WO2023155638A1 - 一种光器件、光模块及通信设备 - Google Patents

一种光器件、光模块及通信设备 Download PDF

Info

Publication number
WO2023155638A1
WO2023155638A1 PCT/CN2023/070964 CN2023070964W WO2023155638A1 WO 2023155638 A1 WO2023155638 A1 WO 2023155638A1 CN 2023070964 W CN2023070964 W CN 2023070964W WO 2023155638 A1 WO2023155638 A1 WO 2023155638A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
optical fiber
array unit
fiber array
glue
Prior art date
Application number
PCT/CN2023/070964
Other languages
English (en)
French (fr)
Inventor
邱志成
唐晓枫
肖鹏程
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023155638A1 publication Critical patent/WO2023155638A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4239Adhesive bonding; Encapsulation with polymer material

Definitions

  • the present application relates to the technical field of communication, and in particular to an optical device, an optical module and a communication device.
  • the fiber array unit (Fiber Array Unit, FAU) and the waveguide array can be coupled through evanescent wave coupling, grating coupling or edge coupling.
  • side coupling has smaller loss than other coupling methods, and a single glue can be used to bond the optical fiber in the fiber array unit and the waveguide in the waveguide array together to realize the side coupling between the fiber array unit and the waveguide array.
  • a single glue it is difficult to meet the requirements of low refractive index, high bonding strength and high temperature resistance for edge coupling by using a single glue.
  • the embodiments of the present application provide an optical device, an optical module, and a communication device to solve the problem that it is difficult to meet the requirements of low refractive index, high bonding strength, and high temperature resistance by using a single glue.
  • an embodiment of the present application provides an optical device, and the optical device may include: a chip, an optical fiber array unit, and at least one fixing member.
  • the fiber array unit is located on one side of the chip, and the fiber array unit includes at least one optical fiber.
  • At least one waveguide is arranged on the surface of the chip, and matching glue is filled between the end face of the wave guide and the end face of the optical fiber.
  • One end of the fixing member is bonded to the chip through the fixing glue, and the other end is bonded to the optical fiber array unit through the fixing glue, and the bonding strength of the fixing glue is greater than that of the matching glue.
  • the matching glue between the end face of the waveguide and the end face of the optical fiber, the mode spot matching between the waveguide and the optical fiber can be realized, and the optical fiber array unit can be connected by the fixing piece and the fixing glue Bond firmly with the chip to fix the position of the fiber array unit.
  • the matching glue only needs to meet the requirements of refractive index matching and high temperature resistance between the optical fiber and the waveguide, and the fixing glue only needs to meet the requirements of high bonding strength and high temperature resistance.
  • the matching glue and the fixing glue are dispensed and cured together, or the curing glue can be dispensed and cured first, and then the matching glue can be dispensed and cured.
  • the process sequence is not limited here.
  • multiple waveguides may be provided on the surface of the chip, and the multiple waveguides may form a waveguide array, and multiple waveguides in the waveguide array may be arranged side by side.
  • the optical fiber array unit may include multiple optical fibers arranged side by side, each optical fiber may correspond to a waveguide, the end face of the waveguide may be arranged at the edge of the chip, and the optical fiber array unit is located on the side of the chip, so that the waveguide and the corresponding optical fiber are coupled.
  • the number of waveguides and optical fibers can be set according to actual needs, which is not limited here.
  • matching glue is filled between the end face of the waveguide and the end face of the optical fiber.
  • the refractive index of the matching glue is set to be smaller than that of the waveguide.
  • the material of the waveguide can be silicon dioxide, that is, the refractive index of the waveguide is about 1.44, and the refractive index of the matching glue can be less than 1.44.
  • the material of the matching glue can be silica gel.
  • the matching glue Other materials can also be used, which are not limited here.
  • the waveguide in order to realize mode spot matching between the waveguide and the optical fiber, the waveguide needs to be expanded.
  • the end face of the waveguide can be suspended (Under-cut, U cut).
  • the end face of the waveguide is provided with multiple grooves, and the matching glue can fill the grooves on the end face of the waveguide, so that the insertion loss of the waveguide is low and the requirements for waveguide materials are reduced.
  • one end of the fixing member is bonded to the chip through the fixing glue, and the other end is bonded to the optical fiber array unit through the fixing glue, and the fixing member increases the bonding area between the optical fiber array unit and the chip, Moreover, the bonding strength of the fixing glue is greater than that of the matching glue, therefore, the position of the optical fiber array unit can be fixed by arranging the fixing piece and the fixing glue.
  • the material of the fixing piece can be a hard material
  • the fixing glue can be hard after curing.
  • the material of the fixing piece can include glass
  • the fixing glue can include epoxy Glue
  • other materials can also be used for the fixing part and the fixing glue, which is not limited here.
  • the matching glue may include silica gel.
  • the material of the matching glue is softer.
  • the position of the optical fiber array unit can be firmly fixed by the fixing piece and the fixing glue. Therefore, the stress generated by the thermal expansion of the matching glue will not affect the position of the optical fiber array unit, and there will be no cracking of the matching glue, which can ensure a good coupling effect between the optical fiber and the waveguide.
  • the matching glue and the fixing glue can withstand the high temperature of the reflow process, for example, the matching glue and the fixing glue can withstand the high temperature above 260°C.
  • the optical device may be packaged in a ball grid array packaging manner.
  • the optical device may include multiple channels, for example, the optical device may be a three-channel coherent device.
  • the chip may include: a substrate, components such as a single-chip microcomputer module, a driver module, a processing module, and a capacitor located on the substrate, and solder balls located on the back of the substrate.
  • the fixing glue and the matching glue for bonding the fiber array unit are located on different surfaces of the fiber array unit, for example, the fixing glue can be located on the upper surface of the fiber array unit, and the matching glue can be located on the end face of the fiber array unit .
  • the fixing glue and the matching glue for bonding the chip are located on different surfaces of the chip, for example, the fixing glue can be located on the upper surface of the chip, and the matching glue can be located on the side of the chip. In this way, the fixing glue and the matching glue will not be mixed, and the mutual influence of the fixing glue and the matching glue after mixing can be avoided, so as to ensure that the fixing glue has a higher bonding strength and the matching glue has a better optical matching effect.
  • the fixing member may be located on the same side of the chip and the fiber array unit, one end of the fixing member is bonded to the surface of the chip, and the other end is bonded to the first surface of the fiber array unit, and the fiber array unit
  • the first surface is parallel to the surface of the chip.
  • the fixing member can be located on the upper side of the chip and the fiber array unit, that is to say, the first surface can be the upper surface of the fiber array unit, so that one end of the fixing member is bonded to the position where the surface waveguide of the chip is located, so that the fixing
  • the component is arranged above the chip and the optical fiber array unit, does not occupy extra space, and is convenient for packaging the optical component.
  • a part of the optical fiber array unit exceeds the surface of the chip, and the first thickness of the fixing member is greater than the second thickness; wherein, the first thickness is the thickness of one end of the fixing member bonding the chip in the first direction, and the second thickness is the thickness of the fixing member bonding The thickness of one end of the fiber array unit in the first direction.
  • the first direction is a direction perpendicular to the surface of the chip.
  • the difference between the first thickness and the second thickness is about the height of the fiber array unit beyond the chip. That is to say, in a cross section perpendicular to the surface of the chip, the fixing member can be shaped, and of course, the fixing member can also be in other shapes, which are not limited here.
  • the fixing member is located on different sides of the chip and the fiber array unit, one end of the fixing member is bonded to the surface of the chip, and the other end is bonded to the second surface of the fiber array unit, and the fiber array unit
  • the second surface is not parallel to the surface of the chip, that is, the second surface may be a side surface of the optical fiber array unit.
  • the fixing part is located on the side of the upper surface of the chip, the fixing part is located on the side of the fiber array unit, and the end of the fixing part bonded to the surface of the chip is not at the position where the waveguide is located. That is, the fixing part is arranged on the upper surface of the chip, and the fixing part does not occupy extra space, which is convenient for packaging the optical device.
  • the first width of the fixing member is greater than the second width; wherein, the first width is the width in the second direction of one end of the fixing member bonded to the optical fiber array unit, and the second width is the Connect the width of one end of the chip in the second direction, and the second direction is a direction perpendicular to the extending direction of the optical fiber array unit and parallel to the surface of the chip. That is to say, in a section parallel to the surface of the chip, the fixing member can be L-shaped, and of course, the fixing member can also be in other shapes, which is not limited here.
  • the fixing glue and the matching glue can also be located on the same surface of the optical fiber array unit (or chip).
  • the fixing member may be located on the surface of the chip at a position corresponding to the optical fiber array unit, a part of the end face of the optical fiber array unit facing the chip is bonded to the fixing member, and the other part is bonded to the side of the chip by fixing glue , the fixing piece does not take up extra space, and is convenient for packaging the optical device.
  • the fixing part is bonded to the surface of the chip through the fixing glue, and the fixing part is bonded to part of the end face of the optical fiber array unit through the fixing glue.
  • the shape of the fixing part may be a cube or a cuboid, or the fixing part may also be in other shapes, which is not limited here.
  • the optical fiber array unit may include: a first protective plate and a second protective plate, each optical fiber in the optical fiber array unit is located between the first protective plate and the second protective plate, and the first protective plate is located at a place where the optical fiber is away from the chip.
  • the second protective plate is located on the side of the optical fiber close to the chip, and the first protective plate and the second protective plate can protect the optical fiber.
  • the optical fiber in the optical fiber array unit is flush with the waveguide on the surface of the chip, which facilitates the coupling between the optical fiber and the waveguide through the matching glue.
  • One end of the fixing member is bonded to the chip through the fixing glue, and the other end is bonded to the side of the first protective plate through the fixing glue.
  • the fixing member is bonded to the first protective plate, making it easier to fix the position of the optical fiber array unit, and the fixing member is arranged on the upper surface of the chip, and the fixing member does not occupy additional space , to facilitate the packaging of optical devices.
  • the embodiment of the present application further provides an optical module.
  • the optical module may include: any one of the above optical devices and a casing, and the casing covers the optical device.
  • the optical module may further include components such as a connector and an optical fiber ribbon. Since the above-mentioned optical device adopts two types of glue, the matching glue and the fixing glue, to bond the optical fiber array unit, the coupling effect between the optical fiber and the waveguide is better, so the optical module including the optical device has higher reliability and lower loss.
  • the embodiment of the present application also provides a communication device.
  • the communication device may include: any of the above-mentioned optical modules, and a power module, and the power module is used to supply power to the optical module; or, the communication device may include: any of the above-mentioned optical devices and a housing body, and the housing wraps the optical device. Since the above-mentioned optical device adopts two kinds of glues, matching glue and fixing glue, to bond the optical fiber array unit, the coupling effect between the optical fiber and the waveguide is better, so the communication equipment including the optical device has higher reliability and lower loss.
  • the communication equipment may be a telecommunication equipment room, a data center, a router, a switch, a server, etc. Of course, the optical device may also be applied to other types of communication equipment, which is not limited here.
  • Fig. 1 is a side view structural schematic diagram of an optical device provided by an embodiment of the present application
  • FIG. 2 is a schematic top view of the optical device provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an end face of a waveguide in an embodiment of the present application.
  • Fig. 4 is a partial schematic view of the waveguide viewed from the direction indicated by arrow P in Fig. 3;
  • FIG. 5 is a schematic cross-sectional view of a chip in an embodiment of the present application.
  • Fig. 6 is another top view structural schematic diagram of the optical device provided by the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another side view of the optical device provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an optical module provided by an embodiment of the present application.
  • the optical fiber in the fiber array unit and the waveguide in the waveguide array are bonded together by glue, so as to realize the edge coupling between the fiber array unit and the waveguide array.
  • glue In order to make the optical fiber and the waveguide firmly bonded, it is necessary to use glue with high bonding strength.
  • the optical device In the ball grid array packaging process, the optical device is assembled on the circuit board by using the Surface Mounted Technology (SMT) process. The high temperature above 260°C makes the optical device and the circuit board firmly welded. Therefore, the glue between the optical fiber array unit and the waveguide array needs to withstand the high temperature above 260°C.
  • SMT Surface Mounted Technology
  • the glue for bonding between the optical fiber array unit and the waveguide array must at least meet the requirements of low refractive index, high bonding strength, and high temperature resistance.
  • the demand for high temperature resistance leads to obvious defects in the bonding surface between the optical fiber array unit and the waveguide array after the optical device is reflowed at high temperature, and the bonding strength is greatly reduced, resulting in low reliability and high loss of the product.
  • embodiments of the present application provide an optical device, an optical module, and a communication device.
  • the optical device can be applied to various types of communication equipment, for example, the communication equipment can be telecommunication equipment room, data center, router, switch, server, etc.
  • the optical device can also be applied to other types of communication equipment, There is no limit here.
  • Fig. 1 is a schematic side view of the optical device provided by the embodiment of the present application.
  • the optical device provided by the embodiment of the present application may include: a chip 11, an optical fiber array unit 12 and at least one fixing member 13.
  • the fiber array unit 12 is located on one side of the chip 11 , and the fiber array unit 12 includes at least one optical fiber 121 .
  • At least one waveguide 141 is provided on the surface of the chip 11 , and the matching glue 15 is filled between the end surface of the waveguide 141 and the end surface of the optical fiber 121 .
  • One end of the fixing member 13 is bonded to the chip 11 through the fixing glue 16 , and the other end is bonded to the optical fiber array unit 12 through the fixing glue 16 .
  • the bonding strength of the fixing glue 16 is greater than that of the matching glue 15 .
  • the matching glue between the end face of the waveguide and the end face of the optical fiber, the mode spot matching between the waveguide and the optical fiber can be realized, and the optical fiber array unit can be connected by the fixing piece and the fixing glue Bond firmly with the chip to fix the position of the fiber array unit.
  • the matching glue only needs to meet the requirements of refractive index matching and high temperature resistance between the optical fiber and the waveguide, and the fixing glue only needs to meet the requirements of high bonding strength and high temperature resistance.
  • the matching glue and the fixing glue are dispensed and cured together, or the curing glue can be dispensed and cured first, and then the matching glue can be dispensed and cured.
  • the process sequence is not limited here.
  • Fig. 2 is a top view structural diagram of the optical device provided by the embodiment of the present application.
  • a plurality of waveguides 141 can be arranged on the surface of the chip 11, and the plurality of waveguides 141 can form a waveguide array 14, and a plurality of waveguides 141 in the waveguide array 14
  • the waveguides 141 may be arranged side by side.
  • the optical fiber array unit 12 can include a plurality of optical fibers 121 arranged side by side, each optical fiber 121 can correspond to a waveguide 141, the end face of the waveguide 141 can be arranged at the edge of the chip 11, and the optical fiber array unit 12 is positioned at the side of the chip 11, so that The waveguide 141 is coupled with the corresponding optical fiber 121 .
  • Fig. 2 take the waveguide array 14 including five waveguides 141 as an example, and take the fiber array unit 12 including five optical fibers 121 as an example. Do limited.
  • a matching glue 15 is filled between the end face of the waveguide 141 and the end face of the optical fiber 121.
  • the refractive index of the waveguide 141 can be adjusted.
  • the refractive index of the matching glue 15 can be set to be smaller than the refractive index of the waveguide 141 .
  • the material of the waveguide 141 can be silicon dioxide, that is, the refractive index of the waveguide 141 is about 1.44, and the refractive index of the matching glue 15 can be less than 1.44, for example, the material of the matching glue 15 can be silica gel, Of course, other materials can also be used for the matching glue 15 , which is not limited here.
  • Fig. 3 is a schematic structural view of the end face of the waveguide in the embodiment of the present application
  • Fig. 4 is a partial schematic view of the waveguide viewed from the direction indicated by the arrow P in Fig. 3, as shown in Fig. 3 and Fig.
  • the waveguide 141 needs to be expanded.
  • the end face of the waveguide 141 can be suspended (Under-cut, U cut).
  • a plurality of grooves U can be set on the end face of the waveguide 141.
  • the matching glue can fill the grooves U on the end face of the waveguide 141 , so that the insertion loss of the waveguide 141 is low, and the requirement on the material of the waveguide 141 is reduced.
  • the material of the fixing member 13 can be a hard material, and the fixing glue 16 can be hard after curing.
  • the material of the fixing piece 13 can include glass, and the fixing glue can be hard.
  • the matching glue 15 may include silica gel. Compared with the fixing glue 16, the material of the matching glue 15 is softer.
  • the matching glue 15 and the fixing glue 16 can withstand the high temperature of the reflow process, for example, the matching glue 15 and the fixing glue 16 can withstand the high temperature above 260°C.
  • the optical device may be packaged in a ball grid array packaging manner.
  • the optical device may include multiple channels, for example, the optical device may be a three-channel coherent device.
  • Fig. 5 is a schematic cross-sectional view of the chip in the embodiment of the present application. As shown in Fig. 5, the chip may include: a substrate 111, a single-chip microcomputer module 112 located on the substrate 111, a drive module 113, a processing module 114, a capacitor 115 and other components, and Solder balls 116 located on the backside of the substrate 111 .
  • the fixing glue 16 and the matching glue 15 for bonding the fiber array unit 12 are located on different surfaces of the fiber array unit 12 , for example, in FIG. 1 , the fixing glue 16 is located on the fiber array unit 12
  • the matching glue 15 is located on the end face of the optical fiber array unit 12 .
  • the fixing glue 16 and matching glue 15 for bonding the chip 11 are located on different surfaces of the chip 11 , for example, in FIG. In this way, the fixing glue 16 and the matching glue 15 will not be mixed, avoiding the mutual influence of the fixing glue 16 and the matching glue 15 after mixing, ensuring that the fixing glue 16 has a higher bonding strength, and the matching glue 15 has better optical matching Effect.
  • the fixing member 13 can be located on the same side of the chip 11 and the fiber array unit 12, one end of the fixing member 13 is bonded to the surface of the chip 11, and the other end is bonded to the fiber array unit
  • the first surface S1 of the fiber array unit 12 is bonded, and the first surface S1 of the fiber array unit 12 is parallel to the surface of the chip 11 .
  • the fixing member 13 is positioned at the upper side of the chip 11 and the fiber array unit 12, that is to say, the first surface S1 can be the upper surface of the fiber array unit 12, like this, one end of the fixing member 13 is bonded to the chip 11 At the position where the surface waveguide 141 is located, the fixing member 13 is arranged above the chip 11 and the optical fiber array unit 12, which does not occupy extra space and is convenient for packaging the optical device.
  • a part of the optical fiber array unit 12 exceeds the surface of the chip 11, and the first thickness h1 of the fixing member 13 is greater than the second thickness h2;
  • the thickness in the direction F1, the second thickness h2 is the thickness in the first direction F1 of one end of the fixing member 13 bonded to the optical fiber array unit 12, the first direction F1 is a direction perpendicular to the surface of the chip 11, the first thickness h1 and
  • the difference between the second thicknesses h2 is approximately the height of the fiber array unit 12 beyond the chip 11 . That is to say, in the section shown in FIG. 1 , the fixing member 13 may be L-shaped, and of course, the fixing member 13 may also be in other shapes, which are not limited here.
  • Fig. 6 is another schematic structural view of the top view of the optical device provided by the embodiment of the present application.
  • One end of the piece 13 is bonded to the surface of the chip 11, and the other end is bonded to the second surface S2 of the fiber array unit 12.
  • the second surface S2 of the fiber array unit 12 is not parallel to the surface of the chip 11, that is, the second surface S2 can be It is the side surface of the optical fiber array unit 12.
  • the fixing member 13 is located on the upper surface side of the chip 11
  • the fixing member 13 is located on the side of the fiber array unit 12
  • the end of the fixing member 13 bonded to the surface of the chip 11 is not at the position where the waveguide 141 is located. That is, the fixing member 13 is disposed on the upper surface of the chip 11, and the fixing member 13 does not occupy extra space, which is convenient for packaging the optical device.
  • the first width d1 of the fixing member 13 is greater than the second width d2; wherein, the first width d1 is the width of one end of the fixing member 13 bonded to the optical fiber array unit 12 in the second direction F2, and the second width d2 is the width of one end of the fixing member 13 bonded to the chip 11 in the second direction F2 , which is a direction perpendicular to the extending direction of the fiber array unit 12 and parallel to the surface of the chip 11 . That is to say, in the section shown in FIG. 6 , the fixing member 13 may be L-shaped, and of course, the fixing member 13 may also be in other shapes, which are not limited here. It can be understood that, in order to clearly illustrate the components in the optical device, only one waveguide 141 and one optical fiber 121 are shown in FIG. There is no limit.
  • Fig. 7 is another side view schematic diagram of the optical device provided by the embodiment of the present application.
  • the fixing glue 16 and the matching glue 15 can also be located in the optical fiber array unit 12 ( or the same surface of the chip 11).
  • the fixing member 13 may be located on the surface of the chip 11 at a position corresponding to the fiber array unit 12, a part of the end face of the fiber array unit 12 facing the chip 11 is bonded to the fixing member 13, and the other part is bonded with the fixing glue. 16 is bonded to the side of the chip 11, and the fixing member 13 does not occupy additional space, which is convenient for packaging the optical device.
  • the fixing part 13 is bonded to the surface of the chip 11 through the fixing glue 16 , and the fixing part 13 is bonded to a part of the end surface of the optical fiber array unit 12 through the fixing glue 16 .
  • the fixing glue 16 on the end face of the optical fiber array unit 12 and the matching glue 15 need to be separated by a certain distance, and the fixing glue 16 on the surface of the chip 11 and the matching glue 15 on the side of the chip 11 need to be separated by a certain distance.
  • the shape of the fixing member 13 may be a cube or a cuboid, or the fixing member 13 may also have other shapes, which are not limited here.
  • the fiber array unit 12 may include: a first protection board 122 and a second protection board 123, each optical fiber 121 in the fiber array unit 12 is located between the first protection board 122 and the second protection board 123, the first protective plate 122 is located on the side of the optical fiber 121 away from the chip 11, the second protective plate 123 is located on the side of the optical fiber 121 close to the chip 11, the first protective plate 122 and the second protective plate 123 can protect the optical fiber 121 to the protective effect.
  • the optical fiber 121 in the optical fiber array unit 12 is flush with the waveguide 141 on the surface of the chip 11 , so that the coupling between the optical fiber 121 and the waveguide 141 through the matching glue 15 is facilitated.
  • the fixing member 13 is bonded to the chip 11 through the fixing glue 16 , and the other end is glued to the side of the first protection plate 122 through the fixing glue 16 . Since the first protective plate 122 exceeds the surface of the chip 11, the fixing member 13 is bonded to the first protective plate 122, which makes it easier to fix the position of the optical fiber array unit 12, and makes the fixing member 13 be arranged on the upper surface of the chip 11 for fixing.
  • the component 13 does not take up extra space, which is convenient for packaging the optical device.
  • FIG. 8 is a schematic structural diagram of the optical module provided in the embodiment of the present application.
  • the optical module provided in the embodiment of the present application may include: Any optical device (not shown in the figure) and the housing 21, the housing 21 covers the optical device.
  • the optical module may further include components such as a connector 22 and an optical fiber ribbon 23 . Since the above-mentioned optical device adopts two types of glue, the matching glue and the fixing glue, to bond the optical fiber array unit, the coupling effect between the optical fiber and the waveguide is better, so the optical module including the optical device has higher reliability and lower loss.
  • the embodiment of the present application also provides a communication device.
  • the communication device may include: any of the above-mentioned optical modules, and a power module, and the power module is used to supply power to the optical module; or, the communication device may include: any of the above-mentioned optical devices and The casing wraps the optical device. Since the above-mentioned optical device adopts two kinds of glues, matching glue and fixing glue, to bond the optical fiber array unit, the coupling effect between the optical fiber and the waveguide is better, so the communication equipment including the optical device has higher reliability and lower loss.
  • the communication equipment may be a telecommunication equipment room, a data center, a router, a switch, a server, etc. Of course, the optical device may also be applied to other types of communication equipment, which is not limited here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光器件、光模块及通信设备,光器件包括:芯片(11),光纤阵列单元(12)以及至少一个固定件(13)。光纤阵列单元(12)位于芯片(11)的一侧,光纤阵列单元(12)包括至少一根光纤(121),芯片(11)的表面设有至少一个波导(141),波导(141)的端面与光纤(121)的端面之间填充匹配胶。固定件(13)的一端通过固定胶与芯片(11)粘接,另一端通过固定胶与光纤阵列单元(12)粘接,固定胶的粘接强度大于匹配胶的粘接强度。通过设置匹配胶和固定胶这两种胶水,降低了对每种胶水的要求,可以较容易地满足光纤与波导之间的耦合要求,提高产品的可靠性、降低损耗。

Description

一种光器件、光模块及通信设备
相关申请的交叉引用
本申请要求在2022年02月18日提交中国专利局、申请号为202210149493.X、申请名称为“一种光器件、光模块及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种光器件、光模块及通信设备。
背景技术
全球数据通信的持续增长推动了硅基光子学的不断发展,特别是基于硅基光子学的高速高带宽光收发模块得到广泛应用和发展。为了获得更好的性能、更小的尺寸,光器件封装逐渐向2D、2.5D、3D等更紧凑的球栅阵列封装(Ball Grid Array,BGA)发展。
在光器件内部,光纤阵列单元(Fiber Array Unit,FAU)和波导阵列可以通过倏逝波耦合、光栅耦合或边耦合等方式实现耦合。其中,边耦合比其他耦合方式的损耗更小,可以采用单种胶水将光纤阵列单元中的光纤与波导阵列中的波导粘接到一起,以实现光纤阵列单元与波导阵列的边耦合。然而,相关技术中,采用单种胶水难以满足边耦合的低折射率、高粘结强度、耐高温的需求。
发明内容
本申请实施例提供了一种光器件、光模块及通信设备,用以解决采用单种胶水难以满足低折射率、高粘结强度、耐高温的需求的问题。
第一方面,本申请实施例提供了一种光器件,光器件可以包括:芯片,光纤阵列单元以及至少一个固定件。光纤阵列单元位于芯片的一侧,光纤阵列单元包括至少一根光纤。芯片的表面设有至少一个波导,波导的端面与光纤的端面之间填充匹配胶。固定件的一端通过固定胶与芯片粘接,另一端通过固定胶与光纤阵列单元粘接,固定胶的粘接强度大于匹配胶的粘接强度。
本申请实施例提供的光器件中,通过在波导的端面与光纤的端面之间填充匹配胶,可以使波导与光纤之间实现模斑匹配,并且,通过固定件和固定胶可以将光纤阵列单元与芯片牢固地粘接,以固定光纤阵列单元的位置。这样,匹配胶只需满足光纤与波导之间的折射率匹配和耐高温的要求,固定胶只需满足粘接强度高和耐高温的要求,通过设置匹配胶和固定胶这两种胶水,降低了对每种胶水的要求,可以较容易地满足光纤与波导之间的耦合要求,提高产品的可靠性、降低损耗。
在实际工艺过程中,将匹配胶和固定胶点胶后一起固化,也可以先对固化胶进行点胶、固化后,再对匹配胶进行点胶、固化,此处不对工艺顺序进行限定。
在一种可能的实现方式中,芯片的表面可以设置多个波导,多个波导可以构成波导阵列,波导阵列中的多个波导可以并排设置。光纤阵列单元可以包括多根并排设置的光纤, 每根光纤可以与一个波导对应,波导的端面可以设置在芯片的边缘处,光纤阵列单元位于芯片的侧面,从而使波导与对应的光纤实现耦合。在具体实施时,可以根据实际需要设置波导和光纤的数量,此处不做限定。
在本申请实施例中,波导的端面与光纤的端面之间填充匹配胶,为了避免匹配胶影响波导与光纤传输的光信号的效果,使波导的折射率能够与光纤的折射率匹配,可以将匹配胶的折射率设置为小于波导的折射率。在一种可能的实现方式中,波导的材料可以为二氧化硅,即波导的折射率约为1.44,匹配胶的折射率可以小于1.44,例如,匹配胶的材料可以为硅胶,当然,匹配胶也可以采用其他材料,此处不做限定。
在具体实施时,为了使波导与光纤之间实现模斑匹配,需要对波导进行扩膜,可选地,可以对波导的端面进行悬空(Under-cut,U cut)设置,例如,可以在波导的端面设置多个凹槽,匹配胶可以填充波导端面的各凹槽,从而使波导的插损较低,并降低对波导物料的要求。
在一种可能的实现方式中,固定件的一端通过固定胶与芯片粘接,另一端通过固定胶与光纤阵列单元粘接,固定件增大了光纤阵列单元与芯片之间的粘接面积,并且,固定胶的粘接强度大于匹配胶的粘接强度,因而,通过设置固定件和固定胶可以固定光纤阵列单元的位置。在具体实施时,为了使光纤阵列单元的位置较牢固,固定件的材料可以为硬质材料,固定胶固化后可以为硬质,例如,固定件的材料可以包括玻璃,固定胶可以包括环氧胶,当然,固定件和固定胶也可以采用其他材料,此处不做限定。本申请实施例中,匹配胶可以包括硅胶,相比于固定胶,匹配胶的材质较软,在光器件的制作或使用过程中,由于固定件和固定胶可以牢固地固定光纤阵列单元的位置,因而,匹配胶受热膨胀后产生的应力不会影响光纤阵列单元的位置,不会出现匹配胶开裂的情况,能够保证光纤与波导的耦合效果较好。并且,匹配胶和固定胶能够承受回流工艺的高温,例如,匹配胶和固定胶能够承受260℃以上的高温。
在本申请实施例中,可以采用球栅阵列封装方式,对光器件进行封装。该光器件可以包括多个通道,例如,光器件可以为三通道相干器件。芯片可以包括:基板,位于基板之上的单片机模块、驱动模块、处理模块和电容器等部件,以及位于基板背面的焊球。
在本申请的一些实施例中,粘接光纤阵列单元的固定胶与匹配胶位于光纤阵列单元的不同表面,例如,固定胶可以位于光纤阵列单元的上表面,匹配胶可以位于光纤阵列单元的端面。粘接芯片的固定胶与匹配胶位于芯片的不同表面,例如,固定胶可以位于芯片的上表面,匹配胶可以位于芯片的侧面。这样,固定胶与匹配胶不会发生混胶,避免固定胶与匹配胶混胶后相互影响,保证固定胶具有较高的粘接强度,匹配胶具有较好的光学匹配效果。
在一种可能的实现方式中,固定件可以位于芯片和光纤阵列单元的同一侧,固定件的一端与芯片的表面粘接,另一端与光纤阵列单元的第一表面粘接,光纤阵列单元的第一表面与芯片的表面平行。例如,固定件可以位于芯片和光纤阵列单元的上侧,也就是说,第一表面可以为光纤阵列单元的上表面,这样,固定件的一端粘接于芯片表面波导所在的位置处,使固定件设置在芯片和光纤阵列单元的上方,不会占用额外的空间,便于对光器件进行封装。
光纤阵列单元的一部分超出芯片的表面,固定件的第一厚度大于第二厚度;其中,第一厚度为固定件粘接芯片的一端在第一方向上的厚度,第二厚度为固定件粘接光纤阵列单 元的一端在第一方向上的厚度,第一方向为垂直于芯片的表面的方向,第一厚度与第二厚度之间的差值约为光纤阵列单元超出芯片的高度。也就是说,在垂直于芯片的表面的截面中,固定件可以为型,当然,固定件也可以为其他形状,此处不做限定。
在另一种可能的实现方式中,固定件位于芯片和光纤阵列单元的不同侧,固定件的一端与芯片的表面粘接,另一端与光纤阵列单元的第二表面粘接,光纤阵列单元的第二表面与芯片的表面不平行,即第二表面可以为光纤阵列单元的侧面。例如,固定件位于芯片的上表面一侧,固定件位于光纤阵列单元的侧面,固定件粘接于芯片表面的一端不在波导所在的位置处。即固定件设置在芯片的上表面,固定件不会占用额外的空间,便于对光器件进行封装。
在一种可能的实现方式中,固定件的第一宽度大于第二宽度;其中,第一宽度为固定件粘接光纤阵列单元的一端在第二方向上的宽度,第二宽度为固定件粘接芯片的一端在第二方向上的宽度,第二方向为垂直于光纤阵列单元的延伸方向且平行于芯片的表面的方向。也就是说,在平行于芯片的表面的截面中,固定件可以为L型,当然,固定件也可以为其他形状,此处不做限定。
在本申请的另一些实施例中,固定胶与匹配胶也可以位于光纤阵列单元(或芯片)的相同表面。在一种可能的实现方式中,固定件可以位于芯片的表面对应于光纤阵列单元的位置,光纤阵列单元朝向芯片的端面的一部分与固定件粘接,另一部分通过固定胶与芯片的侧面粘接,固定件不会占用额外的空间,便于对光器件进行封装。固定件通过固定胶与芯片的表面粘接,固定件通过固定胶与光纤阵列单元的部分端面粘接。为了防止混胶,光纤阵列单元端面的固定胶与匹配胶需要间隔一定距离,芯片表面的固定胶与芯片侧面的匹配胶需要间隔一定距离。在具体实施时,固定件的形状可以为正方体或长方体,或者,固定件也可以为其他形状,此处不做限定。
在具体实施时,光纤阵列单元可以包括:第一保护板和第二保护板,光纤阵列单元中的各光纤位于第一保护板与第二保护板之间,第一保护板位于光纤远离芯片的一侧,第二保护板位于光纤靠近芯片的一侧,第一保护板和第二保护板可以对光纤起到保护作用。光纤阵列单元中的光纤与芯片表面的波导平齐,便于光纤通过匹配胶与波导实现耦合。固定件的一端通过固定胶与芯片粘接,另一端通过固定胶与第一保护板的侧面粘接。由于第一保护板超出芯片的表面,因而,固定件与第一保护板粘接,更容易固定光纤阵列单元的位置,并使固定件设置在芯片的上表面,固定件不会占用额外的空间,便于对光器件进行封装。
第二方面,本申请实施例还提供了一种光模块,光模块可以包括:上述任一光器件以及壳体,壳体包覆光器件。在一种可能的实现方式中,光模块还可以包括连接器和光纤带等部件。由于上述光器件中采用匹配胶和固定胶两种胶水粘接光纤阵列单元,光纤与波导之间的耦合效果较好,因而包括该光器件的光模块的可靠性较高、损耗较低。
第三方面,本申请实施例还提供了一种通信设备,通信设备可以包括:上述任一光模块,以及电源模块,电源模块用于向光模块供电;或者,通信设备可以包括:上述任一光器件以及壳体,壳体包裹光器件。由于上述光器件中采用匹配胶和固定胶两种胶水粘接光纤阵列单元,光纤与波导之间的耦合效果较好,因而包括该光器件的通信设备的可靠性较高、损耗较低。该通信设备可以为电信机房、数据中心、路由器、交换机、服务器等,当然,该光器件也可以应用于其他类型的通信设备中,此处不做限定。
附图说明
图1为本申请实施例提供的光器件的侧视结构示意图;
图2为本申请实施例提供的光器件的俯视结构示意图;
图3为本申请实施例中波导的端面的结构示意图;
图4为朝向图3中箭头P所示的方向观看波导的局部示意图;
图5为本申请实施例中芯片的截面示意图;
图6为本申请实施例提供的光器件的另一俯视结构示意图;
图7为本申请实施例提供的光器件的另一侧视结构示意图;
图8为本申请实施例提供的光模块的结构示意图。
附图标记:
11-芯片;111-基板;112-单片机模块;113-驱动模块;114-处理模块;115-电容器;116-焊球;12-光纤阵列单元;121-光纤;122-第一保护板;123-第二保护板;13-固定件;14-波导阵列;141-波导;15-匹配胶;16-固定胶;21-壳体;22-连接器;23-光纤带;U-凹槽;S1-第一表面;F1-第一方向;F2-第二方向;h1-第一厚度;h2-第二厚度;d1-第一宽度;d2-第二宽度。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
应注意的是,本申请的附图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
在相关技术中,在光器件内部,采用胶水将光纤阵列单元中的光纤与波导阵列中的波导粘接在一起,以实现光纤阵列单元与波导阵列的边耦合。为了使光纤与波导粘接牢固,需要采用粘接强度较高的胶水。在球栅阵列封装过程中,采用表面贴装(Surface Mounted Technology,SMT)工艺将光器件装配到电路板上,在SMT工艺的高温回流过程中,需要将光器件整体放置在回流炉内,经260℃以上的高温,使光器件与电路板牢固地焊接,因而,光纤阵列单元与波导阵列之间粘接的胶水需要耐受260°以上的高温。并且,为了防止光纤与波导之间出现明显的模斑失配,需要对波导进行扩模,在光纤与波导之间填充低折射率的胶水。因此,光纤阵列单元与波导阵列之间粘接的胶水至少需要满足低折射率、高粘结强度、耐高温的要求,在相关技术中,采用单种胶水难以满足低折射率、高粘结强度、耐高温的需求,导致光器件经高温回流后,光纤阵列单元与波导阵列之间的粘接面出现明显的缺陷,粘接强度大幅降低,使产品的可靠性较低、损耗较大。
基于此,为了解决采用单种胶水难以满足低折射率、高粘结强度、耐高温的需求的问题,本申请实施例提供了一种光器件、光模块及通信设备。该光器件可以应用于各种类型的通信设备中,例如,该通信设备可以为电信机房、数据中心、路由器、交换机、服务器等,当然,该光器件也可以应用于其他类型的通信设备中,此处不做限定。
图1为本申请实施例提供的光器件的侧视结构示意图,如图1所示,本申请实施例提 供的光器件可以包括:芯片11,光纤阵列单元12以及至少一个固定件13。光纤阵列单元12位于芯片11的一侧,光纤阵列单元12包括至少一根光纤121。芯片11的表面设有至少一个波导141,波导141的端面与光纤121的端面之间填充匹配胶15。固定件13的一端通过固定胶16与芯片11粘接,另一端通过固定胶16与光纤阵列单元12粘接,固定胶16的粘接强度大于匹配胶15的粘接强度。
本申请实施例提供的光器件中,通过在波导的端面与光纤的端面之间填充匹配胶,可以使波导与光纤之间实现模斑匹配,并且,通过固定件和固定胶可以将光纤阵列单元与芯片牢固地粘接,以固定光纤阵列单元的位置。这样,匹配胶只需满足光纤与波导之间的折射率匹配和耐高温的要求,固定胶只需满足粘接强度高和耐高温的要求,通过设置匹配胶和固定胶这两种胶水,降低了对每种胶水的要求,可以较容易地满足光纤与波导之间的耦合要求,提高产品的可靠性、降低损耗。
在实际工艺过程中,将匹配胶和固定胶点胶后一起固化,也可以先对固化胶进行点胶、固化后,再对匹配胶进行点胶、固化,此处不对工艺顺序进行限定。
图2为本申请实施例提供的光器件的俯视结构示意图,如图2所示,芯片11的表面可以设置多个波导141,多个波导141可以构成波导阵列14,波导阵列14中的多个波导141可以并排设置。光纤阵列单元12可以包括多根并排设置的光纤121,每根光纤121可以与一个波导141对应,波导141的端面可以设置在芯片11的边缘处,光纤阵列单元12位于芯片11的侧面,从而使波导141与对应的光纤121实现耦合。图2中,以波导阵列14包括五个波导141为例,以光纤阵列单元12包括五根光纤121为例,在具体实施时,可以根据实际需要设置波导141和光纤121的数量,此处不做限定。
如图1和图2所示,波导141的端面与光纤121的端面之间填充匹配胶15,为了避免匹配胶15影响波导141与光纤121传输的光信号的效果,使波导141的折射率能够与光纤121的折射率匹配,可以将匹配胶15的折射率设置为小于波导141的折射率。在一种可能的实现方式中,波导141的材料可以为二氧化硅,即波导141的折射率约为1.44,匹配胶15的折射率可以小于1.44,例如,匹配胶15的材料可以为硅胶,当然,匹配胶15也可以采用其他材料,此处不做限定。
图3为本申请实施例中波导的端面的结构示意图,图4为朝向图3中箭头P所示的方向观看波导的局部示意图,如图3和图4所示,为了使波导141与光纤之间实现模斑匹配,需要对波导141进行扩膜,可选地,可以对波导141的端面进行悬空(Under-cut,U cut)设置,例如,可以在波导141的端面设置多个凹槽U,匹配胶可以填充波导141端面的各凹槽U,从而使波导141的插损较低,并降低对波导141物料的要求。
如图1所示,固定件13的一端通过固定胶16与芯片11粘接,另一端通过固定胶16与光纤阵列单元12粘接,固定件13增大了光纤阵列单元12与芯片11之间的粘接面积,并且,固定胶16的粘接强度大于匹配胶15的粘接强度,因而,通过设置固定件13和固定胶16可以固定光纤阵列单元12的位置。在具体实施时,为了使光纤阵列单元12的位置较牢固,固定件13的材料可以为硬质材料,固定胶16固化后可以为硬质,例如,固定件13的材料可以包括玻璃,固定胶16可以包括环氧胶,当然,固定件13和固定胶16也可以采用其他材料,此处不做限定。本申请实施例中,匹配胶15可以包括硅胶,相比于固定胶16,匹配胶15的材质较软,在光器件的制作或使用过程中,由于固定件13和固定胶16可以牢固地固定光纤阵列单元12的位置,因而,匹配胶15受热膨胀后产生的应力 不会影响光纤阵列单元12的位置,不会出现匹配胶15开裂的情况,能够保证光纤121与波导141的耦合效果较好。并且,匹配胶15和固定胶16能够承受回流工艺的高温,例如,匹配胶15和固定胶16能够承受260℃以上的高温。
在本申请实施例中,可以采用球栅阵列封装方式,对光器件进行封装。该光器件可以包括多个通道,例如,光器件可以为三通道相干器件。图5为本申请实施例中芯片的截面示意图,如图5所示,芯片可以包括:基板111,位于基板111之上的单片机模块112、驱动模块113、处理模块114和电容器115等部件,以及位于基板111背面的焊球116。
继续参照图1,在本申请的一些实施例中,粘接光纤阵列单元12的固定胶16与匹配胶15位于光纤阵列单元12的不同表面,例如图1中,固定胶16位于光纤阵列单元12的上表面,匹配胶15位于光纤阵列单元12的端面。粘接芯片11的固定胶16与匹配胶15位于芯片11的不同表面,例如图1中,固定胶16位于芯片11的上表面,匹配胶15位于芯片11的侧面。这样,固定胶16与匹配胶15不会发生混胶,避免固定胶16与匹配胶15混胶后相互影响,保证固定胶16具有较高的粘接强度,匹配胶15具有较好的光学匹配效果。
如图1所示,在一种可能的实现方式中,固定件13可以位于芯片11和光纤阵列单元12的同一侧,固定件13的一端与芯片11的表面粘接,另一端与光纤阵列单元12的第一表面S1粘接,光纤阵列单元12的第一表面S1与芯片11的表面平行。例如图1中,固定件13位于芯片11和光纤阵列单元12的上侧,也就是说,第一表面S1可以为光纤阵列单元12的上表面,这样,固定件13的一端粘接于芯片11表面波导141所在的位置处,使固定件13设置在芯片11和光纤阵列单元12的上方,不会占用额外的空间,便于对光器件进行封装。
继续参照图1,光纤阵列单元12的一部分超出芯片11的表面,固定件13的第一厚度h1大于第二厚度h2;其中,第一厚度h1为固定件13粘接芯片11的一端在第一方向F1上的厚度,第二厚度h2为固定件13粘接光纤阵列单元12的一端在第一方向F1上的厚度,第一方向F1为垂直于芯片11的表面的方向,第一厚度h1与第二厚度h2之间的差值约为光纤阵列单元12超出芯片11的高度。也就是说,在图1所示的截面中,固定件13可以为L型,当然,固定件13也可以为其他形状,此处不做限定。
图6为本申请实施例提供的光器件的另一俯视结构示意图,如图6所示,在另一种可能的实现方式中,固定件13位于芯片11和光纤阵列单元12的不同侧,固定件13的一端与芯片11的表面粘接,另一端与光纤阵列单元12的第二表面S2粘接,光纤阵列单元12的第二表面S2与芯片11的表面不平行,即第二表面S2可以为光纤阵列单元12的侧面。例如图6中,固定件13位于芯片11的上表面一侧,固定件13位于光纤阵列单元12的侧面,固定件13粘接于芯片11表面的一端不在波导141所在的位置处。即固定件13设置在芯片11的上表面,固定件13不会占用额外的空间,便于对光器件进行封装。
继续参照图6,固定件13的第一宽度d1大于第二宽度d2;其中,第一宽度d1为固定件13粘接光纤阵列单元12的一端在第二方向F2上的宽度,第二宽度d2为固定件13粘接芯片11的一端在第二方向F2上的宽度,第二方向F2为垂直于光纤阵列单元12的延伸方向且平行于芯片11的表面的方向。也就是说,在图6所示的截面中,固定件13可以为L型,当然,固定件13也可以为其他形状,此处不做限定。可以理解的是,为了清楚的示意光器件中的各部件,图6中仅示意出一个波导141和一根光纤121,在具体实施时, 可以根据实际需要设置波导141和光纤121的数量,此处不做限定。
图7为本申请实施例提供的光器件的另一侧视结构示意图,如图7所示,在本申请的另一些实施例中,固定胶16与匹配胶15也可以位于光纤阵列单元12(或芯片11)的相同表面。在一种可能的实现方式中,固定件13可以位于芯片11的表面对应于光纤阵列单元12的位置,光纤阵列单元12朝向芯片11的端面的一部分与固定件13粘接,另一部分通过固定胶16与芯片11的侧面粘接,固定件13不会占用额外的空间,便于对光器件进行封装。固定件13通过固定胶16与芯片11的表面粘接,固定件13通过固定胶16与光纤阵列单元12的部分端面粘接。为了防止混胶,光纤阵列单元12端面的固定胶16与匹配胶15需要间隔一定距离,芯片11表面的固定胶16与芯片11侧面的匹配胶15需要间隔一定距离。在具体实施时,固定件13的形状可以为正方体或长方体,或者,固定件13也可以为其他形状,此处不做限定。
在具体实施时,如图1所示,光纤阵列单元12可以包括:第一保护板122和第二保护板123,光纤阵列单元12中的各光纤121位于第一保护板122与第二保护板123之间,第一保护板122位于光纤121远离芯片11的一侧,第二保护板123位于光纤121靠近芯片11的一侧,第一保护板122和第二保护板123可以对光纤121起到保护作用。光纤阵列单元12中的光纤121与芯片11表面的波导141平齐,便于光纤121通过匹配胶15与波导141实现耦合。固定件13的一端通过固定胶16与芯片11粘接,另一端通过固定胶16与第一保护板122的侧面粘接。由于第一保护板122超出芯片11的表面,因而,固定件13与第一保护板122粘接,更容易固定光纤阵列单元12的位置,并使固定件13设置在芯片11的上表面,固定件13不会占用额外的空间,便于对光器件进行封装。
基于同一技术构思,本申请实施例还提供了一种光模块,图8为本申请实施例提供的光模块的结构示意图,如图8所示,本申请实施例提供的光模块可以包括:上述任一光器件(图中未示出)以及壳体21,壳体21包覆光器件。在一种可能的实现方式中,光模块还可以包括连接器22和光纤带23等部件。由于上述光器件中采用匹配胶和固定胶两种胶水粘接光纤阵列单元,光纤与波导之间的耦合效果较好,因而包括该光器件的光模块的可靠性较高、损耗较低。
基于同一技术构思,本申请实施例还提供了一种通信设备,通信设备可以包括:上述任一光模块,以及电源模块,电源模块用于向光模块供电;或者,通信设备可以包括:上述任一光器件以及壳体,壳体包裹光器件。由于上述光器件中采用匹配胶和固定胶两种胶水粘接光纤阵列单元,光纤与波导之间的耦合效果较好,因而包括该光器件的通信设备的可靠性较高、损耗较低。该通信设备可以为电信机房、数据中心、路由器、交换机、服务器等,当然,该光器件也可以应用于其他类型的通信设备中,此处不做限定。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种光器件,其特征在于,包括:芯片,光纤阵列单元以及至少一个固定件;
    所述光纤阵列单元位于所述芯片的一侧,所述光纤阵列单元包括至少一根光纤;
    所述芯片的表面设有至少一个波导,所述波导的端面与所述光纤的端面之间填充匹配胶;
    所述固定件的一端通过固定胶与所述芯片粘接,另一端通过固定胶与所述光纤阵列单元粘接;
    所述固定胶的粘接强度大于所述匹配胶的粘接强度。
  2. 如权利要求1所述的光器件,其特征在于,粘接所述光纤阵列单元的所述固定胶与所述匹配胶位于所述光纤阵列单元的不同表面;粘接所述芯片的所述固定胶与所述匹配胶位于所述芯片的不同表面。
  3. 如权利要求2所述的光器件,其特征在于,所述固定件位于所述芯片和所述光纤阵列单元的同一侧;
    所述固定件的一端与所述芯片的表面粘接,另一端与所述光纤阵列单元的第一表面粘接,所述光纤阵列单元的所述第一表面与所述芯片的表面平行。
  4. 如权利要求3所述的光器件,其特征在于,所述光纤阵列单元的一部分超出所述芯片的表面;
    所述固定件的第一厚度大于第二厚度;其中,所述第一厚度为所述固定件粘接所述芯片的一端在第一方向上的厚度,所述第二厚度为所述固定件粘接所述光纤阵列单元的一端在第一方向上的厚度,所述第一方向为垂直于所述芯片的表面的方向。
  5. 如权利要求2所述的光器件,其特征在于,所述固定件位于所述芯片和所述光纤阵列单元的不同侧;
    所述固定件的一端与所述芯片的表面粘接,另一端与所述光纤阵列单元的第二表面粘接;所述光纤阵列单元的所述第二表面与所述芯片的表面不平行。
  6. 如权利要求5所述的光器件,其特征在于,所述固定件的第一宽度大于第二宽度;其中,所述第一宽度为所述固定件粘接所述光纤阵列单元的一端在第二方向上的宽度,所述第二宽度为所述固定件粘接所述芯片的一端在所述第二方向上的宽度,所述第二方向为垂直于所述光纤阵列单元的延伸方向且平行于所述芯片的表面的方向。
  7. 如权利要求1所述的光器件,其特征在于,所述固定件位于所述芯片的表面对应于所述光纤阵列单元的位置;
    所述光纤阵列单元朝向所述芯片的端面的一部分与所述固定件粘接,另一部分通过所述固定胶与所述芯片的侧面粘接。
  8. 如权利要求1~7任一项所述的光器件,其特征在于,所述光纤阵列单元包括:第一保护板和第二保护板,所述光纤阵列单元中的各所述光纤位于所述第一保护板与所述第二保护板之间;
    所述光纤阵列单元中的所述光纤与所述芯片表面的所述波导平齐;
    所述第一保护板位于所述光纤远离所述芯片的一侧,所述第二保护板位于所述光纤靠近所述芯片的一侧;
    所述固定件的一端通过所述固定胶与所述芯片粘接,另一端通过所述固定胶与所述第 一保护板的侧面粘接。
  9. 如权利要求1~8任一项所述的光器件,其特征在于,所述固定件的材料包括玻璃。
  10. 如权利要求1~9任一项所述的光器件,其特征在于,所述匹配胶包括硅胶,所述固定胶包括环氧胶。
  11. 一种光模块,其特征在于,包括:如权利要求1~10任一项所述的光器件以及壳体,所述壳体包覆所述光器件。
  12. 一种通信设备,其特征在于,包括:如权利要求11所述的光模块,以及电源模块,所述电源模块用于向所述光模块供电;或者,所述通信设备包括:如权利要求1~10任一项所述的光器件以及壳体,所述壳体包裹所述光器件。
PCT/CN2023/070964 2022-02-18 2023-01-06 一种光器件、光模块及通信设备 WO2023155638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210149493.XA CN116661057A (zh) 2022-02-18 2022-02-18 一种光器件、光模块及通信设备
CN202210149493.X 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023155638A1 true WO2023155638A1 (zh) 2023-08-24

Family

ID=87577498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070964 WO2023155638A1 (zh) 2022-02-18 2023-01-06 一种光器件、光模块及通信设备

Country Status (2)

Country Link
CN (1) CN116661057A (zh)
WO (1) WO2023155638A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB214642A (en) * 1923-04-21 1924-12-11 Thomas Henrik Poulsson Improved means of and apparatus for automatically steering ships
JP2000105324A (ja) * 1998-09-29 2000-04-11 Kyocera Corp 光導波路と光ファイバとの接続構造および接続方法
CN102360098A (zh) * 2011-11-01 2012-02-22 浙江富春江光电科技股份有限公司 Plc分路器及其封装方法
CN208125949U (zh) * 2018-04-26 2018-11-20 北京协同创新研究院 一种透镜光纤阵列、其与芯片的耦合部件和光电子器件
WO2020255329A1 (ja) * 2019-06-20 2020-12-24 日本電信電話株式会社 光ファイバガイド構造および光ファイバ接続構造
CN113311541A (zh) * 2021-06-24 2021-08-27 四川梓冠光电科技有限公司 光开关、微电子机械系统及光开关安装方法
CN113791474A (zh) * 2021-08-17 2021-12-14 深圳市速腾聚创科技有限公司 耦合器与光纤阵列封装方法、封装结构及芯片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB214642A (en) * 1923-04-21 1924-12-11 Thomas Henrik Poulsson Improved means of and apparatus for automatically steering ships
JP2000105324A (ja) * 1998-09-29 2000-04-11 Kyocera Corp 光導波路と光ファイバとの接続構造および接続方法
CN102360098A (zh) * 2011-11-01 2012-02-22 浙江富春江光电科技股份有限公司 Plc分路器及其封装方法
CN208125949U (zh) * 2018-04-26 2018-11-20 北京协同创新研究院 一种透镜光纤阵列、其与芯片的耦合部件和光电子器件
WO2020255329A1 (ja) * 2019-06-20 2020-12-24 日本電信電話株式会社 光ファイバガイド構造および光ファイバ接続構造
CN113311541A (zh) * 2021-06-24 2021-08-27 四川梓冠光电科技有限公司 光开关、微电子机械系统及光开关安装方法
CN113791474A (zh) * 2021-08-17 2021-12-14 深圳市速腾聚创科技有限公司 耦合器与光纤阵列封装方法、封装结构及芯片

Also Published As

Publication number Publication date
CN116661057A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN106980159B (zh) 基于光电混合集成的光电模块封装结构
EP1723456B1 (en) System and method for the fabrication of an electro-optical module
JP4425936B2 (ja) 光モジュール
US7312520B2 (en) Interface module for connecting LSI packages, and LSI-incorporating apparatus
US7366375B2 (en) Optical waveguide device, manufacturing method thereof, optical information processing apparatus, and electronic equipment
US7627210B2 (en) Manufacturing method of optical-electrical substrate and optical-electrical substrate
US20020118924A1 (en) Optical module and method of manufacturing the same, and optical transmission device
EP1432045A2 (en) Optocoupler and its manufacturing method
JP2001185752A (ja) 半導体装置とそれを用いた光信号入出力装置
JP2002090586A (ja) 光・電子回路モジュール及びその製造方法
CN106199832B (zh) 光波导板与光纤耦合连接方法、光波导板和通信传输系统
JPH0667050A (ja) リ−ドフレ−ムを用いるコンタクトを有する光学ウェ−ブガイド
US6944371B2 (en) Lens-integrated optical fiber and production method thereof, optical module, and optical transmission apparatus
JP2006147878A (ja) 光モジュール
JP2003014964A (ja) 光学素子及び当該光学素子を用いた光トランシーバその他の光学装置
US8076678B2 (en) Package for photoelectric wiring and lead frame
JP4845333B2 (ja) 光電変換素子パッケージ、その作製方法及び光コネクタ
JP2003057468A (ja) 光素子、光導波装置、それらの製造方法、およびそれらを用いた光電気混載基板
WO2023155638A1 (zh) 一种光器件、光模块及通信设备
CN209946469U (zh) 光纤线路板、光传输装置及混合光纤线路板
TWI806777B (zh) 光模組
US9523830B2 (en) Optical module and transmitting device
JPH10253856A (ja) 光伝送モジュール用パッケージならびに光伝送モジュール
WO2022030001A1 (ja) 光半導体モジュールおよびその製造方法
CN104597567A (zh) 光开关阵列模块与切角光纤阵列的封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755642

Country of ref document: EP

Kind code of ref document: A1