WO2023157397A1 - 有価金属の製造方法 - Google Patents

有価金属の製造方法 Download PDF

Info

Publication number
WO2023157397A1
WO2023157397A1 PCT/JP2022/041660 JP2022041660W WO2023157397A1 WO 2023157397 A1 WO2023157397 A1 WO 2023157397A1 JP 2022041660 W JP2022041660 W JP 2022041660W WO 2023157397 A1 WO2023157397 A1 WO 2023157397A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
melting
valuable metals
furnace
raw material
Prior art date
Application number
PCT/JP2022/041660
Other languages
English (en)
French (fr)
Inventor
雄 山下
和也 前場
俊彦 永倉
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022131732A external-priority patent/JP2023121702A/ja
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2023157397A1 publication Critical patent/WO2023157397A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for producing valuable metals from raw materials such as waste lithium ion batteries.
  • lithium-ion batteries have become popular as lightweight, high-output secondary batteries.
  • a well-known lithium-ion battery has a structure in which a negative electrode material, a positive electrode material, a separator, and an electrolytic solution are enclosed in an outer can.
  • the outer can is made of metal such as aluminum (Al) or iron (Fe).
  • the negative electrode material is composed of a negative electrode active material (graphite, etc.) adhered to a negative electrode current collector (copper foil, etc.).
  • the positive electrode material is composed of a positive electrode active material (lithium nickelate, lithium cobaltate, etc.) adhered to a positive electrode current collector (aluminum foil, etc.).
  • the separator is made of a polypropylene porous resin film or the like. Electrolytes include electrolytes such as lithium hexafluorophosphate (LiPF 6 ).
  • lithium-ion batteries One of the major uses of lithium-ion batteries is hybrid and electric vehicles. Therefore, it is expected that a large amount of lithium-ion batteries installed in automobiles will be discarded in the future in accordance with the life cycle of automobiles. Also, there are lithium ion batteries that are discarded as defective during manufacturing. It is desired to reuse such used batteries and defective batteries produced during manufacturing (hereinafter referred to as "waste lithium ion batteries”) as resources.
  • Patent Document 1 discloses a method for recovering valuable metals containing nickel and cobalt from waste lithium ion batteries containing nickel and cobalt. Specifically, a melting step of melting a waste battery to obtain a melt, an oxidation step performed on the melt or on a waste battery before the melting step to oxidize the waste battery, and and a slag separation process for separating slag and recovering alloys containing valuable metals. In the melting process, calcium oxide is added to lower the liquidus temperature of the slag to recover valuable metals.
  • Patent Document 1 still has problems. For example, in the method disclosed in Patent Document 1, if the slag liquidus temperature drops too much due to the addition of flux, the coating is not formed on the refractory surface of the furnace wall of the treatment furnace, and the refractory is eroded. There is a problem. If such erosion occurs, there is a risk that the material to be treated will leak out of the furnace, which is a safety hazard. In addition, the cost of maintaining the refractories on the furnace walls will be enormous, making it difficult to recover valuable metals at low cost. can't
  • the present invention has been proposed in view of such circumstances, and an object thereof is to provide a method for safely and efficiently recovering valuable metals from raw materials including waste lithium-ion batteries and the like. do.
  • a melting furnace provided with a means for cooling the furnace wall from the outside is used, and while using the means for cooling the furnace wall from the outside, Ca is deposited on the surface of the furnace wall.
  • a first aspect of the present invention is a method for producing valuable metals containing copper (Cu), nickel (Ni), and cobalt (Co) from raw materials containing the valuable metals, the method comprising at least lithium (Li), aluminum (Al), and a preparation step of preparing a raw material containing the valuable metal, and the raw material is reduced using a melting furnace provided with a cooling means for cooling the furnace wall from the outside.
  • a flux containing calcium (Ca) is added to the raw material in either one or both of the step and the reduction melting step, and in the reduction melting step, the furnace wall of the melting furnace is cooled by the cooling means.
  • a solidified slag layer having a Ca/Al value smaller than the Ca/Al value of the slag, or a solidified slag layer containing 15% by mass or more of Al and 3% by mass or more of Li A method for producing valuable metals by forming a slag layer.
  • a second aspect of the present invention is the method for producing a valuable metal according to the first aspect, wherein the solidified slag layer contains at least LiAlO 2 .
  • the reduction melting treatment is performed at a metal heating temperature of 1300° C. or higher and a slag heating temperature of 1400° C. or higher and 1600° C. or lower. It is a method for producing valuable metals.
  • a fourth aspect of the present invention is a method for producing a valuable metal according to any one of the first to third aspects, wherein the raw material includes waste lithium ion batteries.
  • valuable metals can be recovered safely and efficiently from raw materials including waste lithium ion batteries.
  • FIG. 2 is a phase diagram of Al 2 O 3 —Li 2 O—CaO ternary system slag. 1 is a process diagram showing an example of the flow of a method for recovering valuable metals from waste lithium ion batteries.
  • FIG. 1 is a process diagram showing an example of the flow of a method for recovering valuable metals from waste lithium ion batteries.
  • this embodiment A specific embodiment of the present invention (hereinafter referred to as "this embodiment") will be described below. It should be noted that the present invention is not limited to the following embodiments, and various modifications are possible without changing the gist of the present invention.
  • the method of producing valuable metals according to the present embodiment is a method of separating and recovering valuable metals from raw materials containing at least lithium (Li), aluminum (Al), and valuable metals. Therefore, it can also be called a recovery method for valuable metals.
  • the method according to the present embodiment is mainly a method by a pyrometallurgical process, but may be composed of a pyrometallurgical process and a hydrometallurgical process.
  • the method according to the present embodiment includes the following steps; a step of preparing raw materials containing lithium (Li), aluminum (Al), and valuable metals (preparing step); A process of obtaining a reduced product (melt) containing an alloy containing valuable metals and slag by performing a reducing melting process using a melting furnace equipped with cooling means for cooling the furnace wall from the outside (reducing melting process) ) and a step of separating slag from the obtained reduced product to recover the alloy (slag separation step).
  • the valuable metals constituting the alloy to be recovered are copper (Cu), nickel (Ni), cobalt (Co), and combinations thereof, and are selected from the group consisting of copper, nickel, cobalt, and combinations thereof. Contains at least one metal or alloy.
  • a flux containing calcium (Ca) is added to the raw material in either or both of the preparation process and the reduction melting process.
  • the slag produced by the treatment in the reduction melting process is ternary system slag ( Al 2 O 3 —Li 2 O—CaO ternary slag).
  • the produced alloy includes a ternary system alloy (Cu--Ni--Co ternary system alloy) consisting of copper (Cu), nickel (Ni), and cobalt (Co).
  • a Ca/Al value is formed on the surface inside the melting furnace.
  • a solidified slag layer having a Ca/Al value smaller than that of the generated slag (molten slag) is formed.
  • a solidified slag layer containing 15 mass % or more of aluminum (Al) and 3 mass % or more of lithium (Li) is formed on the surface in the melting furnace.
  • raw materials to be processed are prepared.
  • the raw material is an object to be processed to recover valuable metals, and as described above, contains lithium (Li) and aluminum (Al), and also contains copper (Cu), nickel (Ni), and cobalt (Co).
  • Valuable metals consisting of the group consisting of The raw material may contain these components (Li, Al, Cu, Ni, Co) in the form of metals or in the form of compounds such as oxides.
  • the raw material may contain an inorganic component or an organic component other than these components.
  • the target is not particularly limited, and examples include waste lithium-ion batteries, dielectric materials (capacitors), and magnetic materials.
  • the form is not limited as long as it is suitable for treatment in the reduction melting process described later.
  • the raw material may be processed such as pulverization to obtain a suitable form.
  • the raw material may be subjected to a treatment such as heat treatment or separation treatment to remove unnecessary components such as moisture and organic matter.
  • a flux containing calcium (Ca) can be added to the raw material.
  • the flux to be added will be described later in detail.
  • flux is added in one or both of the preparation process and the reduction melting process.
  • the reduction melting process is a process in which the raw material is heated in a melting furnace to be reduced and melted to form a reduced product.
  • the purpose of this treatment is to reduce and melt the valuable metals (Cu, Ni, Co) while reducing and melting the low value-added metals (Al, etc.) contained in the raw materials to recover them as an alloy. That is.
  • the alloy is obtained in a molten state.
  • the oxidizing roasting treatment described later is performed prior to the reducing melting treatment, the obtained oxidizing roasting product is put into a melting furnace and heated to reduce and melt.
  • Carbon and/or carbon monoxide is preferably used as the reducing agent.
  • Carbon has the ability to easily reduce valuable metals (Cu, Ni, Co) to be recovered.
  • 1 mol of carbon can reduce 2 mol of valuable metal oxides (copper oxide, nickel oxide, etc.).
  • reduction methods using carbon or carbon monoxide are extremely safe compared to methods using metal reducing agents (for example, thermite reaction method using aluminum).
  • Coal or coke can also be used if there is no risk of impurity contamination.
  • the alloy produced by reduction melting contains valuable metals, as described above. Therefore, it is possible to separate the component (alloy) containing the valuable metal from the other components in the reduced product. This is because metals with low added value (such as Al) have high affinity for oxygen, whereas valuable metals have low affinity for oxygen.
  • metals with low added value such as Al
  • Al aluminum
  • iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu) are commonly Generally, they are oxidized in the order of Al>Li>C>Mn>P>Fe>Co>Ni>Cu. That is, Al is most easily oxidized and Cu is least oxidizable.
  • metals with low added value such as Al
  • valuable metals Cu, Ni, Co
  • metals with low added value and valuable metals can be efficiently separated into slag and alloys.
  • a flux containing calcium (Ca) can be added to the raw material during the reduction melting treatment.
  • flux is added in one or both of the preparation step and the reduction melting step.
  • the flux is mainly composed of calcium (Ca), and examples thereof include calcium oxide (CaO) and calcium carbonate (CaCO 3 ).
  • the flux may not be added.
  • the melting furnace used for reduction melting treatment is equipped with a means (mechanism) for cooling the furnace wall from the outside by water cooling or the like.
  • a means for cooling the furnace wall from the outside by water cooling or the like.
  • slag melting A solidified slag layer with a Ca/Al value smaller than that of the slag
  • a solidified slag layer containing 15% by mass or more of Al and 3% by mass or more of Li is formed on the inner surface of the melting furnace while cooling the furnace wall of the melting furnace by the cooling means.
  • the solidified slag layer may have any one of the compositions described above, but may have both compositions.
  • erosion of the refractory material constituting the furnace wall of the melting furnace can be suppressed in the reduction melting process, and the process can be performed with high safety, and the valuable metal can be recovered at a high recovery rate.
  • the surface inside the melting furnace on which the solidified slag layer is formed is, for example, the surface of the refractory inside the furnace.
  • the surface inside the melting furnace that is, the surface of the cooling means, for example, a copper block provided with a pipe through which cooling water passes, or a shower provided outside
  • a solidified slag layer can form on the surface of the cooling means, such as an iron shell.
  • FIG. 1 is a phase diagram of Al 2 O 3 —Li 2 O—CaO ternary system slag, and the dashed line in the figure indicates the liquidus line calculated by thermodynamic calculation software (FactSage).
  • the lower the Ca/Al value that is, the lower the Ca content and the higher the Al content, the higher the melting point.
  • the solidified slag layer in which the Ca/Al value is smaller than the Ca/Al value of the generated slag has a higher melting point than the generated slag.
  • a solidified slag layer with a Ca/Al value of 0.45 or less has a higher melting point than the generated slag and can easily suppress erosion of the furnace wall refractory.
  • the slag containing Li and Al when the slag containing Li and Al is cooled, it first deposits a composite oxide containing Li and Al, and the melting point of this composite oxide is very high. Therefore, in the reduction melting treatment, the above relationship, that is, while the Al 2 O 3 —Li 2 O — CaO ternary system slag is generated, the treatment is performed while using the cooling means, so that the surface in the furnace is To efficiently form a solidified slag layer in which the Ca/Al value is smaller than the Ca/Al value of the slag, or a solidified slag layer containing 15% by mass or more of Al and 3% by mass or more of Li. ing.
  • the solidified slag layer to be formed preferably contains at least LiAlO 2 . That is, the reductive melting treatment is performed so as to include LiAlO 2 which has a high melting point (1753° C.) and precipitates first among the composite oxides containing Li and Al.
  • the value of Ca/Al is preferably 0.45 or less, so that LiAlO 2 having a high melting point can be generated more effectively.
  • the composition of the precipitated slag component (component of the solidified slag layer), either Al or Li contained in the slag becomes LiAlO 2 , forming a slag coating layer with a high melting point.
  • the melting point of the alloy composed of Cu, Ni, and Co to be obtained is about 1300° C. to 1400° C., for example, in order to operate so that the metal heating temperature is 1400° C. to 1500° C., That is, in order to apply heat from the slag to the metal, it is necessary to set the slag heating temperature to 1500°C to 1600°C.
  • the melting point of the slag coating layer is 1753° C., the erosion of the furnace wall refractory can be easily suppressed by forming this on the furnace wall.
  • the amount of slag components can be easily controlled by adjusting the composition of the raw material and the amount of flux added to the raw material.
  • a flux containing calcium (Ca) to the processed material and controlling the amount added.
  • calcium-containing fluxes include, for example, calcium oxide (CaO) and calcium carbonate (CaCO 3 ).
  • the amount of lithium (Li) and aluminum (Al) in the slag can be adjusted by controlling the composition of the raw material in the preparation process.
  • the heating temperature is preferably 1400°C or higher and 1600°C or lower. Moreover, it is more preferable to set the slag heating temperature to 1500° C. or higher and 1600° C. or lower. If the slag heating temperature exceeds 1600° C., heat energy is wasted, and refractory materials such as crucibles constituting the melting furnace are rapidly consumed, which may reduce productivity. On the other hand, if the slag heating temperature is less than 1400° C., the separability between the slag and the alloy produced may deteriorate, and the recovery rate of valuable metals may decrease.
  • the metal heating temperature of the metal layer located below the slag layer becomes 1300 ° C. or higher, and the temperature at which the metal can be sufficiently melted can be maintained. can be done.
  • the composition of the slag component it is more preferable that the value represented by Li 2 O/(Li 2 O+Al 2 O 3 ) is 5% by mass or more and 44% by mass or less.
  • the slag composition has such a relationship, LiAlO 2 with a high melting point is easily generated, and a high melting point slag coating layer can be formed more effectively.
  • the primary crystals of LiAlO 2 begin to precipitate when the slag heating temperature is 1400° C. or higher.
  • the oxidizing roasting treatment (oxidizing roasting process) is performed prior to the reducing melting treatment, it is not necessary to perform the oxidizing treatment in the reducing melting treatment. However, if the oxidation in the oxidizing roasting treatment is insufficient, or if the purpose is to further adjust the degree of oxidation, additional oxidation treatment may be performed in the reduction melting treatment or after the reduction melting treatment. good. By performing the additional oxidation treatment, it becomes possible to more strictly adjust the degree of oxidation.
  • An example of a method for performing an additional oxidation treatment is to blow an oxidizing agent into the melt produced by the reduction melting treatment.
  • the oxidation treatment is performed by inserting a metal tube (lance) into the melt produced by the reduction melting treatment and blowing in an oxidant by bubbling.
  • an oxygen-containing gas such as air, pure oxygen, or oxygen-enriched gas can be used as the oxidant.
  • harmful substances such as dust and exhaust gas may be generated, but the harmful substances can be rendered harmless by performing known exhaust gas treatment and other treatments.
  • a step of oxidizing and roasting the raw material to obtain an oxidized roasted product can be further provided, if necessary, prior to the reduction melting treatment.
  • Oxidative roasting treatment is a treatment to oxidize and roast raw materials to produce oxidized roasted products, and even if carbon is contained in the raw materials, the carbon is oxidized and removed, and the reduction melting treatment is performed. It makes it possible to promote alloy integration of valuable metals. Specifically, in the reduction melting process, the valuable metal is reduced to become locally molten fine particles. It may become an obstacle, hinder the aggregation and integration of molten fine particles and the resulting separation of metal (alloy) and slag, and reduce the recovery rate of valuable metals.
  • the degree of oxidation can be adjusted as follows. That is, as described above, aluminum (Al), lithium (Li), carbon (C), manganese (Mn), phosphorus (P), iron (Fe), cobalt (Co), nickel (Ni), and copper ( Cu) is generally oxidized in the order of Al>Li>C>Mn>P>Fe>Co>Ni>Cu.
  • the oxidative roasting process proceeds until all of the aluminum (Al) is oxidized. Although the treatment may be accelerated until some of the iron (Fe) is oxidized, it is preferable to minimize the oxidation of the cobalt (Co) so that it is not recovered as slag. .
  • oxidizing agent In order to adjust the degree of oxidation in the oxidative roasting treatment, it is preferable to introduce an appropriate amount of oxidizing agent.
  • Lithium ion batteries contain metals such as aluminum and iron as exterior materials.
  • aluminum foil and carbon materials are included as positive electrode materials and negative electrode materials.
  • plastic is used as the outer package. Since all of these are materials that act as reducing agents, the degree of oxidation can be adjusted within an appropriate range by introducing an oxidizing agent.
  • the oxidizing agent is not particularly limited as long as it can oxidize carbon and low-value-added metals (such as Al). Gases containing oxygen, such as air, pure oxygen, and oxygen-enriched gas, which are easy to handle, can be used. preferable.
  • the amount of oxidizing agent to be introduced is about 1.2 times (for example, about 1.15 to 1.25 times) the amount (chemical equivalent) required for oxidizing each substance to be oxidized and roasted. .
  • the heating temperature for the oxidative roasting treatment is preferably 700°C or higher and 1100°C or lower, more preferably 800°C or higher and 1000°C or lower.
  • the heating temperature for the oxidative roasting treatment is preferably 700°C or higher and 1100°C or lower, more preferably 800°C or higher and 1000°C or lower.
  • the oxidative roasting treatment can be performed using a known roasting furnace. Further, it is preferable to use a furnace (preliminary furnace) different from the melting furnace used in the reduction melting treatment, and to carry out the treatment in the preliminary furnace.
  • a furnace preliminary furnace
  • any type of furnace can be used as long as it is possible to supply an oxidizing agent (such as oxygen) while roasting the pulverized product and carry out the treatment inside it. Examples include conventionally known rotary kilns and tunnel kilns (Haas furnaces).
  • the sulfurization step of sulfurizing the obtained alloy, and the pulverization step of pulverizing the mixture of the sulfide and the alloy obtained in the sulfurization step may be provided.
  • a hydrometallurgical process may be performed on the valuable metal alloys obtained through such a pyrometallurgical process.
  • impurity components can be removed, valuable metals (Cu, Ni, Co) can be separated and refined, and each of them can be recovered.
  • treatments in the hydrometallurgical process include known techniques such as neutralization treatment and solvent extraction treatment.
  • the slag heating temperature is preferably 1400° C. or higher and 1600° C. or lower, more preferably 1500° C. or higher and 1600° C. or lower, and subjected to reduction melting treatment.
  • a solidified layer of slag (slag coating layer) can be effectively formed on the surface inside the furnace, and erosion of the refractory constituting the furnace wall of the melting furnace can be suppressed. , can be processed with high safety. Also, valuable metals can be stably recovered at a high recovery rate under highly safe treatment.
  • the raw materials to be processed include waste lithium-ion batteries.
  • Waste lithium-ion batteries contain the above-described copper (Cu), nickel (Ni), and cobalt (Co) as valuable metals.
  • the method according to the present embodiment can be preferably applied. An example of producing valuable metals using raw materials including waste lithium ion batteries will be described below.
  • the raw material to be treated is not particularly limited as long as it contains at least lithium (Li), aluminum (Al), and valuable metals. It is preferable to use the one containing as a raw material.
  • Waste lithium-ion batteries contain lithium (Li) and valuable metals (Cu, Ni, Co), as well as low value-added metals (Al, Fe) and carbon components. Therefore, valuable metals can be efficiently separated and recovered by using waste lithium ion batteries as raw materials. Waste lithium-ion batteries include not only used lithium-ion batteries, but also defective products such as positive electrode materials that make up the battery during the manufacturing process, residues in the manufacturing process, and generated scraps of lithium-ion batteries. It is a concept that includes waste materials in the manufacturing process. Therefore, waste lithium ion batteries can also be called lithium ion battery waste materials.
  • Fig. 2 is a process diagram showing an example of the flow of a method for producing valuable metals from waste lithium-ion batteries.
  • this method includes a waste battery pretreatment step (S1) in which the electrolyte and outer can of the waste lithium ion battery are removed, and a pulverization step ( S2), an oxidizing roasting step (S3) of oxidizing roasting the pulverized product, a reducing melting step (S4) of reducing melting and alloying the oxidizing roasting product, and slag from the reduced product obtained by the reducing melting treatment and a slag separation step (S5) for separating and recovering the alloy.
  • a sulfurization step of sulfurizing the obtained alloy or a pulverization step of pulverizing a mixture of the sulfide and the alloy obtained in the sulfurization step may be provided. . Details of each step are described below.
  • the waste battery pretreatment step S1 is performed for the purpose of preventing explosion and detoxification of the raw material waste lithium ion battery and removing the outer can. Since the lithium ion battery is a closed system, it contains an electrolytic solution and the like inside. If the pulverization treatment is performed as it is, there is a risk of explosion, which is dangerous. Therefore, it is preferable to perform discharge treatment or electrolytic solution removal treatment by some method.
  • outer cans are often made of metal such as aluminum (Al) or iron (Fe), and it is relatively easy to collect such metal outer cans as they are. In this way, in the waste battery pretreatment step (S1), by removing the electrolytic solution and the outer can, it is possible to improve the safety and the recovery rate of the valuable metals (Cu, Ni, Co).
  • a specific method of treatment in the waste battery pretreatment step (S1) is not particularly limited, but for example, a method of physically opening holes in the waste battery with a needle-like cutting edge to remove the electrolytic solution can be mentioned. Also, there is a method of burning waste batteries to make them harmless.
  • the pulverization process In the pulverization step S2, the content of the waste lithium ion battery is pulverized to obtain a pulverized material.
  • the pulverization treatment in the pulverization step S2 is intended to increase the reaction efficiency in the pyrometallurgical process. By increasing the reaction efficiency, the recovery rate of valuable metals (Cu, Ni, Co) can be increased.
  • a specific crushing method is not particularly limited. It can be pulverized using a conventionally known pulverizer such as a cutter mixer.
  • the pulverized material when collecting aluminum (Al) and iron (Fe) contained in the outer can, the pulverized material may be sieved using a sieve shaker.
  • Aluminum (Al) can be efficiently recovered because it is easily pulverized by light pulverization.
  • iron (Fe) contained in the outer can may be recovered by magnetic separation.
  • oxidizing roasting process In the oxidizing roasting step S3, the pulverized product obtained in the crushing step S2 is subjected to oxidizing roasting to obtain an oxidizing roasting product.
  • This step corresponds to the "oxidizing roasting step" described above, and the details are as described there.
  • the reduction melting step S4 the oxidized roasted product obtained in the oxidized roasting step S3 is subjected to a reduction melting treatment to obtain a reduced product.
  • This step corresponds to the "reduction melting step" described above, and the details are as described there.
  • the solidification of the slag having a Ca/Al value on the surface of the furnace wall that is smaller than the Ca/Al value of the generated slag A reduction melting treatment is performed so as to form a slag layer or a solidified slag layer containing 15 mass % or more of Al and 3 mass % or more of Li.
  • the refractory material constituting the side wall of the melting furnace can be treated with high safety while suppressing erosion of the refractory material, and the valuable metal can be recovered at a high recovery rate.
  • the alloy is recovered by separating the slag from the reduced material obtained in the reduction melting step S4. This step corresponds to the "slag separation step" described above, and the details are as explained there.
  • a sulfurization process or a pulverization process may be provided after the slag separation process. Additionally, a hydrometallurgical process may be performed on the resulting valuable metal alloy. The details of the sulfidation step, the pulverization step, and the hydrometallurgical process are as described above.
  • a waste lithium-ion battery containing lithium (Li), aluminum (Al), and valuable metals (Cu, Ni, Co) was used as a raw material, and the valuable metals were recovered.
  • waste lithium ion batteries 18650-type cylindrical batteries, used rectangular batteries for vehicles, and defective products collected in the battery manufacturing process were prepared. Then, after the waste lithium ion battery is immersed in salt water and discharged, water is removed, and the electrolyte is decomposed and removed by roasting in the air at a temperature of 260° C. to obtain the battery contents. Ta.
  • the battery content was pulverized with a pulverizer (trade name: Good Cutter, manufactured by Ujiie Seisakusho Co., Ltd.) to obtain a pulverized product.
  • a pulverizer trade name: Good Cutter, manufactured by Ujiie Seisakusho Co., Ltd.
  • a submerged arc furnace in which the furnace wall can be cooled from the outside with a water cooling jacket, was used as the melting furnace for reducing melting treatment.
  • the furnace wall is cooled by the cooling means to form a solidified slag layer whose Ca/Al value is smaller than the Ca/Al value of the slag, or Al on the surface inside the melting furnace.
  • Reduction melting treatment was performed while forming a solidified slag layer containing 15% by mass or more and 3% by mass or more of Li.
  • Table 1 summarizes the reduction melting temperature (slag heating temperature), the metal heating temperature, and the composition of the formed solidified slag layer (slag coating layer) in the reduction melting treatment.
  • the presence or absence of the slag coating layer was confirmed by visually inspecting the inside of the furnace after the test was completed.
  • the presence or absence of LiAlO 2 in the slag coating layer was confirmed by peak detection of LiAlO 2 by fluorescent X-ray diffraction.
  • FIG. 1 is a phase diagram of Al 2 O 3 —CaO—Li 2 O system slag, in which the results of the presence or absence of the slag coating layer obtained in this test are plotted.
  • the dashed line in the figure indicates the liquidus line calculated by thermodynamic calculation software (FactSage).
  • a slag coating layer having a Ca/Al value smaller than that of the slag was formed on the furnace wall of the melting furnace.
  • the slag coating layer also contained 15 mass % or more of Al and 3 mass % or more of Li.
  • the slag coating layers formed in Examples 1-4 contained LiAlO 2 with a high melting point. As a result, the refractory on the furnace wall was protected, the melting damage was suppressed, and the reduction melting treatment could be performed with high safety.
  • the separation of slag and metal was also good, and good results were obtained with a cobalt recovery rate of 95% or more in all samples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

廃リチウムイオン電池等を含む原料から、有価金属を安全にかつ効率的に回収することができる方法を提供する。 本発明は、Cu、Ni、及びCoを含む有価金属を含有する原料から該有価金属を製造する方法であって、少なくとも、Li、Al、及び有価金属を含む原料を準備する準備工程と、原料に対して、炉壁を外側から冷却する冷却手段が設けられている熔融炉を使用して還元熔融処理を施し、有価金属を含有する合金とスラグとを含む還元物を得る還元熔融工程と、還元物からスラグを分離して合金を回収するスラグ分離工程と、を有し、準備工程及び還元熔融工程のいずれか一方又は両方の工程において、原料にCaを含有するフラックスを添加し、還元熔融工程では、冷却手段により熔融炉の炉壁を冷却しながら、熔融炉内の表面に、Ca/Alの値がスラグのCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層、を形成させる。

Description

有価金属の製造方法
 本発明は、廃リチウムイオン電池等の原料から有価金属を製造する方法に関する。
 近年、軽量で大出力の二次電池としてリチウムイオン電池が普及している。よく知られているリチウムイオン電池は、外装缶内に負極材と正極材とセパレータと電解液とを封入した構造を有している。
 例えば、外装缶は、アルミニウム(Al)や鉄(Fe)等の金属からなる。負極材は、負極集電体(銅箔等)に固着させた負極活物質(黒鉛等)からなる。正極材は、正極集電体(アルミニウム箔等)に固着させた正極活物質(ニッケル酸リチウム、コバルト酸リチウム等)からなる。セパレータは、ポリプロピレンの多孔質樹脂フィルム等からなる。電解液は、六フッ化リン酸リチウム(LiPF)等の電解質を含む。
 リチウムイオン電池の主要な用途の一つに、ハイブリッド自動車や電気自動車がある。そのため、自動車のライフサイクルにあわせて、搭載されたリチウムイオン電池が将来的に大量に廃棄される見込みとなっている。また、製造中に不良品として廃棄されるリチウムイオン電池がある。このような使用済み電池や製造中に生じた不良品の電池(以下、「廃リチウムイオン電池」と称する。)を資源として再利用することが求められている。
 再利用の手法として、廃リチウムイオン電池を高温炉で全量熔解する乾式製錬プロセスが提案されている。乾式製錬プロセスは、破砕した廃リチウムイオン電池を熔融処理し、コバルト(Co)、ニッケル(Ni)、及び銅(Cu)に代表される回収対象である有価金属と、鉄(Fe)やアルミニウム(Al)に代表される付加価値の低い金属とを、それらの間の酸素親和力の差を利用して分離回収する手法である。この手法では、付加価値の低い金属については極力酸化してスラグとする一方で、有価金属についてはその酸化を極力抑制して合金として回収する。
 特許文献1には、ニッケルとコバルトを含有するリチウムイオン電池の廃電池からニッケルとコバルトを含む有価金属を回収する方法が開示されている。具体的には、廃電池を熔融して熔融物を得る熔融工程と、熔融物に対して又は熔融工程前の廃電池に対して行われて廃電池を酸化処理する酸化工程と、熔融物からスラグを分離して有価金属を含む合金を回収するスラグ分離工程とを有し、熔融工程では酸化カルシウムを添加してスラグの液相線温度を下げることで有価金属を回収するプロセスを提案している。
特許第6819827号公報
 しかしながら、特許文献1に開示の技術でも課題が残されている。例えば、特許文献1に開示の方法において、フラックスの添加によりスラグ液相線温度が下がり過ぎると、処理炉の炉壁の耐火物の表面にコーティングが形成されず、その耐火物が浸食されてしまうという問題がある。このような浸食が起きると、炉の外側に処理物が漏洩するリスクがあり安全上問題であるとともに、炉壁の耐火物の保全に要する費用が莫大になり、有価金属を安価に回収することができない。
 本発明は、このような実情に鑑みて提案されたものであり、廃リチウムイオン電池等を含む原料から、有価金属を安全にかつ効率的に回収することができる方法を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた。その結果、原料を還元熔融処理する工程において、炉壁を外側から冷却する手段が設けられている熔融炉を使用し、この炉壁を外側から冷却する手段を使いながら、炉壁の表面にCa/Alの値がスラグのCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層、を形成させることで、上述した課題を解決できることを見出し、本発明を完成した。
 (1)本発明の第1の発明は、銅(Cu)、ニッケル(Ni)、及びコバルト(Co)を含む有価金属を含有する原料から該有価金属を製造する方法であって、少なくとも、リチウム(Li)、アルミニウム(Al)、及び前記有価金属を含む原料を準備する準備工程と、前記原料に対して、炉壁を外側から冷却する冷却手段が設けられている熔融炉を使用して還元熔融処理を施し、前記有価金属を含有する合金とスラグとを含む還元物を得る還元熔融工程と、前記還元物からスラグを分離して合金を回収するスラグ分離工程と、を有し、前記準備工程及び前記還元熔融工程のいずれか一方又は両方の工程において、前記原料にカルシウム(Ca)を含有するフラックスを添加し、前記還元熔融工程では、前記冷却手段により前記熔融炉の炉壁を冷却しながら、該熔融炉内の表面に、Ca/Alの値が前記スラグのCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層、を形成させる、有価金属の製造方法である。
 (2)本発明の第2の発明は、第1の発明において、前記固化スラグ層は、少なくともLiAlOを含む、有価金属の製造方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記還元熔融工程では、メタル加熱温度を1300℃以上、スラグ加熱温度を1400℃以上1600℃以下として還元熔融処理を行う、有価金属の製造方法である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記原料は、廃リチウムイオン電池を含む、有価金属の製造方法である。
 本発明によれば、廃リチウムイオン電池等を含む原料から、有価金属を安全にかつ効率的に回収することができる。
Al-LiO-CaO三元系スラグの状態図である。 廃リチウムイオン電池から有価金属を回収する方法の流れの一例を示す工程図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。
 ≪1.有価金属の回収方法≫
 本実施の形態に係る有価金属を製造する方法は、少なくとも、リチウム(Li)、アルミニウム(Al)、及び有価金属を含む原料から有価金属を分離回収する方法である。したがって、有価金属の回収方法とも言い換えることができる。本実施の形態に係る方法は、主として乾式製錬プロセスによる方法であるが、乾式製錬プロセスと湿式製錬プロセスとから構成されていてもよい。
 具体的に、本実施の形態に係る方法は、以下の工程;リチウム(Li)、アルミニウム(Al)、及び有価金属を含む原料を準備する工程(準備工程)と、準備した原料に対して、炉壁を外側から冷却する冷却手段が設けられている熔融炉を使用して還元熔融処理を施し、有価金属を含有する合金とスラグとを含む還元物(熔融物)を得る工程(還元熔融工程)と、得られた還元物からスラグを分離して合金を回収する工程(スラグ分離工程)と、を有する。
 ここで、回収する合金を構成する有価金属は、銅(Cu)、ニッケル(Ni)、コバルト(Co)、及びこれらの組み合わせからなり、銅、ニッケル、コバルト及びこれらの組み合わせからなる群から選ばれる少なくとも一種の金属又は合金を含む。
 また、この方法では、準備工程及び還元熔融工程のいずれか一方又は両方の工程において、原料にカルシウム(Ca)を含有するフラックスを添加する。
 したがって、還元熔融工程での処理により生成するスラグは、酸化アルミニウム(Al)、酸化リチウム(LiO)、及び酸化カルシウム(CaO)からなる三元系スラグ(Al-LiO-CaO三元系スラグ)を含む。また、生成する合金は、銅(Cu)、ニッケル(Ni)、及びコバルト(Co)からなる三元系合金(Cu-Ni-Co三元系合金)を含む。
 そして、本実施の形態に係る方法では、還元熔融工程において、炉壁を外側から冷却する冷却手段によって熔融炉の炉壁を冷却しながら、その熔融炉内の表面に、Ca/Alの値が生成するスラグ(熔融スラグ)のCa/Alの値よりも小さい固化スラグ層を形成させる。あるいは、その熔融炉内の表面に、アルミニウム(Al)を15質量%以上かつリチウム(Li)を3質量%以上で含有する固化スラグ層を形成させることを特徴としている。
 [準備工程]
 準備工程では、処理対象である原料を準備する。原料は、有価金属を回収する処理対象となるものであり、上述したように、リチウム(Li)及びアルミニウム(Al)を含むと共に、銅(Cu)、ニッケル(Ni)、及びコバルト(Co)からなる群から構成される有価金属を含む。原料は、これらの成分(Li、Al、Cu、Ni、Co)を金属の形態で含んでもよく、あるいは酸化物等の化合物の形態で含んでいてもよい。また、原料は、これらの成分以外の無機成分や有機成分を含んでいてもよい。
 原料として、その対象は特に限定されず、廃リチウムイオン電池、誘電材料(コンデンサ)、磁性材料等が例示される。また、後述する還元熔融工程での処理に適したものであれば、その形態は限定されない。また、準備工程において、原料に対して粉砕処理等の処理を施すことで、適した形態にしてもよい。さらに、準備工程において、原料に対して熱処理や分別処理等の処理を施して、水分や有機物等の不要成分を除去してもよい。
 また、準備工程では、原料にカルシウム(Ca)を含有するフラックスを添加することができる。添加するフラックスについては、詳しくは後述する。なお、本実施の形態に係る方法では、準備工程及び還元熔融工程のいずれか一方又は両方の工程において、フラックスを添加する。
 [還元熔融工程]
 還元熔融工程では、準備した原料を熔融炉内に装入し、炉壁を外側から冷却する手段(冷却手段)を使いながら還元熔融処理を行う。これにより、熔融炉内の表面に、Ca/Alの値が生成するスラグ(熔融スラグ)のCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層を形成させながら、原料を還元熔融して還元物を得る。なお、生成する還元物は、合金とスラグとを分離して含む。
 還元熔融処理は、熔融炉内において、原料を加熱して還元熔融することにより還元物とする処理である。この処理の目的は、原料中に含まれる付加価値の低い金属(Al等)を酸化物とする一方で、有価金属(Cu、Ni、Co)を還元及び熔融して一体化した合金として回収することである。還元熔融処理後には、熔融した状態の合金が得られる。なお、還元熔融処理に先立ち、後述する酸化焙焼の処理を行う場合には、得られる酸化焙焼物を熔融炉に装入し、加熱して還元熔融する。これにより、酸化焙焼処理により酸化した付加価値の低い金属(Al等)を酸化物のままに維持する一方で、有価金属(Cu、Ni、Co)を還元及び熔融して一体化した合金として回収する。
 還元熔融処理においては、還元剤を導入することが好ましい。還元剤としては、炭素及び/又は一酸化炭素を用いることが好ましい。炭素は、回収対象である有価金属(Cu、Ni、Co)を容易に還元する能力がある。例えば1モルの炭素で、2モルの有価金属酸化物(銅酸化物、ニッケル酸化物等)を還元することができる。また、炭素又は一酸化炭素を用いる還元手法は、金属還元剤を用いる手法(例えばアルミニウムを用いたテルミット反応法)に比べて安全性が極めて高い。
 炭素としては、人工黒鉛及び/又は天然黒鉛を使用することができる。また、不純物コンタミネーションのおそれが無ければ、石炭やコークスを使用することができる。
 還元熔融により生成する合金は、上述したように、有価金属を含有する。そのため、有価金属を含む成分(合金)とその他の成分とを、還元物中において分離させることが可能となる。これは、付加価値の低い金属(Al等)は酸素親和力が高いのに対し、有価金属は酸素親和力が低いためである。例えば、アルミニウム(Al)、リチウム(Li)、炭素(C)、マンガン(Mn)、リン(P)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、及び銅(Cu)は、一般的に、Al>Li>C>Mn>P>Fe>Co>Ni>Cuの順に酸化されていく。つまり、Alが最も酸化され易く、Cuが最も酸化されにくい。そのため、付加価値の低い金属(Al等)は容易に酸化されてスラグとなり、有価金属(Cu、Ni、Co)は還元されて金属(合金)となる。このようにして、付加価値の低い金属と有価金属とを、スラグと合金とに効率的に分離できる。
 還元熔融処理に際しては、原料にカルシウム(Ca)を含有するフラックスを添加することができる。本実施の形態に係る方法では、準備工程及び還元熔融工程のいずれか一方又は両方の工程において、フラックスを添加する。フラックスは、カルシウム(Ca)を主成分とするものであり、例えば酸化カルシウム(CaO)や炭酸カルシウム(CaCO)が挙げられる。ただし、処理対象の原料中にカルシウム成分が必要量含まれている場合には、フラックスは添加しなくてもよい。
 また、還元熔融処理に使用する熔融炉は、炉壁を外側から水冷等により冷却する手段(機構)を備えるものである。このような熔融炉を用い、その冷却手段によって炉壁を外側から冷却することで、熔融炉内側の表面と接触しているスラグから、高融点の複合酸化物を優先析出させることができ、その表面にスラグの固化層(固化スラグ層,スラグコーティング層)を効果的に形成させることができるようになる。
 そして、本実施の形態に係る方法では、冷却手段により熔融炉の炉壁を冷却しながら、熔融炉内側の表面、例えば炉内の耐火物表面に、Ca/Alの値が生成するスラグ(熔融スラグ)のCa/Alの値よりも小さい固化スラグ層を形成させる。あるいは、本実施の形態に係る方法では、冷却手段により熔融炉の炉壁を冷却しながら、熔融炉内側の表面に、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層を形成させる。なお、固化スラグ層は、上述したいずれかの組成を有するものであればよいが、両者の組成を有するものであってもよい。
 このような方法によれば、還元熔融処理において熔融炉の炉壁を構成する耐火物の浸食を抑制でき、安全性高く処理することができるとともに、有価金属を高い回収率で回収することができる。
 固化スラグ層を形成させる熔融炉内側の表面とは、例えば、炉内の耐火物表面である。また、その耐火物が損耗により消失した場合であっても、熔融炉内側の表面、すなわち冷却手段の表面、例えば、冷却水が通る配管が設けられた銅製ブロックや、外側にシャワーが設けられた鉄製シェルといった冷却手段の表面に、固化スラグ層を形成させることができる。
 ここで、図1は、Al-LiO-CaO三元系スラグの状態図であり、図中の破線は熱力学計算ソフト(FactSage)により計算される液相線を示す。図1の状態図に示されるように、Ca/Alの値が小さいほど、すなわち、Caの含有率が減少してAlの含有率が増加するほど、融点が高くなることが分かる。このことから、Ca/Alの値が生成するスラグのCa/Alの値よりも小さい固化スラグ層とは、生成するスラグよりも融点が高いものであるということを意味している。例えば、Ca/Alの値が0.45以下の固化スラグ層は、生成するスラグよりも融点が高く、炉壁耐火物の浸食を容易に抑えることができる。
 また、Li及びAlを含むスラグは、冷却されると、LiとAlを含む複合酸化物を最初に析出させるが、この複合酸化物の融点は非常に高い。そのため、還元熔融処理において、上述した関係、すなわちAl-LiO-CaO三元系スラグが生成するなかで、冷却手段を使いながら処理を進めていくことによって、炉内の表面にCa/Alの値がスラグのCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層、を効率的に形成させるようにしている。 
 また、形成する固化スラグ層においては、少なくともLiAlOを含むことが好ましい。すなわち、LiとAlを含む複合酸化物の中で、融点が高く(1753℃)、最初に析出するLiAlOを含むように還元熔融処理を施す。なお、固化スラグ層においては、Ca/Alの値が好ましくは0.45以下であることにより、高融点のLiAlOをより効果的に生成させることができる。
 より具体的に、析出するスラグ成分(固化スラグ層の成分)の組成に関して、スラグに含まれるAl又はLiのいずれかはLiAlOとなり、高融点のスラグコーティング層が形成されるようになる。ここで、得られるCu、Ni、及びCoから構成される合金の融点はおよそ1300℃~1400℃であることから、例えばメタル加熱温度が1400℃~1500℃となるように操業を行うには、すなわちスラグからメタルに熱を与えるには、スラグ加熱温度を1500℃~1600℃とする必要がある。これに対して、スラグコーティング層の融点が1753℃であれば、これを炉壁に形成させることで、炉壁耐火物の浸食を容易に抑えることができる。
 スラグ成分(例えばAl、Li、Ca)の量は、原料の組成や、原料に添加するフラックスの添加量を調整することで容易に制御することができる。具体的には、例えば、スラグ中のカルシウム(Ca)量を調整するために、カルシウム(Ca)を含有するフラックスを処理物に添加し、その添加量を制御することで調整できる。上述したように、カルシウムを含有するフラックスとしては、例えば、酸化カルシウム(CaO)や炭酸カルシウム(CaCO)が挙げられる。また、スラグ中のリチウム(Li)やアルミニウム(Al)量の調整は、準備工程において原料の組成を制御することで行うことができる。
 また、スラグ中のカルシウム(Ca)の含有量が多いと、原料にリンが含まれる場合にはそのリンを除去し易くなる。これは、リンが酸化されると酸性酸化物になるのに対して、カルシウム(Ca)は酸化されると塩基性酸化物になるためである。したがって、生成するスラグ中のカルシウム(Ca)量が多いほど、スラグ組成が塩基性となり、その結果としてリンをスラグに含有させて除去することが容易となる。
 還元熔融処理においては、加熱温度(スラグ加熱温度)を1400℃以上1600℃以下とすることが好ましい。また、スラグ加熱温度を1500℃以上1600℃以下とすることがより好ましい。スラグ加熱温度が1600℃を超えると、熱エネルギーが無駄に消費されるとともに、熔融炉を構成する坩堝等の耐火物の消耗も激しくなり、生産性が低下するおそれがある。一方で、スラグ加熱温度が1400℃未満となると、生成するスラグと合金との分離性が悪化し、有価金属の回収率が低下する可能性がある。
 また、スラグ加熱温度の上述したような範囲で操業することで、スラグ層の下に位置するメタル層のメタル加熱温度は1300℃以上となり、メタルが十分に熔解することのできる温度を維持することができる。
 また、スラグ成分の組成に関して、LiO/(LiO+Al)で表される値が5質量%以上44質量%以下であることがより好ましい。スラグ組成がこのような関係であることで、高融点のLiAlOが生成されやすく、高融点のスラグコーティング層をより効果的に形成することができる。なお、このスラグ組成の範囲では、上述したスラグ加熱温度が1400℃以上で、LiAlOの初晶が析出を始める。
 なお、還元熔融処理に先立って酸化焙焼処理(酸化焙焼工程)を行うようにした場合には、還元熔融処理において酸化処理を行う必要はない。ただし、酸化焙焼処理での酸化が不足している場合や、酸化度のさらなる調整を目的とする場合には、還元熔融処理において、あるいは還元熔融処理の後に、追加の酸化処理を行ってもよい。追加の酸化処理を行うことで、より厳密な酸化度の調整が可能となる。
 追加で酸化処理を行うときの手法としては、例えば、還元熔融処理で生成する熔融物に酸化剤を吹き込む手法が挙げられる。具体的には、還元熔融処理で生成する熔融物に金属製チューブ(ランス)を挿入し、バブリングにより酸化剤を吹き込むことによって酸化処理を行う。この場合、空気、純酸素、酸素冨化気体等の酸素を含む気体を酸化剤に用いることができる。
 また、還元熔融処理においては、粉塵や排ガス等の有害物質が発生することがあるが、公知の排ガス処理等の処理を施すことで、有害物質を無害化することができる。
 [酸化焙焼工程]
 本実施の形態に係る方法では、必要に応じて、還元熔融処理に先立って、原料を酸化焙焼して酸化焙焼物を得る工程(酸化焙焼工程)をさらに設けることができる。
 酸化焙焼処理(酸化処理)は、原料を酸化焙焼して酸化焙焼物とする処理であり、原料中に炭素が含まれる場合であってもその炭素を酸化除去し、還元熔融処理での有価金属の合金一体化を促進させることを可能にする。具体的に、還元熔融処理においては、有価金属は還元されて局所的な熔融微粒子となるが、このとき、装入物に含まれる炭素は熔融微粒子(有価金属)が凝集する際の物理的な障害となり、熔融微粒子の凝集一体化及びそれによるメタル(合金)とスラグとの分離性を妨げ、有価金属の回収率を低下させることがある。この点、還元熔融処理に先立ち、原料に対して酸化焙焼処理を施しておくことで、原料中の炭素を有効に除去でき、それにより、還元熔融処理にて生成する熔融微粒子(有価金属)の凝集一体化が進行して、有価金属の回収率をより一層高めることができる。
 酸化焙焼処理において、酸化度の調整は次のようにして行うことができる。すなわち、上述したように、アルミニウム(Al)、リチウム(Li)、炭素(C)、マンガン(Mn)、リン(P)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、及び銅(Cu)は、一般的に、Al>Li>C>Mn>P>Fe>Co>Ni>Cuの順に酸化されていく。酸化焙焼処理で、アルミニウム(Al)の全量が酸化されるまで処理を進行させる。鉄(Fe)の一部が酸化されるまで処理を促進させてもよいが、コバルト(Co)の酸化は最小限に抑えてスラグとして回収されることがない程度に酸化度を留めることが好ましい。
 酸化焙焼処理において酸化度を調整するにあたっては、適量の酸化剤を導入することが好ましい。特に、廃リチウムイオン電池を含む原料を用いる場合には、酸化剤を導入して処理することが好ましい。リチウムイオン電池は、外装材としてアルミニウムや鉄等の金属を含んでいる。また、正極材や負極材としてアルミニウム箔や炭素材を含んでいる。さらに、集合電池の場合には、外部パッケージとしてプラスチックが用いられている。これらはいずれも還元剤として作用する材料であることから、酸化剤を導入することで、酸化度を適切な範囲内に調整することができる。
 酸化剤としては、炭素や付加価値の低い金属(Al等)を酸化できるものであれば、特に限定されないが、取り扱いが容易な、空気、純酸素、酸素富化気体等の酸素を含む気体が好ましい。酸化剤の導入量は、酸化焙焼処理の対象となる各物質の酸化に必要な量(化学当量)の1.2倍程度(例えば1.15倍~1.25倍程度)が目安となる。
 酸化焙焼処理の加熱温度としては、700℃以上1100℃以下とすることが好ましく、800℃以上1000℃以下とするがより好ましい。加熱温度を700℃以上とすることで、炭素の酸化効率をより一層に高めて、酸化時間を短縮することができる。また、加熱温度を1100℃以下とすることで、熱エネルギーコストを抑制でき、酸化焙焼の効率を高めることができる。
 酸化焙焼処理は、公知の焙焼炉を用いて行うことができる。また、還元熔融処理で使用する熔融炉とは異なる炉(予備炉)を用い、その予備炉内で行うことが好ましい。焙焼炉としては、粉砕物を焙焼しながら酸化剤(酸素等)を供給してその内部で処理を行うことが可能である限り、あらゆる形式の炉を用いることができる。一例として、従来公知のロータリーキルン、トンネルキルン(ハースファーネス)が挙げられる。
 [スラグ分離工程]
 スラグ分離工程では、還元熔融処理により得られた還元物からスラグを分離して、有価金属を含む合金を回収する。スラグと合金とはその比重が異なり、合金に比べ比重の小さいスラグは合金の上部に集まることから、比重分離により効率的に分離回収することができる。
 なお、スラグ分離工程にて還元物からスラグを分離して合金を回収した後に、得られた合金を硫化する硫化工程や、硫化工程で得られた硫化物と合金の混在物を粉砕する粉砕工程を設けてもよい。さらに、このような乾式製錬プロセスを経て得られた有価金属合金に対して、湿式製錬プロセスを行ってもよい。湿式製錬プロセスにより、不純物成分を除去し、有価金属(Cu、Ni、Co)を分離精製してそれぞれを回収することができる。湿式製錬プロセスにおける処理としては、中和処理や溶媒抽出処理等の公知の手法が挙げられる。
 以上のように、本実施の形態に係る方法では、還元熔融処理において、炉壁を外側から冷却する手段を使いながら、熔融炉内の表面に、Ca/Alの値が生成するスラグ(熔融スラグ)のCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層、を形成させるように還元熔融処理を施す。そして、好ましくはスラグ加熱温度を1400℃以上1600℃以下、より好ましくは1500℃以上1600℃以下として還元熔融処理を施す。
 このような方法によれば、炉内の表面にスラグの固化層(スラグコーティング層)を効果的に形成させることができるようになり、熔融炉の炉壁を構成する耐火物の浸食を抑制でき、安全性高く処理することができる。また、安全性の高い処理のもと、有価金属を高い回収率で安定的に回収することができる。
 ここで、処理対象の原料としては、廃リチウムイオン電池を含むものであることが好ましい。廃リチウムイオン電池は、有価金属として、上述した銅(Cu)、ニッケル(Ni)、及びコバルト(Co)を含む。また、少なくとも、リチウム(Li)及びアルミニウム(Al)を含むことから、本実施の形態に係る方法を好ましく適用することができる。以下では、廃リチウムイオン電池を含む原料を用いて有価金属を製造する例を説明する。
 ≪2.廃リチウムイオン電池から有価金属を製造する方法≫
 本実施の形態に係る方法において、処理対象である原料としては、少なくともリチウム(Li)、アルミニウム(Al)、及び有価金属を含有する限り、特に限定されないが、上述したように、廃リチウムイオン電池を含むものを原料とすることが好ましい。
 廃リチウムイオン電池は、リチウム(Li)及び有価金属(Cu、Ni、Co)を含むとともに、付加価値の低い金属(Al、Fe)や炭素成分を含んでいる。そのため、廃リチウムイオン電池を原料として用いることで、有価金属を効率的に分離回収することができる。なお、廃リチウムイオン電池とは、使用済みのリチウムイオン電池のみならず、電池を構成する正極材等の製造工程で生じた不良品、製造工程内部の残留物、発生屑等のリチウムイオン電池の製造工程内における廃材を含む概念である。そのため、廃リチウムイオン電池をリチウムイオン電池廃材と言うこともできる。
 図2は、廃リチウムイオン電池から有価金属を製造する方法の流れの一例を示す工程図である。図2に示すように、この方法は、廃リチウムイオン電池の電解液及び外装缶を除外する廃電池前処理工程(S1)と、廃電池の内容物を粉砕して粉砕物とする粉砕工程(S2)と、粉砕物を酸化焙焼する酸化焙焼工程(S3)と、酸化焙焼物を還元熔融して合金化する還元熔融工程(S4)と、還元熔融処理で得られた還元物からスラグを分離して合金を回収するスラグ分離工程(S5)と、を有する。
 また、図示しないが、スラグ分離工程(S5)の後に、得られた合金を硫化する硫化工程やその硫化工程で得られた硫化物と合金との混在物を粉砕する粉砕工程を設けてもよい。各工程の詳細を以下に説明する。
  (廃電池前処理工程)
 廃電池前処理工程S1は、原料の廃リチウムイオン電池の爆発防止及び無害化、並びに外装缶の除去を目的に行われる。リチウムイオン電池は密閉系であるため、内部に電解液等を有している。そのままの状態で粉砕処理を行うと、爆発のおそれがあり危険であるため、何らかの方法で放電処理や電解液除去処理を施すことが好ましい。また、外装缶は、金属であるアルミニウム(Al)や鉄(Fe)から構成されていることが多く、こうした金属製の外装缶はそのまま回収することが比較的に容易である。このように、廃電池前処理工程(S1)において、電解液及び外装缶を除去することで、安全性を高めるとともに、有価金属(Cu、Ni、Co)の回収率を高めることができる。
 廃電池前処理工程(S1)における処理の具体的な方法としては、特に限定されないが、例えば針状の刃先で廃電池を物理的に開孔し、電解液を除去する手法が挙げられる。また、廃電池を燃焼して無害化する手法が挙げられる。
  (粉砕工程)
 粉砕工程S2では、廃リチウムイオン電池の内容物を粉砕して粉砕物を得る。粉砕工程S2での粉砕処理は、乾式製錬プロセスでの反応効率を高めることを目的としている。反応効率を高めることで、有価金属(Cu、Ni、Co)の回収率を高めることができる。
 具体的な粉砕方法は、特に限定されるものではない。カッターミキサー等の従来公知の粉砕機を用いて粉砕することができる。
 なお、外装缶に含まれるアルミニウム(Al)や鉄(Fe)を回収する場合には、粉砕物を篩振とう機を用いて篩分けしてもよい。アルミニウム(Al)は、軽度の粉砕で容易に粉状となるため、これを効率的に回収することができる。また、磁力選別によって外装缶に含まれる鉄(Fe)を回収してもよい。
 廃電池前処理工程S1と粉砕工程S2とは、これらを併せて上述した「準備工程」に相当する。
  (酸化焙焼工程)
 酸化焙焼工程S3では、粉砕工程S2で得られた粉砕物を酸化焙焼して酸化焙焼物を得る。この工程は、上述した「酸化焙焼工程」に相当する工程であり、詳細はそこで説明したとおりである。
  (還元熔融工程)
 還元熔融工程S4では、酸化焙焼工程S3で得られた酸化焙焼物に対して還元熔融処理を施して還元物を得る。この工程は、上述した「還元熔融工程」に相当する工程であり、詳細はそこで説明したとおりである。
 特に、本実施の形態に係る方法では、熔融炉の炉壁を外側から冷却する手段を使いながら、炉壁の表面にCa/Alの値が生成するスラグのCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層、を形成させるように還元熔融処理を施すことを特徴としている。これにより、熔融炉側壁を構成する耐火物の浸食を抑制しながら安全性高く処理することができるとともに、有価金属を高い回収率で回収することができる。
  (スラグ分離工程)
 スラグ分離工程S5では、還元熔融工程S4で得られた還元物からスラグを分離して合金を回収する。この工程は、上述した「スラグ分離工程」に相当し、詳細はそこで説明したとおりである。
 なお、スラグ分離工程後に、硫化工程や粉砕工程を設けてもよい。さらに、得られた有価金属合金に対して湿式製錬プロセスを行ってもよい。硫化工程、粉砕工程、及び湿式製錬プロセスの詳細は上述したとおりである。
 以下に、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 [有価金属の回収処理の流れ(各工程の操作)について]
 リチウム(Li)、アルミニウム(Al)、及び有価金属(Cu,Ni,Co)を含む廃リチウムイオン電池を原料として用いて、有価金属を回収する処理を行った。
  (廃電池前処理工程、及び粉砕工程)
 先ず、廃リチウムイオン電池として、18650型円筒型電池、車載用の角形電池の使用済み電池、及び電池製造工程で回収した不良品を用意した。そして、この廃リチウムイオン電池を塩水中に浸漬して放電させた後、水分を除去し、260℃の温度で大気中にて焙焼することによって電解液を分解除去し、電池内容物を得た。
 次に、電池内容物を粉砕機(商品名:グッドカッター,氏家製作所社製)により粉砕して粉砕物を得た。
  (酸化焙焼工程)
 次に、得られた粉砕物を、ロータリーキルンにおいて、大気中、900℃の加熱温度で180分間の酸化焙焼を行った。
  (還元熔融工程)
 次に、得られた酸化焙焼物に、還元剤として黒鉛粉を有価金属(Cu、Ni、Co)の合計モル数の0.6倍のモル数(すなわち、有価金属を還元するのに必要なモル数の1.2倍の黒鉛粉)だけ添加し、さらにフラックスとして酸化カルシウム(CaO)を添加して還元熔融処理を施した。
 ここで、還元熔融処理を行う熔融炉として、炉壁を水冷ジャケットにより外側から冷却できるサブマージドアーク炉を使用した。このような冷却手段を用い、その冷却手段により炉壁を冷却して、熔融炉内側の表面に、Ca/Alの値がスラグのCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層、を形成させながら、還元熔融処理を行った。
 なお、還元熔融処理における還元熔融温度(スラグ加熱温度)、メタル加熱温度、形成した固化スラグ層(スラグコーティング層)の組成を、下記表1にまとめて示す。
 このような還元熔融処理によって、有価金属を合金化して、合金とスラグとからなる還元物を得た。
  (スラグ分離工程)
 得られた還元物からスラグを分離して、合金を回収し、回収合金とした。
 [スラグ及び合金の成分分析について]
 還元物から分離したスラグ及び合金の成分分析を、次のようにして行った。すなわち、得られたスラグ及び合金をそれぞれ冷却した後に粉砕し、蛍光X線により分析を行った。
  (有価金属回収率)
 有価金属(Co)の回収率を、下記式1に基づいて算出した。なお、回収合金中の成分分析は、上述したように蛍光X線により行った。
 有価金属の回収率(%)=
(回収合金中のCo重量)÷(回収合金中のCo重量+スラグ中のCo重量)×100
                         ・・・(式1)
 [評価結果について]
 下記表1、表2に、冷却手段により炉壁を冷却する場合を「実施例」とし、冷却しない場合を「比較例」として、スラグ加熱温度1550℃及び1600℃にて加熱して還元熔融処理を行ったときのコバルト回収率の結果と、炉壁へのスラグコーティング層形成の有無の結果を示す。
 なお、スラグコーティング層の形成有無の確認は、試験終了後に炉内を目視で確認することにより行った。また、スラグコーティング層におけるLiAlOの有無の確認は、蛍光X線回折によるLiAlOのピーク検出により行った。
 また、図1はAl-CaO-LiO系スラグの状態図であり、そこに本試験で得られたスラグコーティング層の形成有無の結果をプロットした。なお、図中の破線は、熱力学計算ソフト(FactSage)により計算された液相線を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2の結果からわかるように、実施例1~4では、熔融炉の炉壁に、Ca/Alの値がスラグのCa/Alの値よりも小さいスラグコーティング層が形成された。また、そのスラグコーティング層は、Alを15質量%以上かつLiを3質量%以上で含有するものでもあった。さらに、実施例1~4にて形成されたスラグコーティング層は、高融点のLiAlOを含むものであった。これにより、炉壁の耐火物が保護され、熔損が抑制され、安全性高く還元熔融処理を施すことができた。また、スラグとメタルの分離性も良好であり、すべての試料においてコバルト回収率が95%以上となる良好な結果が得られた。
 一方で、比較例1及び2では、いずれも耐火物の溶損が見られた。このことは、スラグコーティング層が形成されなかったため、熔融スラグと炉壁耐火物が接触して熔損が進行したと考えられる。

Claims (4)

  1.  銅(Cu)、ニッケル(Ni)、及びコバルト(Co)を含む有価金属を含有する原料から該有価金属を製造する方法であって、
     少なくとも、リチウム(Li)、アルミニウム(Al)、及び前記有価金属を含む原料を準備する準備工程と、
     前記原料に対して、炉壁を外側から冷却する冷却手段が設けられている熔融炉を使用して還元熔融処理を施し、前記有価金属を含有する合金とスラグとを含む還元物を得る還元熔融工程と、
     前記還元物からスラグを分離して合金を回収するスラグ分離工程と、を有し、
     前記準備工程及び前記還元熔融工程のいずれか一方又は両方の工程において、前記原料にカルシウム(Ca)を含有するフラックスを添加し、
     前記還元熔融工程では、前記冷却手段により前記熔融炉の炉壁を冷却しながら、該熔融炉内の表面に、Ca/Alの値が前記スラグのCa/Alの値よりも小さい固化スラグ層、あるいは、Alを15質量%以上かつLiを3質量%以上で含有する固化スラグ層、を形成させる、
     有価金属の製造方法。
  2.  前記固化スラグ層は、少なくともLiAlOを含む、
     請求項1に記載の有価金属の製造方法。
  3.  前記還元熔融工程では、メタル加熱温度を1300℃以上、スラグ加熱温度を1400℃以上1600℃以下として還元熔融処理を行う、
     請求項1又は2に記載の有価金属の製造方法。
  4.  前記原料は、廃リチウムイオン電池を含む、
     請求項1又は2に記載の有価金属の製造方法。

     
PCT/JP2022/041660 2022-02-21 2022-11-09 有価金属の製造方法 WO2023157397A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022025032 2022-02-21
JP2022-025031 2022-02-21
JP2022-025032 2022-02-21
JP2022025031 2022-02-21
JP2022-131732 2022-08-22
JP2022131732A JP2023121702A (ja) 2022-02-21 2022-08-22 有価金属の製造方法

Publications (1)

Publication Number Publication Date
WO2023157397A1 true WO2023157397A1 (ja) 2023-08-24

Family

ID=87577898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041660 WO2023157397A1 (ja) 2022-02-21 2022-11-09 有価金属の製造方法

Country Status (1)

Country Link
WO (1) WO2023157397A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035916A1 (en) * 2009-09-25 2011-03-31 Umicore Process for the valorization of metals from hev or ev batteries
JP2013506048A (ja) * 2009-09-25 2013-02-21 ユミコア リチウムイオンバッテリーに含まれる金属を資源化する方法
WO2022019172A1 (ja) * 2020-07-21 2022-01-27 住友金属鉱山株式会社 有価金属を回収する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035916A1 (en) * 2009-09-25 2011-03-31 Umicore Process for the valorization of metals from hev or ev batteries
JP2013506048A (ja) * 2009-09-25 2013-02-21 ユミコア リチウムイオンバッテリーに含まれる金属を資源化する方法
WO2022019172A1 (ja) * 2020-07-21 2022-01-27 住友金属鉱山株式会社 有価金属を回収する方法

Similar Documents

Publication Publication Date Title
JP7338326B2 (ja) 有価金属を回収する方法
JP7354903B2 (ja) 廃リチウムイオン電池からの有価金属の回収方法
JP7363207B2 (ja) 有価金属を回収する方法
WO2021205903A1 (ja) 有価金属を回収する方法
JP7400333B2 (ja) 有価金属を回収する方法
JP7359062B2 (ja) 廃リチウムイオン電池からの有価金属の回収方法
JP7363206B2 (ja) 有価金属を回収する方法
WO2023157397A1 (ja) 有価金属の製造方法
JP7220840B2 (ja) 有価金属の製造方法
WO2023162361A1 (ja) 有価金属の製造方法
WO2023286387A1 (ja) 有価金属の製造方法
JP2023121702A (ja) 有価金属の製造方法
WO2024070500A1 (ja) 有価金属の製造方法
JP7192934B1 (ja) 有価金属の製造方法
JP7276361B2 (ja) 有価金属を回収する方法
WO2024048247A1 (ja) 有価金属の回収方法
WO2022224711A1 (ja) 有価金属の製造方法
WO2024048248A1 (ja) 有価金属の回収方法
WO2023228537A1 (ja) リチウム含有スラグ、並びに有価金属の製造方法
JP2022085446A (ja) 有価金属を回収する方法
JP2022085447A (ja) 有価金属を回収する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926337

Country of ref document: EP

Kind code of ref document: A1