WO2023155899A1 - 一种含氮杂环化合物的晶型、制备方法及应用 - Google Patents

一种含氮杂环化合物的晶型、制备方法及应用 Download PDF

Info

Publication number
WO2023155899A1
WO2023155899A1 PCT/CN2023/076920 CN2023076920W WO2023155899A1 WO 2023155899 A1 WO2023155899 A1 WO 2023155899A1 CN 2023076920 W CN2023076920 W CN 2023076920W WO 2023155899 A1 WO2023155899 A1 WO 2023155899A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
ray powder
powder diffraction
crystal
Prior art date
Application number
PCT/CN2023/076920
Other languages
English (en)
French (fr)
Inventor
巩万春
李迪
李瑞鹏
段灵峻
夏广新
柯樱
Original Assignee
上海医药集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海医药集团股份有限公司 filed Critical 上海医药集团股份有限公司
Publication of WO2023155899A1 publication Critical patent/WO2023155899A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to a crystal form, a preparation method and an application of a nitrogen-containing heterocyclic compound.
  • a nitrogen-containing heterocyclic compound 1 its chemical name is (R, Z)-N-(4-((4-([1,2,4]triazolo[1,5-a]pyridine-7- Oxygen)-3-toluene)amine)-7-ethoxyquinazolin-6-yl)-2-fluoro-3-(1-methylpyrrolidin-2-yl)acrylamide, whose molecular formula is C31 H 31 FN 8 O 3 , its structural formula is as follows:
  • CN109422755 and WO2019042409 disclose the nitrogen-containing heterocyclic compound and its preparation method.
  • the obtained compound 1 prepared by the method disclosed in the patent is a yellow foamy solid with unsatisfactory solid state properties.
  • compound 1 is a small molecule inhibitor that either weakens the EGFR kinase inhibitory activity or is selective for the ErbB2 target.
  • the technical problem to be solved in the present invention is to overcome (R, Z)-N-(4-((4-([1,2,4]triazolo[1,5-a]pyridine-7 -Oxo)-3-toluene)amine)-7-ethoxyquinazolin-6-yl)-2-fluoro-3-(1-methylpyrrolidin-2-yl)acrylamide has unsatisfactory solid properties
  • the invention provides a crystal form, preparation method and application of the compound.
  • the crystal form has high stability and good bioavailability.
  • the present invention provides a crystal form C of compound 1;
  • the crystal form C uses Cu-K ⁇ radiation, and the X-ray powder diffraction pattern represented by 2 ⁇ has diffraction peaks at the following positions: 5.32 ⁇ 0.2°, 8.42 ⁇ 0.2°, 10.62 ⁇ 0.2°, 11.48 ⁇ 0.2°, 13.46 ⁇ 0.2 °, 16.14 ⁇ 0.2°, 16.57 ⁇ 0.2°, 16.96 ⁇ 0.2°, 17.26 ⁇ 0.2°, and 18.11 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the crystal form C expressed at 2 ⁇ angles further has diffraction peaks at one or more of the following positions: 19.42 ⁇ 0.2°, 21.26 ⁇ 0.2°, 22.11 ⁇ 0.2°, 22.73 ⁇ 0.2°, 23.05 ⁇ 0.2°, 23.45 ⁇ 0.2°, 25.98 ⁇ 0.2°, 26.71 ⁇ 0.2°, 26.89 ⁇ 0.2°; preferably there are diffraction peaks at one or more of the following positions: 12.23 ⁇ 0.2°, 13.00 ⁇ 0.2°, 14.76 ⁇ 0.2°, 20.33 ⁇ 0.2°, 24.89 ⁇ 0.2°, 28.50 ⁇ 0.2°, 31.74 ⁇ 0.2°, 34.46 ⁇ 0.2°, 35.94 ⁇ 0.2°, and 37.67 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the crystal form C represented by 2 ⁇ angle has diffraction peaks as shown in the following table:
  • the X-ray powder diffraction pattern of the crystal form C represented by 2 ⁇ angle is basically as shown in FIG. 5 .
  • the differential scanning calorimetry of the crystal form C has an endothermic peak at 213.3° C. (starting temperature).
  • the differential scanning calorimetry of the crystal form C has an endothermic peak at 213.3°C (starting temperature), and the heat of fusion is 95.16J/g.
  • the differential scanning calorimetry diagram of the crystal form C is substantially as shown in FIG. 6 .
  • thermogravimetric analysis chart of the crystal form C loses 2.1% of the weight when heated to 200° C.; continues to heat to 230° C., and loses 1.5% of the weight.
  • thermogravimetric analysis diagram of the crystal form C is basically as shown in FIG. 6 .
  • the present invention also provides a method for preparing the above crystal form C, which is scheme 1 or scheme 2;
  • Scheme 1 which includes the following steps: performing crystallization of a suspension of compound 1 and a solvent to obtain crystal form C of compound 1;
  • the compound 1 is one of crystal form B, crystal form A, crystal form G, crystal form H, crystal form I, crystal form M and crystal form E;
  • the crystal form B uses Cu-K ⁇ radiation to
  • the X-ray powder diffraction pattern represented by 2 ⁇ has diffraction peaks at the following positions: 7.53 ⁇ 0.2°, 8.83 ⁇ 0.2°, 12.72 ⁇ 0.2°, 13.98 ⁇ 0.2°, 14.20 ⁇ 0.2°, 15.05 ⁇ 0.2°, 15.44 ⁇ 0.2°, 17.68 ⁇ 0.2°, 18.13 ⁇ 0.2°, 18.38 ⁇ 0.2°, 18.86 ⁇ 0.2°, 21.24 ⁇ 0.2°, 22.44 ⁇ 0.2° and 24.54 ⁇ 0.2°;
  • the crystal form A is represented by Cu-K ⁇ radiation, expressed in 2 ⁇
  • the X-ray powder diffraction pattern has diffraction peaks at the following positions: 5.97 ⁇ 0.2°, 12.27 ⁇ 0.2°, 13.30 ⁇ 0.2°, 14.31 ⁇ 0.2°, 16.08 ⁇ 0.2°, 16.60 ⁇ 0.2°, 17.93 ⁇ 0.2° and 20.24 ⁇
  • the solvent is acetone or acetone/water;
  • the solvent is acetonitrile or ethanol
  • Scheme 2 which includes the following steps: crystallizing compound 1 in a solvent to obtain crystal form C of compound 1; the solvent is an alcoholic solvent, preferably ethanol or isopropanol.
  • the compound 1 is one of the crystal form A, the crystal form G, the crystal form H, the crystal form I, the crystal form M and the crystal form E , the temperature of the crystal transformation is 20-30° C. (room temperature).
  • the temperature of the crystal transformation is 20-50°C, for example, 20-30°C (room temperature).
  • the mass volume ratio of the compound 1 to the solvent is 100mg:2mL.
  • the crystallization temperature is 50-60°C, preferably 55°C.
  • the crystallization time is 24 hours.
  • the present invention also provides a pharmaceutical composition, which comprises the above-mentioned crystal form C and pharmaceutical excipients.
  • the present invention also provides an application of the above-mentioned crystal form C in the preparation of medicines, which can be used to treat cancer and/or diseases treated by inhibiting EGFR and/or ErbB2 receptor tyrosine kinases; Diseases treated by inhibiting ErbB2 receptor tyrosine kinase; the cancer and the disease may be breast cancer, gastric cancer, ovarian cancer, lung cancer, etc.; the crystal form C may be in a therapeutically effective amount.
  • the present invention also provides a use of the above crystal form C in the preparation of EGFR and/or ErbB2 receptor tyrosine kinase inhibitors.
  • the EGFR and/or ErbB2 receptor tyrosine kinase inhibitor may be a selective ErbB2 receptor tyrosine kinase inhibitor.
  • room temperature means 20-30°C.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention is: overcome (R, Z)-N-(4-((4-([1,2,4]triazolo[1,5-a]pyridine-7 -Oxo)-3-toluene)amine)-7-ethoxyquinazolin-6-yl)-2-fluoro-3-(1-methylpyrrolidin-2-yl)acrylamide has unsatisfactory solid properties A crystal form of the compound is provided, which has high stability and good bioavailability.
  • test conditions are as follows:
  • the X-ray powder diffraction patterns described in this application were collected on a PANalytical Empyrean X-ray powder diffractometer and a PANalytical X'Pert 3 X-ray powder diffractometer.
  • Step size 0.0167 degrees
  • DSC Differential scanning calorimetry
  • thermogravimetric analysis (TGA) data described in this application is collected from TA Instruments Q500 and TA Instruments Q5000 thermogravimetric analyzers, the instrument control software is Q Series, and the analysis software is Universal Analysis.
  • TGA thermogravimetric analysis
  • the instrument control software is Q Series
  • the analysis software is Universal Analysis.
  • 2-15 mg of sample is placed in a platinum crucible, and the sample is raised from room temperature to 400 °C at a heating rate of 10 °C/min under the protection of 50 mL/min dry N2 by means of segmented high-resolution detection.
  • the TA software records the weight change of the sample during the heating process.
  • the dynamic moisture adsorption figure described in the application is collected on the Intrinsic type and Intrinsic Plus type dynamic moisture adsorption instrument of SMS company.
  • the method parameters of the dynamic water adsorption test of the present invention are as follows:
  • Relative humidity gradient 10% (0%RH-90%RH-0%RH), 5% (90%RH-95%RH and 95%RH-90%RH)
  • the structure of compound 1 is as follows, and its amorphous form was prepared by referring to patent CN109422755 and Example 45 of WO2019042409.
  • the amorphous form is a yellow foamy solid with unsatisfactory solid properties, and its XRPD is shown in FIG. 26 .
  • the XRPD of the solid prepared by suspending and stirring 100 mg of Compound 1 Form B in 1 mL of EtOAc at room temperature for five days is shown in Figure 1 .
  • Its TGA and DSC spectra are shown in Figure 2.
  • the TGA data shows that the crystal sample is heated to 200°C to lose 6.4% of its weight, and there are two endothermic peaks at 137.2°C and 214.7°C (peak temperature) in DSC.
  • the results show that The obtained solid product is the crystal form A described in this application.
  • the X-ray powder diffraction data of the solid obtained by crystallizing 100 mg of the amorphous compound 1 in 1 ml of acetone at room temperature for 2 h are shown in Table 2, the XRPD pattern is shown in Figure 3, and the TGA/DSC is shown in Figure 4.
  • Embodiment 4 (crystalline form D)
  • Embodiment 5 (crystal form E)
  • the X-ray powder diffraction data of the solid obtained by suspending and stirring 100 mg of compound 1 in 1 mL of Acetone/H 2 O (605:395, v/v) at room temperature for three days is shown in Table 5.
  • Embodiment 6 (crystalline form F)
  • Embodiment 7 (crystalline form G)
  • Embodiment 8 (crystal form H)
  • the X-ray powder diffraction data of the solid prepared by suspending and stirring 100 mg of the crystal form B of compound 1 in 1 mL of water at 50°C for four days are shown in Table 8, the XRPD pattern is shown in Figure 14, and the TGA/DSC results are shown in Figure 15
  • Table 8 The results showed that the sample was heated from room temperature to 150°C and the sample lost 15.3% of its weight; the DSC results showed that the sample had an endothermic peak at 83.7°C (peak temperature), and the results showed that the obtained solid product was the crystal form H described in this application.
  • the X-ray powder diffraction data of the solid prepared by suspending and stirring 100 mg of Form B of Compound 1 in 1 mL of Acetone/H 2 O (605:395, v/v) at room temperature for six days is shown in Table 13, and its XRPD pattern is shown in Fig. As shown in 21, the TGA/DSC results are shown in Figure 22. The sample was heated from room temperature to 135°C and the sample lost 6.9% of its weight; there were two endothermic peaks at 81.6°C (initial temperature) and 157.6°C (initial temperature) , the results showed that the obtained solid product was the crystal form M described in this application.
  • Embodiment 1 Suspension competition test of crystal form B and crystal form C
  • Embodiment 2 Suspension competition of crystal form C/A/G/H/I/M/E is a test
  • Acetone/H 2 O mixed solution (986/14, v/v and 950/50, v/v) system at room temperature with crystal form C/A/G/H/I/M/E set up at different volume ratios
  • suspension competition test in acetone the test results are summarized in Table 14. Specific steps are as follows:
  • Form C has good physical and chemical stability after being placed at 60°C for one day, 25°C/60%RH and 40°C/75%RH for one week.
  • SD rats were administered intragastrically with samples of different crystal forms, and samples were taken from the fundus vein plexus of rats at 5, 15, 30, 60, 90, 120, 240, 360, 480, 600, and 1440 minutes before and after administration, respectively. Blood 0.4mL.
  • the second step is to prepare 5 ⁇ compounds, take 10 mM stock solution of the test compound (crystal form C prepared in Example 3), and in a 96-well compound plate, dilute the compound in multiple steps with DMSO to obtain the initial concentration of 100 ⁇ Compound, then this concentration of compound as the first concentration, using DMSO for 3-fold serial dilution, a total of 10 concentrations were diluted. Afterwards, 1 ⁇ l of the gradient dilution was added to 19 ⁇ l of 1 ⁇ reaction buffer to prepare 5 ⁇ compounds for use. Then transfer 2 ⁇ l of 5X compounds from the 96-well plate into the 384-well plate.
  • the final concentration of ErbB2 kinase (Sigma E2645-500UN): 0.06ng/ ⁇ l, the final concentration of ATP: 4 ⁇ M; the final concentration of EGFR kinase (Carna 08-016): 0.06units/ ⁇ l, the final concentration of ATP: 1.65 ⁇ M ; Add 4 ⁇ l of 2.5 ⁇ enzyme/substrate mixture to the 384-well plate and incubate at room temperature for 5 minutes; then add 4 ⁇ l of 2.5 ⁇ ATP solution to each well and react at room temperature for 30 minutes.
  • HTRF Detection buffer was used to prepare a 2 ⁇ mixture of TK Antibody-Eu(K) and Sa-XL665, and the amount of TK Antibody-Eu(K) was 5 ⁇ l per detection well.
  • 10 ⁇ l of the above liquid was added to a 384-well plate, and reacted at room temperature for 1 hour.
  • Data measurement was carried out on EnVisionTM, using 337nM The laser with the wavelength is used as the excitation light, RFU665nM and RFU620nM are measured, and RFU665nM/RFU620nM ⁇ 10000 is used as the final data for analysis.

Abstract

本发明公开了一种含氮杂环化合物的晶型、制备方法及应用。本发明提供了一种化合物1的晶型C,并公开了其制备方法、组合物以及其在制备药物中的应用。该晶型稳定性好,生物利用度高。

Description

一种含氮杂环化合物的晶型、制备方法及应用
本申请要求申请日为2022/2/17的中国专利申请2022101475924的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种含氮杂环化合物的晶型、制备方法及应用。
背景技术
一种含氮杂环化合物1,其化学名称为(R,Z)-N-(4-((4-([1,2,4]三唑并[1,5-a]吡啶-7-氧)-3-甲苯)胺)-7-乙氧基喹唑啉-6-基)-2-氟-3-(1-甲基吡咯烷-2-基)丙烯酰胺,其分子式为C31H31FN8O3,其结构式如下所示:
CN109422755,WO2019042409公开了该含氮杂环化合物及其制备方法。通过专利中公开的方法制备所得化合物1为黄色泡沫状固体,固态性质不理想。同时表明化合物1是一个或减弱EGFR激酶抑制活性的或具有选择性的针对ErbB2靶点的小分子抑制剂。
发明内容
本发明要解决的技术问题是为了克服现有技术中(R,Z)-N-(4-((4-([1,2,4]三唑并[1,5-a]吡啶-7-氧)-3-甲苯)胺)-7-乙氧基喹唑啉-6-基)-2-氟-3-(1-甲基吡咯烷-2-基)丙烯酰胺的固体性质不理想的缺陷,提供一种该化合物的晶型、制备方法及应用,该晶型稳定性高,生物利用度好。
本发明是通过下述技术方案来解决上述技术问题:
本发明提供了一种化合物1的晶型C;
所述晶型C使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:5.32±0.2°、8.42±0.2°、10.62±0.2°、11.48±0.2°、13.46±0.2°、16.14±0.2°、16.57±0.2°、16.96±0.2°、17.26±0.2°和18.11±0.2°。
在某一方案中,所述晶型C以2θ角表示的X射线粉末衍射图还进一步在下述的一个或多个位置有衍射峰:19.42±0.2°、21.26±0.2°、22.11±0.2°、22.73±0.2°、23.05±0.2°、23.45±0.2°、25.98±0.2°、26.71±0.2°、26.89±0.2°;优选还在下述的一个或多个位置有衍射峰:12.23±0.2°、13.00±0.2°、14.76±0.2°、20.33±0.2°、24.89±0.2°、28.50±0.2°、31.74±0.2°、34.46±0.2°、35.94±0.2°和37.67±0.2°。
在某一方案中,所述晶型C以2θ角表示的X射线粉末衍射图具有如下表所示的衍射峰:

在某一方案中,所述晶型C以2θ角表示的X射线粉末衍射图基本如图5所示。
在某一方案中,所述晶型C的差示扫描量热图在213.3℃(起始温度)处有一个吸热峰。
在某一方案中,所述晶型C的差示扫描量热图在213.3℃(起始温度)处有一个吸热峰,熔化热为95.16J/g。
在某一方案中,所述晶型C的差示扫描量热图基本如图6所示。
在某一方案中,所述晶型C的热重分析图在加热至200℃时失重2.1%;继续加热至230℃,失重1.5%。
在某一方案中,所述晶型C的热重分析图基本如图6所示。
本发明还提供了一种上述晶型C的制备方法,其为方案一或方案二;
方案一,其包括如下步骤:将化合物1与溶剂的混悬液进行转晶,得到化合物1的晶型C即可;
所述化合物1为晶型B、晶型A、晶型G、晶型H、晶型I、晶型M和晶型E中的一种;所述晶型B为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:7.53±0.2°、8.83±0.2°、12.72±0.2°、13.98±0.2°、14.20±0.2°、15.05±0.2°、15.44±0.2°、17.68±0.2°、18.13±0.2°、18.38±0.2°、18.86±0.2°、21.24±0.2°、22.44±0.2°和24.54±0.2°;所述晶型A为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:5.97±0.2°、12.27±0.2°、13.30±0.2°、14.31±0.2°、16.08±0.2°、16.60±0.2°、17.93±0.2°和20.24±0.2°;所述晶型G为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位 置具有衍射峰:6.41±0.2°、6.88±0.2°、8.75±0.2°、12.82±0.2°、13.38±0.2°、13.73±0.2°、16.74±0.2°、17.64±0.2°、19.24±0.2°、21.68±0.2°、22.77±0.2°、26.14±0.2°和26.49±0.2°;所述晶型H为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:5.41±0.2°、6.13±0.2°、7.92±0.2°、11.19±0.2°、12.26±0.2°和21.91±0.2°;所述晶型I为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:6.80±0.2°、7.22±0.2°、8.03±0.2°、8.35±0.2°、9.70±0.2°、10.28±0.2°和19.84±0.2°;所述晶型M为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述具有衍射峰:5.52±0.2°、7.96±0.2°、9.41±0.2°、13.36±0.2°、14.68±0.2°、17.93±0.2°、18.70±0.2°、25.75±0.2°、26.11±0.2°和26.50±0.2°;所述晶型E为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:6.07±0.2°、8.97±0.2°、9.32±0.2°、9.87±0.2°、13.05±0.2°、13.27±0.2°、14.09±0.2°、15.78±0.2°、16.98±0.2°、18.27±0.2°、18.47±0.2°、21.26±0.2°、22.41±0.2°;
当所述化合物1为晶型A、晶型G、晶型H、晶型I、晶型M和晶型E中的一种时,所述溶剂为丙酮或丙酮/水;
当所述化合物1为晶型B时,所述溶剂为乙腈或乙醇;
方案二,其包括如下步骤:将化合物1在溶剂中进行析晶,得到化合物1的晶型C即可;所述溶剂为醇类溶剂,优选为乙醇或异丙醇。
所述晶型C的制备方法中,当采用所述方案一时,所述溶剂为丙酮/水时,丙酮与水的体积比为986:14–950:50。
所述晶型C的制备方法中,当采用所述方案一时,所述化合物1为晶型A、晶型G、晶型H、晶型I、晶型M和晶型E中的一种时,所述转晶的温度为20-30℃(室温)。
所述晶型C的制备方法中,当采用所述方案一时,所述化合物1为晶型B时,所述转晶的温度为20-50℃,例如20-30℃(室温)。
所述晶型C的制备方法中,当采用所述方案二时,所述化合物1与所述溶剂的质量体积比为100mg:2mL。
所述晶型C的制备方法中,当采用所述方案二时,所述析晶的温度为50-60℃,优选55℃。
所述晶型C的制备方法中,当采用所述方案二时,所述析晶的时间为24h。
本发明还提供了一种药物组合物,其包含上述的晶型C和药用辅料。
本发明还提供了一种上述晶型C在制备药物中的应用,所述药物可用于治疗癌症和/或通过抑制EGFR和/或ErbB2受体酪氨酸激酶治疗的疾病;例如治疗通过选择性抑制ErbB2受体酪氨酸激酶治疗的疾病;所述的癌症和所述疾病可为乳腺癌、胃癌、卵巢癌、肺癌等;所述的晶型C可为治疗有效量。
本发明还提供了一种上述晶型C在制备EGFR和/或ErbB2受体酪氨酸激酶抑制剂中的应用。所述EGFR和/或ErbB2受体酪氨酸激酶抑制剂可为选择性ErbB2受体酪氨酸激酶抑制剂。
本发明中,“室温”是指20-30℃。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:克服了现有技术中(R,Z)-N-(4-((4-([1,2,4]三唑并[1,5-a]吡啶-7-氧)-3-甲苯)胺)-7-乙氧基喹唑啉-6-基)-2-氟-3-(1-甲基吡咯烷-2-基)丙烯酰胺的固体性质不理想的缺陷,提供一种该化合物的晶型,该晶型稳定性高,生物利用度好。
附图说明
图1晶型A的XRPD谱图
图2晶型A的TGA/DSC谱图
图3晶型B的XRPD谱图
图4晶型B的TGA/DSC谱图
图5晶型C的XRPD谱图
图6晶型C的TGA/DSC谱图
图7晶型D的XRPD谱图
图8晶型E的XRPD谱图
图9晶型E的TGA/DSC谱图
图10晶型F的XRPD谱图
图11晶型F的TGA/DSC谱图
图12晶型G的XRPD谱图
图13晶型G的TGA/DSC的谱图
图14晶型H的XRPD谱图
图15晶型H的TGA/DSC谱图
图16晶型I的XRPD谱图
图17晶型I的TGA/DSC谱图
图18晶型J的XRPD谱图
图19晶型K的XRPD谱图
图20晶型L的XRPD谱图
图21晶型M的XRPD谱图
图22晶型M的TGA/DSC谱图
图23晶型B和晶型C混悬竞争的XRPD对比图
图24晶型C/A/G/H/I/M/E混合物混悬竞争的XRPD对比图
图25晶型C稳定性试验的XRPD对比图
图26无定型的XRPD谱图
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
本发明中所使用的缩写解释如下:
XPRD—X射线粉末衍射
TGA—热重分析
DSC—差示扫描量热分析
DVS—动态水分吸脱附分析
其测试条件如下:
XRPD
本申请所述的X射线粉末衍射图在PANalytical Empyrean型X射线粉末衍射仪及PANalytical X'Pert3型X射线粉末衍射仪上采集。
Empyrean型X射线粉末衍射的方法参数如下:
X射线类型:Cu,Kα
1.540598;1.544426
Kα2/Kα1强度比例:0.50
电压:45仟伏特(kV)
电流:40毫安培(mA)
发散狭缝:自动
扫描模式:连续
扫描范围:自3.0至40.0度
每步扫描时间:17.780秒
步长:0.0167度
PANalytical X'Pert3型X射线粉末衍射的方法参数如下:
X射线类型:Cu,Kα
1.540598;1.544426
Kα2/Kα1强度比例:0.50
电压:45仟伏特(kV)
电流:40毫安培(mA)
发散狭缝:1/16度
扫描模式:连续
扫描范围:自3.0至40.0度
每步扫描时间:46.665秒
步长:0.0263度
DSC
本申请所述的差示扫描量热分析(DSC)数据采自于TA Instruments Q200型及TA Instruments  Q2000型差示扫描量热仪,仪器控制软件是Q Series,分析软件是Universal Analysis。通常取1~10毫克的样品放置于加盖(除非特别说明)的铝坩埚内,以10℃/min的升温速度在50mL/min干燥N2的保护下将样品从室温升至300℃,同时TA软件记录样品在升温过程中的热量变化。在本申请中,熔点是按起始温度来报告的。
TGA
本申请所述的热重分析(TGA)数据采自于TA Instruments Q500型及TA Instruments Q5000型热重分析仪,仪器控制软件是Q Series,分析软件是Universal Analysis。通常取2~15mg的样品放置于白金坩埚内,采用分段高分辨检测的方式,以10℃/min的升温速度在50mL/min干燥N2的保护下将样品从室温升至400℃,同时TA软件记录样品在升温过程中的重量变化。
DVS
本申请所述的动态水分吸附图在SMS公司的Intrinsic型及Intrinsic Plus型动态水分吸附仪上采集。本发明所述的动态水分吸附测试的方法参数如下:
温度:25℃
保护气体及流量:N2,200毫升/分钟
dm/dt:0.002%/分钟
最小dm/dt平衡时间:10分钟
最大平衡时间:180分钟
相对湿度范围:0%RH-95%RH-0%RH
相对湿度梯度:10%(0%RH-90%RH-0%RH)、5%(90%RH-95%RH和95%RH-90%RH)
化合物1的无定型的制备实施例:
实施例1:
化合物1的结构如下,其无定型参考专利CN109422755,WO2019042409实施例45制备得到。该无定型为黄色泡沫状固体,固态性质不理想,其XRPD如图26所示。
晶型的制备实施例:
实施例1(化合物1的晶型A)
将100mg化合物1晶型B在1mL EtOAc中室温悬浮搅拌五天制备所得固体的XRPD如图1所示。其TGA和DSC谱图如图2所示,TGA数据显示该晶型样品加热至200℃失重6.4%,且DSC中在137.2℃和214.7℃(峰值温度)处有两个吸热峰,结果表明所得固体产物为本申请所述的晶型A。
表1晶型A的XRPD数据
实施例2(化合物1的晶型B)
将化合物1的无定型100mg在1ml丙酮中室温搅拌2h析晶所得固体的X射线粉末衍射数据如表2所示,其XRPD图如图3所示,TGA/DSC如图4所示,该样品从室温加热至100℃,失重0.7%,继续加热至220℃,失重2.3%,在165.2℃(起始温度)处有一个吸热峰,推测为样品熔融信号,结果 表明所得固体产物为本申请所述的晶型B。
表2晶型B的XRPD数据
实施例3(化合物1的晶型C)
将化合物1的无定型100mg在2ml乙醇中50-60℃搅拌析晶24h得固体的X射线粉末衍射数据 如表3所示,其XRPD图如图5所示,TGA/DSC结果如图6所示,该样品从室温加热至200℃,失重2.1%,继续加热至230℃,失重1.5%,在213.3℃(起始温度)处有一个吸热峰,推测为样品熔融信号,熔化热为95.16J/g,结果表明所得固体产物为本申请所述的晶型C。
表3晶型C的XRPD数据
实施例4(晶型D)
将化合物1的无定型5mg在1ml2-甲基四氢呋喃(2-MeTHF)中50℃搅拌四天析晶所得固体的X射线粉末衍射数据如表4所示,其XRPD图如图7所示,结果表明所得固体产物为本申请所述的晶型D。
表4晶型D的XRPD数据
实施列5(晶型E)
通过将100mg化合物1的晶型B在1mL Acetone/H2O(605:395,v/v)中室温悬浮搅拌三天重复制备所得固体的X射线粉末衍射数据如表5所示,其XRPD图如图8所示,TGA/DSC结果如图9所示,样品从室温加热至135℃失重6.0%,在85.8℃(峰值温度)、160.0℃(峰值温度)处有两个吸热峰,结果表明所得固体产物为本申请所述的晶型E。
表5晶型E的XRPD数据

实施列6(晶型F)
将2mg化合物1的晶型B在1mL Acetone/H2O(605:395,v/v)中室温悬浮搅拌一天制备所得固体的X射线粉末衍射数据如表6所示,其XRPD图如图10所示,TGA/DSC结果如图11所示,样品从室温加热至140℃样品失重13.2%,在80.7℃(起始温度)处有一个吸热峰,结果表明所得固体产物为本申请所述的晶型F。
表6晶型F的XRPD数据

实施列7(晶型G)
称取100mg化合物1的晶型B,加入21mL CHCl3/MeOH(1:20,v/v)溶解样品,将样品过滤并用封口膜封口并扎数个小孔后放置在通风橱中室温自然挥发,所得固体的X射线粉末衍射数据如表7所示,其XRPD图如图12所示,TGA/DSC结果如图13所示,样品从室温加热至125℃样品失重9.6%,在83.0℃和146.6℃(峰值温度)处有两个吸热峰,结果表明所得固体产物为本申请所述的晶型G。
表7晶型G的XRPD数据

实施列8(晶型H)
通过将100mg化合物1的晶型B在1mL水中50℃悬浮搅拌四天制备所得固体的X射线粉末衍射数据如表8所示,其XRPD图如图14所示,TGA/DSC结果如图15所示,将样品从室温加热至150℃样品失重15.3%;DSC结果表明样品在83.7℃(峰值温度)处有一个吸热峰,结果表明所得固体产物为本申请所述的晶型H。
表8晶型H的XRPD数据
实施列9(晶型I)
称量100mg化合物1的晶型B,加入8mL CHCl3/IPA(1:3,v/v)溶解样品,将样品过滤并用封口膜封口并扎数个小孔后放置在通风橱中自然挥发所得固体的X射线粉末衍射数据如表9所示,其XRPD图如图16所示,TGA/DSC结果如图17所示,将该样品从室温加热至150℃,失重15.2%;DSC结果表明在95.5℃(峰值温度)处有一个吸热峰,结果表明所得固体产物为本申请所述的晶型I。
表9晶型I的XRPD数据

实施列10晶型J
将20mg化合物1的晶型B,加入0.2mL二甲亚砜(DMSO)溶解样品,将所得样品过滤后在磁力搅拌下向瓶中逐滴加入5mL MIBK(4-甲基-2-戊酮),将样品在室温下敞口挥发至有固体生成,所得固体的X射线粉末衍射数据如表10所示,其XRPD图如图18所示,结果表明所得固体产物为本申请所述的晶型J。
表10晶型J的XRPD数据

实施列11晶型K
称取100mg化合物1的晶型B,加入20mL CHCl3/MeOH(1:20,v/v)溶解样品,将样品过滤后敞口挥发至有固体生成,所得固体的X射线粉末衍射数据如表11所示,其XRPD图如图19所示,结果表明所得固体产物为本申请所述的晶型K。
表11晶型K的XRPD数据
实施列12晶型L
将实施列5中所得的晶型E在氮气下吹扫十分钟后所得固体的X射线粉末衍射数据如表12所示,其XRPD图如图20所示,结果表明所得固体产物为本申请所述的晶型L。
表12晶型L的XRPD数据

实施列13晶型M
将100mg化合物1的晶型B在1mL Acetone/H2O(605:395,v/v)中室温悬浮搅拌六天制备所得固体的X射线粉末衍射数据如表13所示,其XRPD图如图21所示,TGA/DSC结果如图22所示,将样品从室温加热至135℃样品失重6.9%;在81.6℃(起始温度)和157.6℃(起始温度)处有两个吸热峰,结果表明所得固体产物为本申请所述的晶型M。
表13晶型M的XRPD数据

晶型转化关系实施例
实施例1晶型B和晶型C的混悬竞争试验
设置了两种晶型在乙腈和乙醇中室温和50℃下的混悬竞争试验,试验结果汇总于表14中。具体步骤如下:
1)在室温及50℃条件下,分别配制晶型B在乙腈及乙醇中的饱和溶液并过滤;
2)分别向0.5mL各饱和溶液:晶型B的乙醇和乙腈溶液中加入约5mg的晶型B和晶型C,将所得悬浊液在室温及50℃条件下分别悬浮搅拌两天;
3)分离所得固体测试XRPD,如图23。
实施例2晶型C/A/G/H/I/M/E的混悬竞争为试验
设置了晶型C/A/G/H/I/M/E的室温下在不同体积比的Acetone/H2O混合溶液(986/14,v/v和950/50,v/v)体系或丙酮中的混悬竞争试验,试验结果汇总于表14中。具体步骤如下:
1)配制晶型C/A/G/H/I/M/E在室温条件下在各溶剂体系中的饱和溶液并过滤;
2)分别向0.5mL各饱和溶液中加入约5mg的晶型C/A/G/H/I/M/E,将所得悬浊液在室温下悬浮搅拌过夜;
3)分离所得固体测试XRPD如图24。
表14各种晶型混悬竞争试验汇总
结论:根据图23和图24中XRPD对比结果,在各体系中所得固体样品均为晶型C,推测晶型C 为较稳定晶型。
晶型C物理化学稳定性评估
实施例1
为评估晶型C的物理化学稳定性,分别称取约20mg化合物1的晶型C在60℃下密封放置一天以及25℃/60%RH、40℃/75%RH条件下敞口(封口膜封口,在封口膜上扎一些孔)放置一周。将不同条件下放置后的固体样品,分别通过UPLC测试纯度以评估化学稳定性,通过XRPD测试晶型以评估物理稳定性。评估结果汇总于表15中:在三种测试条件下,晶型C均未发生晶型转变,XRPD结果见图25所示;样品在60℃放置一天、25℃/60%RH和40℃/75%RH条件下放置一周后未发生明显降解(具体纯度变化情况见表16)。
表15晶型C的物理化学稳定性评估结果汇总
表16晶型C稳定性样品杂质汇总表
结论:表明晶型C在60℃放置一天、25℃/60%RH和40℃/75%RH条件下放置一周后物理和化学稳定性良好。
效果实施例1 不同晶型给药后大鼠体内吸收比较
SD大鼠分别灌胃给予不同晶型的样品,分别于给药前和给药后5、15、30、60、90、120、240、360、480、600、1440min于大鼠眼底静脉丛取血0.4mL。血样于8000rpm离心5min,分离上层血浆,血浆样品50μL,加入300μL含内标的乙腈(Propranolol,25ng/ml)沉淀蛋白,涡旋10min,6000g,4℃离心20min,取上清20μL加入超纯水80μL稀释后,离心取上清80μL于96孔板进样。在LC/MS/MS中进行检测得到血浆药物浓度,再计算相应的药代参数,见表17。
表17不同晶型样品灌胃给药后药代参数
结论:本次实验分别将无定型、晶型A、晶型B、晶型C和晶型M以8mg/kg的剂量大鼠灌胃给药,结果显示,晶型C的药代参数最优。
效果实施例2 EGFR/ErbB2酶促实验
首先,配制激酶所需要的1×反应缓冲液,用去离子水将HTRF kinEASE-TK kit中的5×Enzymatic buffer(HEPES 20mM PH7.0,NaN3 0.1%,BSA 0.05%,原钒酸钠0.5mM)稀释至1倍,同时加入50nM Supplement Enzymatic buffer(SEB reagent),1mM MnCl2,5mM MgCl2,1mM DTT。第二步是配制5×化合物,取10mM的受试化合物(实施例3制备所得晶形C)储存液,在96孔化合物板中,用DMSO将化合物分多步稀释,获得为初始浓度100×的化合物,之后再以此浓度化合物为第一个浓度,采用DMSO进行3倍梯度稀释,共稀释10个浓度。之后分别取1μl的梯度稀释液加入19μl的1×反应缓冲液中,配制成5×化合物备用。接着从96孔板中转移2μl的5×化合物进入384孔板中。无化合物对照孔中加入2μl的如下液体:1μl的DMSO加入19μl的1×反应缓冲液。空白对照孔中加入2μl的250mM的EDTA。第三步酶反应阶段,采用1×反应缓冲液将激酶、底物(TK Substrate-biotin)、ATP分别配制成2.5×的酶/底物混合液和2.5×的ATP溶液。ErbB2激酶(Sigma E2645-500UN)的终浓度为:0.06ng/μl,ATP终浓度为:4μM;EGFR激酶(Carna 08-016)的终浓度为:0.06units/μl,ATP终浓度为:1.65μM;向384孔板中加入4μl的2.5×的酶/底物混合液,室温孵育5分钟;再向每孔中加入4μl的2.5×ATP溶液,室温反应30分钟。第四步反应终止阶段,用HTRF Detection buffer配制2×的TK Antibody-Eu(K)与Sa-XL665的混合液,TK Antibody-Eu(K)用量为每检测孔5μl。酶反应进行30分钟后,向384孔板中加入10μl上述液体,室温反应1小时。于EnVisionTM上进行数据测定,选用337nM 波长的激光作为激发光,测定RFU665nM以及RFU620nM,并以RFU665nM/RFU620nM×10000作为最终数据进行分析。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (10)

  1. 一种化合物1的晶型C,其特征在于:所述晶型C使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:5.32±0.2°、8.42±0.2°、10.62±0.2°、11.48±0.2°、13.46±0.2°、16.14±0.2°、16.57±0.2°、16.96±0.2°、17.26±0.2°和18.11±0.2°;
  2. 如权利要求1所述晶型C,其特征在于:所述晶型C满足如下一个或多个条件:
    (1)所述晶型C以2θ角表示的X射线粉末衍射图还进一步在下述的一个或多个位置有衍射峰:19.42±0.2°、21.26±0.2°、22.11±0.2°、22.73±0.2°、23.05±0.2°、23.45±0.2°、25.98±0.2°、26.71±0.2°、26.89±0.2°;优选还在下述的一个或多个位置有衍射峰:12.23±0.2°、13.00±0.2°、14.76±0.2°、20.33±0.2°、24.89±0.2°、28.50±0.2°、31.74±0.2°、34.46±0.2°、35.94±0.2°和37.67±0.2°;
    (2)所述晶型C的差示扫描量热图在213.3℃处有一个吸热峰;
    (3)所述晶型C的热重分析图在加热至200℃时失重2.1%;继续加热至230℃,失重1.5%。
  3. 如权利要求2所述晶型C,其特征在于:所述晶型C满足如下一个或多个条件:
    (1)所述晶型C以2θ角表示的X射线粉末衍射图具有如下表所示的衍射峰:

    (2)所述晶型C的差示扫描量热图在213.3℃处有一个吸热峰,熔化热为95.16J/g;
    (3)所述晶型C的热重分析图基本如图6所示。
  4. 如权利要求3所述晶型C,其特征在于:所述晶型C满足如下一个或两个条件:
    (1)所述晶型C以2θ角表示的X射线粉末衍射图基本如图5所示;
    (2)所述晶型C的差示扫描量热图基本如图6所示。
  5. 一种如权利要求1~4任一项所述的晶型C的制备方法,其特征在于:其为方案一或方案二;其中,
    方案一,其包括如下步骤:将化合物1与溶剂的混悬液进行转晶,得到化合物1的晶型C即可;
    所述化合物1选自晶型B、晶型A、晶型G、晶型H、晶型I、晶型M和晶型E;所述晶型B为 使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:7.53±0.2°、8.83±0.2°、12.72±0.2°、13.98±0.2°、14.20±0.2°、15.05±0.2°、15.44±0.2°、17.68±0.2°、18.13±0.2°、18.38±0.2°、18.86±0.2°、21.24±0.2°、22.44±0.2°和24.54±0.2°;所述晶型A为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:5.97±0.2°、12.27±0.2°、13.30±0.2°、14.31±0.2°、16.08±0.2°、16.60±0.2°、17.93±0.2°和20.24±0.2°;所述晶型G为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:6.41±0.2°、6.88±0.2°、8.75±0.2°、12.82±0.2°、13.38±0.2°、13.73±0.2°、16.74±0.2°、17.64±0.2°、19.24±0.2°、21.68±0.2°、22.77±0.2°、26.14±0.2°和26.49±0.2°;所述晶型H为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:5.41±0.2°、6.13±0.2°、7.92±0.2°、11.19±0.2°、12.26±0.2°和21.91±0.2°;所述晶型I为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:6.80±0.2°、7.22±0.2°、8.03±0.2°、8.35±0.2°、9.70±0.2°、10.28±0.2°和19.84±0.2°;所述晶型M为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述具有衍射峰:5.52±0.2°、7.96±0.2°、9.41±0.2°、13.36±0.2°、14.68±0.2°、17.93±0.2°、18.70±0.2°、25.75±0.2°、26.11±0.2°和26.50±0.2°;所述晶型E为使用Cu-Kα辐射,以2θ表示的X射线粉末衍射图在下述位置具有衍射峰:6.07±0.2°、8.97±0.2°、9.32±0.2°、9.87±0.2°、13.05±0.2°、13.27±0.2°、14.09±0.2°、15.78±0.2°、16.98±0.2°、18.27±0.2°、18.47±0.2°、21.26±0.2°、22.41±0.2°;
    当所述化合物1选自晶型A、晶型G、晶型H、晶型I、晶型M和晶型E时,所述溶剂为丙酮或丙酮/水;
    当所述化合物1为晶型B时,所述溶剂为乙腈或乙醇;
    方案二,其包括如下步骤:将化合物1在溶剂中进行析晶,得到化合物1的晶型C即可;所述溶剂为醇类溶剂,优选为乙醇或异丙醇。
  6. 如权利要求5所述晶型C的制备方法,其特征在于:所述方案一中,所述制备方法满足如下一个或多个条件:
    (1)当所述溶剂为丙酮/水时,丙酮与水的体积比为986:14–950:50;
    (2)当所述化合物1为晶型A、晶型G、晶型H、晶型I、晶型M和晶型E中的一种时,所述转晶的温度为20-30℃;
    (3)当所述化合物1为晶型B时,所述转晶的温度为20-50℃,例如20-30℃。
  7. 如权利要求5所述晶型C的制备方法,其特征在于:所述方案二中,所述制备方法满足如下一个或多个条件:
    (1)所述化合物1与所述溶剂的质量体积比为100mg:2mL;
    (2)所述析晶的温度为50-60℃;优选为55℃;
    (3)所述析晶的时间为24h。
  8. 一种药物组合物,其包含如权利要求1~7中任一项所述的晶型C和药用辅料。
  9. 一种如权利要求1~7中任一项所述的晶型C在制备药物中的应用,所述药物可用于治疗癌症和/或通过抑制EGFR和/或ErbB2受体酪氨酸激酶治疗的疾病;例如治疗通过选择性抑制ErbB2受体 酪氨酸激酶治疗的疾病;所述的癌症和所述疾病可为乳腺癌、胃癌、卵巢癌或肺癌;所述的晶型C可为治疗有效量。
  10. 一种如权利要求1~7中任一项所述的晶型C在制备EGFR和/或ErbB2受体酪氨酸激酶抑制剂中的应用;所述EGFR和/或ErbB2受体酪氨酸激酶抑制剂可为选择性ErbB2受体酪氨酸激酶抑制剂。
PCT/CN2023/076920 2022-02-17 2023-02-17 一种含氮杂环化合物的晶型、制备方法及应用 WO2023155899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210147592.4 2022-02-17
CN202210147592 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023155899A1 true WO2023155899A1 (zh) 2023-08-24

Family

ID=87577636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076920 WO2023155899A1 (zh) 2022-02-17 2023-02-17 一种含氮杂环化合物的晶型、制备方法及应用

Country Status (2)

Country Link
CN (1) CN116606289A (zh)
WO (1) WO2023155899A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042409A1 (zh) * 2017-09-01 2019-03-07 上海医药集团股份有限公司 一种含氮杂环化合物、制备方法、中间体、组合物和应用
WO2022206929A1 (zh) * 2021-04-01 2022-10-06 上海医药集团股份有限公司 一种化合物在制备靶向ErbB2突变体的抑制药物中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042409A1 (zh) * 2017-09-01 2019-03-07 上海医药集团股份有限公司 一种含氮杂环化合物、制备方法、中间体、组合物和应用
WO2022206929A1 (zh) * 2021-04-01 2022-10-06 上海医药集团股份有限公司 一种化合物在制备靶向ErbB2突变体的抑制药物中的应用

Also Published As

Publication number Publication date
CN116606289A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
CN105209456B (zh) 表皮生长因子受体的活化突变形式的喹唑啉抑制剂
EP2699551B1 (en) Tetrahydroquinoline derivatives useful as bromodomain inhibitors
JP6609065B2 (ja) 1−(5−(2,4−ジフルオロフェニル)−1−((3−フルオロフェニル)スルホニル)−4−メトキシ−1h−ピロール−3−イル)−n−メチルメタンアミンの新規な酸付加塩
BRPI0720563A2 (pt) Quinazolinas para inibição de pdk1
WO2017152707A1 (zh) 吡啶胺基嘧啶衍生物甲磺酸盐的结晶形式及其制备和应用
US20080312288A1 (en) Solid forms of 2-chloro-4-[1-(4-fluoro-phenyl)-2,5-dimethyl-1h-imidazol-4-ylethynyl]-pyridine
CN107531678A (zh) Egfr抑制剂及其药学上可接受的盐和多晶型物及其应用
AU2017317724A1 (en) Imidazole derivatives and their use in the treatment of autoimmune or inflammatory diseases or cancers
CN112040947A (zh) Nsd家族抑制剂及用其进行治疗的方法
JP2002529468A (ja) GABA−Aα−5逆活性薬の治療性多形およびそのパモエート組成物
PT1807431E (pt) Pirrolo[1,2-d][1,2-4]triazina como inibidores das quinases c-jun n terminal (jnk) e das quinases p-38
CA2393720C (en) Crystalline 2,5-dione-3-(1-methyl-1h-indol-3-yl)-4-[1-(pyridin-2-ylmethyl)piperidin-4-yl]-1h-indol-3-yl]-1h-pyrrole mono-hydrochloride
KR20110017907A (ko) 엘로티닙 염기 및 엘로티닙 hcl의 결정형
WO2023155899A1 (zh) 一种含氮杂环化合物的晶型、制备方法及应用
WO2021143843A1 (zh) 一种pde3/pde4双重抑制剂的结晶及其应用
US20200216427A1 (en) Solid state forms of entrectinib
TWI519533B (zh) 1-{(2S)-2-胺基-4-[2,4-雙(三氟甲基)-5,8-二氫吡啶并[3,4-d]嘧啶-7(6H)-基]-4-側氧丁基}-5,5-二氟哌啶-2-酮酒石酸鹽之水合物
WO2013076659A1 (en) Aprepitant l-proline solvates - compositions and cocrystals
KR20210132143A (ko) 신규한 pan-RAF 키나아제 저해제 및 이의 용도
TW202313589A (zh) (3r)-n-〔2-氰基-4-氟-3-(-3-甲基-4-側氧-喹唑啉-6-基)氧-苯基〕-3-氟-吡咯啶-1-磺醯胺之新穎固體形式
JP2006512355A (ja) E−2−メトキシ−n−(3−{4−[3−メチル−4−(6−メチルピリジン−3−イルオキシ)−フェニルアミノ]−キナゾリン−6−イル}−アリル)−アセトアミドの複合体、それらの製造方法および使用
US7655800B2 (en) Crystalline 1H-imidazo[4,5-b]pyridin-5-amine, 7-[5-[(cyclohexylmethylamino)-methyl]-1H-indol-2-yl]-2-methyl, sulfate (1:1), trihydrate and its pharmaceutical uses
WO2011027324A1 (en) Polymorphic forms of atazanavir sulfate
JP2021533111A (ja) Lta4h阻害剤の結晶形態
WO2022206666A1 (zh) 吡咯酰胺化合物的晶型及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755900

Country of ref document: EP

Kind code of ref document: A1