WO2023157709A1 - 接続構造体の製造方法、及び個片化接着フィルムの転写方法 - Google Patents

接続構造体の製造方法、及び個片化接着フィルムの転写方法 Download PDF

Info

Publication number
WO2023157709A1
WO2023157709A1 PCT/JP2023/003911 JP2023003911W WO2023157709A1 WO 2023157709 A1 WO2023157709 A1 WO 2023157709A1 JP 2023003911 W JP2023003911 W JP 2023003911W WO 2023157709 A1 WO2023157709 A1 WO 2023157709A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
substrate
individual pieces
resin layer
elastic resin
Prior art date
Application number
PCT/JP2023/003911
Other languages
English (en)
French (fr)
Inventor
怜司 塚尾
大樹 野田
俊紀 白岩
一夢 渡部
直樹 林
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022155323A external-priority patent/JP2023121118A/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2023157709A1 publication Critical patent/WO2023157709A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • This technology relates to a method for manufacturing a connected structure using individual pieces of an adhesive film, and a transfer method for a singulated adhesive film.
  • This application is based on Japanese Patent Application No. 2022-023845 filed on February 18, 2022 in Japan, and Japanese Patent Application No. 2022-155323 filed on September 28, 2022. Claiming priority, this application is incorporated into this application by reference.
  • micro LEDs have been actively developed as next-generation displays for LCDs (Liquid Crystal Displays) and OLEDs (Organic Light Emitting Diodes).
  • LCDs Liquid Crystal Displays
  • OLEDs Organic Light Emitting Diodes
  • mass transfer for mounting micro-sized LEDs on a panel substrate is required, and research is being conducted in various places.
  • the current main method of mass transfer is the laser lift-off method (LLO method), which uses a lift (LIFT: Laser Induced Forward Transfer) device to transfer the LED chip to the substrate.
  • LLO method uses a lift (LIFT: Laser Induced Forward Transfer) device to transfer the LED chip to the substrate.
  • Adhesive film, conductive film, anisotropic conductive film (ACF: Anisotropic Conductive Film), etc. are attached in advance to the electrode surface of the LED chip, and the LED chip is transferred to the substrate by the LLO method to improve productivity. can be done.
  • the LLO method may reduce the transfer rate of the LED chip and reduce productivity.
  • the present technology has been proposed in view of such conventional circumstances.
  • a film transfer method is provided.
  • a method for manufacturing a connected structure includes an arranging step of arranging individual pieces of an adhesive film on a base material via an elastic resin layer, and pressing the base material against a substrate to arrange the adhesive film on the elastic resin layer. a transfer step of transferring individual pieces of the adhesive film to the substrate; and a mounting step of mounting electronic components on the individual pieces of the adhesive film transferred to the substrate, wherein the size of the individual pieces is 200 ⁇ m or less. and the peeling force of the adhesive film from the elastic resin layer is smaller than the peeling force of the adhesive film from the substrate.
  • the transfer method of the singulated adhesive film according to the present technology includes an arranging step of arranging individual pieces of the adhesive film on a base material via an elastic resin layer, and pressing the base material against a substrate to arrange the individual pieces on the elastic resin layer. and a transfer step of transferring individual pieces of the adhesive film thus formed to the substrate, wherein the size of the individual pieces is 200 ⁇ m or less, and the peeling force of the adhesive film from the elastic resin layer is the same as the above from the substrate. It is smaller than the peel force of the adhesive film.
  • FIG. 1 shows a process of forming individual pieces of an adhesive film by laser ablation.
  • FIG. 2 is a diagram showing the process of arranging individual pieces of the adhesive film on the elastic resin layer.
  • FIG. 3 is a diagram for explaining the transfer process according to the first embodiment.
  • FIG. 4 is a diagram showing an arrangement process according to the second embodiment.
  • FIG. 5 is a diagram for explaining the transfer process according to the second embodiment.
  • FIG. 6 is a diagram showing the arrangement of individual pieces of the particle aligned film on the adherend B.
  • the manufacturing method of the connected structure comprises an arranging step of arranging individual pieces of the adhesive film on the base material via the elastic resin layer, and pressing the base material against the substrate, and It has a transfer step of transferring individual pieces of the adhesive film to a substrate and a mounting step of mounting electronic components on the individual pieces of the adhesive film transferred to the substrate, wherein the size of the individual pieces is 200 ⁇ m or less and is elastic.
  • the peel strength of the adhesive film from the resin layer is smaller than the peel strength of the adhesive film from the substrate.
  • FIGS. 1 and 2 are diagrams for explaining the arranging process according to the first embodiment
  • FIG. 1 is a diagram showing the process of forming individual pieces of the adhesive film by laser ablation
  • FIG. [FIG. 2] is a view showing a process of arranging individual pieces of an adhesive film on an elastic resin layer;
  • FIGS. 1 and 2 in the arranging step (A1), individual pieces 12A of the adhesive film 12 are arranged on the substrate 21 with the elastic resin layer 22 interposed therebetween.
  • the upper limit of the size of the piece 12A may be 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the lower limit of the size of the pieces 12A is preferably 50 ⁇ m or more, preferably 30 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the size of the piece 12A is, for example, in the case of a substantially rectangular shape, the larger one of the vertical width and the horizontal width.
  • the shape of the piece 12A may be at least one selected from polygons with obtuse angles, polygons with rounded corners, ellipses, ovals, and circles. Since the shape of the piece 12A has few acute-angled portions, the transferability of the piece can be improved.
  • the arrangement of the individual pieces 12A is not particularly limited, for example, when arranging the light emitting elements in units of subpixels (subpixels), the arrangement method of the subpixels may be, for example, in the case of RGB, a stripe arrangement, or a mosaic arrangement. arrays, delta arrays, and the like.
  • the stripe arrangement is obtained by arranging RGB in vertical stripes, and high definition can be achieved.
  • the mosaic arrangement is obtained by arranging the same colors of RGB obliquely, and it is possible to obtain a more natural image than the stripe arrangement.
  • RGB are arranged in a triangle, and each dot is shifted by half a pitch for each field, so that a natural image display can be obtained.
  • the lower limit of the distance between the individual pieces 12A is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more.
  • the upper limit of the distance 12A between pieces is not particularly limited, but is preferably 3000 ⁇ m or less, more preferably 1000 ⁇ m or less, and still more preferably 500 ⁇ m or less. If the distance between the individual pieces 12A is too small, the method of attaching the adhesive film 12 to the entire surface of the substrate 31 is preferable. A method of sticking to the
  • the light-transmitting base material 11 may be any material as long as it is transparent to laser light, and among them, quartz glass having high light transmittance over all wavelengths is preferable. Moreover, as the translucent base material 11, at least the surface on the side of the adhesive film is preferably subjected to release treatment with, for example, a silicone resin.
  • the adhesive film 12 is, for example, a resin layer formed on the translucent base material 11 by using known methods such as mixing, coating, and drying.
  • the adhesive film 12 is not particularly limited, and examples thereof include a conductive film, an anisotropic conductive film (ACF: Anisotropic Conductive Film), and an adhesive film (NCF: Non Conductive Film).
  • a release material may be provided between the translucent base material 11 and the adhesive film 12 .
  • the release material only needs to have an absorption characteristic with respect to the wavelength of the laser light, and generates a shock wave upon irradiation with the laser light to flip off the removed portion 12B of the adhesive film 12 .
  • the release material include polyimide.
  • the thickness of the release material is, for example, 1 ⁇ m or more.
  • a laser beam is irradiated from the translucent substrate 11 side to remove the removed portion 12B and form the piece 12A.
  • a lift (LIFT: Laser Induced Forward Transfer) device for example, can be used to remove the removing portion 12B.
  • the lift device includes, for example, a telescope that converts the pulsed laser light emitted from the laser device into parallel light, a shaping optical system that uniformly shapes the spatial intensity distribution of the pulsed laser light that has passed through the telescope, and a shaping optical system.
  • a mask that passes shaped pulsed laser light in a predetermined pattern, a field lens positioned between the shaping optical system and the mask, and a projection lens that reduces and projects the laser light that has passed through the pattern of the mask onto a donor substrate. to hold the translucent substrate 11 on which the adhesive film 12, which is the donor substrate, is formed on the donor stage.
  • an excimer laser that oscillates laser light with a wavelength of 180 nm to 360 nm can be used.
  • the oscillation wavelengths of the excimer laser are, for example, 193, 248, 308, and 351 nm, and can be suitably selected from among these oscillation wavelengths according to the light absorption of the material of the adhesive film 12 .
  • the oscillation wavelength can be suitably selected according to the light absorption of the material of the release material.
  • a pattern is used in which window frames of a predetermined size are formed at a predetermined pitch so that projection on the interface between the translucent base material 11 and the adhesive film 12 results in a desired array of laser light.
  • the mask is patterned with, for example, chromium plating, and the window portions not plated with chrome transmit the laser light, and the portions plated with chrome block the laser light.
  • the emitted light from the laser device enters the telescope optical system and propagates to the shaping optical system beyond that.
  • the laser light immediately before entering the shaping optical system is adjusted by the telescope optical system so that it is generally parallel light at any position within the X-axis movement range of the donor stage. They are generally incident on the optical system at the same size and at the same angle (perpendicular).
  • the laser light that has passed through the shaping optical system enters the mask through a field lens that forms an image-side telecentric reduction projection optical system in combination with the projection lens.
  • the laser light that has passed through the mask pattern changes its propagation direction vertically downward by the epi-illumination mirror and enters the projection lens.
  • the laser beam emitted from the projection lens enters from the translucent base material 11 side, and is accurately applied to a predetermined position of the adhesive film 12 formed on the surface (lower surface) of the mask pattern in a reduced size of the mask pattern. projected.
  • the laser energy intensity in the laser irradiation is not particularly limited and can be appropriately selected according to the purpose, but is preferably 5% or more and 100% or less, more preferably 5% or more and 50% or less.
  • the laser energy intensity is the intensity expressed as output percentage when the laser irradiation intensity of 10,000 mJ/cm 2 is set to 100.
  • a laser energy intensity of 10% means a laser irradiation intensity of 1,000 mJ/cm 2 .
  • the number of times of laser irradiation is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1 to 10 times.
  • the total laser irradiation intensity in laser irradiation is preferably 500 mJ/cm 2 or more and 10,000 mJ/cm 2 or less, more preferably 1,000 mJ/cm 2 or more and 5,000 mJ/cm 2 or less.
  • the total laser irradiation intensity is an irradiation intensity calculated as the sum of n times of laser irradiation intensity during laser irradiation.
  • "n" indicates the number of laser irradiation times.
  • LMT-200 manufactured by Toray Engineering Co., Ltd.
  • C.I. An apparatus capable of ablation with a pulse laser such as MSL-LLO1.001 (manufactured by Takano) and DFL7560L (manufactured by DISCO) can be used.
  • a shock wave is generated in the adhesive film 12 irradiated with the laser beam at the interface between the translucent substrate 11 and the adhesive film 12, and the removed portion 12B is removed from the translucent substrate. 11, and the individual pieces 12A of the adhesive film 12 can be arranged on the translucent substrate 11 with high precision and high efficiency.
  • the reaction rate of the individual pieces is preferably 25% or less, more preferably 20% or less, and even more preferably 15% or less. This makes it possible to obtain excellent transferability.
  • the reaction rate of the adhesive film before laser irradiation and the individual piece obtained after laser irradiation can be determined from the reduction rate of reactive groups using, for example, FT-IR. For example, in the case of an adhesive film that utilizes the reaction of an epoxy compound, the sample is irradiated with infrared rays and the IR spectrum is measured . It can be calculated from the ratio of the peak height of the epoxy group to the peak height of the methyl group before and after the reaction (for example, before and after laser irradiation), as shown in the following formula. The reaction rate may be obtained from individual pieces of original fabric.
  • Reaction rate (%) ⁇ 1-(a/b)/(A/B) ⁇ 100
  • A is the peak height of the epoxy group before the reaction
  • B is the peak height of the methyl group before the reaction
  • a is the peak height of the epoxy group after the reaction
  • b is the peak height of the methyl group after the reaction. It is.
  • the peak height of the completely cured sample (100% reaction rate) should be set to 0%.
  • the pieces 12A of the adhesive film 12 arranged on the translucent substrate 11 are transferred to the elastic resin layer 22 on the substrate 21.
  • the base material 21 and the elastic resin layer 22 constitute a transfer material, and the transfer material transfers the pieces 12A of the adhesive film 12 from the translucent base material 11 .
  • the base material 21 is a support film that supports the elastic resin layer 22 .
  • Examples of the base material 21 include PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), and glass.
  • the elastic resin layer 22 may have rubber elasticity, and preferable examples of the elastic resin include silicone resin, polyurethane resin, and acrylic resin. Among these, a silicone resin can be preferably used from the viewpoint of impact absorption.
  • the peeling force of the adhesive film 12 from the elastic resin layer 22 is greater than the peeling force of the adhesive film 12 from the translucent substrate 11 , and the peeling force of the adhesive film 12 from the elastic resin layer 22 is greater than the peeling force of the adhesive film 12 from the substrate 31 . less than the peel force.
  • the piece 12A of the adhesive film 12 can be transferred from the translucent base material 11 to the substrate 31 via the transfer material.
  • the peel force of the adhesive film 12 from the elastic resin layer 22 is preferably 50 to 500 mN/5 cm, more preferably 60 to 500 mN/5 cm, in a 90° peel test according to JIS K 6854-1:1999 (ISO 8510-1:1990). 300 mN/5 cm, more preferably 80 to 200 mN/5 cm.
  • the peeling force of the elastic resin layer 22 can be adjusted by applying release silicone or by increasing the hardness of the elastic resin layer 22 more than usual.
  • the elastic resin layer 22 preferably has protrusions 22A in the arrangement of the individual pieces 12A.
  • the height of the protrusion 22A is preferably equal to or higher than the wiring height of the substrate 31, preferably 1 ⁇ m or higher, more preferably 5 ⁇ m or higher, and even more preferably 10 ⁇ m or higher.
  • the size of the tip surface of the projection 22A may be equal to or larger than the size of the individual piece 12A or smaller than the size of the individual piece 12A.
  • the upper limit of the size of the tip surface of the projection 22A may be 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the lower limit of the size of the tip surface of the protrusion 22A is preferably 50 ⁇ m or more, preferably 30 ⁇ m or more, and more preferably 5 ⁇ m or more. It is desirable to fill these in order to put the pieces of adhesive film in place.
  • the size of the tip surface of the projection 22A is the longer one when there are lengths such as a substantially rectangular shape, for example. For a circle, it refers to the diameter. Since the elastic resin layer 22 has the projections 22A, it is possible to apply pressure following the steps in the transfer process, and very excellent transferability can be obtained.
  • a transfer material having protrusions 22A on the elastic resin layer 22 is called a stamp material.
  • FIG. 3 is a diagram for explaining the transfer process according to the first embodiment.
  • the substrate 21 is pressed against the substrate 31 to transfer the individual pieces 12A of the adhesive film arranged on the elastic resin layer 22 to the substrate 31 .
  • good transferability can be obtained.
  • the substrate 31 is not particularly limited, but may be, for example, a substrate on which light emitting elements are arranged in units of sub-pixels constituting one pixel.
  • the substrate for arranging the light-emitting elements has a circuit pattern for the first conductivity type and a circuit pattern for the second conductivity type on the substrate, and the light-emitting elements are arranged in units of sub-pixels constituting one pixel.
  • a first electrode and a second electrode are provided at positions corresponding to the p-side first conductivity type electrode and the n-side second conductivity type electrode, respectively.
  • a circuit pattern is formed to turn on/off a light-emitting element corresponding to each sub-pixel constituting one pixel.
  • the substrate may be a transparent material such as glass or PET (polyethylene terephthalate).
  • the circuit pattern, the first electrode and the second electrode are, for example, ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), ZnO (Zinc-Oxide), IGZO (Indium-Gallium-Zinc-Oxide). ) and other transparent conductive films.
  • the individual pieces 12A of the adhesive film can be arranged in units of one pixel (for example, one pixel consisting of one set of RGB). They can also be arranged in units of constituent sub-pixels (for example, arbitrary RGB). As a result, it is possible to deal with a light emitting element array with a high PPI (Pixels Per Inch) to a light emitting element array with a low PPI.
  • the individual piece 12A may be provided so as to correspond to a plurality of light emitting elements, the individual piece 12A may be provided to correspond to each light emitting element, and the individual piece 12A may be provided to correspond to each electrode of the light emitting element. may Alternatively, the individual pieces 12A may be separately provided only on the electrodes on the substrate 31 side, and the electrodes of the micro LED, which is the light emitting element array, may be connected to the individual pieces 12A.
  • the transfer step (B1) it is preferable to arrange the pieces 12A of the adhesive film in units of one pixel or multiple pixels.
  • the light-emitting elements are arranged as a set of 3 pixels or a set of 6 pixels including 3 pixels of redundant circuits of RGB. , may be transferred in units of one pixel, or may be arranged in units of electrodes.
  • the adhesive film may be transferred within a range that does not impair transparency, for example, within a range of 1 mm ⁇ 1 mm.
  • the average visible light transmittance after the pieces 12A are mounted (provided) on the substrate 31 is preferably 20% or more, more preferably 35% or more, and still more preferably 50% or more.
  • a display device having excellent light transmittance and aesthetic appearance can be obtained.
  • the average transmittance can be obtained by attaching individual pieces to plain glass or a transparent substrate for evaluation and using this as a reference (Ref).
  • the average transmittance of visible light provided with the light emitting element is lower. If a light-emitting element is mounted, it shall be measured without lighting.
  • the average visible light transmittance can be measured, for example, using a UV-visible spectrophotometer.
  • electronic components are mounted on the pieces 12A of the adhesive film transferred to the substrate 31.
  • Electronic parts include chip parts such as semiconductor chips and LED chips, and in particular, micro-sized LED chips can be preferably used.
  • the LED chip includes a body, a first conductivity type electrode, and a second conductivity type electrode 2, and has a horizontal structure in which the first conductivity type electrode and the second conductivity type electrode are arranged on the same side.
  • a flip chip type can be used.
  • the main body includes a first conductivity type clad layer made of, for example, n-GaN, an active layer made of, for example, an In x Al y Ga 1-x-y N layer, and a second conductivity type clad layer made of, for example, p-GaN. It has a so-called double heterostructure.
  • a first conductivity type electrode is formed on a portion of the first conductivity type cladding layer by the passivation layer, and a second conductivity type electrode is formed on a portion of the second conductivity type cladding layer.
  • NCF Non Conductive Film
  • the mounting step (C1) electronic components are first mounted on the piece 12A of the substrate 31.
  • the method for mounting the electronic component on the substrate 31 is not particularly limited, but when the electronic component is a light-emitting element, for example, the laser lift-off method (LLO method) is used to directly transfer the light-emitting element from the wafer substrate to the substrate 31. , a method of arranging, and a method of transferring and arranging the light emitting element from the transfer substrate to the substrate 31 using a transfer substrate to which the light emitting element is adhered in advance.
  • LLO method laser lift-off method
  • the individual pieces 12A of the adhesive film are cured, and the electronic components arranged at predetermined positions on the substrate 31 are fixed.
  • the adhesive film contains a thermosetting binder
  • the electronic component is thermocompression bonded through the piece 12A of the adhesive film.
  • a thermocompression bonding method used for a known curable resin film can be appropriately selected and used.
  • the thermocompression bonding conditions are, for example, a temperature of 150° C. to 260° C., a pressure of 1 MPa to 60 MPa, and a time of 5 seconds to 300 seconds.
  • a cured resin film is formed by curing the thermosetting binder.
  • a part of the adhesive film 12 is removed by laser ablation to arrange the pieces 12A of the adhesive film 12 on the translucent substrate 11.
  • the method of forming the pieces is There is no particular limitation, and for example, a method of forming by removing a part of the adhesive film 12 by laser, cutting, or the like, a method of forming by a printing method, an inkjet method, or the like can be used.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • polyimide or the like
  • the electronic component is an LED and the non-lighting LED after the LED is mounted is removed with a laser, unevenness may exist in the removed portion.
  • the piece 12A of the adhesive film 12 can be reliably transferred to the removed portion.
  • the manufacturing method of such a connection structure includes a removal step of removing the light emitting elements at predetermined positions of the connection structure in which the light emitting elements are arranged and mounted, by a laser, and a step of removing the protrusions higher than the height of the light emitting elements by the elastic resin layer.
  • using the transfer material formed in affixing individual pieces of the adhesive film to the protrusions, transferring the individual pieces to the predetermined positions removed by laser, and transferring the adhesive film pieces to the predetermined positions and a mounting step of mounting the light emitting element on the substrate.
  • the electronic component is thermocompression bonded via individual pieces of the adhesive film. After that, reflow may be performed at a temperature of 200 to 300° C. for 30 seconds or more.
  • an LED chip with a horizontal structure was illustrated as an electronic component, but a vertical structure in which a first conductivity type electrode and a second conductivity type electrode are arranged to face each other with an epitaxial layer interposed therebetween.
  • a structured LED chip may also be used.
  • either one of the electrodes of the first conductivity type or the electrodes of the second conductivity type is connected to the electrode of the substrate by an individual piece of adhesive film, and the other electrode is used as a transparent electrode. It may be formed as a pattern of address lines.
  • FIG. 4 is a diagram showing an arrangement process according to the second embodiment.
  • an adhesive film 42 formed on a light-transmitting substrate 41 that transmits laser light and an elastic resin 52 on the substrate 51 are separated.
  • the individual pieces 42A of the adhesive film 42 are transferred to the elastic resin 52 by the laser lift-off method and arranged.
  • the base material 51 and the elastic resin layer 52 constitute a transfer material, and the transfer material transfers the pieces 42A of the adhesive film 42 from the translucent base material 41 .
  • the size of the individual pieces 42A, the arrangement of the individual pieces 42A, and the distance between the individual pieces 42A are the same as the size of the individual pieces 12A, the arrangement of the individual pieces 12A, and the distance between the individual pieces 12A in the first embodiment, respectively. , so the description is omitted here.
  • the translucent base material 41, the adhesive film 42, the base material 51, and the elastic resin 52 are also similar to the translucent base material 11, the adhesive film 12, the base material 21, and the elastic resin 22 in the first embodiment, respectively. , so the description is omitted here.
  • a release material may be provided between the translucent base material 41 and the adhesive film 42 .
  • a laser beam is irradiated from the translucent base material 41 side, the individual piece 42A is separated from the translucent base material 41, and is made to impact on the elastic resin 52, and the removed portion 42B is formed on the translucent base material. It is made to remain on the material 41 .
  • a lift device similar to that described above can be used.
  • a translucent base material 41 formed with an adhesive film 42 as a donor substrate is held on the donor stage, and a base material 51 formed with an elastic resin 52 as a receptor substrate is held on the receptor stage.
  • the distance between the adhesive film 42 and the elastic resin 52 is, for example, 10-100 ⁇ m.
  • the oscillation wavelengths of the laser device are, for example, 193, 248, 308, and 351 nm, and can be suitably selected from these oscillation wavelengths according to the light absorption of the adhesive film 42 or the material of the release material.
  • the mask uses a pattern in which windows of a predetermined size are arranged at a predetermined pitch so that projection on the boundary surface between the translucent base material 41 and the adhesive film 42 results in a desired arrangement of laser light.
  • a shock wave is generated in the adhesive film 42 irradiated with the laser beam at the boundary surface between the translucent base material 41 and the adhesive film 42, and the plurality of individual pieces 42A are lifted to the translucent base material 41. , and lifted toward the base material 51 , and the plurality of individual pieces 42 A can be landed on predetermined positions of the base material 51 via the elastic resin 52 .
  • the individual pieces 42A of the adhesive film 42 can be transferred and arranged on the substrate 51 with high accuracy and high efficiency, and the tact time can be shortened.
  • reaction rate of the individual pieces 42A of the adhesive film transferred using the lift device is preferably 25% or less, more preferably 20% or less, more preferably 20% or less, as in the case of producing the individual pieces using the lift device. 15% or less. Since the reaction rate of the piece 42A is 25% or less, it becomes possible to thermally compress the electronic component in the mounting step (C2).
  • the measurement of the reaction rate can be obtained using, for example, FT-IR, as described above.
  • FIG. 5 is a diagram for explaining the transfer process according to the second embodiment.
  • the substrate 51 is pressed against the substrate 61 to transfer the individual pieces 42A of the adhesive film arranged on the elastic resin layer 52 to the substrate 61 .
  • good transferability can be obtained.
  • by using a stamp material having projections on the elastic resin layer 52 it is possible to apply pressure while following the steps, and very excellent transferability can be obtained. Since the substrate 61 is the same as the substrate 31 in the first embodiment, description thereof is omitted here.
  • the singulated adhesive film according to the present embodiment is formed by arranging individual pieces of the adhesive film on a substrate, and as shown in FIG. An example is one in which pieces 12A of the adhesive film 12 are arranged on the translucent substrate 11 by removing a part of the adhesive film 12 formed on the substrate 11 by laser ablation.
  • the singulated adhesive film according to the present embodiment is formed by arranging the individual pieces of the adhesive film on the substrate via the elastic resin layer, and as shown in FIG.
  • the individual pieces 12A of the adhesive film 12 arranged in an array are transferred to the elastic resin layer 22 on the base material 21, or as shown in FIG. 42A is detached from the translucent base material 41 and landed on the elastic resin 52, for example.
  • the sizes of the individual pieces 12A and 42A, the arrangement of the individual pieces 12A and 42A, and the distances between the individual pieces 12A and 42A are the same as those described in the first embodiment, so the description is omitted here.
  • the adhesive film is not particularly limited as long as it is cured by energy such as heat and light, and is appropriately selected from, for example, a thermosetting binder, a photocurable binder, a heat and photocurable binder, and the like. be able to.
  • a thermosetting binder containing a film-forming resin, a thermosetting resin, and a curing agent will be described.
  • the thermosetting binder is not particularly limited, and examples thereof include a thermal anionic polymerization resin composition containing an epoxy compound and a thermal anionic polymerization initiator, and a thermal cationic polymerization resin composition containing an epoxy compound and a thermal cationic polymerization initiator.
  • the (meth)acrylate compound is meant to include both acrylic monomers (oligomers) and methacrylic monomers (oligomers).
  • thermosetting binders it is preferable that the thermosetting resin contains an epoxy compound and the curing agent is a thermal cationic polymerization initiator. This makes it possible to suppress the curing reaction when individual pieces are formed by laser light, and to achieve rapid curing by heat during thermocompression bonding.
  • a thermal cationic polymerizable resin composition containing a film-forming resin, an epoxy compound, and a thermal cationic polymerization initiator will be described as an example.
  • the film-forming resin corresponds to, for example, a high-molecular-weight resin having an average molecular weight of 10,000 or more, and from the viewpoint of film-forming properties, the average molecular weight is preferably about 10,000 to 80,000.
  • film-forming resins include butyral resins, phenoxy resins, polyester resins, polyurethane resins, polyester urethane resins, acrylic resins, and polyimide resins. may be used.
  • butyral resin can be preferably used from the viewpoint of film formation state, connection reliability, and the like.
  • a specific example of the butyral resin is "KS-10" (trade name) manufactured by Sekisui Chemical Co., Ltd.
  • the content of the film-forming resin is preferably 20 to 70 parts by mass, more preferably 30 to 60 parts by mass, still more preferably 45 to 55 parts by mass, based on 100 parts by mass of the thermosetting binder.
  • the epoxy compound is not particularly limited as long as it is an epoxy compound having one or more epoxy groups in the molecule.
  • a modified epoxy resin may be used.
  • hydrogenated bisphenol A glycidyl ether can be preferably used from the viewpoint of forming an adhesive film having a maximum absorption wavelength in the range of 180 nm to 360 nm.
  • a specific example of the hydrogenated bisphenol A glycidyl ether is the trade name "YX8000" manufactured by Mitsubishi Chemical Corporation.
  • the content of the epoxy compound is preferably 30 to 60 parts by mass, more preferably 35 to 55 parts by mass, still more preferably 35 to 45 parts by mass, based on 100 parts by mass of the thermosetting binder.
  • thermal cationic polymerization initiator those known as thermal cationic polymerization initiators for epoxy compounds can be employed. iodonium salts, sulfonium salts, phosphonium salts, ferrocenes and the like of can be used. Among these, aromatic sulfonium salts that exhibit good latency with respect to temperature can be preferably used.
  • aromatic sulfonium salt-based polymerization initiator is “SI-60L” (trade name) manufactured by Sanshin Chemical Industry Co., Ltd.
  • the content of the thermal cationic polymerization initiator is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass, still more preferably 8 to 12 parts by mass, based on 100 parts by mass of the thermosetting binder.
  • thermosetting binder rubber components, inorganic fillers, silane coupling agents, diluent monomers, fillers, softeners, coloring agents, flame retardants, thixotropic A tropic agent or the like may be added.
  • the rubber component is not particularly limited as long as it is an elastomer with high cushioning properties (shock absorption). Specific examples include acrylic rubber, silicone rubber, butadiene rubber, polyurethane resin (polyurethane elastomer), and the like. be able to.
  • inorganic fillers silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used. The inorganic fillers may be used alone or in combination of two or more.
  • silane coupling agent an epoxy silane coupling agent, an acrylic silane coupling agent, or the like can be used.
  • the durometer A hardness of the adhesive film is 20-40, preferably 20-35, more preferably 20-30. If the durometer A hardness is too high, the adhesive film is too hard, which tends to cause defects such as deformation and breakage of the chip parts. There is a tendency for defects such as misalignment to occur easily.
  • the durometer A hardness of the adhesive film conforms to JIS K 6253, and can be measured with rubber hardness (Japanese Industrial Standards JIS-A hardness) using a durometer A.
  • the storage elastic modulus at a temperature of 30°C and a frequency of 200 Hz in a dynamic viscoelasticity test using an adhesive film indentation tester is preferably 60 MPa or less, more preferably 30 MPa or less, and even more preferably 10 MPa or less. If the storage elastic modulus at a temperature of 30° C. and a frequency of 200 Hz is too high, the impact of the chip component ejected at high speed by laser irradiation cannot be absorbed, and the transfer rate of the chip component tends to decrease.
  • a frequency of 200 Hz can be measured using an indentation tester, for example, using a flat punch with a diameter of 100 ⁇ m, with a target indentation depth of 1 ⁇ m, and sweeping the frequency range from 1 to 200 Hz. can.
  • the storage elastic modulus of the adhesive film after curing at a temperature of 30°C measured in a tensile mode conforming to JIS K7244 is preferably 100 MPa or more, more preferably 2000 MPa or more. If the storage elastic modulus at a temperature of 30° C. is too low, good electrical conductivity cannot be obtained, and connection reliability tends to decrease.
  • the storage modulus at a temperature of 30°C can be measured in accordance with JIS K7244 in a tension mode using a viscoelasticity tester (Vibron) under the measurement conditions of, for example, a frequency of 11 Hz and a heating rate of 3°C/min. .
  • the adhesive film is preferably a conductive film or an anisotropic conductive film (ACF: Anisotropic Conductive Film) further containing conductive particles.
  • ACF Anisotropic Conductive Film
  • the conductive particles those used in known anisotropic conductive films can be appropriately selected and used. Examples thereof include metal particles such as nickel, copper, silver, gold, palladium and solder, and metal-coated resin particles obtained by coating the surfaces of resin particles such as polyamide and polybenzoguanamine with a metal such as nickel and gold.
  • the anisotropic conductive film is preferably a particle-aligned film in which conductive particles are aligned in the plane direction.
  • the arrangement it is preferable if it has a repeating regularity, and the shape is not particularly limited.
  • the anisotropic conductive film can also be configured to have an unevenly distributed region in which the conductive particles are unevenly distributed at positions corresponding to the electrodes, and have regions in which the conductive particles are not present at other positions.
  • the unevenly distributed region is 0.8 times or more the electrode size, preferably 1.0 times or more, from the viewpoint of trapping, and 1.2 times or less, preferably 1.5 times or less the electrode size from the reduction of conductive particles. It is desirable.
  • the removed portion can be used for quality control, inspection, and the like.
  • the particle surface density of the anisotropic conductive film can be appropriately designed according to the electrode size of the chip component, similarly to the cured film, and the lower limit of the particle surface density is 500 particles/mm 2 or more and 20000 particles/mm 2. Above, it can be 40000/mm2 or more, 50000/mm2 or more, and the upper limit of the particle areal density is 1500000/ mm2 or less, 1000000/mm2 or less, 500000/ mm2 or less, 100000 pcs/mm 2 or less. As a result, even when the electrode size of the chip component is small, excellent conductivity and insulation can be obtained.
  • the particle areal density of the cured film of the anisotropic conductive film is that of the portion where the conductive particles are arranged when the film is formed at the time of production.
  • the particle areal density can be obtained from the area excluding the spaces between individual pieces from the area including the individual pieces and spaces, and the number of particles.
  • the particle size of the conductive particles is not particularly limited, but the lower limit of the particle size is preferably 1 ⁇ m or more, and the upper limit of the particle size is, for example, 50 ⁇ m or less from the viewpoint of the capturing efficiency of the conductive particles in the connection structure. and more preferably 20 ⁇ m or less. Some electrode sizes require less than 3 ⁇ m, preferably less than 2.5 ⁇ m.
  • the particle diameter of the conductive particles can be a value measured by an image type particle size distribution meter (eg, FPIA-3000: manufactured by Malvern). This number is preferably 1000 or more, preferably 2000 or more.
  • the lower limit of the thickness of the anisotropic conductive film may be, for example, 60% or more of the particle diameter of the conductive particles, and may be 90% or more to correspond to relatively small particle diameters, but preferably the conductive particles It can be 1.3 times or more the diameter or 3 ⁇ m or more.
  • the upper limit of the thickness of the anisotropic conductive film can be, for example, 20 ⁇ m or less, or 3 times or less the particle diameter of the conductive particles, preferably 2 times or less.
  • the anisotropic conductive film may be laminated with an adhesive layer or a pressure-sensitive adhesive layer that does not contain conductive particles, and the number of layers and the laminated surface can be appropriately selected according to the object and purpose. .
  • the same materials as those for the anisotropic conductive film can be used.
  • the film thickness can be measured using a known micrometer or digital thickness gauge.
  • the film thickness may be obtained by measuring, for example, 10 or more points and averaging them.
  • Example> Examples using the present technology will be described below. Note that the present technology is not limited to these examples.
  • the mixed resin was applied to a 0.5 mm-thick glass plate that had been subjected to release treatment with silicone and dried (60° C.-3 min) to obtain a 4 ⁇ m-thick resin film.
  • a resin film and a substrate on which conductive particles (average particle diameter 2.2 ⁇ m, manufactured by Sekisui Chemical Co., Ltd.) are arranged in a hexagonal lattice pattern are bonded together, the conductive particles are transferred to the resin film, and the thickness is 4.0 ⁇ m.
  • a grain-aligned film with an areal density of 58000 grains/mm 2 was obtained.
  • the arrangement of the conductive particles and the transfer to the resin film were performed according to the description of Japanese Patent No. 6,187,665.
  • a particle alignment film is attached to the transfer material under the conditions of a temperature of 50 ° C. and a pressure of 1 Mpa, and a PP (Poly Propylene) tape with a width of 1 mm is attached to the particle alignment film side, JIS K 6854-1: 1999 (ISO 8510-1 : 1990), a 90° peel test was performed using a tensile tester. As a result, the peel strength in the 90° peel test was 100 mN/5 cm. (3) The peel force of the particle aligned film from the adherend A (thickness: 0.5 mm, flat quartz glass plate) was measured. A particle-aligned film is attached to the adherend A under conditions of a temperature of 50° C.
  • FIG. 6 is a diagram showing the arrangement of individual pieces of the particle-aligned film on the adherend B.
  • FIG. 6 As shown in FIG. 6, for the adherend B71, the half width 7.5 ⁇ m of the individual piece 81A of the particle alignment film was arranged so as to overlap the Al pattern 72, and the step was evaluated.
  • Example 1 Individual pieces of the particle aligned film were transferred using a stamp material having protrusions.
  • the stamp material has a silicone layer on a support substrate, and is configured by forming projections on the silicone layer.
  • the projections of the stamp material were arranged in a grid pattern of 50 ⁇ 50 pcs with a center-to-center distance of 200 ⁇ m, similar to the arrangement of the individual pieces, and the tip shape of the projections was a rectangle of 15 ⁇ m ⁇ 30 ⁇ m. , the height of the protrusion is 20 ⁇ m.
  • the projections of the stamp material and the pieces of the particle alignment film arranged on the glass plate are aligned, and the projections of the stamp material are pressed against the pieces of the particle alignment film under the conditions of a temperature of 50° C. and a pressure of 1 MPa to align the particles. Individual pieces of the film were transferred to the stamp material side.
  • Example 2 The particle-aligned film and the silicone transfer material are opposed to each other, and individual pieces of the particle-aligned film having a thickness of 4.0 ⁇ m and 15 ⁇ m ⁇ 30 ⁇ m are placed on the silicone transfer material by a laser lift-off method so that the distance between the center points is 200 ⁇ m in a grid pattern.
  • a silicone transfer material has a silicone layer on a support substrate, and the surface of the silicone layer is flat.
  • the laser irradiation conditions were as follows. Laser type: YAG Laser Laser wavelength: 266nm Laser energy intensity: 10% Laser irradiation times: 1 time
  • Example 1 since the silicone layer of the stamp material and the transfer material is pressed to attach the individual pieces of the particle alignment film, the wiring, the insulating film on the surface of the wiring, etc. It was found that good transferability of individual pieces of the particle aligned film can be obtained even on a substrate having unevenness including steps, and productivity can be improved.
  • the individual pieces of the particle alignment film are adhered by pressing the projections of the silicone layer of the stamp material without causing the pieces of the particle alignment film to fly off by the laser lift-off method. It was possible to apply pressure to the substrate, and excellent transferability could be obtained.
  • Translucent base material 12 Adhesive film, 12A Piece, 12B Piece, 21 Base material, 22 Elastic resin layer, 22 Projection, 31 Substrate, 41 Translucent base material, 42 Adhesive film, 42A Piece, 51 Base material, 52 elastic resin layer, 61 substrate, 71 adherend B, 72 Al pattern, 81A pieces

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Led Device Packages (AREA)

Abstract

基板上に凹凸が存在する場合でも、生産性を向上させることができる接続構造体の製造方法、及び個片化接着フィルムの転写方法を提供する。 弾性樹脂層を介して基材上に接着フィルムの個片を配列させる配列工程と、基材を基板に押し付け、弾性樹脂層に配列された接着フィルムの個片を基板に転写する転写工程と、基板に転写された接着フィルムの個片上に電子部品を実装する実装工程とを有し、個片の大きさが、200μm以下であり、弾性樹脂層に対する接着フィルムの剥離力が、基板に対する接着フィルムの剥離力よりも小さい。これにより、配線、配線表面の絶縁膜などの段差を含む凹凸が存在する基材に対しても接着フィルムの個片の良好な転写性が得られ、生産性を向上させることができる

Description

接続構造体の製造方法、及び個片化接着フィルムの転写方法
 本技術は、接着フィルムの個片を用いた接続構造体の製造方法、及び個片化接着フィルムの転写方法に関する。本出願は、日本国において2022年2月18日に出願された日本特許出願番号特願2022-023845、及び2022年9月28日に出願された日本特許出願番号特願2022-155323を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 近年、LCD(Liquid Crystal Display)、OLED(Organic Light Emitting Diode)の次世代ディスプレイとしてマイクロLEDの開発が活発である。マイクロLED(Light Emitting Diode)の課題として、マイクロサイズのLEDをパネル基板に実装するマストランスファーと呼ばれる技術が必要であり、各所で研究されている。
 マストランスファーの現在主力な方式として、リフト(LIFT:Laser Induced Forward Transfer)装置を用いて、LEDチップを基板に転写するレーザーリフトオフ法(LLO法)が挙げられる。LEDチップの電極面に予め接着フィルム、導電性フィルム、異方性導電フィルム(ACF:Anisotropic Conductive Film)などを貼り付け、LLO法によりLEDチップを基板に転写することにより、生産性を向上させることができる。
 しかしながら、基板上に配線、配線表面の絶縁膜などの段差を含む凹凸が存在する場合、LLO法ではLEDチップの転写率が低下してしまい、生産性が低下する虞がある。
特開2020-145243号公報
 本技術は、このような従来の実情に鑑みて提案されたものであり、基板上に凹凸が存在する場合でも、生産性を向上させることができる接続構造体の製造方法、及び個片化接着フィルムの転写方法を提供する。
 本技術に係る接続構造体の製造方法は、弾性樹脂層を介して基材上に接着フィルムの個片を配列させる配列工程と、前記基材を基板に押し付け、前記弾性樹脂層に配列された接着フィルムの個片を前記基板に転写する転写工程と、前記基板に転写された接着フィルムの個片上に電子部品を実装する実装工程とを有し、前記個片の大きさが、200μm以下であり、前記弾性樹脂層に対する前記接着フィルムの剥離力が、前記基板に対する前記接着フィルムの剥離力よりも小さい。
 本技術に係る個片化接着フィルムの転写方法は、弾性樹脂層を介して基材上に接着フィルムの個片を配列させる配列工程と、前記基材を基板に押し付け、前記弾性樹脂層に配列された接着フィルムの個片を前記基板に転写する転写工程とを有し、前記個片の大きさが、200μm以下であり、前記弾性樹脂層に対する前記接着フィルムの剥離力が、前記基板に対する前記接着フィルムの剥離力よりも小さい。
 本技術によれば、配線、配線表面の絶縁膜などの段差を含む凹凸が存在する基板に対しても接着フィルムの個片の良好な転写性が得られ、生産性を向上させることができる。
図1は、レーザーアブレーションにより接着フィルムの個片を形成する工程を示す図である。 図2は、接着フィルムの個片を弾性樹脂層に配列する工程を示す図である。 図3は、第1の実施の形態に係る転写工程を説明するための図である。 図4は、第2の実施の形態に係る配列工程を示す図である。 図5は、第2の実施の形態に係る転写工程を説明するための図である。 図6は、被着体Bへの粒子整列フィルムの個片の配置を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接続構造体の製造方法
2.個片化接着フィルム
3.実施例
 <1.接続構造体の製造方法>
 本実施の形態に係る接続構造体の製造方法は、弾性樹脂層を介して基材上に接着フィルムの個片を配列させる配列工程と、基材を基板に押し付け、弾性樹脂層に配列された接着フィルムの個片を基板に転写する転写工程と、基板に転写された接着フィルムの個片上に電子部品を実装する実装工程とを有し、個片の大きさが、200μm以下であり、弾性樹脂層に対する接着フィルムの剥離力が、基板に対する接着フィルムの剥離力よりも小さいものである。これにより、配線、配線表面の絶縁膜などの段差を含む凹凸が存在する基板に対しても接着フィルムの個片の良好な転写性が得られ、生産性を向上させることができる。
 <第1の実施の形態>
 以下、図1~図3を参照して、第1の実施の形態に係る接続構造体の製造方法における配列工程(A1)、転写工程(B1)、及び実装工程(C1)について説明する。
 [配列工程(A1)]
 図1及び図2は、第1の実施の形態に係る配列工程を説明するための図であり、図1は、レーザーアブレーションにより接着フィルムの個片を形成する工程を示す図であり、図2は、接着フィルムの個片を弾性樹脂層に配列する工程を示す図である。図1及び図2に示すように、配列工程(A1)では、弾性樹脂層22を介して基材21上に接着フィルム12の個片12Aを配列させる。
 [レーザーアブレーション除去]
 先ず、図1に示すように、レーザー光に対して透光性を有する透光性基材11上に形成された接着フィルム12の一部をレーザーアブレーションにより除去して透光性基材11上に接着フィルム12の個片12Aを配列する。
 個片12Aの大きさの上限は、200μm以下であってもよく、好ましくは150μm以下、より好ましくは50μm以下、さらに好ましくは20μm以下である。また、個片12Aの大きさの下限は、好ましくは50μm以上、好ましくは30μm以上、さらに好ましくは5μm以上である。ここで、個片12Aの大きさは、例えば略矩形の場合、縦幅又は横幅のうち大きい方である。また、個片12Aの形状は、鈍角からなる多角形、角が丸い多角形、楕円、長円、及び円から選択される少なくとも1種であってもよい。個片12Aの形状に鋭角部分が少ないことにより、個片の転写性を向上させることができる。
 個片12Aの配列は、特に限定されるものではないが、例えば、発光素子をサブピクセル(副画素)単位で配置させる場合、サブピクセルの配列方法として、例えば、RGBの場合、ストライプ配列、モザイク配列、デルタ配列などが挙げられる。ストライプ配列は、RGBを縦ストライプ状に配列したものであり、高精細化を図ることができる。また、モザイク配列は、RGBの同一色を斜めに配置したものであり、ストライプ配列より自然な画像を得ることができる。また、デルタ配列は、RGBを三角形に配列し、各ドットがフィールド毎に半ピッチずれたものであり、自然な画像表示を得ることができる。
 また、個片12A間の距離の下限は、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。また、個片間12Aの距離の上限は、特に制限はないが好ましくは3000μm以下、より好ましくは1000μm以下、さらに好ましくは500μm以下である。個片12A間の距離が小さ過ぎる場合、接着フィルム12を基板31全面に貼り付ける方法が好ましくなり、個片12A間の距離が大き過ぎる場合、従来の方法で個片12Aを基板31の所定位置に貼り付ける方法が好ましくなる。
 透光性基材11は、レーザー光に対して透過性を有するものであればよく、中でも全波長に亘って高い光透過率を有する石英ガラスであることが好ましい。また、透光性基材11は、少なくとも接着フィルム側の面が例えばシリコーン樹脂により剥離処理されたものを好適に用いることができる。
 接着フィルム12は、例えば、混合・塗布・乾燥などの公知の方法を用いることにより透光性基材11上に形成された樹脂層である。接着フィルム12としては、特に制限はなく、導電フィルム、異方性導電フィルム(ACF:Anisotropic Conductive Film)、接着剤フィルム(NCF:Non Conductive Film)などが挙げられる。
 また、透光性基材11と接着フィルム12との間にリリース材を設けてもよい。リリース材は、レーザー光の波長に対して吸収特性を有すればよく、レーザー光の照射により衝撃波を発生し、接着フィルム12の除去部12Bを弾き飛ばす。リリース材としては、例えばポリイミドを挙げることができる。リリース材の厚みは、例えば1μm以上である。
 図1に示すように、透光性基材11側からレーザー光を照射し、除去部12Bを除去し、個片12Aを形成する。除去部12Bの除去には、例えば、リフト(LIFT:Laser Induced Forward Transfer)装置を用いることができる。
 リフト装置は、例えば、レーザー装置から出射されたパルスレーザー光を平行光にするテレスコープと、テレスコープを通過したパルスレーザー光の空間強度分布を均一に整形する整形光学系と、整形光学系により整形されたパルスレーザー光を所定のパターンにて通過させるマスクと、整形光学系とマスクとの間に位置するフィールドレンズと、マスクのパターンを通過したレーザー光をドナー基板に縮小投影する投影レンズとを備え、ドナー基板である接着フィルム12が形成された透光性基材11をドナーステージに保持する。
 レーザー装置としては、例えば波長180nm~360nmのレーザー光を発振するエキシマレーザーを用いることができる。エキシマレーザーの発振波長は、例えば193、248、308、351nmであり、これらの発振波長の中から接着フィルム12の材料の光吸収性に応じて好適に選択することができる。また、透光性基材11と接着フィルム12との間にリリース材を設けた場合、これらの発振波長の中からリリース材の材料の光吸収性に応じて好適に選択することができる。
 マスクは、透光性基材11と接着フィルム12との境界面における投影が、所望のレーザー光の配列となるように、所定ピッチで所定サイズの窓枠が形成されたパターンを用いる。マスクには、例えばクロムメッキにてパターンが施され、クロムメッキが施されていない窓部分はレーザー光を透過し、クロムメッキが施されている部分はレーザー光を遮断する。
 レーザー装置からの出射光はテレスコープ光学系に入射し、その先の整形光学系へと伝搬する。整形光学系に入射する直前におけるレーザー光は、このドナーステージのX軸の移動範囲内のいずれの位置においても、概ね平行光となるよう、テレスコープ光学系により調整されているため、常に、整形光学系に対し、概ね、同一サイズ、同一角度(垂直)により入射する。
 整形光学系を通過したレーザー光は、投影レンズとの組み合わせにおいて像側テレセントリック縮小投影光学系を構成するフィールドレンズを経てマスクに入射する。マスクパターンを通過したレーザー光は、その伝搬方向を落射ミラーにより鉛直下方に変え、投影レンズに入射する。投影レンズから出射されたレーザー光は、透光性基材11側から入射し、その表面(下面)に形成されている接着フィルム12の所定の位置に対し、マスクパターンの縮小サイズにて正確に投影される。
 レーザー照射におけるレーザーエネルギー強度としては、特に制限はなく、目的に応じて適宜選択することができるが、5%以上100%以下が好ましく、5%以上50%以下がより好ましい。レーザーエネルギー強度とは、レーザー照射強度10,000mJ/cmを100としたときの出力パーセントで表した強度である。例えば、レーザーエネルギー強度10%とは、レーザー照射強度1,000mJ/cmを意味する。
 また、レーザーの照射回数としては、特に制限はなく、目的に応じて適宜選択することができるが、1回~10回が好ましい。レーザー照射における総レーザー照射強度としては、500mJ/cm以上10,000mJ/cm以下が好ましく、1,000mJ/cm以上5,000mJ/cm以下がより好ましい。ここで、総レーザー照射強度とは、レーザー照射の際のn回のレーザー照射強度の総和として算出される照射強度である。ここで「n」は、レーザーの照射回数を示す。
 レーザー照射装置として、LMT-200(東レエンジニアリング社製)、C.MSL-LLO1.001(タカノ社製)、DFL7560L(DISCO社製)などのパルスレーザーでアブレーション可能な装置を使用することができる。
 このようなリフト装置を用いることにより、透光性基材11と接着フィルム12との境界面において、レーザー光を照射された接着フィルム12に衝撃波を発生させ、除去部12Bを透光性基材11から剥離して除去させることができ、接着フィルム12の個片12Aを透光性基材11上に高精度及び高効率に配列させることができる。
 また、リフト装置を用いて個片を作製した場合、個片の反応率は、好ましくは25%以下、より好ましくは20%以下、さらに好ましくは15%以下である。これにより、優れた転写性を得ることができる。なお、レーザー照射前の接着フィルムやレーザー照射後に得られた個片の反応率の測定は、例えばFT-IRを用いて反応基の減少率により求めることができる。例えば、エポキシ化合物の反応を利用した接着フィルムの場合、試料に赤外線を照射させてIRスペクトルを測定し、IRスペクトルのメチル基(2930cm-1付近)及びエポキシ基(914cm-1付近)のピーク高さを測定し、下記式のように、メチル基のピーク高さに対するエポキシ基のピーク高さの反応前後(例えばレーザー照射前後)の比率で算出することができる。反応率は個片の原反から求めてもよい。
 反応率(%)={1-(a/b)/(A/B)}×100
 上記式において、Aは反応前のエポキシ基のピーク高さ、Bは反応前のメチル基のピーク高さ、aは反応後のエポキシ基のピーク高さ、bは反応後のメチル基のピーク高さである。なお、エポキシ基のピークに他のピークが重なる場合は、完全硬化(反応率100%)させたサンプルのピーク高さを0%とすればよい。
 [個片を透光性基材から転写材に転写]
 次に、図2に示すように、透光性基材11上に配列された接着フィルム12の個片12Aを基材21上の弾性樹脂層22に転写する。基材21及び弾性樹脂層22は、転写材を構成し、転写材は、透光性基材11から接着フィルム12の個片12Aを転写する。
 基材21は、弾性樹脂層22を支持する支持フィルムである。基材21としては、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)、ガラスなどが挙げられる。
 弾性樹脂層22は、ゴム弾性を有すればよく、弾性樹脂の好ましい例としては、シリコーン樹脂、ポリウレタン樹脂、アクリル樹脂などが挙げられる。これらの中でも、衝撃吸収性の観点からシリコーン樹脂を好ましく用いることができる。
 弾性樹脂層22に対する接着フィルム12の剥離力は、透光性基材11に対する接着フィルム12の剥離力よりも大きく、弾性樹脂層22に対する接着フィルム12の剥離力は、基板31に対する接着フィルム12の剥離力よりも小さい。これにより、転写材を介して透光性基材11から基板31に接着フィルム12の個片12Aを転写することができる。
 弾性樹脂層22に対する接着フィルム12の剥離力は、JIS K 6854-1:1999(ISO 8510-1:1990)に準じた90°剥離試験において、好ましくは50~500mN/5cm、より好ましくは60~300mN/5cm、さらに好ましくは80~200mN/5cmである。これにより、基板に対する接着フィルムの剥離力をあまり大きくしなくても良いため、接着フィルムの配合の自由度を増加させることができる。弾性樹脂層22の剥離力は、離形用シリコーンを塗布することや、弾性樹脂層22の硬度を通常より高めることで調整することができる。
 弾性樹脂層22は、個片12Aの配列で突起22Aを有することが好ましい。突起22Aの高さは、基板31の配線高さ以上であることが好ましく、好ましくは1μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。また、突起22Aの先端面の大きさは、個片12Aの大きさ以上であっても個片12Aの大きさ以下であってもよい。突起22Aの先端面の大きさの上限は、200μm以下であってもよく、好ましくは150μm以下、より好ましくは50μm以下、さらに好ましくは20μm以下である。また、突起22Aの先端面の大きさの下限は、好ましくは50μm以上、好ましくは30μm以上、さらに好ましくは5μm以上である。接着フィルムの個片を所定の位置に設置するために、これらを満たすことが望ましい。ここで、突起22Aの先端面の大きさは、例えば略矩形のように長短がある場合、長い方である。円形の場合は、直径を指す。弾性樹脂層22が突起22Aを有することにより、転写工程において、段差に追従して加圧することができ、非常に優れた転写性を得ることができる。なお、本明細書において、弾性樹脂層22に突起22Aを有する転写材をスタンプ材と呼ぶ。
 [転写工程(B1)]
 図3は、第1の実施の形態に係る転写工程を説明するための図である。図3に示すように、転写工程(B1)では、基材21を基板31に押し付け、弾性樹脂層22に配列された接着フィルムの個片12Aを基板31に転写する。転写材を基板31に押し付け、転写材から基板31に接着フィルムの個片12Aを転写することにより、良好な転写性を得ることができる。特に、弾性樹脂層22に突起22Aを有するスタンプ材を用いることにより、段差に追従して加圧することができ、非常に優れた転写性を得ることができる。
 基板31は、特に限定されるものではないが、例えば、1画素を構成するサブピクセル単位で発光素子を配列する基板が挙げられる。発光素子を配列する基板は、基材上に第1導電型用回路パターンと、第2導電型用回路パターンとを備え、発光素子が1画素を構成するサブピクセル(副画素)単位で配置されるように、例えばp側の第1導電型電極及びn側の第2導電型電極に対応する位置にそれぞれ第1電極及び第2電極を有し、例えばマトリクス配線のデータ線、アドレス線などの回路パターンを形成し、1画素を構成する各サブピクセルに対応する発光素子をオンオフ可能とする。また、基板は、ガラス、PET(Polyethylene Terephthalate)などの透光性を有するものであってもよい。また、回路パターン、第1電極及び第2電極は、例えば、ITO(Indium-Tin-Oxide)、IZO(Indium-Zinc-Oxide)、ZnO(Zinc-Oxide)、IGZO(Indium-Gallium-Zinc-Oxide)などの透明導電膜であってもよい。
 基板31が発光素子を配列する基板である場合、転写工程(B1)では、接着フィルムの個片12Aを、1画素単位(例えばRGB1組みである1ピクセル)で配列させることができ、1画素を構成するサブピクセル(例えば任意のRGB)単位で配列させることもできる。これにより、高いPPI(Pixels Per Inch)の発光素子アレイから低いPPIの発光素子アレイまで対応することができる。複数の発光素子に対応するように個片12Aを設けてよく、個々の発光素子に対応するように個片12Aを設けてもよく、発光素子の電極毎に対応するように個片12Aを設けてもよい。また、個片12Aを基板31側の電極のみに個々に離間して設け、発光素子アレイであるマイクロLEDの電極が離間したそれぞれの個片12Aで接続されるようにしてもよい。
 また、転写工程(B1)では、接着フィルムの個片12Aを、1画素または複数画素単位で配列させることが好ましい。例えばRGBの場合、発光素子は、3画素を1組、もしくはRGBの冗長回路3画素を含む計6画素を1組として配列されるため、1組6画素に接着フィルムを転写してもよいし、1画素単位で転写してもよいし、さらには電極単位で配列してもよい。一方、生産性を上げるため、透明性を損なわない範囲、例えば1mm×1mmの範囲で、接着フィルムを転写してもよい。
 また、個片12Aが基板31に載置(設けられた)後の可視光の平均透過率は、好ましくは20%以上、より好ましくは35%以上、さらに好ましくは50%以上である。これにより、優れた光透過性や美観を有する表示装置を得ることができる。透明でない基板でない場合でも、素ガラスや評価用の透明基板に個片を貼り付け、これをリファレンス(Ref)として平均透過率を求めることができる。発光素子が設けられた可視光の平均透過率は、より低いものとなる。発光素子が実装されている場合、点灯していない状態で測定しているものとする。可視光の平均透過率は、例えば紫外可視分光光度計を用いて測定することができる。
 [実装工程(C1)]
 実装工程(C1)では、基板31に転写された接着フィルムの個片12A上に電子部品を実装する。電子部品としては、半導体チップ、LEDチップなどのチップ部品が挙げられ、特にマイクロサイズのLEDチップを好ましく用いることができる。
 LEDチップは、本体と、第1導電型電極と、第2導電型電極2とを備え、第1導電型電極と第2導電型電極とが、同一面側に配置された水平構造を有する所謂フリップチップ型のものを用いることができる。本体は、例えばn-GaNからなる第1導電型クラッド層と、例えばInAlGa1-x-yN層からなる活性層と、例えばp-GaNからなる第2導電型クラッド層とを備え、いわゆるダブルヘテロ構造を有する。第1導電型電極は、パッシベーション層により第1導電型クラッド層の一部に形成され、第2導電型電極は、第2導電型クラッド層の一部に形成される。第1導電型電極と第2導電型電極との間に電圧が印加されると、活性層にキャリアが集中し、再結合することにより発光が生じる。また、接着フィルムとして接着剤フィルム(NCF:Non Conductive Film)を用いる場合、第1導電型電極及び第2導電型電極は、バンプ形状とすることが好ましい。
 実装工程(C1)では、先ず、基板31の個片12A上に電子部品を搭載する。電子部品を基板31に搭載する方法としては、特に限定されるものではないが、電子部品が発光素子である場合、例えばレーザーリフトオフ法(LLO法)によりウエハ基板から基板31に発光素子を直接転写、配置する方法や、発光素子を予め密着させた転写基板を用いて転写基板から基板31に発光素子を転写、配置する方法などが挙げられる。
 次に、接着フィルムの個片12Aを硬化させ、基板31の所定位置に配列した電子部品を固定する。例えば、接着フィルムが熱硬化性バインダーを含む場合、電子部品を接着フィルムの個片12Aを介して熱圧着させる。電子部品を基板31に熱圧着する方法としては、公知の硬化性樹脂膜において用いられている熱圧着方法を適宜選択して使用することができる。熱圧着条件としては、例えば、温度150℃~260℃、圧力1MPa~60MPa、時間5秒~300秒である。熱硬化性バインダーが硬化することにより、硬化樹脂膜が形成される。
 [変形例]
 第1の実施の形態では、接着フィルム12の一部をレーザーアブレーションにより除去して透光性基材11上に接着フィルム12の個片12Aを配列することとしたが、個片の形成方法は、特に限定されるものではなく、例えば、接着フィルム12の一部をレーザー、切削などにより除去して形成する方法、印刷方式、インクジェット方式などにより形成する方法などを用いることができる。また、印刷方式、インクジェット方式などにより個片を形成する場合、透光性基材11として、PET(Polyethylene Terephthalate)、PC(Polycarbonate)、ポリイミドなどを用いることができる。
 また、例えば電子部品がLEDであり、LED実装後の不点灯LEDをレーザーで除去した場合、除去箇所には凹凸が存在することがあるが、弾性樹脂層22に電子部品の高さ以上の1つの突起を形成した転写材を用いることにより、除去箇所に接着フィルム12の個片12Aを確実に転写させることができる。
 このような接続構造体の製造方法は、発光素子が配列されて実装された接続構造体の所定位置の発光素子をレーザーで除去する除去工程と、発光素子の高さ以上の突起を弾性樹脂層に形成した転写材を用い、突起に接着フィルムの個片を貼り付け、レーザーで除去された所定位置に個片を転着させる転着工程と、所定位置に転着された接着フィルムの個片上に発光素子を実装する実装工程とを有する。発光素子の高さ以上の突起を弾性樹脂層に形成した転写材を用いることにより、除去箇所に凹凸が存在した場合でも、凹凸に追従して加圧することができ、非常に優れた転写性を得ることができる。
 また、第1の実施の形態では、電子部品を接着フィルムの個片を介して熱圧着させることを例示したが、例えば、接着フィルムが半田粒子を含む場合、電子部品を接着フィルム上に仮固定した後、例えば温度200~300℃、時間30sec以上の条件でリフローしてもよい。
 また、第1の実施の形態では、電子部品として水平構造のLEDチップを例示したが、第1導電型電極と第2導電型電極とがエピタキシャル層を介して相互に対向して配置された垂直構造のLEDチップを用いてもよい。この場合、第1導電型電極又は第2導電型電極のいずれか一方の電極と基板の電極とを接着フィルムの個片で接続させ、他方の電極を透明電極として、例えばマトリクス配線のデータ線又はアドレス線のパターンとして形成してもよい。
 <第2の実施の形態>
 以下、図4及び図5を参照して、第2の実施の形態に係る接続構造体の製造方法における配列工程(A2)、転写工程(B2)、及び実装工程(C2)について説明する。
 [配列工程(A2)]
 図4は、第2の実施の形態に係る配列工程を示す図である。図4に示すように、配列工程(A2)では、レーザー光に対して透光性を有する透光性基材41上に形成された接着フィルム42と、基材51上の弾性樹脂52とを対向させ、レーザーリフトオフ法により接着フィルム42の個片42Aを弾性樹脂52に転写し、配列させる。基材51及び弾性樹脂層52は、転写材を構成し、転写材は、透光性基材41から接着フィルム42の個片42Aを転写する。
 個片42Aの大きさ、個片42Aの配列、及び個片42A間の距離は、それぞれ第1の実施の形態における個片12Aの大きさ、個片12Aの配列、及び個片12A間の距離と同様であるため、ここでは説明を省略する。また、透光性基材41、接着フィルム42、基材51、及び弾性樹脂52も、それぞれ第1の実施の形態における透光性基材11、接着フィルム12、基材21、及び弾性樹脂22と同様であるため、ここでは説明を省略する。また、透光性基材41と接着フィルム42との間にリリース材を設けてもよい。
 図4に示すように、透光性基材41側からレーザー光を照射し、個片42Aを透光性基材41から剥離して弾性樹脂52に着弾させ、除去部42Bを透光性基材41に残存させる。接着フィルム42の個片42Aの転写には、例えば、前述と同様のリフト装置を用いることができる。
 ドナー基板である接着フィルム42が形成された透光性基材41をドナーステージに保持し、レセプター基板である弾性樹脂52が形成された基材51をレセプターステージに保持する。接着フィルム42と弾性樹脂52との間の距離は、例えば10~100μmである。レーザー装置の発振波長は、例えば193、248、308、351nmであり、これらの発振波長の中から接着フィルム42又はリリース材の材料の光吸収性に応じて好適に選択することができる。マスクは、透光性基材41と接着フィルム42との境界面における投影が、所望のレーザー光の配列となるように、所定ピッチで所定サイズの窓の配列が形成されたパターンを用いる。
 リフト装置を用いることにより、透光性基材41と接着フィルム42との境界面において、レーザー光を照射された接着フィルム42に衝撃波を発生させ、複数の個片42Aを透光性基材41から剥離して基材51に向けてリフトし、複数の個片42Aを弾性樹脂52を介して基材51の所定位置に着弾させることができる。これにより、接着フィルム42の個片42Aを高精度及び高効率に基材51に転写、配列させることができ、タクトタイムの短縮化を図ることができる。
 また、リフト装置を用いて転写した接着フィルムの個片42Aの反応率は、リフト装置を用いて個片を作製した場合と同様、好ましくは25%以下、より好ましくは20%以下、さらに好ましくは15%以下である。個片42Aの反応率が25%以下であることにより、実装工程(C2)において、電子部品を熱圧着させることが可能となる。反応率の測定は、前述と同様、例えばFT-IRを用いて求めることができる。
 [転写工程(B2)]
 図5は、第2の実施の形態に係る転写工程を説明するための図である。図5に示すように、転写工程(B2)では、基材51を基板61に押し付け、弾性樹脂層52に配列された接着フィルムの個片42Aを基板61に転写する。転写材を基板61に押し付け、転写材から基板61に接着フィルムの個片42Aを転写することにより、良好な転写性を得ることができる。特に、弾性樹脂層52に突起を有するスタンプ材を用いることにより、段差に追従して加圧することができ、非常に優れた転写性を得ることができる。基板61は、第1の実施の形態における基板31と同様であるため、ここでは説明を省略する。
 [実装工程(C2)]
 実装工程(C2)では、基板61に転写された接着フィルムの個片42A上に電子部品を実装する。実装工程(C2)は、第1の実施の形態における実装工程(C1)と同様であるため、ここでは説明を省略する。
 <3.個片化接着フィルム>
 本実施の形態に係る個片化接着フィルムは、基材上に接着フィルムの個片が配列されてなり、図1に示すように、レーザー光に対して透光性を有する透光性基材11上に形成された接着フィルム12の一部をレーザーアブレーションにより除去して透光性基材11上に接着フィルム12の個片12Aを配列したものが例示される。
 また、本実施の形態に係る個片化接着フィルムは、弾性樹脂層を介して基材上に接着フィルムの個片が配列されてなり、図2に示すように、透光性基材11上に配列された接着フィルム12の個片12Aを基材21上の弾性樹脂層22に転写したもの、又は図4に示すように、透光性基材41側からレーザー光を照射し、個片42Aを透光性基材41から剥離して弾性樹脂52に着弾させたものが例示される。
 個片12A,42Aの大きさ、個片12A,42Aの配列、及び個片12A,42A間の距離は、それぞれ第1の実施の形態における説明と同様であるため、ここでは説明を省略する。
 接着フィルムは、熱、光などのエネルギーにより硬化するものであれば、特に限定されるものではなく、例えば、熱硬化型バインダー、光硬化型バインダー、熱・光併用硬化型バインダーなどから適宜選択することができる。具体例として、膜形成樹脂と、熱硬化性樹脂と、硬化剤とを含有する熱硬化型バインダーを挙げて説明する。熱硬化型バインダーとしては、特に限定されるものではなく、例えば、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合型樹脂組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合型樹脂組成物、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂組成物などが挙げられる。なお、(メタ)アクリレート化合物とは、アクリルモノマー(オリゴマー)、及びメタクリルモノマー(オリゴマー)のいずれも含む意味である。
 これらの熱硬化型バインダーの中でも、熱硬化性樹脂が、エポキシ化合物を含み、硬化剤が、熱カチオン重合開始剤であることが好ましい。これにより、レーザー光により個片を形成する際の硬化反応を抑制することができ、熱圧着の際には熱により速硬化させることができる。以下では、具体例として、膜形成樹脂と、エポキシ化合物と、熱カチオン重合開始剤とを含む熱カチオン重合型樹脂組成物を例に挙げて説明する。
 膜形成樹脂としては、例えば平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、ブチラール樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリル樹脂、ポリイミド樹脂等の種々の樹脂が挙げられ、これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、膜形成状態、接続信頼性等の観点からブチラール樹脂を好ましく用いることができる。ブチラール樹脂の具体例としては、例えば積水化学工業株式会社製の商品名「KS-10」を挙げることができる。膜形成樹脂の含有量は、熱硬化型バインダー100質量部に対し、好ましくは20~70質量部、より好ましくは30~60質量部以下、さらに好ましくは45~55質量部である。
 エポキシ化合物は、分子内に1つ以上のエポキシ基を有するエポキシ化合物であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等であってもよく、ウレタン変性のエポキシ樹脂であっても構わない。これらの中でも、例えば、波長180nm~360nmに極大吸収波長を有する接着フィルムを構成する観点から、水素添加ビスフェノールA型グリシジルエーテルを好ましく用いることができる。水素添加ビスフェノールA型グリシジルエーテルの具体例としては、例えば三菱ケミカル社製の商品名「YX8000」を挙げることができる。エポキシ化合物の含有量は、熱硬化型バインダー100質量部に対し、好ましくは30~60質量部、より好ましくは35~55質量部以下、さらに好ましくは35~45質量部である。
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により、カチオン重合型化合物をカチオン重合させ得る酸を発生するものであり、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができる。これらの中でも、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。芳香族スルホニウム塩系の重合開始剤の具体例としては、例えば三新化学工業株式会社製の商品名「SI-60L」を挙げることができる。熱カチオン重合開始剤の含有量は、熱硬化型バインダー100質量部に対し、好ましくは1~20質量部、より好ましくは5~15質量部以下、さらに好ましくは8~12質量部である。
 また、熱硬化型バインダーに配合する他の添加物として、必要に応じて、ゴム成分、無機フィラー、シランカップリング剤、希釈用モノマー、充填剤、軟化剤、着色剤、難燃化剤、チキソトロピック剤などを配合してもよい。
 ゴム成分は、クッション性(衝撃吸収性)の高いエラストマーであれば特に限定されるものではなく、具体例として、例えば、アクリルゴム、シリコーンゴム、ブタジエンゴム、ポリウレタン樹脂(ポリウレタン系エラストマー)などを挙げることができる。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができる。無機フィラーは、単独でも2種類以上を併用してもよい。シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を用いることができる。
 接着フィルムのデュロメータA硬度は、20~40であり、好ましくは20~35、より好ましくは20~30である。デュロメータA硬度が高すぎる場合、接着フィルムが硬すぎて、チップ部品の変形、破壊などの不良が発生し易くなる傾向にあり、デュロメータA硬度が低すぎる場合、接着フィルムが柔らかすぎて、チップ部品のずれなどの不良が発生し易くなる傾向にある。接着フィルムのデュロメータA硬度は、JIS K 6253に準拠し、デュロメータAを用いてゴム硬度(日本工業規格JIS-A硬度)で測定することができる。
 接着フィルムの押し込み試験装置を用いた動的粘弾性試験の温度30℃、周波数200Hzにおける貯蔵弾性率は、好ましく60MPa以下、より好ましくは30MPa以下、さらに好ましくは10MPa以下である。温度30℃、周波数200Hzにおける貯蔵弾性率が高すぎる場合、レーザー照射で高速に弾き出されたチップ部品の衝撃を吸収できず、チップ部品の転写率が低下する傾向にある。温度30℃、周波数200Hzにおける貯蔵弾性率は、押し込み試験装置を用い、例えば、直径100μmのフラットパンチを用い、目標押し込み深さを1μmとし、周波数1~200Hzの範囲を掃引して測定することができる。
 また、硬化後の接着フィルムのJIS K7244に準拠した引張モードで測定された温度30℃における貯蔵弾性率は、100MPa以上であることが好ましく、2000MPa以上であることがさらに好ましい。温度30℃における貯蔵弾性率が低すぎる場合、良好な導通性が得られず、接続信頼性も低下する傾向にある。温度30℃における貯蔵弾性率は、JIS K7244に準拠し、粘弾性試験機(バイブロン)を用いた引張モードで、例えば、周波数11Hz、昇温速度3℃/minの測定条件で測定することができる。
 また、接着フィルムは、導電粒子をさらに含有する導電フィルムもしくは異方性導電フィルム(ACF:Anisotropic Conductive Film)であることが好ましい。導電粒子としては、公知の異方性導電フィルムにおいて使用されているものを適宜選択して使用することができる。例えば、ニッケル、銅、銀、金、パラジウム、半田などの金属粒子、ポリアミド、ポリベンゾグアナミン等の樹脂粒子の表面をニッケル、金などの金属で被覆した金属被覆樹脂粒子等を挙げることができる。これにより、チップ部品に半田バンプなどの接続部位が設けられていない場合でも、導通が可能となる。
 異方性導電フィルムは、レーザーによる転写性の観点から、導電粒子を面方向に配列された粒子整列フィルムであることが好ましい。配列としては、繰り返し規則性があれば好ましく、形状は特に限定されないが、例えば、正方格子、六方格子、斜方格子、長方格子等の格子配列を挙げることができる。導電粒子が面方向に配列されていることにより、電極への捕捉を安定化させ易くなり、導通性及び絶縁性を向上させることができる。
 また、異方性導電フィルムは、電極に対応する位置に導電粒子が偏在する偏在領域を有し、それ以外の位置に導電粒子が存在しない領域を有するように構成することもできる。偏在領域は、捕捉の観点から電極サイズの0.8倍以上、好ましくは1.0倍以上、導電粒子の削減から電極サイズの1.2倍以下、好ましくは1.5倍以下の範囲であることがこのましい。除去部分は、品質管理や検査用途などに流用できる。
 また、異方性導電フィルムの粒子面密度は、硬化膜と同様に、チップ部品の電極サイズに応じて適宜設計でき、粒子面密度の下限は、500個/mm以上、20000個/mm以上、40000個/mm以上、50000個/mm以上とすることができ、粒子面密度の上限は、1500000個/mm以下、1000000個/mm以下、500000個/mm以下、100000個/mm以下とすることができる。これにより、チップ部品の電極サイズが小さい場合でも、優れた導通性及び絶縁性を得ることができる。異方性導電フィルムの硬化膜の粒子面密度は、製造時にフィルム化した際の導電粒子の配列部分のものである。複数の個片から粒子個数密度を求める場合は、個片とスペースを含めた面積から個片間のスペースを除いた面積と粒子数とから粒子面密度を求めることができる。
 導電粒子の粒子径は、特に制限されないが、粒子径の下限は、1μm以上であることが好ましく、粒子径の上限は、例えば、接続構造体における導電粒子の捕捉効率の観点から、例えば50μm以下であることが好ましく、20μm以下であることがさらに好ましい。電極のサイズによっては3μm未満、好ましくは2.5μm未満であることが求められる場合もある。なお、導電粒子の粒子径は、画像型粒度分布計(一例として、FPIA-3000:マルバーン社製)により測定した値とすることができる。この個数は1000個以上、好ましくは2000個以上であることが好ましい。
 異方性導電フィルムの厚みの下限は、例えば導電粒子の粒子径の60%以上であってもよく、比較的小さい粒子径に対応するため90%以上であってもよいが、好ましくは導電粒子径の1.3倍以上もしくは3μm以上とすることができる。また、異方性導電フィルムの厚みの上限は、例えば20μm以下もしくは導電粒子の粒子径の3倍以下、好ましくは2倍以下とすることができる。また、異方性導電フィルムは、導電粒子を含有していない接着剤層や粘着剤層を積層してもよく、その層数や積層面は、対象や目的に合わせて適宜選択することができる。また、接着剤層や粘着剤層の絶縁性樹脂としては、異方性導電フィルムと同様のものを使用することができる。膜厚みは、公知のマイクロメータやデジタルシックネスゲージを用いて測定することができる。膜厚みは、例えば10箇所以上を測定し、平均して求めればよい。
 <4.実施例>
 以下、本技術を用いた実施例について説明する。なお、本技術は、これらの実施例に限定されるものではない。
 [粒子整列フィルムの作製]
 ポリビニルブチラール樹脂(商品名:KS-10、積水化学工業株式会社製)50wt%、水素添加ビスフェノールA型グリシジルエーテル(商品名:YX8000、三菱ケミカル株式会社製)40wt%、及びカチオン重合開始剤(商品名:SI-60L、三新化学工業株式会社製)10wt%となるように混合した。
 混合した樹脂をシリコーンで剥離処理を行った厚み0.5mmのガラス板に塗布・乾燥(60℃-3min)させ、厚み4μmの樹脂フィルムを得た。樹脂フィルムと、導電粒子(平均粒子径2.2μm、積水化学工業株式会社製)を六方格子パターンで配列させた基板とを貼り合わせ、導電粒子を樹脂フィルムに転写し、厚み4.0μm、粒子面密度58000個/mmの粒子整列フィルムを得た。導電粒子の配列と樹脂フィルムへの転写は、特許第6187665号の記載に準じて行った。
 [個片化粒子整列フィルムの作製]
 作製したガラス板上の粒子整列フィルムの一部をレーザーアブレーションにより除去し、ガラス板上に厚み4.0μm、15μm×30μmの粒子整列フィルムの個片を中心点間距離が200μmとなるように碁盤目状に配列させた。レーザー照射条件は、下記の通りとした。
 レーザー種類:YAG Laser
 レーザー波長:266nm
 レーザーエネルギー強度:10%
 レーザー照射回数:1回
 [粒子整列フィルムの剥離力測定]
(1)シリコーンで剥離処理されたガラス板(粒子整列フィルムの支持基材)に対する粒子整列フィルムの剥離力を測定した。粒子整列フィルム側に幅1mmのPP(Poly Propylene)テープを貼り、JIS K 6854-1:1999(ISO 8510-1:1990)に準じて、引張試験機にて90°剥離試験を実施した。その結果、90°剥離試験における剥離力は、20mN/5cmであった。
(2)シリコーン製の転写材(スタンプ材の基材)に対する粒子整列フィルムの剥離力を測定した。転写材に粒子整列フィルムを、温度50℃-圧力1Mpaの条件にて貼り合わせ、粒子整列フィルム側に幅1mmのPP(Poly Propylene)テープを貼り、JIS K 6854-1:1999(ISO 8510-1:1990)に準じて、引張試験機にて90°剥離試験を実施した。その結果、90°剥離試験における剥離力は、100mN/5cmであった。
(3)被着体A(厚み0.5mm、平坦石英ガラス板)に対する粒子整列フィルムの剥離力を測定した。被着体Aに粒子整列フィルムを、温度50℃-圧力1Mpaの条件にて貼り合わせ、粒子整列フィルム側に幅1mmのPP(Poly Propylene)テープを貼り、JIS K 6854-1:1999(ISO 8510-1:1990)に準じて、引張試験機にて90°剥離試験を実施した。その結果、90°剥離試験における剥離力は、150mN/5cm以上であった。
(4)被着体B(厚み0.5mm、200μmP、100μm幅Alパターン、パターン厚み1μm)に対する粒子整列フィルムの剥離力を測定した。被着体Bに粒子整列フィルムを、温度50℃-圧力1Mpaの条件にて貼り合わせ、粒子整列フィルム側に幅1mmのPP(Poly Propylene)テープを貼り、JIS K 6854-1:1999(ISO 8510-1:1990)に準じて、引張試験機にて90°剥離試験を実施した。その結果、90°剥離試験における剥離力は、170mN/5cm以上であった。
 [粒子整列フィルムの個片の転写性の評価]
 厚み4.0μm、15μm×30μmの粒子整列フィルムの個片を被着体A又は被着体Bに転写させた。個片は、中心点間距離が200μmとなるように50×50pcsで碁盤目状に配列させた。
 図6は、被着体Bへの粒子整列フィルムの個片の配置を示す図である。図6に示すように、被着体B71に対しては、粒子整列フィルムの個片81Aの半分の幅7.5μmがAlパターン72に重畳するように配置し、段差に対する評価を行った。
 そして、被着体A又は被着体Bに転写された粒子整列フィルムの個片の数をカウントし、下記指標により評価を行った。評価がCの場合(転写率が99。0%未満の場合)、生産性が低下する可能性がある。
A:転写率が99.9%以上
B:転写率が99.0%以上99.9%未満
C:転写率が99.0%未満
 [実施例1]
 突起を有するスタンプ材を用いて粒子整列フィルムの個片を転写した。スタンプ材は、支持基材上にシリコーン層を有し、シリコーン層に突起が形成されて構成される。スタンプ材の突起は、個片の配列と同様に、中心点間距離が200μmとなるように50×50pcsで碁盤目状に整列しており、突起の先端形状は、15μm×30μmの長方形であり、突起の高さは20μmである。
 スタンプ材の突起とガラス板上に配列された粒子整列フィルムの個片とをアライメントし、温度50℃-圧力1Mpaの条件にてスタンプ材の突起を粒子整列フィルムの個片に押し付けて、粒子整列フィルムの個片をスタンプ材側に転写させた。
 次に、スタンプ材側に転写させた粒子整列フィルムの個片を被着体A又は被着体Bに温度50℃-圧力1Mpaの条件にて押し付け、被着体A又は被着体Bに粒子整列フィルムの個片を転写させた。表1に、粒子整列フィルムの個片の転写性の評価結果を示す。
 [実施例2]
 粒子整列フィルムとシリコーン転写材とを対向させ、レーザーリフトオフ法によりシリコーン転写材上に厚み4.0μm、15μm×30μmの粒子整列フィルムの個片を中心点間距離が200μmとなるように碁盤目状に配列させた。シリコーン転写材は、支持基材上にシリコーン層を有し、シリコーン層の表面は平坦である。また、レーザー照射条件は、下記の通りとした。
 レーザー種類:YAG Laser
 レーザー波長:266nm
 レーザーエネルギー強度:10%
 レーザー照射回数:1回
 次に、シリコーン転写材側に転写させた粒子整列フィルムの個片を被着体A又は被着体Bに温度50℃-圧力1Mpaの条件にて押し付け、被着体A又は被着体Bに粒子整列フィルムの個片を転写させた。表1に、粒子整列フィルムの個片の転写性の評価結果を示す。
 [参考例1]
 粒子整列フィルムと被着体A又は被着体Bとを対向させ、レーザーリフトオフ法により被着体A又は被着体B上に厚み4.0μm、15μm×30μmの粒子整列フィルムの個片を中心点間距離が200μmとなるように碁盤目状に配列させた。また、レーザー照射条件は、実施例2と同様とした。表1に、粒子整列フィルムの個片の転写性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、参考例1は、レーザーリフトオフ法により粒子整列フィルムの個片を基板側に着弾させて転写しているため、被着体Bを用いたように基板上に配線、配線表面の絶縁膜などの段差を含む凹凸が存在する場合、粒子整列フィルムの個片の転写率が低下し、生産性が低下する虞があることが分かった。
 一方、実施例1、2は、スタンプ材、転写材のシリコーン層を押し付けて粒子整列フィルムの個片を貼り付けているため、被着体Bを用いたように配線、配線表面の絶縁膜などの段差を含む凹凸が存在する基材に対しても粒子整列フィルムの個片の良好な転写性が得られ、生産性を向上させることが可能であることが分かった。特に、実施例1は、レーザーリフトオフ法により粒子整列フィルムの個片を飛ばすことがなく、スタンプ材のシリコーン層の突起を押し付けて粒子整列フィルムの個片を貼り付けているため、段差に追従して加圧することがき、優れた転写性を得ることができた。
 11 透光性基材、12 接着フィルム、12A 個片、12B 個片、21 基材、22 弾性樹脂層、22 突起、31 基板、41 透光性基材、42 接着フィルム、42A 個片、51 基材、52 弾性樹脂層、61 基板、71 被着体B、72 Alパターン、81A 個片

Claims (13)

  1.  弾性樹脂層を介して基材上に接着フィルムの個片を配列させる配列工程と、
     前記基材を基板に押し付け、前記弾性樹脂層に配列された接着フィルムの個片を前記基板に転写する転写工程と、
     前記基板に転写された接着フィルムの個片上に電子部品を実装する実装工程とを有し、
     前記個片の大きさが、200μm以下であり、
     前記弾性樹脂層に対する前記接着フィルムの剥離力が、前記基板に対する前記接着フィルムの剥離力よりも小さい接続構造体の製造方法。
  2.  前記配列工程では、レーザー光に対して透光性を有する透光性基材上に形成された接着フィルムの一部をレーザーアブレーションにより除去して前記透光性基材上に接着フィルムの個片を配列し、前記透光性基材上に配列された接着フィルムの個片を前記弾性樹脂層に転写する請求項1記載の接続構造体の製造方法。
  3.  前記配列工程では、レーザー光に対して透光性を有する透光性基材上に形成された接着フィルムと、前記基材上の前記弾性樹脂とを対向させ、レーザーリフトオフ法により前記接着フィルムの個片を前記弾性樹脂に転写し、配列させる請求項1記載の接続構造体の製造方法。
  4.  前記接着フィルムの個片の反応率が、25%以下である請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。
  5.  前記弾性樹脂層に対する前記接着フィルムの剥離力が、JIS K 6854-1:1999(ISO 8510-1:1990)に準じた90°剥離試験において50~500mN/5cmである請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。
  6.  前記弾性樹脂層が、前記個片の配列で突起を有する請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。
  7.  前記突起の高さが、前記基板の配線高さ以上である請求項6記載の接続構造体の製造方法。
  8.  前記接着フィルムが、導電フィルムもしくは異方性導電フィルムである請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。
  9.  前記接着フィルムが、導電粒子が面方向に配列された粒子整列フィルムである請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。
  10.  前記弾性樹脂層が、シリコーン樹脂層である請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。
  11.  前記電子部品が、発光素子である請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。
  12.  弾性樹脂層を介して基材上に接着フィルムの個片を配列させる配列工程と、
     前記基材を基板に押し付け、前記弾性樹脂層に配列された接着フィルムの個片を前記基板に転写する転写工程とを有し、
     前記個片の大きさが、200μm以下であり、
     前記弾性樹脂層に対する前記接着フィルムの剥離力が、前記基板に対する前記接着フィルムの剥離力よりも小さい個片化接着フィルムの転写方法。
  13.  発光素子が配列されて実装された接続構造体の所定位置の発光素子をレーザーで除去する除去工程と、
     前記発光素子の高さ以上の突起を弾性樹脂層に形成した転写材を用い、前記突起に接着フィルムの個片を貼り付け、前記レーザーで除去された前記所定位置に前記個片を転着させる転着工程と、
     前記所定位置に転着された接着フィルムの個片上に発光素子を実装する実装工程と
     を有する接続構造体の製造方法。
     
PCT/JP2023/003911 2022-02-18 2023-02-07 接続構造体の製造方法、及び個片化接着フィルムの転写方法 WO2023157709A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022023845 2022-02-18
JP2022-023845 2022-02-18
JP2022-155323 2022-09-28
JP2022155323A JP2023121118A (ja) 2022-02-18 2022-09-28 接続構造体の製造方法、及び個片化接着フィルムの転写方法

Publications (1)

Publication Number Publication Date
WO2023157709A1 true WO2023157709A1 (ja) 2023-08-24

Family

ID=87578582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003911 WO2023157709A1 (ja) 2022-02-18 2023-02-07 接続構造体の製造方法、及び個片化接着フィルムの転写方法

Country Status (2)

Country Link
TW (1) TW202343603A (ja)
WO (1) WO2023157709A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111275A (ja) * 1993-10-14 1995-04-25 Fujitsu Ltd 樹脂ダイボンディング方法
JPH1079573A (ja) * 1996-09-05 1998-03-24 Matsushita Electric Ind Co Ltd フリップチップボンディング方法
JPH11139005A (ja) * 1997-11-12 1999-05-25 Kawamura Inst Of Chem Res レーザー画像記録媒体、レーザー画像記録方法及びレーザー画像記録媒体形成用塗料
JP2002217248A (ja) * 2001-01-19 2002-08-02 Toppan Printing Co Ltd パターン形成用転写版及びそれを用いた半導体装置用基板の製造方法
JP2015534285A (ja) * 2012-11-09 2015-11-26 ネーデルランツ オルガニサティー フォール トゥーゲパスト‐ナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー ベア・チップ・ダイをボンディングする方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111275A (ja) * 1993-10-14 1995-04-25 Fujitsu Ltd 樹脂ダイボンディング方法
JPH1079573A (ja) * 1996-09-05 1998-03-24 Matsushita Electric Ind Co Ltd フリップチップボンディング方法
JPH11139005A (ja) * 1997-11-12 1999-05-25 Kawamura Inst Of Chem Res レーザー画像記録媒体、レーザー画像記録方法及びレーザー画像記録媒体形成用塗料
JP2002217248A (ja) * 2001-01-19 2002-08-02 Toppan Printing Co Ltd パターン形成用転写版及びそれを用いた半導体装置用基板の製造方法
JP2015534285A (ja) * 2012-11-09 2015-11-26 ネーデルランツ オルガニサティー フォール トゥーゲパスト‐ナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー ベア・チップ・ダイをボンディングする方法

Also Published As

Publication number Publication date
TW202343603A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
CN112713142B (zh) 发光显示单元及显示装置
US20120142124A1 (en) Method of applying phosphor to semiconductor light-emitting device
TWI786126B (zh) 發光裝置、其製造方法及顯示模組
US11063026B2 (en) Display module and method of manufacturing the same
US20240072230A1 (en) Electronic device
KR20140024935A (ko) 접속 방법, 접속체의 제조 방법, 접속체
WO2023157709A1 (ja) 接続構造体の製造方法、及び個片化接着フィルムの転写方法
JP2022151816A (ja) 接続フィルム、及び接続構造体の製造方法
JP2023121118A (ja) 接続構造体の製造方法、及び個片化接着フィルムの転写方法
WO2022202944A1 (ja) 接続フィルム、及び接続構造体の製造方法
WO2022202945A1 (ja) 表示装置の製造方法
TW202312513A (zh) 用於轉移發光二極體的裝置及方法
WO2024057754A1 (ja) マスク及びマスクの製造方法、並びに表示装置の製造方法及び表示装置
WO2022239670A1 (ja) 接続構造体の製造方法、及び接続フィルム
JP2022151818A (ja) 表示装置の製造方法
WO2024024192A1 (ja) 発光装置の製造方法及び黒色転写フィルム
WO2024057755A1 (ja) 個片フィルムの製造方法及び個片フィルム、並びに表示装置の製造方法及び表示装置
TW202416524A (zh) 遮罩及遮罩之製造方法、以及顯示裝置之製造方法及顯示裝置
WO2023190055A1 (ja) 接続構造体
JP7222149B1 (ja) 表示装置の製造方法
WO2024070281A1 (ja) 表示装置及び表示装置の製造方法、並びに接続フィルム及び接続フィルムの製造方法
JP2023152865A (ja) 接続構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756236

Country of ref document: EP

Kind code of ref document: A1