna pattern.
경우에 따라, 구리(Cu) 박막층을 형성하는 단계(S20) 이후에, 상기 구리(Cu) 박막층의 일 표면을 세척하는 단계를 더 수행할 수도 있다. 이 경우 소프트 에칭 공정을 통해 표면 세척을 수행할 수 있다.In some cases, after the step of forming the copper (Cu) thin film layer (S20), a step of washing one surface of the copper (Cu) thin film layer may be further performed. In this case, surface cleaning may be performed through a soft etching process.
즉, 본 발명은 목표하는 두께의 구리 전극의 형성 내지 구현이 가능한 장점이 있다. 결국, 본 발명은 구리(Cu) 전극의 두께를 조절하여, 상기 메탈 메쉬 안테나 패턴의 선폭 내지 두께를 조절할 수 있게 된다.That is, the present invention has the advantage of being able to form or implement a copper electrode having a target thickness. As a result, the present invention can adjust the line width or thickness of the metal mesh antenna pattern by adjusting the thickness of the copper (Cu) electrode.
이 경우 베이스 전극의 선로 저항이 1Ω/m 이하로 유지될 수 있으며, 미세 메쉬 전극 패턴에 수 암페어(A) 또는 수십 암페어(A)의 전류를 메쉬 전극 패턴을 통해 흘릴 수 있어, 투명 안테나 기판의 패턴으로 대전력 신호 출력이 가능한 효과가 있다.In this case, the line resistance of the base electrode can be maintained at 1 Ω/m or less, and a current of several amperes (A) or several tens of amperes (A) can flow through the mesh electrode pattern to the fine mesh electrode pattern. There is an effect that a high power signal can be output in a pattern.
한편, 경우에 따라 본 발명은 구리(Cu) 박막층 위에 구리(Cu) 도금층을 형성하는 단계를 더 포함할 수도 있다. Meanwhile, in some cases, the present invention may further include forming a copper (Cu) plating layer on the copper (Cu) thin film layer.
구리(Cu)는 다른 금속 재료와 달리 구리(Cu) 표면 위에 추가적인 구리(Cu) 도금 공정이 가능한 특징이 있는데, 본 발명은 이러한 특징을 이용하여 구리(Cu) 박막층 위에 구리(Cu)를 추가 도금하도록 함으로써 구리(Cu) 전극의 두께 조절이 가능하도록 하였다. Unlike other metal materials, copper (Cu) has a feature that allows an additional copper (Cu) plating process on the copper (Cu) surface. The present invention utilizes this feature to additionally plate copper (Cu) on the copper (Cu) thin film layer. By doing so, it was possible to adjust the thickness of the copper (Cu) electrode.
이와 관련하여, 도 2는 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다. 도 2를 참조하면, 본 발명은 유리 베이스 기판의 일 면에 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계(S20)와 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계(S30) 사이에 구리(Cu) 박막층 위에 구리(Cu) 도금층을 형성하는 단계(S21)를 추가로 더 실시할 수도 있다.In this regard, FIG. 2 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention. Referring to FIG. 2, the present invention includes forming a copper (Cu) thin film layer by bonding the adhesive surface of a copper (Cu) thin film to one surface of a glass base substrate (S20) and forming a photoresist layer on the copper (Cu) thin film layer. Between the forming step (S30), a step (S21) of forming a copper (Cu) plating layer on the copper (Cu) thin film layer may be further performed.
다음으로, 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계(S30)는 포토레지스트액을 도포하여 포토레지스트층을 형성하는 방식으로 수행될 수도 있고, 드라이필름 포토레지스트(DFR: Dry Film Photoresist)를 구리(Cu) 박막층 위에 라미네이션하는 방식으로 수행될 수도 있다. 그 밖에 감광을 통하여 회로 패턴을 형성할 수 있는 포토레지스트라면 다양한 종래기술이 널리 적용될 수 있다.Next, the step of forming a photoresist layer on the copper (Cu) thin film layer (S30) may be performed by applying a photoresist liquid to form a photoresist layer, or dry film photoresist (DFR) It may also be performed by laminating on a copper (Cu) thin film layer. In addition, various conventional techniques can be widely applied if it is a photoresist capable of forming a circuit pattern through photosensitization.
다음으로, 포토레지스트층을 노광시키는 단계(S40)는 포토레지스트층을 자외선(UV)에 노광시키는 단계이다. 이 때, 포토마스크의 UV 차단 부분 아래에 있는 포토레지스트는 노광되지 않은 채로 남아 있게 된다. UV가 조사되는 영역에서 포토레지스트층은 자외선(UV)에 노광된다.Next, exposing the photoresist layer (S40) is a step of exposing the photoresist layer to ultraviolet (UV) light. At this time, the photoresist under the UV blocking portion of the photomask remains unexposed. In the area where UV is irradiated, the photoresist layer is exposed to ultraviolet (UV) light.
다음으로, 노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계(S50)에서는 노광된 포토레지스트층에 대한 현상 및 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분에 대한 에칭이 이루어진다.Next, in the step of developing the exposed photoresist layer and removing a portion of the adhesive layer and the thin film layer in the exposed area by etching (S50), the exposed photoresist layer is developed and the adhesive layer and the thin film layer are removed. Etching is performed on a portion in the exposed area.
다음으로, 포토레지스트층의 노광되지 않은 부분을 박리하는 단계(S60)에서는 포토레지스트층의 나머지 부분에 대한 박리가 이루어진다. 이를 통해, 구리(Cu) 박막층이 노출되게 된다.Next, in step S60 of stripping the unexposed portion of the photoresist layer, the remaining portion of the photoresist layer is stripped. Through this, the copper (Cu) thin film layer is exposed.
다음으로, 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계(S70)에서는 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하게 된다.Next, in the step of forming a metal mesh antenna pattern on the portion where the photoresist layer is peeled off (S70), the metal mesh antenna pattern is formed on the portion where the photoresist layer is peeled off.
메탈 메쉬 안테나 패턴은 전도성을 제공하고, 투명 전극으로 적용가능한 전도성 물질로 구성될 수 있다. 예를 들어, 메탈 메쉬 패턴들은, 예를 들어, 은(Ag), 구리(Cu), 알루미늄(Al), 금(Au), 니켈(Ni), 티타늄(Ti), 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 백금(Pt), 또는 이들의 합금; 및 그래핀, 탄소나노튜브, 탄소나노리본, 탄소나노와이어, 탄소섬유 및 카본블랙 등의 탄소계 물질; 로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 바람직하게는, 메탈 메쉬 패턴들은 구리(Cu)로 이루어질 수 있다.The metal mesh antenna pattern provides conductivity and may be composed of a conductive material applicable as a transparent electrode. For example, the metal mesh patterns may include, for example, silver (Ag), copper (Cu), aluminum (Al), gold (Au), nickel (Ni), titanium (Ti), molybdenum (Mo), tungsten ( W), chromium (Cr), platinum (Pt), or an alloy thereof; and carbon-based materials such as graphene, carbon nanotubes, carbon nanoribbons, carbon nanowires, carbon fibers, and carbon black; It may include one or more selected from the group consisting of. Preferably, the metal mesh patterns may be made of copper (Cu).
상술한 바와 같이, 본 발명은 박막층 및 메탈 메쉬 안테나 패턴을 모두 구리(Cu) 금속으로 형성함으로써, 구리(Cu) 전극의 두께 조절이 가능하도록 하였으며, 나아가 메탈 메쉬 안테나 패턴 역시 구리(Cu)로 형성함으로써 메탈 메쉬 안테나 패턴의 선폭 내지 두께 조절이 용이하도록 하였다. As described above, the present invention makes it possible to adjust the thickness of the copper (Cu) electrode by forming both the thin film layer and the metal mesh antenna pattern with copper (Cu) metal, and furthermore, the metal mesh antenna pattern is also formed of copper (Cu) This made it easy to adjust the line width or thickness of the metal mesh antenna pattern.
도 3 및 도 4는 본 발명의 바람직한 일실시예에 따른 투명 안테나의 메탈 메쉬 안테나 패턴을 나타낸다. 도 3 및 도 4를 참조하면, 메탈 메쉬 안테나 패턴(40)은 제1방향으로 연장되는 복수의 제1메탈 라인들(410) 및 제2방향으로 연장되는 복수의 제2메탈 라인들(420)을 포함할 수 있다. 복수의 제1메탈 라인들(410) 각각과 복수의 제2메탈 라인들(420) 각각은 교차하고, 이들 교차 영역이 메탈 메쉬 안테나 패턴의 형상을 이룰 수 있다. 3 and 4 show a metal mesh antenna pattern of a transparent antenna according to a preferred embodiment of the present invention. 3 and 4, the metal mesh antenna pattern 40 includes a plurality of first metal lines 410 extending in a first direction and a plurality of second metal lines 420 extending in a second direction. can include Each of the plurality of first metal lines 410 and each of the plurality of second metal lines 420 intersect, and these intersection areas may form the shape of a metal mesh antenna pattern.
한편, 본 발명의 일실시예에 따른 메탈 메쉬 안테나 패턴(40)은 송수신 대상이 되는 신호의 주파수 대역, 적용 분야 등에 따라 크기 및 형상이 달라질 수 있다. 특히, 본 발명의 일실시예에 따른 메탈 메쉬 안테나 패턴은 대전력 신호 출력을 위해 미세 선폭으로 구현될 수 있고, 원형, 타원형, 곡선형 또는 다각형의 형태를 가질 수 있으나, 이에 한정되는 것은 아니다. Meanwhile, the size and shape of the metal mesh antenna pattern 40 according to an embodiment of the present invention may vary depending on the frequency band of the signal to be transmitted and received, the field of application, and the like. In particular, the metal mesh antenna pattern according to an embodiment of the present invention may be implemented with a fine line width for high power signal output, and may have a circular, elliptical, curved, or polygonal shape, but is not limited thereto.
구체적으로, 도 3에 도시된 바와 같이 메탈 메쉬 안테나 패턴(40)은 직사각형의 격자 형상을 가질 수 있다. 또한, 대안적으로, 도 4에 도시된 바와 같이 메탈 메쉬 안테나 패턴(40)은 마름모의 격자 형상을 가질 수 있다.Specifically, as shown in FIG. 3 , the metal mesh antenna pattern 40 may have a rectangular lattice shape. Alternatively, as shown in FIG. 4 , the metal mesh antenna pattern 40 may have a diamond lattice shape.
본 발명의 바람직한 일실시예에 따르면, 메탈 메쉬 안테나 패턴(40)은 12 ~ 100㎛ 두께의 구리(Cu) 도선으로 이루어진 격자 패턴일 수 있다. 보다 바람직하게는, 메탈 메쉬 안테나 패턴(40)은 18 ~ 35㎛ 두께의 구리(Cu) 도선으로 이루어진 격자 패턴일 수 있다. 또한, 메탈 메쉬 안테나 패턴(40)의 선폭은 12 ~ 140㎛임이 바람직하며, 보다 바람직하게는 20 ~ 100㎛일 수 있다. According to a preferred embodiment of the present invention, the metal mesh antenna pattern 40 may be a grid pattern made of copper (Cu) wires having a thickness of 12 to 100 μm. More preferably, the metal mesh antenna pattern 40 may be a lattice pattern made of copper (Cu) wires having a thickness of 18 to 35 μm. In addition, the line width of the metal mesh antenna pattern 40 is preferably 12 to 140 μm, more preferably 20 to 100 μm.
또한, 본 발명의 바람직한 일실시예에 따르면, 메탈 메쉬 안테나 패턴(40)을 형성하는 구리(Cu) 도선은 하기의 관계식 1을 만족할 수 있다.In addition, according to a preferred embodiment of the present invention, a copper (Cu) wire forming the metal mesh antenna pattern 40 may satisfy the following relational expression 1.
[관계식 1][Relationship 1]
Figure PCTKR2023002362-appb-img-000002
Figure PCTKR2023002362-appb-img-000002
(LWCu : 메탈 메쉬 안테나 패턴(40)을 형성하는 구리(Cu)의 선폭, TCu : 메탈 메쉬 안테나 패턴(40)을 형성하는 구리(Cu) 도선의 두께) (LW Cu : Line width of copper (Cu) forming the metal mesh antenna pattern 40, T Cu : thickness of copper (Cu) wire forming the metal mesh antenna pattern 40)
보다 바람직하게는, 메탈 메쉬 안테나 패턴(40)을 형성하는 구리(Cu) 도선은의 선폭 및 두께는
Figure PCTKR2023002362-appb-img-000003
를 만족할 수 있다.
More preferably, the line width and thickness of the copper (Cu) wire forming the metal mesh antenna pattern 40 are
Figure PCTKR2023002362-appb-img-000003
can be satisfied.
이 경우 메탈 메쉬 안테나 패턴(40)은 미세 선폭으로 형성됨으로써 투명 안테나의 구현이 가능하고, 이와 동시에 대전력 신호 출력이 가능한 장점이 있다. In this case, since the metal mesh antenna pattern 40 is formed with a fine line width, a transparent antenna can be implemented, and at the same time, a high-power signal can be output.
본 발명의 바람직한 일실시예에 따르면, 본 발명은 메탈 메쉬 안테나 패턴을 형성하는 단계(S70) 이후에, 투명 안테나를 감싸는 형태로 오버코트층을 형성하는 단계(S80)를 더 포함할 수 있다. According to a preferred embodiment of the present invention, after forming the metal mesh antenna pattern (S70), the present invention may further include forming an overcoat layer in a form surrounding the transparent antenna (S80).
오버코트층을 형성하는 단계(S80)에서는 투명안테나를 감싸는 형태로 오버코트층을 형성할 수 있다. 이 경우 방수성, 방진성, 방습성 등의 특성이 만족될 수 있다.In the step of forming the overcoat layer (S80), the overcoat layer may be formed in a form surrounding the transparent antenna. In this case, characteristics such as waterproofness, dustproofness, and moistureproofness may be satisfied.
오버코트층은 액상 코팅, 필름 코팅 내지 열가소성 수지 코팅 중 어느 하나의 코팅 방법으로 형성될 수 있다. The overcoat layer may be formed by any one of a liquid coating method, a film coating method, and a thermoplastic resin coating method.
오버코트층은 스프레이나 디스펜서를 이용하여 적정 두께 범위로 도포가 가능하다. 또한, 오버코트층이 열가소성 수지로 이루어지는 경우, 열과 압력을 인가하여 열가소성 수지가 용융되어 베이스 기판에 부착될 수 있다. The overcoat layer can be applied in an appropriate thickness range using a spray or dispenser. In addition, when the overcoat layer is made of a thermoplastic resin, the thermoplastic resin may be melted and adhered to the base substrate by applying heat and pressure.
본 발명의 바람직한 일실시예에 따르면, 상기 오버코트층을 형성하는 단계(S80) 이후에, 안테나의 단자부에 대하여 표면 처리 공정을 수행하는 단계를 더 포함할 수 있다. According to a preferred embodiment of the present invention, after the step of forming the overcoat layer (S80), a step of performing a surface treatment process on the terminal portion of the antenna may be further included.
이와 관련하여, 도 5는 본 발명의 바람직한 일실시예에 따른 투명 안테나 기판 제조방법의 기술흐름도이다. 도 5를 참조하면, 본 발명은 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계(S10), 유리 베이스 기판의 일 면에 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계(S20), 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계(S30), 포토레지스트층을 노광시키는 단계(S40), 노광된 포토레지스트층을 현상하고, 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계(S50), 포토레지스트층의 노광되지 않은 부분을 박리하는 단계(S60), 포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계(S70), 투명 안테나를 감싸는 형태로 오버코트층을 형성하는 단계(S80) 및 안테나의 단자부에 대하여 표면 처리 공정을 수행하는 단계(S90)를 포함한다.In this regard, FIG. 5 is a technical flow chart of a method for manufacturing a transparent antenna substrate according to a preferred embodiment of the present invention. Referring to FIG. 5, the present invention is a step of forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film (S10), copper on one surface of the glass base substrate (Cu) Forming a copper (Cu) thin film layer by bonding the adhesive surfaces of the thin films (S20), forming a photoresist layer on the copper (Cu) thin film layer (S30), exposing the photoresist layer to light (S40) , developing the exposed photoresist layer, removing the portion in the exposed area among the adhesive layer and the thin film layer by etching (S50), peeling the unexposed portion of the photoresist layer (S60), photoresist Forming a metal mesh antenna pattern on the part where the layer is separated (S70), forming an overcoat layer in a form surrounding the transparent antenna (S80), and performing a surface treatment process on the terminal portion of the antenna (S90). include
이와 같이, 본 발명은 오버코트층 형성 이후 표면 처리 공정을 추가로 수행함으로써 안테나의 주파수 특성 및 단자 보호 효과가 있다.As such, the present invention has an antenna frequency characteristic and terminal protection effect by additionally performing a surface treatment process after forming the overcoat layer.
이 때, 상기 표면 처리 공정은 주석, 니켈, 금, 은 및 팔라듐으로 이루어진 군으로부터 선택되는 어느 하나의 금속을 이용하여 수행될 수 있다.At this time, the surface treatment process may be performed using any one metal selected from the group consisting of tin, nickel, gold, silver and palladium.
나아가, 본 발명은 상술한 투명 안테나 기판 제조방법 중 어느 하나의 방법으로부터 제조된 투명 안테나를 제공한다.Furthermore, the present invention provides a transparent antenna manufactured by any one of the above-described transparent antenna substrate manufacturing methods.
이와 관련하여, 도 6은 본 발명의 바람직한 일실시예에 따른 메탈 메쉬 안테나 패턴을 형성하기 이전 공정 단계에서의 투명 안테나 기판을 나타낸다. 도 6을 참조하면, 본 발명은 메탈 메쉬 안테나 패턴을 형성하기 이전에는 투명 재질의 베이스 기판(10), 구리(Cu) 박막에 부착된 접착층(20), 구리(Cu) 박막층(30)을 포함할 수 있다. 이후, 상술한 바와 같이 단계 S40 ~ S70의 공정 순서에 따라 구리(Cu) 박막층(30)을 에칭함으로써 메탈 메쉬 안테나 패턴을 형성하게 되는 것이다.In this regard, FIG. 6 shows a transparent antenna substrate in a process step prior to forming a metal mesh antenna pattern according to a preferred embodiment of the present invention. Referring to FIG. 6, before forming the metal mesh antenna pattern, the present invention includes a transparent base substrate 10, an adhesive layer 20 attached to a copper (Cu) thin film, and a copper (Cu) thin film layer 30. can do. Then, as described above, the metal mesh antenna pattern is formed by etching the copper (Cu) thin film layer 30 according to the process sequence of steps S40 to S70.
이와 관련하여, 도 7은 본 발명의 바람직한 일실시예에 따른 투명 안테나를 나타낸다. 도 7을 참조하면, 투명 안테나는 투명 전극을 활용한 안테나로서, 투명 재질의 베이스 기판(10), 구리(Cu) 박막에 부착된 접착층(20), 메탈 메쉬 안테나 패턴(40), 오버코트층(50)을 포함한다. 이 때, 메탈 메쉬 안테나 패턴(40)은 구리(Cu) 박막층(30)을 에칭하여 형성될 수 있다.In this regard, FIG. 7 shows a transparent antenna according to a preferred embodiment of the present invention. Referring to FIG. 7, the transparent antenna is an antenna using a transparent electrode, and includes a base substrate 10 made of a transparent material, an adhesive layer 20 attached to a copper (Cu) thin film, a metal mesh antenna pattern 40, and an overcoat layer ( 50) included. At this time, the metal mesh antenna pattern 40 may be formed by etching the copper (Cu) thin film layer 30 .
한편, 도 8은 본 발명의 바람직한 일실시예에 따른 메탈 메쉬 안테나 패턴을 형성하기 이전 공정 단계에서의 투명 안테나 기판을 나타낸다. 도 8을 참조하면, 본 발명은 메탈 메쉬 안테나 패턴을 형성하기 이전에는 투명 재질의 베이스 기판(10), 구리(Cu) 박막에 부착된 접착층(20), 구리(Cu) 박막층(30)을 포함하고, 구리(Cu) 박막층(30) 위에 구리(Cu) 도금층(31)을 추가로 형성할 수 있다. 이후, 상술한 공정 순서에 따라 구리(Cu) 박막층(30)과 구리(Cu) 도금층(31)을 에칭함으로써 메탈 메쉬 안테나 패턴을 형성하게 되는 것이다.Meanwhile, FIG. 8 shows a transparent antenna substrate in a process step before forming a metal mesh antenna pattern according to a preferred embodiment of the present invention. Referring to FIG. 8, the present invention includes a transparent base substrate 10, an adhesive layer 20 attached to a copper (Cu) thin film, and a copper (Cu) thin film layer 30 before forming the metal mesh antenna pattern. And, a copper (Cu) plating layer 31 may be additionally formed on the copper (Cu) thin film layer 30 . Thereafter, the metal mesh antenna pattern is formed by etching the copper (Cu) thin film layer 30 and the copper (Cu) plating layer 31 according to the above-described process sequence.
이와 관련하여, 도 9는 본 발명의 바람직한 일실시예에 따른 투명 안테나를 나타낸다. 도 9를 참조하면, 구리(Cu) 박막층(30) 위에 구리(Cu) 도금층(31)을 추가로 형성하는 경우에는 구리(Cu) 박막층(30)과 구리(Cu) 도금층(31)이 함께 메탈 메쉬 안테나 패턴(40')이 형성될 수 있다. 이 경우 상술한 바와 같이, 두께가 얇은 구리(Cu) 박막을 이용하여 기본 패턴을 제작 후, 추가적인 구리(Cu) 도금층 형성을 통해 목표 두께를 만족하는 메탈 메쉬 안테나 패턴(40')을 형성할 수 있다.In this regard, FIG. 9 shows a transparent antenna according to a preferred embodiment of the present invention. Referring to FIG. 9 , when a copper (Cu) plating layer 31 is additionally formed on the copper (Cu) thin film layer 30, the copper (Cu) thin film layer 30 and the copper (Cu) plating layer 31 are metal together. A mesh antenna pattern 40' may be formed. In this case, as described above, after fabricating the basic pattern using a thin copper (Cu) thin film, the metal mesh antenna pattern 40' satisfying the target thickness can be formed through the formation of an additional copper (Cu) plating layer. there is.
또한, 절연부 및 그라운드부를 더 포함할 수 있다. 이 때, 상기 안테나부는 상기 절연부를 사이에 두고 대응되는 형상 및 구조를 가진 그라운드부와 대칭적으로 형성될 수 있다.In addition, an insulating part and a ground part may be further included. At this time, the antenna unit may be formed symmetrically with the ground unit having a corresponding shape and structure with the insulating unit interposed therebetween.
절연부는 안테나부와 접촉되어, 그라운드부와 안테나부를 절연시킬 수 있으며, 안테나부와 그라운드부를 접착시킬 수 있는 효과가 있다. 그라운드부는 투명 안테나의 접지를 제공할 수 있다. The insulating unit is in contact with the antenna unit to insulate the ground unit and the antenna unit, and has an effect of adhering the antenna unit and the ground unit. The ground unit may provide a ground for the transparent antenna.
또한, 상술한 바와 같이 안테나부는 메탈 메쉬 안테나 패턴(40)을 포함할 수 있다. 이와 대응하도록 그라운드는 메탈 메쉬 그라운드 패턴을 포함할 수 있다.Also, as described above, the antenna unit may include the metal mesh antenna pattern 40 . Correspondingly, the ground may include a metal mesh ground pattern.
결국, 본 발명은 대전력 신호 출력이 가능한 미세 선폭의 메탈 메쉬 안테나 패턴을 포함하는 투명 안테나를 제공할 수 있고, 이에 따라 본 발명의 투명 안테나 는 시각적으로 실질적으로 투명하도록 구현되어 다양한 곳에 유용하게 활용될 수 있다.As a result, the present invention can provide a transparent antenna including a metal mesh antenna pattern with a fine line width capable of outputting a high-power signal, and accordingly, the transparent antenna of the present invention is implemented to be visually substantially transparent and is useful in various places. It can be.

Claims (15)

12 ~ 100㎛ 두께의 구리(Cu) 박막의 일 면에 열경화성 접착제층을 접합하여 접착면을 구비한 구리(Cu) 박막을 형성하는 단계;Forming a copper (Cu) thin film having an adhesive surface by bonding a thermosetting adhesive layer to one side of the copper (Cu) thin film having a thickness of 12 to 100 μm;
유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착하여 구리(Cu) 박막층을 형성하는 단계; bonding an adhesive surface of the copper (Cu) thin film to one surface of a glass base substrate to form a copper (Cu) thin film layer;
상기 구리(Cu) 박막층 위에 포토레지스트층을 형성하는 단계;forming a photoresist layer on the copper (Cu) thin film layer;
상기 포토레지스트층을 노광시키는 단계;exposing the photoresist layer to light;
노광된 상기 포토레지스트층을 현상하고, 상기 접착제층 및 박막층 중 상기 노광된 영역에 있는 부분을 에칭으로 제거하는 단계;developing the exposed photoresist layer and removing a portion of the adhesive layer and the thin film layer in the exposed area by etching;
상기 포토레지스트층의 노광되지 않은 부분을 박리하는 단계;및peeling the unexposed portion of the photoresist layer; and
포토레지스트층이 박리된 부분에 메탈 메쉬 안테나 패턴을 형성하는 단계;를 포함하는 투명 안테나 기판 제조방법.A method for manufacturing a transparent antenna substrate comprising the steps of forming a metal mesh antenna pattern on a portion where the photoresist layer is peeled off.
제1항에 있어서,According to claim 1,
상기 메탈 메쉬 안테나 패턴은 12 ~ 100㎛ 두께의 구리(Cu) 도선으로 이루어진 격자 패턴인, 투명 안테나 기판 제조방법.The metal mesh antenna pattern is a grid pattern made of copper (Cu) wire having a thickness of 12 to 100 μm, a transparent antenna substrate manufacturing method.
제2항에 있어서,According to claim 2,
상기 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu) 도선은 하기의 관계식 1을 만족하는, 투명 안테나 기판 제조방법.The copper (Cu) wire forming the metal mesh antenna pattern satisfies the following relational expression 1, a transparent antenna substrate manufacturing method.
[관계식 1][Relationship 1]
Figure PCTKR2023002362-appb-img-000004
Figure PCTKR2023002362-appb-img-000004
(LWCu : 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu)의 선폭, TCu : 메탈 메쉬 안테나 패턴을 형성하는 구리(Cu) 도선의 두께) (LW Cu : Line width of copper (Cu) forming the metal mesh antenna pattern, T Cu : thickness of the copper (Cu) wire forming the metal mesh antenna pattern)
제1항에 있어서, According to claim 1,
상기 구리(Cu) 박막을 형성하는 단계는 구리(Cu) 박막의 일 면에 열경화성 접착제층을 롤 형태로 핫-프레스(hot-press) 또는 라미네이팅 방식으로 접합함으로써 수행되는, 투명 안테나 기판 제조방법.The forming of the copper (Cu) thin film is performed by bonding a thermosetting adhesive layer to one surface of the copper (Cu) thin film in a roll form by hot-pressing or laminating. Method for manufacturing a transparent antenna substrate.
제1항에 있어서,According to claim 1,
상기 열경화성 접착제층은 폴리올레핀계, 요소계, 멜라민계, 페놀계, 불포화 폴리에스테르 계, 에폭시계, 레졸시놀계, 폴리이미드계 수지, 이들의 변성물 및 이들의 혼합물 중 어느 하나 이상인, 투명 안테나 기판 제조방법.The thermosetting adhesive layer is at least one of polyolefin-based, urea-based, melamine-based, phenol-based, unsaturated polyester-based, epoxy-based, resorcinol-based, polyimide-based resins, modified products thereof, and mixtures thereof, transparent antenna substrate manufacturing method.
제1항에 있어서,According to claim 1,
상기 열경화성 접착제층의 두께는 10 ~ 25㎛인, 투명 안테나 기판 제조방법.The thickness of the thermosetting adhesive layer is 10 ~ 25㎛, transparent antenna substrate manufacturing method.
제1항에 있어서,According to claim 1,
상기 구리(Cu) 박막층을 형성하는 단계는 핫-프레스(hot-press) 또는 라미네이팅 공정을 통해 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 접착시켜 합착하는 방식으로 수행되는, 투명 안테나 기판 제조방법.Forming the copper (Cu) thin film layer is performed by adhering and bonding the adhesive surface of the copper (Cu) thin film to one surface of a glass base substrate through a hot-press or laminating process, Method for manufacturing a transparent antenna substrate.
제1항에 있어서,According to claim 1,
상기 구리(Cu) 박막층을 형성하는 단계는, 상기 유리 베이스 기판의 일 면에 상기 구리(Cu) 박막의 접착면을 합착한 후 상기 유리 베이스 기판의 일 면과 상기 구리(Cu) 박막의 접착면 사이에 발생하는 미세 기포를 제거하기 위한 탈포 공정을 더 포함하는, 투명 안테나 기판 제조방법.In the forming of the copper (Cu) thin film layer, after bonding the adhesive surface of the copper (Cu) thin film to one surface of the glass base substrate, the one surface of the glass base substrate and the adhesive surface of the copper (Cu) thin film A method for manufacturing a transparent antenna substrate, further comprising a degassing step for removing fine bubbles generated therebetween.
제8항에 있어서,According to claim 8,
상기 탈포 공정은 오토크레이브(Autoclave) 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행되는, 투명 안테나 기판 제조방법.The degassing process is performed by applying heat and pressure in an autoclave to move the remaining bubbles to the outside of the bonded surface to remove fine bubbles.
제8항에 있어서,According to claim 8,
상기 탈포 공정은 핫-프레스 장비 내에서 열과 압력을 가하여 잔여 기포를 합착한 표면 외부로 이동시켜 미세 기포를 제거하는 방식으로 수행되는, 투명 안테나 기판 제조방법.The defoaming process is performed by applying heat and pressure in a hot-press equipment to move the remaining bubbles to the outside of the bonded surface to remove fine bubbles.
제1항에 있어서,According to claim 1,
상기 메탈 메쉬 안테나 패턴을 형성하는 단계 이후에,After forming the metal mesh antenna pattern,
투명 안테나를 감싸는 형태로 오버코트층을 형성하는 단계;를 더 포함하는, 투명 안테나 기판 제조방법.Forming an overcoat layer in a form surrounding the transparent antenna; further comprising a transparent antenna substrate manufacturing method.
제11항에 있어서,According to claim 11,
상기 오버코트층을 형성하는 단계에서 상기 오버코트층은 액상 코팅, 필름 코팅 및 열가소성 수지 코팅 중 어느 하나의 코팅 방법으로 형성되는, 투명 안테나 기판 제조방법.In the step of forming the overcoat layer, the overcoat layer is formed by any one coating method of liquid coating, film coating, and thermoplastic resin coating.
제11항에 있어서,According to claim 11,
상기 오버코트층을 형성하는 단계 이후에,After forming the overcoat layer,
안테나의 단자부에 대하여 표면 처리 공정을 수행하는 단계;를 더 포함하는, 투명 안테나 기판 제조방법.A method for manufacturing a transparent antenna substrate, further comprising: performing a surface treatment process on the terminal portion of the antenna.
제13항에 있어서,According to claim 13,
상기 표면 처리 공정은 주석, 니켈, 금, 은 및 팔라듐으로 이루어진 군으로부터 선택되는 어느 하나의 금속을 이용하여 수행되는, 투명 안테나 기판 제조방법.The surface treatment process is performed using any one metal selected from the group consisting of tin, nickel, gold, silver and palladium, a transparent antenna substrate manufacturing method.
제1항 내지 제14항 중 어느 한 항의 제조방법으로부터 제조된 투명 안테나.A transparent antenna manufactured by the manufacturing method of any one of claims 1 to 14.
PCT/KR2023/002362 2022-02-17 2023-02-17 Method for manufacturing transparent antenna substrate and transparent antenna manufactured therefrom WO2023158273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220020808 2022-02-17
KR10-2022-0020808 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023158273A1 true WO2023158273A1 (en) 2023-08-24

Family

ID=87578643

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2023/002364 WO2023158275A1 (en) 2022-02-17 2023-02-17 Method for manufacturing transparent antenna substrate and transparent antenna manufactured thereby
PCT/KR2023/002363 WO2023158274A1 (en) 2022-02-17 2023-02-17 Transparent antenna substrate manufacturing method, and transparent antenna manufactured thereby
PCT/KR2023/002362 WO2023158273A1 (en) 2022-02-17 2023-02-17 Method for manufacturing transparent antenna substrate and transparent antenna manufactured therefrom

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/KR2023/002364 WO2023158275A1 (en) 2022-02-17 2023-02-17 Method for manufacturing transparent antenna substrate and transparent antenna manufactured thereby
PCT/KR2023/002363 WO2023158274A1 (en) 2022-02-17 2023-02-17 Transparent antenna substrate manufacturing method, and transparent antenna manufactured thereby

Country Status (2)

Country Link
KR (3) KR102608978B1 (en)
WO (3) WO2023158275A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092913A (en) * 2006-03-11 2007-09-14 삼성테크윈 주식회사 Electrode structure and method of manufacturing the same
KR20130060030A (en) * 2011-11-29 2013-06-07 (주)이모트 Multi layed metal pattern for being applied to antenna, antenna having the same and method for manufacturing antenna
CN107634328A (en) * 2017-09-01 2018-01-26 中国科学院重庆绿色智能技术研究院 A kind of graphene transparent antenna and preparation method thereof
KR101926558B1 (en) * 2012-07-31 2019-03-12 엘지이노텍 주식회사 Antena module and method of the same
CN111355026A (en) * 2020-03-03 2020-06-30 安徽精卓光显技术有限责任公司 Transparent antenna, manufacturing method thereof and electronic equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603611B2 (en) * 2005-05-26 2013-12-10 Gunze Limited Transparent planar body and transparent touch switch
KR100901017B1 (en) * 2007-10-11 2009-06-04 성균관대학교산학협력단 Method for forming a metal pattern on substrate
KR100975565B1 (en) * 2008-12-24 2010-08-13 한국과학기술원 Method for manufacturing flexible display substrate of low moisture and oxygen permeation rate
JP2011077116A (en) 2009-09-29 2011-04-14 Sharp Corp Wiring structure and display device having the same
KR101079394B1 (en) * 2009-10-30 2011-11-02 삼성전기주식회사 Manufacturing method of circuit board
KR101095380B1 (en) * 2010-01-29 2011-12-16 대덕전자 주식회사 Method of fabricating a fine-pitch printed circuit board
JP2012207265A (en) * 2011-03-29 2012-10-25 Toppan Printing Co Ltd Method for manufacturing film substrate for display
KR101796587B1 (en) * 2015-08-11 2017-11-10 한국항공대학교산학협력단 Method for etching a multi-layered metal film and etchant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092913A (en) * 2006-03-11 2007-09-14 삼성테크윈 주식회사 Electrode structure and method of manufacturing the same
KR20130060030A (en) * 2011-11-29 2013-06-07 (주)이모트 Multi layed metal pattern for being applied to antenna, antenna having the same and method for manufacturing antenna
KR101926558B1 (en) * 2012-07-31 2019-03-12 엘지이노텍 주식회사 Antena module and method of the same
CN107634328A (en) * 2017-09-01 2018-01-26 中国科学院重庆绿色智能技术研究院 A kind of graphene transparent antenna and preparation method thereof
CN111355026A (en) * 2020-03-03 2020-06-30 安徽精卓光显技术有限责任公司 Transparent antenna, manufacturing method thereof and electronic equipment

Also Published As

Publication number Publication date
KR20230123901A (en) 2023-08-24
KR20230123903A (en) 2023-08-24
WO2023158275A1 (en) 2023-08-24
KR20230123902A (en) 2023-08-24
KR102639992B1 (en) 2024-03-19
KR102608978B1 (en) 2023-12-01
WO2023158274A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
US11106130B2 (en) Direct patterning method for a touch panel and touch panel thereof
US10802398B2 (en) Touch panel and direct patterning method thereof
WO2014079316A1 (en) Flexible touch control panel structure and manufacturing method thereof
WO2010095798A1 (en) Method for manufacturing touch screen panel of capacitive touch screen
WO2018124804A1 (en) Method for manufacturing transparent light emitting device by using uv imprinting technology and transparent light emitting device manufactured thereby
US20200012372A1 (en) Touch panel and manufacturing method thereof
WO2012005524A9 (en) The printed circuit board and the method for manufacturing the same
CN111524927B (en) Driving substrate, manufacturing method thereof and display device
WO2012091487A2 (en) Electrode, and electronic device comprising same
WO2015065055A1 (en) Conductive film, manufacturing method thereof, and display device including same
WO2019066336A1 (en) Electrode substrate for transparent light-emitting diode display and method for manufacturing same
WO2013177790A1 (en) Array substrate and manufacturing method thereof and liquid crystal display panel
US20170060303A1 (en) Method for manufacturing touch panel, touch panel and touch display device
CN111984138A (en) Touch panel and manufacturing method thereof
TWI458398B (en) Shielded flexible circuits and methods for manufacturing same
KR20070106669A (en) Circuit board and the method of its fabrication
CN110164312A (en) The preparation method and display device of a kind of display panel, display panel
WO2023158273A1 (en) Method for manufacturing transparent antenna substrate and transparent antenna manufactured therefrom
WO2019059589A1 (en) Electrode substrate for transparent light-emitting device display, and manufacturing method therefor
WO2013089419A1 (en) Method and device of manufacturing printed circuit board
WO2014036721A1 (en) Liquid crystal display panel and manufacturing method therefor
WO2013089416A1 (en) Printed circuit board and method of manufacturing the same
WO2013089418A1 (en) Printed circuit board and method of manufacturing the same
CN114242733A (en) Display panel, manufacturing method thereof and display device
TW544824B (en) Method of manufacturing conduction wire in touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756685

Country of ref document: EP

Kind code of ref document: A1