WO2022030001A1 - 光半導体モジュールおよびその製造方法 - Google Patents

光半導体モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2022030001A1
WO2022030001A1 PCT/JP2020/030394 JP2020030394W WO2022030001A1 WO 2022030001 A1 WO2022030001 A1 WO 2022030001A1 JP 2020030394 W JP2020030394 W JP 2020030394W WO 2022030001 A1 WO2022030001 A1 WO 2022030001A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
semiconductor module
wiring layer
optical semiconductor
electric
Prior art date
Application number
PCT/JP2020/030394
Other languages
English (en)
French (fr)
Inventor
斉 脇田
光太 鹿間
博正 田野辺
雄三 石井
芳行 土居
聡 綱島
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/030394 priority Critical patent/WO2022030001A1/ja
Priority to US18/005,883 priority patent/US20230314740A1/en
Priority to JP2022541081A priority patent/JPWO2022030001A1/ja
Publication of WO2022030001A1 publication Critical patent/WO2022030001A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies

Definitions

  • the present invention relates to an optical semiconductor module and a method for manufacturing the same.
  • Non-Patent Document 1 describes a receiver having a total bit rate of 100 Gb / s, which operates as wavelength division multiplexing (4 ⁇ ⁇ 25 Gb / s) of four wavelengths.
  • a wavelength separation element an optical element such as a photodiode, an optical coupling part (lens), an optical input / output part (receptacle), an electric element (TIA: Transimpedance Amplifier), and an electric wiring (FPC: Flexible Printed Circuit) , Expanded board), housing (gold box for airtight sealing).
  • the light input from the optical input / output unit is input to the wavelength separation element via the optical coupling unit, demultiplexed, and then further input to the optical element via the optical coupling unit.
  • Each of the plurality of signals photoelectrically converted by the optical element is input to the electric element (TIA) and output via the electric wiring (FPC, developed circuit board).
  • the above-mentioned conventional module has the following problems.
  • a form in which an optical device is mounted in a ceramic or metal housing is common (Non-Patent Document 1). While the ceramic or metal housing is highly reliable because it is rigid, it has a problem that it is large in size and it is not easy to mount it on a board at high density.
  • the present invention has been made to solve the above problems, and an object thereof is to reduce the size of the module so that it can be mounted at a higher density.
  • the optical semiconductor module according to the present invention has an electric wiring layer including electric wiring for propagating an electric signal and supplying power, and an optical wiring for propagating an optical signal formed above or below the electric wiring layer. It is provided with an optical wiring layer including the above, and an optical element formed on the optical wiring layer, which is electrically connected to the electrical wiring layer and optically connected to the optical wiring.
  • the optical semiconductor module according to the present invention includes an electrical wiring layer including electrical wiring for propagating an electrical signal, and an optical element formed on the electrical wiring layer.
  • the method for manufacturing an optical semiconductor module according to the present invention includes a first step of forming an electric wiring layer provided with electric wiring for propagating an electric signal and supplying power on the support substrate, and on the support substrate.
  • a second step of forming an optical wiring layer provided with optical wiring for propagating an optical signal and a third step of mounting an electric element on the electric wiring layer and electrically connecting the electric element to the electric wiring.
  • the sixth step of removing the support substrate is provided, and the first step, the second step, and the third step are carried out at the wafer level and the panel level, and further, the seventh step of dividing into individual pieces is provided. ..
  • the size of the module can be reduced and the module can be mounted at a higher density.
  • FIG. 1A is a cross-sectional view showing the configuration of the optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing the configuration of another optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 1C is a cross-sectional view showing the configuration of another optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 2A is a block diagram showing a state of the optical semiconductor module in the intermediate process for explaining the method for manufacturing the optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 2B is a block diagram showing a state of the optical semiconductor module in the intermediate process for explaining the method for manufacturing the optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing the configuration of the optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing the configuration of another optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 2A is
  • FIG. 2C is a block diagram showing a state of the optical semiconductor module in the intermediate process for explaining the method for manufacturing the optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 2D is a configuration diagram showing a state of the optical semiconductor module in the intermediate process for explaining the method for manufacturing the optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 2E is a block diagram showing a state of the optical semiconductor module in the intermediate process for explaining the method for manufacturing the optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 2F is a configuration diagram showing a state of the optical semiconductor module in the intermediate process for explaining the manufacturing method of the optical semiconductor module according to the first embodiment of the present invention.
  • FIG. 3A is a configuration diagram showing the configuration of the optical semiconductor module of the first embodiment.
  • FIG. 3B is a configuration diagram showing the configuration of the optical semiconductor module of the first embodiment.
  • FIG. 3C is a configuration diagram showing the configuration of the optical semiconductor module of the first embodiment.
  • FIG. 3D is a configuration diagram showing the configuration of the optical semiconductor module of the first embodiment.
  • FIG. 3E is a configuration diagram showing the configuration of the optical semiconductor module of the first embodiment.
  • FIG. 4 is a configuration diagram showing the configuration of the optical semiconductor module of the second embodiment.
  • FIG. 5 is a configuration diagram showing the configuration of the optical semiconductor module of the third embodiment.
  • FIG. 6 is a configuration diagram showing the configuration of the optical semiconductor module of the fourth embodiment.
  • FIG. 7A is a configuration diagram showing the configuration of the optical semiconductor module of the fifth embodiment.
  • FIG. 7B is a configuration diagram showing the configuration of the optical semiconductor module of the fifth embodiment.
  • FIG. 8A is a configuration diagram showing the configuration of the optical semiconductor module of the sixth embodiment.
  • FIG. 8B is a configuration diagram showing a partial configuration of the optical semiconductor module of the sixth embodiment.
  • FIG. 9 is a configuration diagram showing the configuration of the optical semiconductor module of the seventh embodiment.
  • FIG. 10 is a configuration diagram showing the configuration of the optical semiconductor module of the eighth embodiment.
  • FIG. 11A is a configuration diagram showing the configuration of the optical semiconductor module of the ninth embodiment.
  • FIG. 11B is a configuration diagram showing the configuration of the optical semiconductor module of the ninth embodiment.
  • FIG. 12A is a cross-sectional view showing the configuration of the optical semiconductor module according to the second embodiment of the present invention.
  • FIG. 12A is a cross-sectional view showing the configuration of the optical semiconductor module according to the second embodiment of the present invention.
  • FIG. 12B is a cross-sectional view showing the configuration of the optical semiconductor module according to the second embodiment of the present invention.
  • FIG. 12C is a cross-sectional view showing the configuration of another optical semiconductor module according to the second embodiment of the present invention.
  • FIG. 12D is a cross-sectional view showing the configuration of another optical semiconductor module according to the second embodiment of the present invention.
  • FIG. 12E is a cross-sectional view showing the configuration of another optical semiconductor module according to the second embodiment of the present invention.
  • optical semiconductor module according to the embodiment of the present invention will be described.
  • This optical semiconductor module includes an electrical wiring layer 101, an optical wiring layer 103, and an optical element 107.
  • the optical wiring layer 103 is formed in contact with the electrical wiring layer 101 on the upper side (upper part).
  • the optical wiring layer 103 can also be arranged below the electrical wiring layer 101.
  • the electrical wiring layer 101 includes an electrical wiring 102 for propagating an electrical signal. Further, in this example, an electric element 106 is further provided. The electric element 106 is formed on the electric wiring layer 103 and is electrically connected to the electric wiring 102.
  • the optical wiring layer 103 includes an optical wiring 104 for propagating an optical signal formed on the upper portion of the electrical wiring layer 101. The electrical wiring 102 and the optical wiring 104 extend in the plane direction of the electrical wiring layer 101.
  • the electric element 106 is formed on the electric wiring layer 101 and is electrically connected to the electric wiring 102.
  • the electrical element 106 is electrically connected to the electrical wiring 102 via, for example, the contact (penetrating) wiring 111.
  • the optical element 107 is formed on the optical wiring layer 103 and is optically connected to the optical wiring 104. Further, a terminal 108 formed on the back surface of the electric wiring layer 101 and electrically connected to the electric wiring 102 is provided.
  • the optical element 107 can be, for example, a light emitting element such as a semiconductor laser or a light emitting diode, a photoelectric conversion element such as a photodiode, or a light modulation element. Further, the optical element 107 may be an element including a light receiving unit configured by a well-known silicon photonics technique and a demultiplexing unit by an optical waveguide. The optical element 107 does not need to be in physical contact with the optical wiring layer 103. Further, a part of the optical element 107 or 107 may be inserted into the optical wiring layer 103 in the thickness direction. In this case, the optical element 107 and the optical wiring 104 are optically coupled inside the optical wiring layer 103.
  • the electric element 106 can be, for example, a driver element for driving an optical element 107 composed of the above-mentioned elements, a TIA (transimpedance amplifier) for amplifying a photoelectrically converted signal, or a PHY device. .. Further, the electric element 106 may be a programmable logic device (PLD: Programmable Logic Device) such as an FPGA (field-programmable gate array), a microcomputer chip, a memory, a control IC, or a power supply IC.
  • PLD Programmable Logic Device
  • the electric element 106 can be in the form of a bare chip, a form mounted on a subcarrier, a form such as a CSP (Chip Size Package). Further, the electric element 106 may have a structure in which chips are stacked in multiple stages. Further, the terminal 108 can be, for example, a solder bump, a solder ball, or a flat electrode pad.
  • optical input / output unit 109 that is optically connected to the optical element 107.
  • the optical input / output unit 109 is formed on the optical wiring layer 103 and is optically connected to the optical element 107 via the optical wiring 104.
  • the optical input / output unit 109 may be arranged at one end as shown in FIG. 1A, or may be arranged at both ends as shown in FIG. 1B.
  • the optical input / output unit 109 realizes highly efficient optical connection between this module and the outside of the module.
  • the optical input / output unit 109 may have an MT ferrule having the same structure as a well-known MT (Mechanical Transfer) connector. can. Alternatively, a mating structure compatible with the MT ferrule can be used.
  • the optical input / output unit contains, for example, a plurality of short fibers.
  • the optical wiring layer 103 may be formed over the region where the electric element 106 is arranged as shown in FIGS. 1A and 1B, and the electric element 106 is arranged as shown in FIG. 1C. It may be partially formed in the region where the optical element 107 is arranged, not in the region.
  • the contact wiring 111 is formed so as to penetrate the optical wiring layer 103.
  • the region where the optical element 107 is arranged is not the region where the optical wiring layer 103 is located. Steps may be formed in the area.
  • the spacer 113 is arranged between the lower surface of the optical element 107 and the electric wiring layer 101.
  • the spacer 113 can be made of, for example, a solder bump or the like.
  • a protective layer 112 formed on the electric wiring layer 101 so as to cover the optical element 107 is provided.
  • the protective layer 112 also covers the electrical element 106.
  • the protective layer 112 is configured to seal each element, and can be made of, for example, a cured resin such as epoxy.
  • the optical element 107 may also include an optical connector that is optically connected to the optical element 107.
  • a heat radiating member such as a heat sink can be provided in contact with the electric element 106 and the optical element 107.
  • Both the electrical wiring layer 101 and the optical wiring layer 103 have a thickness of about several microns to several tens of microns.
  • the electrical wiring layer 101 and the optical wiring layer 103 can have a so-called multi-layer wiring structure.
  • the thin film-shaped electric wiring layer 101 and the optical wiring layer 103 serve as a base surface on which the electric element 106 and the optical element 107 are mounted, but it is clearly different from the rigid and thick substrate used in the conventional module. It's different. Therefore, in order to have the strength as a module, the electric element 106, the optical element 107, and the optical input / output unit 109 are sealed with the protective layer 112 to improve the mechanical strength.
  • the protective layer 112 from a cured resin (plastic), the module in which the protective layer 112 is formed obtains mechanical strength comparable to that of a module formed on a conventional rigid and thick substrate. Be done.
  • a support substrate 121 made of glass, metal, semiconductor, or the like having a smooth surface is prepared, and a release layer 122 is formed on the support substrate 121.
  • an electric wiring layer 101 including an electric wiring 102 for propagating an electric signal is formed on the support substrate 121 (first step).
  • the electrical wiring layer 101 is formed on the peeling layer 122.
  • the electrical wiring layer 101 has a structure in which layers in which wiring is formed of a metal such as Cu or Al and insulating layers made of an insulating material such as polyimide are alternately laminated.
  • the wiring arranged via the insulating layer is connected by a through wiring penetrating the insulating layer.
  • wiring or through wiring can be formed by a photo process such as a known photolithography technique and an etching technique, or a laser processing process.
  • an optical wiring layer 103 provided with an optical wiring 104 for propagating an optical signal is formed on the support substrate 121 (second step).
  • the optical wiring layer 103 is formed on the electrical wiring layer 101.
  • the optical wiring layer 103 can have a well-known optical waveguide structure.
  • a lower clad layer is formed, and a core layer is formed on the lower clad layer.
  • the core layer is composed of, for example, a transparent resin through which light of a target wavelength is transmitted.
  • the core layer can be made of a resin such as polyimide, fluorinated polyimide, epoxy, acrylic, or siloxane.
  • the core layer can be composed of an organic-inorganic hybrid or a resin such as a deuterium of the resin or a substituted product of a halogen such as fluorine.
  • a resin such as a deuterium of the resin or a substituted product of a halogen such as fluorine.
  • a core wiring structure for confining the optical signal is formed.
  • the patterning can be performed, for example, by a known photo process or a well-known nanoimprint technique.
  • an upper clad layer is formed on the formed core wiring structure.
  • the upper clad layer may be formed so as to cover the entire area of the core wiring structure, or may be formed so as to be partially exposed.
  • the electric element 106 is mounted on the electric wiring layer 101, the electric element 106 is electrically connected to the electric wiring 102 (third step), and the electric element 106 is on the optical wiring layer 103.
  • the optical element 107 is mounted on the optical element 107, and the optical element 107 is optically connected to the optical wiring 104 (fourth step).
  • the electric terminal of the electric element 106 and the optical coupling portion of the optical element 107 are located on the lower surface or the lower side surface of the element.
  • the optical input / output unit 109 with the outside is also formed or mounted.
  • the optical input / output unit 109 can be composed of a well-known optical receptacle member. It should be noted that there may be a configuration in which the electric element 106 is not mounted. Further, there may be a manufacturing method in which the mounting of the electric element is carried out after the next step (FIG. 2E).
  • the protective layer 112 that covers the electric element 106 and the optical element 107 is formed (fifth step).
  • the protective layer 112 can be formed by molding the resin and sealing the resin by a transfer mold or a compression mold method.
  • the support substrate 121 is removed by removing the release layer 122 or the like (sixth step).
  • the terminal 108 is formed on the back surface of the electric wiring layer 101. Finally, it is cut into individual modules by cutting with a dicing saw or a laser dicer (7th step).
  • the support substrate 121 can be used. It has excellent mass productivity and can reduce manufacturing costs. Further, since this module does not require an interposer or the like, it is possible to reduce the member cost.
  • the step of forming the optical wiring layer 103 is after the step of forming the electric wiring layer 101, but conversely, the electric wiring layer 101 may be formed after the optical wiring layer 103 is formed first. can.
  • the optical element 107 is, for example, a semiconductor laser chip, and can be made of a compound semiconductor such as indium phosphide.
  • the optical element 107 which is a semiconductor laser, is an electric light conversion element, emits light having a desired wavelength in the right direction in the figure in response to a given electric signal, and emits light of the optical wiring layer 103 via an optical coupling portion. Propagate to the waveguide.
  • the optical signal propagating through the optical waveguide is taken out from the optical input / output unit 109 to the outside.
  • the optical input / output unit 109 has, for example, an optical connector structure, and has a so-called optical receptacle structure in which plug-type optical fibers can be combined.
  • the electric signal for operating the optical element 107 is connected to the electric wiring of the electric wiring layer 101 via an electric terminal (not shown) formed on the side of the electric wiring layer 101 of the optical element 107.
  • the electric terminal of the optical element 107 is connected to any of the electric elements 106 via the electric wiring of the electric wiring layer 101.
  • the electric element 106 is, for example, a laser driver chip. Another electric terminal of the electric element 106 is also connected to the electric wiring of the electric wiring layer 101, and enables connection with the outside via an electric input / output unit 132 formed under the electric wiring layer 101. There is.
  • the electric input / output unit 132 includes a plurality of terminals 108 made of solder bumps, solder balls, and flat electrode pads, and is, for example, a ball grid array or a land grid array.
  • the electrical input / output unit 132 is arranged on the module board 131.
  • the electric input / output unit 132 can input / output not only an electric signal but also a signal including a power supply, a ground, a control signal, and the like.
  • the optical element 107 can be an external modulation type laser chip in which a modulator is integrated on the same chip, or a laser chip including a semiconductor amplifier (SOA). Further, it is also possible to combine these light emitting elements with a chip (silicon photonics chip) formed by so-called silicon photonics technology to form an optical element 107a. Silicon photonics chips require a light emitting element as a light source.
  • the optical element 107a is an opto-electrical conversion element including a combined wave circuit.
  • the optical input / output unit 109 is, for example, an MT ferrule having a plurality of short fibers built-in.
  • the short fiber and the optical element 107 and the optical element 107a are optically connected.
  • the MT ferrule also has two guide holes on both sides into which guide pins can be inserted, similar to the well-known pin-fitting MT connector structure.
  • By inserting an MT connector provided with a guide pin here a removable optical connection outside the module can be realized.
  • the guide hole into which the guide pin is inserted is in a state where the mold material is not filled. Reflection can be prevented by applying a refractive index matching agent having the same refractive index as the core to the end face of the connector and filling the gap with the refractive index matching agent.
  • a polymer waveguide can be used instead of the short fiber.
  • a microhole component having a plurality of microholes into which uncoated bare fibers can be inserted is provided, and a bare fiber array aligned from the outside of the module is inserted. It is possible to realize an optical connection that can be inserted and removed.
  • an optical path conversion structure may be provided in the optical connection portion or a part of the optical wiring layer 103 to realize the optical connection from the upper surface of the module.
  • the optical path conversion structure for example, a mirror, a bent fiber, a bent waveguide, a grating coupler, or the like can be used.
  • a guide structure into which an MT connector, a bare fiber array, or the like can be inserted or mounted is provided.
  • the MT ferrule can be inserted and removed by providing the guide pin hole.
  • the guide pin itself may be configured to protrude.
  • optical connection is made from the upper surface, it can be connected by using a known prism mirror and an MT connector component with optical path conversion having a built-in microlens or the like.
  • the optical element 107 and the optical element 107a can be passive devices such as a coupler, a splitter, and a wavelength combined / demultiplexing filter that do not require an electric signal input.
  • passive devices are generally composed of a dielectric such as quartz or a polymer material.
  • the active device such as the optical element 107 and the optical element 107a is not limited to a light source or a modulator, but may be a light receiving element, a switch, or a wavelength conversion element.
  • a chip in which these elements are integrated in an array, or a chip in which a plurality of types of elements are integrated may be used.
  • a plurality of the same chips may be arranged, arranged adjacent to each other, or laminated. Further, these chips are not limited to the form of being mounted on a bare chip, and may be mounted in a state of being mounted on a subcarrier.
  • the electric element 106 is not limited to the laser driver chip, but may be a TIA, a PHY device, a control IC, or the like.
  • the electric element 106 on the left side of the paper in FIGS. 3A and 3B can be used as a PHY device.
  • a subcarrier-mounted form or a form such as a CSP (ChipSizePackage) may be used.
  • the optical input / output unit 109 for example, an optical receptacle member, etc. will also be mounted and introduced during the manufacturing process, and after mounting this module on a wiring board, for example, a module board, fiber connection will be possible and mounted. It is possible to improve the sex.
  • this module since the optical fiber is not a pigtail but a connector interface, there is no fiber damage during handling, and it is suitable for transport, assembly, and mounting by an automated machine.
  • the protective layer 112 since the protective layer 112 is formed, it has excellent dust resistance (prevents dust from entering during and after assembly) and leads to improved environmental resistance (moisture resistance, etc.). Further, if a black resin or the like is used as the mold resin constituting the protective layer 112, the influence of stray light inside the module can be reduced.
  • the electric / optical wiring By forming the electric / optical wiring by the forming process of the electric wiring layer 101 and the optical wiring layer 103, and enclosing the resin for forming the protective layer 112 after mounting the element, it is possible to reduce the height of the module structure itself. It is also possible to improve the heat dissipation characteristics. Further, by constructing the protective layer 112 from a resin in which silica filler or diamond filler is dispersed and mixed as an aggregate, it is possible to improve the heat conduction characteristics and further reduce the linear expansion coefficient of the module body. Needless to say, the heat dissipation and thermal deformation characteristics are even better. By reducing the size of the module itself, the amount of deformation due to thermal expansion can be suppressed to a small level, which is preferable in terms of reliability.
  • the material of the insulating layer (interlayer insulating layer) of the electric wiring layer 101 polyimide or modified polyimide is generally used, but other insulating materials may be used.
  • the thickness of the insulating layer of the electrical wiring layer 101 is about several ⁇ m to several tens of ⁇ m. Further, since the layer of the electric wiring can be formed by obtaining the same process as the post-process of the chip manufacturing process, the line width can be several ⁇ m and the wiring interval can be several ⁇ m in a plan view. Further, by using the most advanced semiconductor device manufacturing technology, both the line width and the wiring interval can be set to the submicron order.
  • the thickness of the insulating layer of the electrical wiring layer 101 is on the order of several ⁇ m to several tens of ⁇ m, and by appropriately designing the wiring dimensions, the single-phase characteristic impedance can be 50 ⁇ or differential even for high-frequency signals.
  • the characteristic impedance can be set to 100 ⁇ .
  • the wiring width and wiring interval are small (thin), and high-density wiring is possible, so the wiring length between elements can be shortened, resulting in lower power consumption, higher speed, and reduced number of parts (electrical elements). Etc.) is possible.
  • TSV Thine Silicon Via
  • a passive circuit such as an inductor, an antenna, a resistor, a balun, and a capacitor on the electric wiring layer 101.
  • the core materials that make up the optical wiring layer 103 include acrylic, epoxy, polyimide, siloxane, and polynorbornene. Further, the optical wiring layer 103 may be either a single-mode waveguide or a multi-mode waveguide. Further, the core layer constituting the optical wiring layer 103 is not limited to a single layer, but may be a plurality of layers. Further, the optical wirings in the optical wiring layer 103 may intersect in the same plane.
  • the optical wiring layer 103 can be arranged above and below the electrical wiring layer 101 or between layers, and may be continuously formed on the electrical wiring layer 101, or may be formed by bonding to the electrical wiring layer 101. Is also good.
  • the optical coupling portion is designed to have a structure that is optically coupled by a technique such as adiabatic or evanescent coupling or optical coupling by resin space propagation.
  • optical wiring not only optical input / output to the outside but also optical connection between a plurality of optical elements 107 mounted in the module can be made with low loss.
  • the optical wiring can be arranged in the optical wiring layer 103 at a high density by appropriately designing the optical confinement structure.
  • the optical wiring optical wiring layer
  • the functions can be divided into one layer and two layers.
  • the first layer may be used for a complicated optical circuit
  • the second layer may be used for optical coupling
  • the first layer may be used as a test / inspection wiring in a manufacturing process and may be peeled off in a support substrate peeling step.
  • the optical wiring as rewiring after peeling off the support substrate.
  • the rewiring step after applying a resin that functions as a clad of the optical waveguide, electron beam drawing or 3D molding is performed. It can also be formed by forming a core with such means.
  • the optical coupling portions are arranged at high densities according to the number of channels, but via the optical wiring 104 integrated in the optical wiring layer 103.
  • the pitch can be expanded, and the mounting tolerance can be increased even in the optical element 107 integrated at high density.
  • an optical input / output unit 109 for example, a fiber array or a connector receptacle, in which the pitch between the waveguides is connected to the optical wiring layer 103 in the optical wiring layer 103 with respect to the narrow pitch waveguide layer formed in the optical element 107. It can be expanded to the pitch and the mountability of the optical input / output unit 109 can be improved by these.
  • the protective layer 112 made of a resin mold enables batch production of wafers or panels, and rigidly fixes the optical wiring integrated in the mounted optical wiring layer 103 and the optical element 107 to improve moisture resistance. At the same time, it plays a role of protection to give impact resistance. Further, the handleability of the optical element 107 in the mounting process is greatly improved.
  • the protective layer 112 can be formed by applying a plurality of molding materials in an overlapping manner.
  • the protective layer 112 can have a multi-layer structure composed of different resins.
  • the protective layer 112 can be configured from the first protective layer 112a and the second protective layer 112b.
  • the first protective layer 112a can be used, for example, as an underfill material for the purpose of stress relaxation of the element.
  • a refractive index matching agent can be used to improve the coupling ratio between the optical element 107 and the optical wiring layer 103.
  • the optical connection between them is a spatial optical system.
  • edge coupling method can be used.
  • the first protective layer 112a formed in contact with the optical element 107 and the optical input / output unit 109 is made of a resin having a light transmissive or refractive index matching function, the above-mentioned optical connection can be obtained. It will be possible.
  • the first protective layer 112a is an optical propagation unit that propagates light for optical connection between the optical element 107 and the optical input / output unit 109 (another optical element) in the plane direction of the electrical wiring layer 101. Functions as.
  • the sealing and strength can be improved. By doing so, it is possible to improve the impact resistance and moisture resistance of the module body without deteriorating the optical characteristics even in the spatial optical system and the edge coupling method.
  • the electric element 106 may include an electric signal processing circuit such as a PHY device.
  • the Tx side in the subsequent stage may include a drive circuit for driving a semiconductor laser, an EML (Electro absorption Modulator Integrated Laser Diode), or the like as an electric element 106.
  • the electric signal may be converted into an optical signal by EML and may be combined with the optical element 107a in the subsequent stage by a wave combine circuit formed by silicon photonics technology.
  • the combined optical signal is output to the outside of this module structure via the optical input / output unit 109.
  • a circuit for demultiplexing the optical signal input from the optical input / output unit 109 may be formed in the optical element 107a.
  • the optical input / output unit 109 to the optical element 107 (optical element 107a) are connected via the optical wiring layer 103.
  • the above-mentioned demultiplexed optical signal is converted into an electric signal via a light receiving element formed in the optical element 107 (optical element 107a), for example, a Ge photodiode.
  • This converted electric signal is input to the electric element 106 which is a PHY device via the electric element 106 such as TIA, and is transmitted to the outside of the module via the electric input / output unit 132.
  • the optical coupling portion and the optical input / output portion 109 of the optical element 107a are optically connected via a protective layer 112 arranged between them.
  • This optical connection can be, for example, a coupling method such as an edge coupling method or a resin space propagation method.
  • the resin material constituting the protective layer 112 has high transparency, a uniform refractive index, and a small difference in thermal expansion rate.
  • the protective layer 112 has an acrylic resin, an epoxy resin, a silicone (polysiloxane), and fluorine having transparency and a refractive index of about 1.5.
  • Chemical polymers, fluorinated polyimides, polynorbornene, oxetane, organic-inorganic hybrid materials, and replacement materials thereof are used.
  • this package is configured to include an overlapping portion 101a in which a part of the electrical wiring layer 101 and a part of the optical input / output unit 109 overlap.
  • the overlapping portion 101a is a portion of the optical input / output unit 109 incorporated inside the electrical wiring layer 101.
  • the optical input / output unit 109 penetrates from the surface of the electrical wiring layer 101 in the thickness direction on the bottom surface side of the optical input / output unit 109, and is an overlapping portion 101a on which they overlap each other.
  • the optical input / output unit 109 is arranged on the upper surface of the electric wiring layer 101, or has a configuration including an overlapping portion 101a in which a part of the electric wiring layer 101 and a part of the optical input / output unit 109 overlap. can do.
  • the overlapping portion 101a is a portion of the optical input / output portion 109 incorporated inside the electrical wiring layer 101.
  • the optical input / output unit 109 penetrates from the surface of the electrical wiring layer 101 in the thickness direction on the bottom surface side of the optical input / output unit 109, and is an overlapping portion 101a on which they overlap each other.
  • optical input / output unit 109 is incorporated not only in the electrical wiring layer 112 but also inside the optical wiring layer 103, or when a part of the optical wiring layer 103 is incorporated in the optical input / output unit 109. It is possible.
  • this package may be configured to include an overlapping portion 103a in which a part of the optical wiring layer 103 and a part of the optical input / output unit 109 overlap.
  • the overlapping portion 103a is a portion of the optical input / output unit 109 incorporated inside the optical wiring layer 103.
  • the overlapping portion 103a may have a part of the optical wiring layer 103 incorporated inside the optical input / output unit 109.
  • a part of the optical wiring layer 103 penetrates into the optical input / output unit 109 to form an overlapping portion 103a that overlaps with each other.
  • a groove is provided so as to separate the plurality of optical waveguides constituting the optical wiring layer 103, and a convex portion is provided in the optical coupling portion of the optical input / output unit 109 so as to be fitted in the groove, and these are overlapped.
  • the optical input / output unit 109 may be a case where not only the optical wiring layer 103 but also a part of the electric wiring layer 112 is incorporated in the optical input / output unit 109, or a part of the electric wiring layer is incorporated in the optical input / output unit 109.
  • a part of either the optical wiring layer 103 or the electrical wiring layer 101 is used.
  • both of them can penetrate (incorporate) into the optical input / output unit 109 and include overlapping portions that overlap each other.
  • an optical element 107 as an electro-optical conversion element or an opto-electric conversion element and another optical element 107b of a combined wave circuit formed by silicon photonics technology can be formed separately.
  • the optical element 107 for electro-light conversion can be an EML.
  • the electric element 106 on the left side of the paper in FIG. 4 is, for example, a PHY device.
  • An electro-optical conversion element, an opto-electric conversion element, and a combined wave circuit can be mixedly mounted to form one optical element 107c.
  • one optical element 107c can be mounted on this module, and the number of optical elements that require high accuracy in the mounting process can be reduced as compared with the electric element 106, and the mounting process can be reduced.
  • the electric element 106 on the left side of the paper in FIG. 5 is, for example, a PHY device.
  • Example 4 Next, Example 4 will be described with reference to FIG.
  • the optical-electric conversion element and the combiner circuit are combined to form the optical element 107a, but the electric-optical conversion element and the combiner circuit can be combined to form the optical element 107d.
  • the optical element 107 which is an optical-electric conversion element, is formed separately from the combine wave circuit.
  • a photoelectric conversion element there is a photodiode composed of a compound semiconductor, which is generally a planar semiconductor. Therefore, this type of photoelectric conversion element has high input resistance, and the variable optical attenuator (VOA) required from the viewpoint of input resistance in the optical waveguide type Ge photodiode becomes unnecessary, resulting in low power consumption. Is possible.
  • the electric element 106 on the left side of the paper in FIG. 6 is, for example, a PHY device.
  • the optical input / output unit 109 can be arranged outside the upper region (module region) of the electrical wiring layer 101.
  • the optical input / output unit 109 can be arranged on the side of the electrical wiring layer 101 (optical wiring layer 103).
  • the optical wiring layer 103 of the optical wiring layer 103 is formed so as to extend to the side portion (end surface) of the optical wiring layer 103, and can be optically connected to the optical input / output unit 109.
  • the optical input / output unit 109 may have a receptacle structure, or may be a fiber array installed on a V-groove substrate made of glass or the like.
  • optical coupling by spatial propagation provided with a gap between the two is performed.
  • the method may be used.
  • the electric element 106 on the left side of the paper in FIGS. 7A and 7B is, for example, a PHY device.
  • the optical input / output unit 109 can also be arranged on the side portion of the optical wiring layer 103 on the electrical wiring layer 101. Further, the optical input / output unit 109 may be arranged so as to overlap a part of the structure of the optical wiring layer 103. For example, the optical input / output unit 109 can be formed inside the optical wiring layer 103. Further, the optical wiring layer 103 can be included in the optical input / output unit 109. Further, the optical input / output unit 109 and the optical wiring layer 103 may be arranged so as to overlap each other.
  • the module 100 shown in the above-mentioned Examples 1 to 6 is arranged on the module board 131 on which the switch ASIC 141 is mounted.
  • a plurality of modules 100 are arranged so as to surround the switch ASIC 141 in a plan view.
  • all the high-speed I / O of the 51.2 Tbps switch can be performed on the same module board 131. It can be made optical, and there is no need to transmit high-speed electric signals on the printed wiring board.
  • it is not necessary to mount an optical transceiver on the front panel of the switch box it is possible to realize a higher density optical interface.
  • the OIF CEI-112G XSR standard For example, if this module structure is a module structure (CPO) having a capacity of 6.4 Tbps for transmission and reception, the transmission capacity per channel (ch) is about 100 Gbps in the above-mentioned CEI-112G XSR, and transmission / reception 64 A total of 128 channels are required. Assuming that each channel has a GSSG differential signal configuration, for example, the number of electrical input / output terminals (n) needs to be about 500 terminals.
  • the electrical input / output unit 132 formed on the back surface of this module via the electrical wiring layer 101 can two-dimensionally expand the terminals of the mounted chip to the back surface of the module.
  • the polyimide film used as the insulating layer constituting the electrical wiring layer 101 can be laminated with about 6 layers, and in addition to the surface of the polyimide film, 2 inner layers can be used as an RF signal layer, and the module width is about 12 mm. Then, until the pitch between the channels of the differential signal is about 200 ⁇ m, 64 channels of transmission and reception can be routed inside the module in the two inner layers.
  • Example 7 will be described with reference to FIG.
  • the PHY device was used in Examples 1 to 7 described above, the module can be configured without using the PHY device.
  • the PHY chip function can be integrated in an ASIC existing outside the module, and the module can be directly driven by the ASIC.
  • Example 8 Next, Example 8 will be described with reference to FIG.
  • another electric element 106a made of a PHY device or the like is arranged on the back surface side of the electric wiring layer 101, and the electric element 106, the optical wiring layer 103, and the optical elements 107, 107a are arranged on the front surface side of the electric wiring layer 101.
  • the electrical input / output section 132 on the back surface side of the electrical wiring layer 101 is made thicker than the other electrical elements 106a.
  • a pillar 114 made of a metal such as Cu is formed in the formed protective layer 112, and an electric element 106 and an optical element 106 arranged on the surface side of the electric wiring layer 101 via the electric wiring layer 101.
  • the structure can be such that an electrical connection can be obtained with the element 107 or the like.
  • a PHY device it is also possible to arrange not only a PHY device but also an electric element such as a thin film type capacitor and an electric element such as a memory on the back surface of the electric wiring layer 101.
  • the bias voltage between components (elements) is different, so a DC block or the like is required, or a bypass capacitor is placed at the power supply terminal near the chip to improve the stability of the power supply. Or something.
  • the upper part of the passive component can also be used as electrical wiring or optical wiring, and the size of the module can be reduced.
  • the ninth embodiment will be described with reference to FIGS. 11A and 11B.
  • the electric wiring layer 101 and the optical wiring layer 103 are formed, and the electric element 106, the optical elements 107, 107a, and the optical input / output unit 109 are arranged via the electric input / output unit 132 or the optical coupling unit.
  • the protective layer 112 can also be formed.
  • another electric element 106a by a PHY device can be arranged on the second floor.
  • the pillar 115, the electric input / output unit 132a, and the like can be added to form a two-story structure, and the electric element 106 can be installed outside the protective layer 112.
  • the electric element 106 is mounted only on the upper surface of the electric input / output unit 132a provided on the upper part of the protective layer 112.
  • the step of forming the optical wiring layer 103 is after the step of forming the electrical wiring layer 101, but conversely, the optical wiring layer 103 is formed first, and then the electrical wiring layer 101 is formed. It can also be formed.
  • This semiconductor module includes an electric wiring layer 201, an electric element 206, and an optical element 207.
  • the electrical wiring layer 201 includes electrical wiring 202 for propagating electrical signals.
  • the electric element 206 is formed on the electric wiring layer 201 and electrically connected to the electric wiring 202.
  • the electrical element 206 is electrically connected to the electrical wiring 202 via, for example, the contact (penetrating) wiring 211.
  • the electrical wiring 202 extends in the plane direction of the electrical wiring layer 201. Further, a terminal 208 formed on the back surface of the electric wiring layer 201 and electrically connected to the electric wiring 202 is provided.
  • the optical element 207 can be, for example, a light emitting element such as a semiconductor laser or a light emitting diode, a photoelectric conversion element such as a photodiode, or a light modulation element. Further, the optical element 207 may be an element including a light receiving unit configured by a well-known silicon photonics technique and a demultiplexing unit by an optical waveguide.
  • the electric element 206 can be, for example, a driver element for driving an optical element 207 composed of the above-mentioned elements, a TIA for amplifying a photoelectrically converted signal, or a PHY device. Further, the electric element 206 may be a programmable logic device such as an FPGA.
  • the electric element 206 can be in the form of a bare chip, a form mounted on a subcarrier, a form such as a CSP, or the like. Further, the electric element 206 may have a structure in which chips are stacked in multiple stages. Further, the terminal 208 may be, for example, a solder bump, a solder ball, or a copper pillar.
  • the optical element 207 is formed on the electric wiring layer 201 and is optically coupled to the light propagation portion 204.
  • the light propagation section 204 is arranged between the optical element 207 and another optical element optically connected to the optical element 207, and is used for optical connection between the optical element 207 and the other optical element. Propagate in the plane direction of the electrical wiring layer 201.
  • the light propagation unit 204 may be composed of, for example, an optical system arranged between the optical element 207 and another optical element adjacent to the optical element 207. Further, the light propagation unit 204 can have a connection configuration in which the optical element 207 and another optical element are connected by an edge coupling method.
  • the other optical element is, for example, an optical input / output unit 209.
  • the optical input / output unit 209 is optically connected to the optical element 207 via the optical propagation unit 204, and realizes, for example, a connection between the module and an optical fiber.
  • the optical input / output unit 209 can be, for example, an MT ferrule having a structure similar to that of a well-known MT connector.
  • the MT ferrule contains, for example, a plurality of short fibers.
  • optical connection between a plurality of optical elements arranged on the electric wiring layer 201 as shown in the first to sixth embodiments of the first embodiment described above is carried out by the optical propagation unit 204. ..
  • Optical connection can be performed by an edge coupling method or a coupling method by resin space propagation, which is directly connected between the optical coupling portions of each of the plurality of optical elements via the optical propagation portion 204.
  • the light propagation unit 204 can be made of, for example, a resin. It is desirable that the resin material has high transparency, a consistent refractive index, and a small difference in thermal expansion rate. For example, when an optical element having an optical wavelength of 1.55 ⁇ m is used, an acrylic resin, an epoxy resin, a silicone (polysiloxane), a fluorinated polymer, or a fluorinated resin having transparency and a refractive index of about 1.5 is used. Polyimide, polynorbornene, oxetane, organic-inorganic hybrid materials, and replacement materials thereof can be used.
  • a protective layer 212 formed on the electric wiring layer 201 so as to cover the optical element 207 is provided.
  • the protective layer 212 also covers the electrical element 206.
  • the protective layer 212 is configured to seal each element, and can be made of, for example, a cured resin such as epoxy.
  • the optical element 207 may also include an optical connector that is optically connected to the optical element 207.
  • a heat radiating member such as a heat sink can be provided in contact with the electric element 206 and the optical element 207.
  • the protective layer 212 is made of a transparent resin through which light of the target wavelength is transmitted as described above, the light propagation portion 204 is arranged (filled) between the optical element 207 and another optical element. It can be composed of the protective layer 212 to be formed. In this case, the light propagation unit 204 is composed of a part of the protective layer 212.
  • the optical semiconductor module according to the second embodiment can have the same configuration as that of the first embodiment described above, except that the optical transmission unit 204 realizes the optical connection between the optical elements.
  • the electrical wiring layer 201 has a thickness of about several microns to several tens of microns. Further, the electrical wiring layer 201 can have a so-called multi-layer wiring structure. The electrical wiring layer 201 is still in the form of a film even if it has a multi-layer structure.
  • the thin film-like electrical wiring layer 201 serves as a base surface on which the electrical element 206 and the optical element 207 are mounted, but is clearly different from the rigid and thick substrate used in conventional modules.
  • the electric element 206, the optical element 207, and the optical input / output unit 209 are sealed with the protective layer 212 to improve the mechanical strength.
  • the protective layer 212 from a cured resin (plastic)
  • the module on which the protective layer 212 is formed obtains mechanical strength comparable to that of a module formed on a conventional rigid and thick substrate. Be done.
  • the optical element 207 and another optical element are optically connected by a light propagation unit 204.
  • a light propagation unit 204 there is a case where an optical element 207 equipped with an optical element or PLC by silicon photonics technology and an optical input / output unit 209 adjacent to the optical element 207 are optically connected by a spatial optical system or an optical propagation unit 204 by an edge coupling method.
  • a resin having a light transmissive or refractive index matching function can be used as the first mold resin formed in contact with each optical element.
  • a second mold resin for sealing and improving strength can be further applied and formed on the first mold resin described above. By doing so, it is possible to improve the impact resistance and moisture resistance of the module body without deteriorating the optical characteristics at the portion to be the light propagation portion 204.
  • the protective layer 212 can be formed by applying a plurality of molding materials in layers.
  • the protective layer 212 can have a multi-layer structure composed of different resins.
  • the protective layer 212 can be composed of a first protective layer 204a and a second protective layer 212a.
  • the first protective layer 204a is the above-mentioned light propagation portion, and can be used for the purpose of stress relaxation of the device, for example, as an underfill material.
  • the optical element 207 may be provided on the electric wiring layer 201, and the module may be configured not to include the electric element.
  • one switch ASIC can connect a plurality of modules including an optical element 207 not including an electric element.
  • the optical element 207 is formed on the electric wiring layer 201 and is optically coupled to the light propagation portion 204.
  • the light propagation section 204 is arranged between the optical element 207 and another optical element optically connected to the optical element 207, and is used for optical connection between the optical element 207 and the other optical element.
  • a protective layer 212 formed on the electric wiring layer 201 so as to cover the optical element 207 is provided.
  • FIG. 12D it is possible to have a two-story configuration in which electrical connection is carried out via a metal pillar (through electrode) 215 formed in advance in the electric wiring layer 201 by Cu or the like. ..
  • another electric element 206a by the PHY device can be arranged on the second floor portion.
  • the other electric element 206a can be mounted on the upper surface of the electric input / output unit (not shown) provided on the upper part of the protective layer 211.
  • the electric element 206 may be configured not in the protective layer 212.
  • the electric element 206 can be mounted only on the upper surface of the electric input / output unit (not shown) provided on the upper part of the protective layer 211.
  • another electric element such as a PHY device may be arranged on the back surface side of the electric wiring layer 201. With such a form, the module size can be reduced.
  • an optical wiring layer including optical wiring for propagating an optical signal is formed on a support substrate.
  • an electric wiring layer including electric wiring for propagating an electric signal and supplying power is formed on the support substrate.
  • the electric element is mounted on the electric wiring layer, and the electric element is electrically connected to the electric wiring.
  • an optical element is mounted on the optical wiring layer, and the optical element is optically connected to the optical wiring.
  • resin encapsulation is carried out using one or more kinds of resins.
  • the support substrate is removed.
  • an electric wiring layer including electric signal propagation and electric wiring for supplying power is formed on the support substrate.
  • an electric element, an optical element, or both are mounted on the electric wiring layer, and the electric element is electrically connected to the electric wiring.
  • the mounted optical element is optically connected to the optical wiring.
  • resin encapsulation is carried out using one or more kinds of resins.
  • the support substrate is removed.
  • a step of forming an optical input / output unit can be provided before resin sealing is performed. Further, in the above-mentioned manufacturing method of each optical semiconductor module, a step of forming an optical input / output unit can be provided before or after a step of separating the modules into individual pieces.
  • the electric element and the optical element are arranged on the electric wiring layer provided with the electric wiring for propagating the electric signal, so that the size of the module can be reduced. Therefore, it can be mounted at a higher density.
  • Non-Patent Document 1 Non-Patent Document 1, FIG. 1
  • an optical module for communication also needs a structure for leading an optical fiber to the outside of a housing, and there are many joint points for fixing the fiber, and careful assembly is required.
  • the conventional module has a problem in mass productivity.
  • the present invention since it is not necessary to provide a component such as an optical fiber in the module, it can be manufactured without requiring a complicated process as compared with the conventional technology, and it can be mass-produced with a smaller module. You will be able to obtain sex.
  • the mechanical strength of the module can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

モジュールは、電気配線層(101)、光配線層(103)、電気素子(106)、光学素子(107)を備える。電気配線層(101)は、電気信号を伝搬するための電気配線(102)を備える。光配線層(103)は、電気配線層(101)の上部に形成された光信号を伝搬するための光配線(104)を備える。電気素子(106)は、電気配線層(101)の上に形成されて、電気配線(102)に電気的に接続する。光学素子(107)は、光配線層(103)の上に形成されて、光配線(104)に光学的に接続する。

Description

光半導体モジュールおよびその製造方法
 本発明は、光半導体モジュールおよびその製造方法に関する。
 トランシーバより小さいモジュールとして、ゴールドボックスと呼ばれる金属筐体に封入された形態が知られる。例えば、非特許文献1には、総ビットレートが100Gb/sの受信機が記載されており、これは、4波長の波長多重(4λ×25Gb/s)として動作する。この種のモジュールでは、波長分離素子や、フォトダイオードなどの光学素子、光学結合部(レンズ)、光入出力部(レセプタクル)、電気素子(TIA:Transimpedance Apmplifier)、電気配線(FPC:Flexible Printed Circuit、展開基板)、筐体(気密封止を行うためのゴールドボックス)から構成されている。例えば、光入出力部から入力される光は、光学結合部を介して波長分離素子に入力されて4分波された後、さらに光学結合部を介して光学素子に入力される。光学素子で光電変換された複数の信号は、それぞれ電気素子(TIA)に入力され、電気配線(FPC、展開基板)を介して出力される。
Y. Doi et al., "Compact ROSA for 100-Gb/s (4 × 25 Gb/s) Ethernet with a PLC-based AWG demultiplexer", Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, 13582006, 2013.
 ところで、上述した従来のモジュールには次のような問題があった。上述したモジュールでは、セラミックもしくは金属製の筐体内に光デバイスを搭載した形態が一般的である(非特許文献1)。セラミックもしくは金属製の筐体は、剛直であるために信頼性が高い一方、サイズが大きく、ボード上に高密度に実装することが容易ではないという問題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、モジュールのサイズを小さくして、より高密度に実装できるようにすることを目的とする。
 本発明に係る光半導体モジュールは、電気信号の伝搬や、電源を供給するための電気配線を備える電気配線層と、電気配線層の上部あるいは下部に形成された光信号を伝搬するための光配線を備える光配線層と、光配線層の上に形成されて、電気配線層に電気的に接続され光配線に光学的に接続する光学素子とを備える。
 本発明に係る光半導体モジュールは、電気信号を伝搬するための電気配線を備える電気配線層と、電気配線層の上に形成された光学素子とを備える。
 また、本発明に係る光半導体モジュールの製造方法は、支持基板の上に電気信号の伝搬や、電源を供給するための電気配線を備える電気配線層を形成する第1工程と、支持基板の上に、光信号を伝搬するための光配線を備える光配線層を形成する第2工程と、電気配線層の上に電気素子を搭載して、電気素子を電気配線に電気的に接続する第3工程と、光配線層の上に光学素子を搭載して、光学素子を光配線に光学的に接続する第4工程と、1種類以上の樹脂を用いて樹脂封止を実施する第5工程と、支持基板を除去する第6工程とを備え、第1工程、第2工程、第3工程は、ウェハレベル、パネルレベルで実施し、さらに、分割することで個片化する第7工程を備える。
 以上説明したことにより、本発明によれば、モジュールのサイズを小さくして、より高密度に実装できる。
図1Aは、本発明の実施の形態1に係る光半導体モジュールの構成を示す断面図である。 図1Bは、本発明の実施の形態1に係る他の光半導体モジュールの構成を示す断面図である。 図1Cは、本発明の実施の形態1に係る他の光半導体モジュールの構成を示す断面図である。 図2Aは、本発明の実施の形態1に係る光半導体モジュールの製造方法を説明するための途中工程の光半導体モジュールの状態を示す構成図である。 図2Bは、本発明の実施の形態1に係る光半導体モジュールの製造方法を説明するための途中工程の光半導体モジュールの状態を示す構成図である。 図2Cは、本発明の実施の形態1に係る光半導体モジュールの製造方法を説明するための途中工程の光半導体モジュールの状態を示す構成図である。 図2Dは、本発明の実施の形態1に係る光半導体モジュールの製造方法を説明するための途中工程の光半導体モジュールの状態を示す構成図である。 図2Eは、本発明の実施の形態1に係る光半導体モジュールの製造方法を説明するための途中工程の光半導体モジュールの状態を示す構成図である。 図2Fは、本発明の実施の形態1に係る光半導体モジュールの製造方法を説明するための途中工程の光半導体モジュールの状態を示す構成図である。 図3Aは、実施例1の光半導体モジュールの構成を示す構成図である。 図3Bは、実施例1の光半導体モジュールの構成を示す構成図である。 図3Cは、実施例1の光半導体モジュールの構成を示す構成図である。 図3Dは、実施例1の光半導体モジュールの構成を示す構成図である。 図3Eは、実施例1の光半導体モジュールの構成を示す構成図である。 図4は、実施例2の光半導体モジュールの構成を示す構成図である。 図5は、実施例3の光半導体モジュールの構成を示す構成図である。 図6は、実施例4の光半導体モジュールの構成を示す構成図である。 図7Aは、実施例5の光半導体モジュールの構成を示す構成図である。 図7Bは、実施例5の光半導体モジュールの構成を示す構成図である。 図8Aは、実施例6の光半導体モジュールの構成を示す構成図である。 図8Bは、実施例6の光半導体モジュールの一部構成を示す構成図である。 図9は、実施例7の光半導体モジュールの構成を示す構成図である。 図10は、実施例8の光半導体モジュールの構成を示す構成図である。 図11Aは、実施例9の光半導体モジュールの構成を示す構成図である。 図11Bは、実施例9の光半導体モジュールの構成を示す構成図である。 図12Aは、本発明の実施の形態2に係る光半導体モジュールの構成を示す断面図である。 図12Bは、本発明の実施の形態2に係る光半導体モジュールの構成を示す断面図である。 図12Cは、本発明の実施の形態2に係る他の光半導体モジュールの構成を示す断面図である。 図12Dは、本発明の実施の形態2に係る他の光半導体モジュールの構成を示す断面図である。 図12Eは、本発明の実施の形態2に係る他の光半導体モジュールの構成を示す断面図である。
 以下、本発明の実施の形態に係る光半導体モジュールについて説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1に係る光半導体モジュールについて、図1A、図1B、図1Cを参照して説明する。この光半導体モジュールは、電気配線層101、光配線層103、および光学素子107を備える。この例では、電気配線層101の上(上部)に、光配線層103が接して形成されている。電気配線層101の下部に光配線層103を配置することもできる。
 電気配線層101は、電気信号を伝搬するための電気配線102を備える。また、この例では、さらに電気素子106を備える。電気素子106は、電気配線層103の上に形成されて、電気配線102に電気的に接続している。光配線層103は、電気配線層101の上部に形成された光信号を伝搬するための光配線104を備える。なお、電気配線102および光配線104は、電気配線層101の面方向に延在している。
 また、電気素子106は、電気配線層101の上に形成されて、電気配線102に電気的に接続する。電気素子106は、例えば、コンタクト(貫通)配線111を介して電気配線102に電気的に接続する。光学素子107は、光配線層103の上に形成されて、光配線104に光学的に接続する。また、電気配線層101の裏面に形成され、電気配線102に電気的に接続する端子108を備える。
 光学素子107は、例えば、半導体レーザや発光ダイオードなどの発光素子、フォトダイオードなどの光電変換素子、光変調素子とすることができる。また、光学素子107は、よく知られたシリコンフォトニクス技術により構成された受光部および光導波路による合分波部を備える素子とすることもできる。なお、光学素子107は、光配線層103と物理的に接触する必要はない。また、光学素子107あるいは107の一部は、光配線層103に厚さ方向に挿入された構成とすることができる。この場合、光配線層103の内部で光学素子107と光配線104とが光学結合することになる。
 電気素子106は、例えば、上述したような素子から構成された光学素子107を駆動するためのドライバ素子や、光電変換された信号を増幅するTIA(transimpedance amplifier)や、PHYデバイスとすることができる。また、電気素子106は、FPGA(field-programmable gate array)などのプログラマブルロジックデバイス(PLD:Programmable Logic Device)やマイコンチップ、メモリ、制御用IC、電源用ICとすることもできる。
 また、電気素子106は、ベアチップの形態、サブキャリア実装された形態、CSP(Chip Size Package)などの形態とすることができる。また、電気素子106は、チップが多段にスタックされた構造とすることもできる。また、端子108は、例えば、はんだバンプや、はんだボール、あるいは平面電極パッドとすることができる。
 また、光学素子107に光学的に接続する光入出力部109を備える。この例では、光入出力部109は、光配線層103の上に形成され、光配線104を介して光学素子107に光学的に接続する。光入出力部109は、図1Aに示すように、一端に配置しても良く、また、図1Bに示すように、両端に配置しても良い。光入出力部109は、本モジュールと、モジュール外部との光接続を高効率に実現するものであり、例えば、よく知られたMT(Mechanical Transfer)コネクタと同様の構造のMTフェルールとすることができる。あるいはMTフェルールとコンパチブルな嵌合構造を用いることができる。また光入出力部は、例えば、複数の短尺ファイバを内蔵している。
 また、光配線層103は、図1A,図1Bに示すように、電気素子106が配置されている領域にかけて形成されていても良く、図1Cに示すように、電気素子106が配置されている領域にはなく、光学素子107が配置されている領域に、部分的に形成されていても良い。電気素子106が配置されている領域にも光配線層103を設ける場合、コンタクト配線111は、光配線層103を貫通して形成される。また、図1Cに示すように、光学素子107が配置されている領域に、部分的に光配線層103を設ける場合、光学素子107が配置される領域に、光配線層103がある領域とない領域で段差が形成される場合がある。このような場合、光学素子107の下面と電気配線層101との間に、スペーサ113を配置する。スペーサ113は、例えば、ハンダバンプなどから構成することができる。
 また、光学素子107を覆って電気配線層101の上に形成された保護層112を備える。この例では、保護層112は、電気素子106も覆っている。保護層112は、各素子を封止するための構成であり、例えば、エポキシなどの硬化した樹脂から構成することができる。また、図示していないが、光学素子107は、光学素子107と光学的に接続する光コネクタを備えることもできる。また、図示していないが、電気素子106および光学素子107の上に、ヒートシンクなどの放熱部材を接して設けることができる。
 電気配線層101および光配線層103は、いずれも数ミクロンから数十ミクロン程度の厚さである。言い換えると、よく知られた半導体装置の技術やシリコンフォトニクス技術によれば、電気配線層101および光配線層103は、いずれも数ミクロンから数十ミクロン程度の厚さに構成することが容易である。このように構成することで、モジュールのサイズを小さくして、より高密度な実装が容易に実現できる。また、電気配線層101および光配線層103は、少なくとも一方を、いわゆる多層配線構造とすることができる。
 多層構造であっても、依然としてフィルム形態をなしている。薄いフィルム状の電気配線層101および光配線層103は、電気素子106、光学素子107を搭載するベース面にはなっているが、従来のモジュールで使用されているリジッドで厚い基板とは明らかに異なっている。このため、モジュールとしての強度をもたせるために、電気素子106、光学素子107、また、光入出力部109を、保護層112で封止して機械的な強度を向上させる。保護層112を、硬化した樹脂(プラスチック)から構成することで、保護層112を形成したモジュールは、従来のリジッドで厚い基板に形成されているモジュールに比較して、遜色のない機械強度が得られる。
 次に、本発明の実施の形態1に係る光半導体モジュールの製造方法について、図2A~図2Fを参照して説明する。
 まず、図2Aに示すように、表面が平滑なガラス、金属、半導体などによる支持基板121を用意し、支持基板121の上に、剥離層122を形成する。次に、図2Bに示すように、支持基板121の上に電気信号を伝搬するための電気配線102を備える電気配線層101を形成する(第1工程)。この例では、剥離層122の上に、電気配線層101を形成する。
 電気配線層101は、CuやAlなどの金属による配線が形成されている層と、ポリイミドなどの絶縁材料による絶縁層とが交互に積層された構成となっている。絶縁層を介して配置される配線同士は、絶縁層を貫通する貫通配線により接続される。例えば、公知のフォトリソグラフィー技術およびエッチング技術などのフォトプロセスや、レーザ加工プロセスによって、配線や貫通配線が形成できる。
 次に、図2Cに示すように、支持基板121の上に、光信号を伝搬するための光配線104を備える光配線層103を形成する(第2工程)。この例では、電気配線層101の上に、光配線層103を形成する。光配線層103は、よく知られた光導波路構造とすることができる。例えば、下部クラッド層を形成し、下部クラッド層の上に、コア層を形成する。コア層は、例えば、対象とする波長の光が透過する透明な樹脂から構成する。例えば、コア層は、ポリイミド、フッ素化したポリイミド、エポキシ、アクリル、シロキサンなどの樹脂から構成することができる。また、コア層は、有機無機ハイブリッド、または樹脂の重水素あるいはフッ素などのハロゲンによる置換体などの樹脂から構成することができる。なお、光配線層103を形成しない構成も有り得る。この場合は、本工程は実施されない。
 次に、コア層をパターニングすることで、光信号を閉じ込めるためのコア配線構造を形成する。パターニングは、例えば、公知のフォトプロセスや、よく知られたナノインプリント技術により実施することができる。次いで、形成したコア配線構造の上に、上部クラッド層を形成する。上部クラッド層は、コア配線構造の全域を覆って形成しても良く、一部が露出する状態に形成しても良い。なお、図2C、図2Dなど本工程のいずれかの後に、光入出力部109を搭載するために、光配線層103だけでなく電気配線層101も露出させるパターンを設けることができる。
 次に、図2Dに示すように、電気配線層101の上に電気素子106を搭載して、電気素子106を電気配線102に電気的に接続し(第3工程)、光配線層103の上に光学素子107を搭載して、光学素子107を光配線104に光学的に接続する(第4工程)。例えば、電気素子106の電気端子、光学素子107の光結合部は、素子の下面もしくは側面下方に位置している。このとき、また、外部との光入出力部109も形成または搭載する。光入出力部109は、よく知られた光レセプタクル部材から構成することができる。なお、電気素子106を搭載しない構成も有り得る。また電気素子の搭載を次工程(図2E)の後に実施する製造方法も有り得る。
 次に、図2Eに示すように、電気素子106および光学素子107を覆う保護層112を形成する(第5工程)。例えば、トランスファーモールドもしくはコンプレッションモールド工法などにより、樹脂をモールドして樹脂封止することで、保護層112を形成することができる。次に、剥離層122を除去することなどにより、支持基板121を除去する(第6工程)。次に、図2Fに示すように、電気配線層101の裏面に、端子108を形成する。最後に、ダイシングソーやレーザダイサーで切断して分割することで、ひとつずつのモジュールに個片化する(第7工程)。
 例えば、大きな面積の支持基板121を用い、支持基板121の上に複数のモジュールを一度に製造など第1工程、第2工程、第3工程などを、ウェハレベル、パネルレベルで実施することで、量産性に優れ、製造コストを抑えることができる。また、このモジュールは、インタポーザなどを必要としないため、部材コストの低減が図れる。なお上述では光配線層103を形成する工程を、電気配線層101を形成する工程の後としたが、逆に、先に光配線層103を形成した後に、電気配線層101を形成することもできる。
 以下、実施例を用いてより詳細に説明する。
[実施例1]
 はじめに、実施例1について、図3A~図3Dを参照して説明する。光学素子107は例えば半導体レーザチップであり、インジウムリンなどの化合物半導体から構成することができる。半導体レーザである光学素子107は、電気光変換素子であり、与えられた電気信号に応じて所望の波長の光を図中右方向に出射し、光結合部を介して光配線層103の光導波路へ伝搬される。光導波路を伝搬した光信号は、光入出力部109から、外部へと取りだされる。
 光入出力部109は、例えば、光コネクタ構造となっており、プラグ型の光ファイバを篏合させることができる、いわゆる光レセプタクル構造である。光学素子107を動作させるための電気信号は、光学素子107の電気配線層101の側に形成された電気端子(不図示)を介して、電気配線層101の電気配線と接続されている。電気配線層101の電気配線を介し、光学素子107の電気端子は、いずれかの電気素子106に接続されている。
 電気素子106は、例えばレーザドライバチップである。電気素子106の別の電気端子は、同じく電気配線層101の電気配線に接続されており、電気配線層101の下側に形成される電気入出力部132を介して外部との接続を可能としている。電気入出力部132は、はんだバンプやはんだボールや平面電極パッドからなる端子108を、複数備えるものであり、例えば、ボールグリッドアレイやランドグリッドアレイである。なお、電気入出力部132は、モジュール基板131の上に配置される。電気入出力部132は、電気信号のみならず、電源、グランド、制御信号などが含まれる信号を入出力可能である。
 また、光学素子107は、変調器を同一チップに集積化した外部変調型レーザチップや、半導体増幅器(SOA)を含むレーザチップとすることもできる。また、これら発光素子に、いわゆるシリコンフォトニクス技術で形成されたチップ(シリコンフォトニクスチップ)を組み合わせて光学素子107aとすることもできる。シリコンフォトニクスチップは、光源となる発光素子が必要となる。この例では、光学素子107aは、合波回路を含む光電気変換素子である。
 光入出力部109は、例えば、複数本の短尺ファイバを内蔵したMTフェルールである。短尺ファイバと光学素子107,光学素子107aとは、光学的に接続されている。またMTフェルールは良く知られたピン嵌合方式のMTコネクタ構造と同様に、両側にガイドピンを挿入可能な2つのガイド穴を備えている。ここに、ガイドピンを備えたMTコネクタを嵌挿することで、モジュール外部の挿抜可能な光接続を実現することができる。ガイドピンが挿入されるガイド穴部は、モールド材が充填されていない状態としている。コネクタ端面にコアと同じ屈折率をもつ屈折率整合剤を付与して、間隙を屈折率整合剤で埋めることで反射防止をすることができる。
 なお、短尺ファイバの代わりにポリマー導波路を用いることもできる。また、MTフェルールの代わりに、被覆のないベアファイバを挿入することが可能なマイクロホールを複数備えたマイクロホール部品を設けておき、モジュール外部から整列させたベアファイバアレイを挿入することでも同様に挿抜可能な光接続を実現することができる。
 また、光接続部あるいは光配線層103の一部に光路変換構造を設けておき、モジュールの上面から光接続を実現する構造としてもよい。光路変換構造としては、例えばミラー、折り曲げファイバ、折り曲げ導波路、グレーティングカプラなどを用いることができる。モジュール上面から光を接続する場合も同様に、MTコネクタやベアファイバアレイなどが嵌挿または搭載可能なガイド構造を備えておく。例えば、前述同様に、ガイドピン穴を設けておくことでMTフェルールを挿抜することが可能となる。また、ガイドピン自体を突き出す構成とすることもできる。上面から光接続を行う場合は、既知のプリズムミラーとマイクロレンズなどを内蔵した光路変換付きMTコネクタ部品を用いて接続することができる。
 さらに、光学素子107,光学素子107aとしては、カプラ、スプリッタ、波長合分波フィルタなどの電気信号入力を必要としないパッシブデバイスとすることもできる。これらのパッシブデバイスは、一般的に石英などの誘電体やポリマー材料で構成されることが多い。
 また、光学素子107,光学素子107aとするアクティブなデバイスとしては、光源や変調器に限定されず、受光素子やスイッチ、波長変換素子とすることもできる。さらに、これらの素子をアレイで集積化したチップ、もしくは複数の種類の素子を集積化したチップであってもかまわない。また、同一のチップを複数配置してもよく、互いに隣接して配置、もしくは積層した構成であってもよい。さらに、これらのチップ類は、ベアチップで搭載される形態に限定されるものではなく、サブキャリアに搭載された状態で搭載されてもよい。
 また、電気素子106としては、レーザドライバチップに限らず、TIA、PHYデバイス、制御用ICなどであってもよい。例えば、図3A,図3Bの紙面の左側の電気素子106をPHYデバイスとすることができる。ベアチップの他に、サブキャリア実装された形態や、CSP(Chip Size Package)などの形態であってもかまわない。さらに、チップが多段にスタックされた構造をとることも可能である。
 光入出力部109、例えば、光レセプタクル部材なども製造工程中に実装・導入されることになり、本モジュールを配線基板、例えばモジュール基板上に搭載した後、ファイバ接続することが可能となり、実装性を向上することが可能となる。本モジュールでは、光ファイバがピッグテールではなく、コネクタインタフェースとなっているために、ハンドリング時のファイバ破損がなくなり、自動機による搬送、組み立て、実装に適している。
 また、保護層112を形成するので、防塵性に優れ(組み立て時・後のゴミ侵入防止)、耐環境性向上につながる(耐湿など)。さらには、保護層112を構成するモールド樹脂として黒色樹脂などを使えば、モジュール内部における迷光の影響を軽減することができる。
 電気配線層101、光配線層103の形成工程による電気・光配線の形成、素子搭載後、保護層112の形成のための樹脂封入を行うことで、モジュール構造自体の低背化が可能となり、放熱特性の向上も可能となる。また、シリカフィラー、あるいはダイヤモンドフィラーなどを骨材として分散混合している樹脂から保護層112を構成することで、熱伝導特性の向上、さらに線膨張係数の低下を得ることができ、モジュール本体の放熱性と熱変形特性がより一層良好になることは言うまでもない。モジュールサイズ自体も小型化されることにより、熱膨張による変形量を小さく抑えることができ、信頼性上好ましい。
 電気配線層101の絶縁層(層間絶縁層)の材料としては、ポリイミドまたは変性ポリイミドが一般的であるが、他の絶縁材料であってもかまわない。電気配線層101の絶縁層の厚さ数μm~数十μm程度である。また、電気配線の層はチップ製造プロセスの後工程と同様の工程を得て形成することもできるため、平面視で、線幅数μm、配線間隔数μmとすることができる。また、最先端の半導体装置の製造技術を用いることで、線幅および配線間隔ともに、サブミクロンオーダとすることができる。
 電気配線層101の絶縁層厚は、前述の通り、数μm~数十μmオーダであり、適切に配線寸法を設計することにより、高周波信号に対しても単相特性インピーダンスを50Ω、あるいは差動特性インピーダンスを100Ωとすることが可能である。また前述の通り、配線幅や配線間隔が小さく(細く)、高密度な配線が可能となるために、素子間の配線長を短くでき、低消費電力化、高速化、部品点数削減(電気素子の削除など)が可能である。さらに、TSV(Through Silicon Via)スルーホールビアを必要としないため、配線におけるスタブが一切なくなり、信号の不要反射が軽減され、インピーダンスを整合しやすく、信号品質が向上する。また、電気配線層101に、インダクタ、アンテナ、抵抗、バラン、キャパシタなどのパッシブ回路を形成することも可能である。
 光配線層103を構成するコア材料は、アクリル、エポキシ、ポリイミド、シロキサン、ポリノルボルネンなどがあり。また、光配線層103は、シングルモード導波路またはマルチモード導波路のどちらとすることもできる。また、光配線層103を構成するコア層は、単層に限らず、多層とすることもできる。また、光配線層103における光配線は同一面内で交差していてもかまわない。
 また、光配線層103は、電気配線層101の上下、もしくは層間に配置することができ、電気配線層101に連続して形成してもよく、電気配線層101に貼り合わせることで形成しても良い。光結合部は、端面接続(エッジカップリング)の他、アディアバティックもしくはエバネッセント結合あるいは樹脂空間伝播による光学結合などの技術によって光学結合される構造が設計される。
 また、光配線を用いることにより、外部への光入出力のみならず、モジュール内に搭載した複数の光学素子107の間を低損失に光接続させることが可能となる。光配線は、光閉じ込め構造を適切に設計することによって、光配線層103に高密度に配置させることができる。
 また、その他の付随効果として、光配線(光配線層)を後付けすることにより、光学素子107の間の光結合の微調整が可能である。また、光配線を多層にすると、1層と2層で機能を分けることができる。例えば、1層は複雑な光回路、2層は光結合用としても良く、1層は製造工程中の試験・検査配線として用い、支持基板剥離の工程で剥がす構成としても良い。
 前述した製造方法において、支持基板を剥離した後で、光配線を再配線として形成することも可能であり、再配線工程では光導波路のクラッドとして機能する樹脂を塗布後、電子線描画あるいは3D造型などでコア形成してもすることもできる。このような製造方法をとることで、高密度なチャネルを有する光学機能素子のピッチ変換が可能となり、実装トレランスの高い光学機能素子(光学素子107)のモジュール化が可能となる。
 搭載される光学素子107に光合分波機能を有するチップを用いた場合、光学結合部はチャネル数に応じて高密度に配置されるが、光配線層103に集積された光配線104を介してピッチの拡大が可能となり、高密度に集積された光学素子107においても実装トレランスを上げることが可能となる。例えば、光学素子107に形成された狭ピッチの導波路層に対して、光配線層103で、導波路間のピッチを後段に接続される光入出力部109、例えばファイバアレイ、あるいはコネクタレセプタクルのピッチまで拡大し、これらによる光入出力部109の実装性を向上させることができる。
 樹脂モールドによる保護層112は、ウェハあるいはパネルでの一括生産を可能にするとともに、搭載される光配線層103に集積された光配線と光学素子107とをリジッドに固定し、耐湿性を向上させるとともに、耐衝撃性を持たせる保護の役割を果たす。また実装工程における光学素子107のハンドリング性を大きく向上させる。
 また、保護層112は、複数のモールド材を用いて重ねて塗布することで形成することができる。言い換えると、保護層112は、各々異なる樹脂から構成された多層構造とすることができる。例えば、図3Cに示すように、第1保護層112aと第2保護層112bとから保護層112を構成することができる。第1保護層112aは、例えばアンダーフィル材として素子の応力緩和の目的で使用することが可能である。また光学素子107と光配線層103との結合率向上のために屈折率整合剤を用いることもできる。
 また、シリコンフォトニクス技術による光学素子や平面光波回路(PLC)を備える光学素子107と、光入出力部109とが隣接して実装された構成の場合、これらの間の光接続は、空間光学系やエッジカップリング方式とすることができる。このような光接続において、光学素子107および光入出力部109に接して形成される第1保護層112aを、光透過性あるいは屈折率整合機能を有する樹脂から構成すれば、上述した光接続が可能となる。この場合、第1保護層112aは、光学素子107と光入出力部109(他光学素子)との間の光学的な接続のための光を電気配線層101の面方向に伝搬する光伝搬部として機能する。
 また、光伝搬部としての第1保護層112aの上に、第2保護層112bを重ねて形成すれば、封止・強度向上を図ることができる。このようにすることで、空間光学系やエッジカップリング方式においても光学特性を劣化させることなく、モジュール本体の耐衝撃性・耐湿性向上を図ることが可能となる。
 本モジュール構造において、電気素子106は、PHYデバイスなどの電気信号処理回路が含まれていてもよい。PHYデバイスに加え、そこから後段のTx側には電気素子106として、半導体レーザやEML(Electro absorption Modulator Integrated Laser Diode)などを駆動する駆動回路が含まれている構成とすることができる。EMLで電気信号が光信号に変換され、後段の光学素子107aにシリコンフォトニクス技術で形成される合波回路で合波されてもよい。合波された光信号は、光入出力部109を介して本モジュール構造の外部に出力される。
 一方のRx側には、光入出力部109より入力された光信号を分波する回路が、光学素子107aに形成されてもよい。光入出力部109から光学素子107(光学素子107a)までの間は、光配線層103を介して接続される。上述した分波された光信号は、光学素子107(光学素子107a)に形成された受光素子、例えばGeフォトダイオードなどを介して電気信号に変換される。この変換された電気信号は、TIAなどの電気素子106を介してPHYデバイスである電気素子106に入力され、電気入出力部132を介してモジュール外部に伝送される。
 また、図3Dに示される構造では、光学素子107aの光結合部と光入出力部109とが、これらの間に配置される保護層112を介して光学的に接続されている。この光接続は、例えば、エッジカップリング方式あるいは樹脂空間伝播などの結合方式とすることができる。この場合、保護層112を構成する樹脂の材料としては透明性が高く、屈折率が整合し、熱膨張率差が少ないものが望ましい。例えば、対象とする光の波長が1.55μm帯の場合、保護層112には、透明性を有し屈折率が1.5程度のアクリル系樹脂、エポキシ系樹脂、シリコーン(ポリシロキサン)、フッ素化ポリマー、フッ素化ポリイミド、ポリノルボルネン、オキセタン、有機無機ハイブリッド材、およびこれらの置換材料などが用いられる。
 なおこのパッケージは、電気配線層101の一部と、光入出力部109の一部とが重なる重複部101aを備える構成となっている。例えば、重複部101aは、電気配線層101の内部に、光入出力部109の一部が組み込まれたものである。例えば、光入出力部109は、光入出力部109の底面側において、電気配線層101の表面から厚さ方向に向かって貫入し、これらが互いに重なる重複部101aとなっている。
 なお、このパッケージにおいて光入出力部109は電気配線層101の上面に配される、あるいは電気配線層101の一部と、光入出力部109の一部とが重なる重複部101aを備える構成とすることができる。後者は例えば、重複部101aは、電気配線層101の内部に、光入出力部109の一部が組み込まれたものである。例えば、光入出力部109は、光入出力部109の底面側において、電気配線層101の表面から厚さ方向に向かって貫入し、これらが互いに重なる重複部101aとなっている。
 なお図示しないが、電気配線層112だけでなく、光配線層103の内部にも光入出力部109が組み込まれる場合や、光配線層103の一部が光入出力部109に組み込まれる場合も有り得る。
 また、図3Eに示すように、このパッケージは、光配線層103の一部と、光入出力部109の一部とが重なる重複部103aを備える構成とすることもできる。例えば、重複部103aは、光配線層103の内部に、光入出力部109の一部が組み込まれたものである。また、重複部103aは、光入出力部109の内部に、光配線層103の一部が組み込まれたものとすることができる。光配線層103の一部が光入出力部109に貫入し、互いが重なる重複部103aとすることができる。例えば、光配線層103を構成する複数の光導波路を各々分離するように溝を設け、この溝に嵌合するように、光入出力部109の光結合部に凸部を設け、これらを重ねて重複部103aとすることができる。
 なお図示しないが、光配線層103だけでなく電気配線層112の一部が光入出力部109に組み込まれる場合や、電気配線層の一部に光入出力部109が組み込まれる場合も有り得る。言い換えると、光入出力部109が、光配線層103を介して光学素子107または他光学素子107aに光学的に接続する構成において、光配線層103と電気配線層101のいずれかの一部が、あるいはその両方が、光入出力部109に貫入し(組み込まれ)、互いが重なる重複部を備える構成とすることができる。
[実施例2]
 次に、実施例2について、図4を参照して説明する。図4に示すように、電気光変換素子や光電気変換素子とする光学素子107と、シリコンフォトニクス技術で形成される合波回路の他光学素子107bとを別に形成することもできる。このように構成することで、電気光変換する光学素子107を、EMLとすることが可能となる。なお、図4の紙面の左側の電気素子106は、例えば、PHYデバイスである。
[実施例3]
 次に、実施例3について、図5を参照して説明する。電気光変換素子、光電気変換素子、および合波回路を混載して1つの光学素子107cとすることができる。このような構造とすることで、本モジュールには、1つの光学素子107cが搭載されるものとなり、電気素子106に比較して実装工程に高精度が求められる光素子数を少なくでき、実装工程を簡略化することが可能となる。なお、図5の紙面の左側の電気素子106は、例えば、PHYデバイスである。
[実施例4]
 次に、実施例4について、図6を参照して説明する。実施例1では、光電気変換素子と合波回路を組み合わせて光学素子107aとしたが、電気光変換素子と合波回路を組み合わせて光学素子107dとすることもできる。この場合、光電気変換素子である光学素子107は、合波回路とは別に形成される。例えば、光電気変換素子として、化合物半導体から構成するフォトダイオードなどがあるが、これは一般に、面型半導体である。このため、この種の光電気変換素子は、高入力耐性を有し、光導波路型のGeフォトダイオードでは入力耐性の観点で必要であった可変光アッテネータ(VOA)が不要となり、低消費電力化が可能となる。なお、図6の紙面の左側の電気素子106は、例えば、PHYデバイスである。
[実施例5]
 次に、実施例5について、図7A、図7Bを参照して説明する。光入出力部109は、電気配線層101の上部領域(モジュールの領域)より外側に配置することができる。例えば、光入出力部109は、電気配線層101(光配線層103)の側部に配置することができる。この場合、光配線層103の光配線層103は、光配線層103の側部(端面)にまで延在して形成され、光入出力部109と光学的に接続可能とされている。光入出力部109はレセプタクル構造とすることもでき、また、ガラスなどから構成したV溝基板上に設置されたファイバアレイとすることもできる。光配線層103の側部(端面)と光入出力部109との光学的な接続は、例えば、両者を接着剤などで接合する方法の他に、両者に空隙を設けた空間伝播による光結合方法を用いてもよい。
 以上のような構成とすることで、モジュール内における光結合部位を少なくすることができ、また、光入出力部109を外部に配置することで、従来の技術より広く適用されている光結合方法を用いることができるため、歩留まりよくモジュールを製造することが可能となる。なお、図7A,図7Bの紙面の左側の電気素子106は、例えば、PHYデバイスである。
 ところで、光入出力部109は、電気配線層101の上で、光配線層103の側部に配置することもできる。また、光入出力部109は、光配線層103の構造の一部と重なって配置することもできる。例えば、光配線層103の内部に、光入出力部109を形成することができる。また、光入出力部109の内部に光配線層103を内包することもできる。また、光入出力部109と光配線層103とが重なって配置する構成とすることもできる。
[実施例6]
 次に、実施例6について、図8A、図8Bを参照して説明する。この例では、スイッチASIC141が搭載されたモジュール基板131の上に、前述した実施例1~6に示したモジュール100を配置している。モジュール基板131の上では、平面視で、複数のモジュール100が、スイッチASIC141を囲うように配置されている。例えば、51.2Tbpsの容量を持つスイッチASIC141の周辺に、6.4Tbpsのモジュール100を8個搭載することによって、51.2Tbpsのスイッチの全ての高速I/Oを、同じモジュール基板131の上で光化することができ、プリント配線板上を高速電気信号伝送する必要がなくなる。さらに、スイッチボックスのフロントパネルに光トランシーバを実装する必要もなくなるため、より高密度の光インタフェースを実現することが可能となる。
 ASIC-チップレット間の電気信号を規定する規格の内、OIFのCEI-112G XSR規格がある。例えば、本モジュール構造を、送信および受信それぞれ6.4Tbpsのキャパシティを有するモジュール構造(CPO)とすると、前述のCEI-112G XSRでは1チャネル(ch)あたりの伝送容量は100Gbps程度となり、送受64チャネル、計128チャネル必要となる。各チャネルが例えばGSSGの差動信号構成をとったとすると、電気入出力端子数(n)は、500端子程度必要となる。
 本モジュールの裏面に、電気配線層101を介して形成される電気入出力部132は、搭載されるチップの端子を2次元的にモジュール裏面に拡張可能である。モジュールサイズを12mm×25mm、端子ピッチを0.5mmのアレイと考えると1200端子程度形成可能であり、RF信号の入出力に必要な500端子に加えて、各素子の電源端子数なども確保可能である。電気配線層101を構成する絶縁層とするポリイミドフィルムは、6層程度積層可能であり、ポリイミドフィルムの表面に加えて、内層2層をRF信号層とすることができ、モジュール幅を12mm程度とすると、差動信号のチャネルの間ピッチが200μm程度まで、内層2層で送受各64チャネル分をモジュール内部で引き回すことが可能となる。
[実施例7]
 次に、実施例7について、図9を参照して説明する。前述した実施例1~7では、PHYデバイスを用いていたが、PHYデバイスを用いることなく、モジュールを構成することができる。例えばモジュール外部に存在するASICにPHYチップ機能が集積され、本モジュールがASICによってダイレクトに駆動される構成とすることができる。本形態をとることで、PHYデバイスを介さずモジュール上に複数存在する電気素子106の直近から電気信号を入力することが可能となり、設計上の自由度が増す、あるいはモジュール上の伝送線路の縮小が可能となり、伝送損失の低減につなげることが可能となる。
[実施例8]
 次に、実施例8について、図10を参照して説明する。例えば、電気配線層101の裏面側にPHYデバイスなどによる他電気素子106aを配置し、電気配線層101の表面側に、電気素子106、光配線層103、および光学素子107,107aを配置する構成とすることができる。この場合、電気配線層101の裏面側の電気入出力部132は、他電気素子106aよりも厚くする。
 このような形態とすることで、平面視で、PHYデバイスによる他電気素子106aの上にも電気素子106を重ねて配置すること可能であり、モジュールサイズの低減が可能となる。必要に応じて、形成されている保護層112の中にCuなどの金属によるピラー114を形成し、電気配線層101を介して、電気配線層101の表面側に配置される電気素子106、光学素子107などと電気接続が取れる構造とすることができる。
 なお、電気配線層101の裏面には、PHYデバイスだけでなく、薄膜型キャパシタなどの電気素子やメモリなどの電気素子を配置することも可能である。一般に、RF信号においては、部品(素子)間のバイアス電圧が異なるため、DCブロックなどが必要となったり、あるいは電源の安定性を高めるためにチップ近傍の電源端子にバイパス用のキャパシタが配置されたりする。これに対し、上述したように2段構成とすることで、パッシブ部品の上部も電気配線あるいは光配線として利用可能であり、モジュールのサイズ低減が可能となる。
[実施例9]
 次に、実施例9について、図11A、図11Bを参照して説明する。本モジュールの製造においては、電気配線層101、光配線層103を形成し、電気素子106、光学素子107,107a、光入出力部109を、電気入出力部132あるいは光結合部を介して配置した後、保護層112を形成することもできる。電気配線層101にあらかじめ形成した、Cuなどによる金属製のピラー115を介して、モジュールの一方の面に、他の電気入出力部132aを設けることによって、2階建ての構成とすることができる。
 例えば、2階部分に、PHYデバイスによる他電気素子106aを配置することができる。また図11Bに示すように、ピラー115,電気入出力部132aなどをも値いて2階建て構成とし、電気素子106を保護層112の外に設置することもできる。この場合、保護層112の中には電気素子がなく、保護層112の上部に備えた電気入出力部132aの上面にのみに電気素子106が搭載された状態となる。なお、なお上述では光配線層103を形成する工程を、電気配線層101を形成する工程の後としたが、逆に、先に光配線層103を形成し、この後、電気配線層101を形成することもできる。
[実施の形態2]
 次に、本発明の実施の形態2に係る光半導体モジュールについて、図12A、図12Bを参照して説明する。
 この半導体モジュールは、電気配線層201、電気素子206、光学素子207を備える。電気配線層201は、電気信号を伝搬するための電気配線202を備える。電気素子206は、電気配線層201の上に形成されて、電気配線202に電気的に接続する。電気素子206は、例えば、コンタクト(貫通)配線211を介して電気配線202に電気的に接続する。電気配線202は、電気配線層201の面方向に延在している。また、電気配線層201の裏面に形成され、電気配線202に電気的に接続する端子208を備える。
 光学素子207は、例えば、半導体レーザや発光ダイオードなどの発光素子、フォトダイオードなどの光電変換素子、光変調素子とすることができる。また、光学素子207は、よく知られたシリコンフォトニクス技術により構成された受光部および光導波路による合分波部を備える素子とすることもできる。
 電気素子206は、例えば、上述したような素子から構成された光学素子207を駆動するためのドライバ素子や、光電変換された信号を増幅するTIAや、PHYデバイスとすることができる。また、電気素子206は、FPGAなどのプログラマブルロジックデバイスとすることもできる。
 また、電気素子206は、ベアチップの形態、サブキャリア実装された形態、CSPなどの形態とすることができる。また、電気素子206は、チップが多段にスタックされた構造とすることもできる。また、端子208は、例えば、はんだバンプや、はんだボール、あるいは銅ピラーとすることができる。
 光学素子207は、電気配線層201の上に形成されて、光伝搬部204に光学的に結合している。光伝搬部204は、光学素子207と、光学素子207と光学的に接続される他光学素子との間に配置され、光学素子207と他光学素子との間の光学的な接続のための光を電気配線層201の面方向に伝搬する。
 光伝搬部204は、例えば、光学素子207と、光学素子207に隣り合う他光学素子との間に配置された光学系から構成することが。また、光伝搬部204は、光学素子207と他光学素子との間をエッジカップリング方式とした接続構成とすることができる。他光学素子は、例えば、光入出力部209である。光入出力部209は、光学素子207に光伝搬部204を介して光学的に接続し、例えば、本モジュールと光ファイバとの接続を実現する。光入出力部209は、例えば、よく知られたMTコネクタと同様の構造のMTフェルールとすることができる。MTフェルールは、例えば、複数の短尺ファイバを内蔵している。
 また、前述した実施の形態1の実施例1~実施例6などに示したような電気配線層201の上に配置される複数の光学素子間の光接続が、光伝搬部204により実施される。複数の光学素子の各々の光結合部の間を、光伝搬部204を介して直接的に接続されるエッジカップリング方式あるいは樹脂空間伝播による結合方式により、光接続を実施することができる。
 光伝搬部204は、例えば、樹脂から構成することができる。樹脂の材料としては透明性高く、屈折率が整合し、熱膨張率差が少ないものが望ましい。例えば、光波長1.55μm帯の光学素子を用いる場合は、透明性を有し、屈折率が1.5程度のアクリル系樹脂、エポキシ系樹脂、シリコーン(ポリシロキサン)、フッ素化ポリマー、フッ素化ポリイミド、ポリノルボルネン、オキセタン、有機無機ハイブリッド材、およびこれらの置換材料などを用いることができる。
 また、光学素子207を覆って電気配線層201の上に形成された保護層212を備える。この例では、保護層212は、電気素子206も覆っている。保護層212は、各素子を封止するための構成であり、例えば、エポキシなどの硬化した樹脂から構成することができる。また、図示していないが、光学素子207は、光学素子207と光学的に接続する光コネクタを備えることもできる。
 また、図示していないが、電気素子206および光学素子207の上に、ヒートシンクなどの放熱部材を接して設けることができる。ここで、保護層212を、上述したような対象とする波長の光が透過する透明な樹脂から構成する場合、光伝搬部204は、光学素子207と他光学素子との間に配置(充填)される保護層212から構成することができる。この場合、光伝搬部204は、保護層212の一部から構成されているものとなる。実施の形態2に係る光半導体モジュールは、光伝搬部204により光学素子間の光接続を実現する構成以外は、前述した実施の形態1と同様の構成とすることができる。
 ここで、電気配線層201は、数ミクロンから数十ミクロン程度の厚さである。また、電気配線層201は、いわゆる多層配線構造とすることができる。電気配線層201は、多層構造であっても、依然としてフィルム形態をなしている。薄いフィルム状の電気配線層201は、電気素子206および光学素子207を搭載するベース面にはなっているが、従来のモジュールで使用されているリジッドで厚い基板とは明らかに異なっている。
 このため、モジュールとしての強度をもたせるために、電気素子206、光学素子207、また、光入出力部209を、保護層212で封止して機械的な強度を向上させる。保護層212を、硬化した樹脂(プラスチック)から構成することで、保護層212を形成したモジュールは、従来のリジッドで厚い基板に形成されているモジュールに比較して、遜色のない機械強度が得られる。
 実施の形態2では、光学素子207と他光学素子との間を、光伝搬部204により光学的に接続している。例えば、シリコンフォトニクス技術による光学素子やPLCを備える光学素子207と、これに隣り合う光入出力部209との間を、空間光学系やエッジカップリング方式による光伝搬部204で光学接続する場合がある。
 このような場合、各光学素子に接して形成される第1のモールド樹脂に、光透過性あるいは屈折率整合機能を有する樹脂を用いることができる。あるいは、上述した第1のモールド樹脂の上に、さらに封止・強度向上のための第2のモールド樹脂を重ねて塗布・形成することもできる。このようにすることで、光伝搬部204とする箇所における光学特性を劣化させることなく、モジュール本体の耐衝撃性・耐湿性向上を図ることが可能となる。
 また、保護層212は、複数のモールド材を用いて重ねて塗布することで形成することができる。言い換えると、保護層212は、各々異なる樹脂から構成された多層構造とすることができる。例えば、図12Bに示すように、保護層212は、第1保護層204aと、第2保護層212aとから構成することができる。第1保護層204aは、上述した光伝搬部であり、また、例えばアンダーフィル材として、素子の応力緩和の目的で使用することが可能である。
 ところで、図12Cに示すように、電気配線層201の上に光学素子207を備え、モジュールが、電気素子を含まない構成とすることもできる。例えば、ダイレクトドライブの形態とすることで、図8A、図8Bを用いて説明したように、1つのスイッチASICで、電気素子を含まない光学素子207を備える複数モジュールを接続することができる。なお、このモジュールにおいても、光学素子207は、電気配線層201の上に形成されて、光伝搬部204に光学的に結合している。光伝搬部204は、光学素子207と、光学素子207と光学的に接続される他光学素子との間に配置され、光学素子207と他光学素子との間の光学的な接続のための光を電気配線層201の面方向に伝搬する。また、光学素子207を覆って電気配線層201の上に形成された保護層212を備える。
 また図12Dに示すように、電気配線層201にあらかじめ形成した、Cuなどによる金属製のピラー(貫通電極)215を介した電気的な接続を実施する、2階建ての構成とすることができる。例えば、2階部分に、PHYデバイスによる他電気素子206aを配置することができる。この構成においては、保護層211の上部に備えた電気入出力部(不図示)の上面に、他電気素子206aが搭載された状態とすることができる。
 また図12Eに示すように、電気素子206は保護層212の中に無い構成とすることもできる。この構成においては、保護層211の上部に備えた電気入出力部(不図示)の上面にのみに、電気素子206が搭載された状態とすることができる。また図示はしないが、例えば、電気配線層201の裏面側にPHYデバイスなどによる他電気素子を配置する構成とすることができる。このような形態とすることで、モジュールサイズの低減が可能となる。
 ここで、光半導体モジュールの他の製造方法について説明する。まず、第1工程で、支持基板の上に、光信号を伝搬するための光配線を備える光配線層を形成する。次に、第2工程で、支持基板の上に電気信号の伝搬や、電源を供給するための電気配線を備える電気配線層を形成する。次に、第3工程で、電気配線層の上に電気素子を搭載して、電気素子を電気配線に電気的に接続する。次に、第4工程で、光配線層の上に光学素子を搭載して、光学素子を光配線に光学的に接続する。次に、第5工程で、1種類以上の樹脂を用いて樹脂封止を実施する。次に、第6工程で、支持基板を除去する。ここで、上述した第1工程、第2工程、第3工程などを、ウェハレベル、パネルレベルで実施する場合、さらに、第7工程で、分割することでひとつずつのモジュールに個片化する。
 また、光半導体モジュールの他の製造方法は、まず、第1工程で、支持基板の上に電気信号の伝搬や、電源を供給するための電気配線を備える電気配線層を形成する。次に、第2工程で、電気配線層の上に電気素子、あるいは光学素子、あるいはその両方を搭載して、電気素子を電気配線に電気的に接続する。次に、第3工程で、搭載された光学素子を光配線に光学的に接続する。次に、第4工程で、1種類以上の樹脂を用いて樹脂封止を実施する。次に、第5工程で、支持基板を除去する。ここで、上述した第1工程、第2工程、第3工程などを、ウェハレベル、パネルレベルで実施する場合、さらに、第7工程で、分割することでひとつずつのモジュールに個片化する。
 また、上述した各光半導体モジュールの製造方法において、樹脂封止を実施する前に、光入出力部を形成する工程を備えることができる。また、上述した各光半導体モジュールの製造方法において、分割することで個片化する工程の前あるいは後に、光入出力部を形成する工程を備えることができる。
 以上に説明したように、本発明によれば、電気信号を伝搬するための電気配線を備える電気配線層の上に、これらの上に電気素子および光学素子を配置したので、モジュールのサイズを小さくして、より高密度に実装できるようにすることができる。
 従来、モジュール製造においては、モジュール内部に搭載する光デバイスに対して光ファイバを精密に位置合わせしたうえで接着固定する工程が必要であり、また、接着部の強度を高めるために、光デバイスと光ファイバの接点のみならず、両者を支える支持基板上に接着部を設けるなどの工程も必要であった(非特許文献1、図1)。特に、通信用光モジュールでは、光ファイバを筐体の外部へ導出する構造も必要であり、ファイバ固定のための接合箇所は多数にわたり、細心の注意を払った組み立てが求められている。これらの複雑な構造と工程から明らかなように、従来のモジュールでは量産性に問題があった。
 本発明によれば、モジュール内に光ファイバなどの部品を設ける必要が無いので、従来の技術に比較して、複雑な工程を必要とせずに製造が可能であり、より小さなモジュールで、高い量産性が得られるようになる。
 また、電気配線層の上に電気素子および光学素子を覆って、硬化した樹脂から構成する保護層を備えることで、モジュールの機械強度を高くすることができる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…電気配線層、102…電気配線、103…光配線層、104…光配線、106…電気素子、107…光学素子、108…端子、109…光入出力部、111…コンタクト配線、112…保護層。

Claims (37)

  1.  電気信号の伝搬や、電源を供給するための電気配線を備える電気配線層と、
     前記電気配線層の上部あるいは下部に形成された光信号を伝搬するための光配線を備える光配線層と、
     前記光配線層の上に形成されて、前記電気配線層に電気的に接続され前記光配線に光学的に接続する光学素子と
     を備える光半導体モジュール。
  2.  請求項1記載の光半導体モジュールにおいて、
     前記電気配線および前記光配線は、前記電気配線層の面方向に延在していることを特徴とする光半導体モジュール。
  3.  請求項1または2記載の光半導体モジュールにおいて、
     前記光学素子と、前記光学素子と光学的に接続される他光学素子との間に配置され、前記光学素子と前記他光学素子との間の光学的な接続のための光を前記電気配線層の面方向に伝搬する光伝搬部をさらに備えることを特徴とする光半導体モジュール。
  4.  請求項1~3のいずれか1項に記載の光半導体モジュールにおいて、
     前記光学素子を覆って前記電気配線層の表面上に形成された保護層を備えることを特徴とする光半導体モジュール。
  5.  請求項4記載の光半導体モジュールにおいて、
     前記保護層は、硬化した樹脂から構成されていることを特徴とする光半導体モジュール。
  6.  請求項4または5記載の光半導体モジュールにおいて、
     前記保護層は、各々異なる樹脂から構成された多層構造とされていることを特徴とする光半導体モジュール。
  7.  請求項1~6のいずれか1項に記載の光半導体モジュールにおいて、
     前記電気配線層の上に形成されて、前記電気配線に電気的に接続する電気素子をさらに備えることを特徴とする光半導体モジュール。
  8.  請求項1~7のいずれか1項に記載の光半導体モジュールにおいて、
     前記光学素子に光学的に接続する光入出力部を備えることを特徴とする光半導体モジュール。
  9.  請求項8記載の光半導体モジュールにおいて、
     前記光入出力部は、前記光入出力部の底面側において、前記電気配線層の表面から厚さ方向に向かって貫入し、
     さらに、前記光入出力部と前記電気配線層とが互いに重なる重複部を備える
     ことを特徴とする光半導体モジュール。
  10.  請求項8記載の光半導体モジュールにおいて、
     前記光入出力部は、前記光配線層を介して前記光学素子に光学的に接続し、
     さらに、
     前記光配線層と電気配線層のいずれかの一部が、あるいはその両方が前記光入出力部に貫入し、互いが重なる重複部を備える
     ことを特徴とする光半導体モジュール。
  11.  請求項8~10のいずれか1項に記載の光半導体モジュールにおいて、
     前記電気配線層の裏面側に電気的に接続され他電気素子が備えられ、
     さらに前記電気配線層の裏面側に前記他電気素子よりも厚い電気入出力部を備える
     ことを特徴とする光半導体モジュール。
  12.  請求項8~10のいずれか1項に記載の光半導体モジュールにおいて、
     前記電気配線層の表面上に形成された保護層の上面と前記電気配線層の裏面側のそれぞれに電気入出力部が備えられ、
     互いの電気入出力部が前記電気配線層を経由し、かつ前記保護層を貫通して電気的に接続する貫通電極を備え、
     さらに、
     前記保護層の上面に備えた電気入出力部の上面に他電気素子を備える
     ことを特徴とする光半導体モジュール。
  13.  請求項12記載の光半導体モジュールにおいて、
     前記保護層の上部に備えた前記電気入出力部の上面にのみに搭載された電気素子を備える
     ことを特徴とする光半導体モジュール。
  14.  電気信号を伝搬するための電気配線を備える電気配線層と、
     前記電気配線層の上に形成された光学素子と
     を備える光半導体モジュール。
  15.  請求項14記載の光半導体モジュールにおいて、
     前記光学素子との光学的な接続のための光を前記電気配線層の面方向に伝搬する光伝搬部を備えることを特徴とする光半導体モジュール。
  16.  請求項15記載の光半導体モジュールにおいて、
     前記光伝搬部は、前記光学素子と、前記光学素子に光学的に接続される他光学素子との間に配置され、前記光学素子と前記他光学素子との間の光学的な接続のための光を前記電気配線層の面方向に伝搬する
     ことを特徴とする光半導体モジュール。
  17.  請求項14~16のいずれか1項に記載の光半導体モジュールにおいて、
     前記電気配線層の上に形成されて、前記電気配線に電気的に接続する電気素子をさらに備えることを特徴とする光半導体モジュール。
  18.  請求項14~17のいずれか1項に記載の光半導体モジュールにおいて、
     前記電気配線は、前記電気配線層の面方向に延在していることを特徴とする光半導体モジュール。
  19.  請求項14~18のいずれか1項に記載の光半導体モジュールにおいて、
     前記光学素子に光学的に接続する光入出力部を備えることを特徴とする光半導体モジュール。
  20.  請求項14~19のいずれか1項に記載の光半導体モジュールにおいて、
     前記光学素子を覆って前記電気配線層の表面上に形成された保護層を備えることを特徴とする光半導体モジュール。
  21.  請求項20記載の光半導体モジュールにおいて、
     前記光学素子と他光学素子との間の光学的な接続のための光を伝搬する光伝搬部は、前記保護層の一部から構成されていることを特徴とする光半導体モジュール。
  22.  請求項20または21記載の光半導体モジュールにおいて、
     前記保護層は、硬化した樹脂から構成されていることを特徴とする光半導体モジュール。
  23.  請求項20~22のいずれか1項に記載の光半導体モジュールにおいて、
     前記保護層は、各々異なる樹脂から構成された多層構造とされていることを特徴とする光半導体モジュール。
  24.  請求項19~23のいずれか1項に記載の光半導体モジュールにおいて、
     前記光学素子に光学的に接続する光入出力部は、前記光入出力部の底面側において、前記電気配線層の表面から厚さ方向に向かって貫入し、前記光入出力部と前記電気配線層とが互いに重なる重複部を備える
     ことを特徴とする光半導体モジュール。
  25.  請求項19~23のいずれか1項に記載の光半導体モジュールにおいて、
     前記電気配線層の裏面側に電気的に接続された他電気素子を備え、さらに前記電気配線層の裏面側に前記他電気素子よりも厚い電気入出力部を備える
     ことを特徴とする光半導体モジュール。
  26.  請求項19~23のいずれか1項に記載の光半導体モジュールにおいて、
     前記光学素子を覆って前記電気配線層の表面上に形成された保護層の上面と前記電気配線層の裏面側のそれぞれに電気入出力部が備えられ、互いの電気入出力部が前記電気配線層を経由し、かつ前記保護層を貫通して電気的に接続する貫通電極を備え、
     さらに、
     前記保護層の上面に配置される電気入出力部の上面に他電気素子を備える
     ことを特徴とする光半導体モジュール。
  27.  請求項26に記載の光半導体モジュールにおいて、
     前記保護層の上部に備えた前記電気入出力部の上面にのみに搭載された電気素子を備える
     ことを特徴とする光半導体モジュール。
  28.  請求項1~27のいずれか1項に記載の光半導体モジュールにおいて、
     前記電気配線層の裏面に形成され、前記電気配線に電気的に接続する端子を備えることを特徴とする光半導体モジュール。
  29.  請求項11~13、25~28のいずれか1項に記載の光半導体モジュールにおいて、
     電気入出力部の裏面に形成され、前記電気配線に電気的に接続する端子を備えることを特徴とする光半導体モジュール。
  30.  請求項1~29のいずれか1項に記載の光半導体モジュールにおいて、
     前記光学素子は、前記光学素子と光学的に接続する光コネクタを備えることを特徴とする光半導体モジュール。
  31.  支持基板の上に電気信号の伝搬や、電源を供給するための電気配線を備える電気配線層を形成する第1工程と、
     前記支持基板の上に、光信号を伝搬するための光配線を備える光配線層を形成する第2工程と、
     前記電気配線層の上に電気素子を搭載して、前記電気素子を前記電気配線に電気的に接続する第3工程と、
     前記光配線層の上に光学素子を搭載して、前記光学素子を前記光配線に光学的に接続する第4工程と、
     1種類以上の樹脂を用いて樹脂封止を実施する第5工程と、
     前記支持基板を除去する第6工程と
     を備え、
     前記第1工程、前記第2工程、前記第3工程は、ウェハレベル、パネルレベルで実施し、
     さらに、
     分割することで個片化する第7工程を備える
     ことを特徴とする光半導体モジュールの製造方法。
  32.  支持基板の上に、光信号を伝搬するための光配線を備える光配線層を形成する第1工程と、
     前記支持基板の上に電気信号の伝搬や、電源を供給するための電気配線を備える電気配線層を形成する第2工程と、
     前記電気配線層の上に電気素子を搭載して、前記電気素子を前記電気配線に電気的に接続する第3工程と、
     前記光配線層の上に光学素子を搭載して、前記光学素子を前記光配線に光学的に接続する第4工程と、
     1種類以上の樹脂を用いて樹脂封止を実施する第5工程と、
     前記支持基板を除去する第6工程と
     を備え、
     前記第1工程、前記第2工程、前記第3工程は、ウェハレベル、パネルレベルで実施し、
     さらに、
     分割することで個片化する第7工程を備える
     ことを特徴とする光半導体モジュールの製造方法。
  33.  請求項31または32記載の光半導体モジュールの製造方法において、
     前記電気配線および前記光配線は、前記支持基板の面方向に延在していることを特徴とする光半導体モジュールの製造方法。
  34.  支持基板の上に電気信号の伝搬や、電源を供給するための電気配線を備える電気配線層を形成する第1工程と、
     前記電気配線層の上に電気素子、あるいは光学素子、あるいはその両方を搭載して、前記電気素子を前記電気配線に電気的に接続する第2工程と、
     搭載された前記光学素子を光配線に光学的に接続する第3工程と、
     1種類以上の樹脂を用いて樹脂封止を実施する第4工程と、
     前記支持基板を除去する第5工程と
     を備え、
     前記第1工程、前記第2工程、前記第3工程は、ウェハレベル、パネルレベルで実施し、
     さらに、
     分割することで個片化する第6工程を備える
     ことを特徴とする光半導体モジュールの製造方法。
  35.  請求項34記載の光半導体モジュールの製造方法において、
     前記電気配線は、前記支持基板の面方向に延在していることを特徴とする光半導体モジュールの製造方法。
  36.  請求項31~35のいずれか1項に記載の光半導体モジュールの製造方法において、
     樹脂封止を実施する前に、光入出力部を形成する工程を備えることを特徴とする光半導体モジュールの製造方法。
  37.  請求項31~35のいずれか1項に記載の光半導体モジュールの製造方法において、
     分割することで個片化する工程の前あるいは後に、光入出力部を形成する工程を備えることを特徴とする光半導体モジュールの製造方法。
PCT/JP2020/030394 2020-08-07 2020-08-07 光半導体モジュールおよびその製造方法 WO2022030001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/030394 WO2022030001A1 (ja) 2020-08-07 2020-08-07 光半導体モジュールおよびその製造方法
US18/005,883 US20230314740A1 (en) 2020-08-07 2020-08-07 Optical semiconductor module and manufacturing method of the same
JP2022541081A JPWO2022030001A1 (ja) 2020-08-07 2020-08-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030394 WO2022030001A1 (ja) 2020-08-07 2020-08-07 光半導体モジュールおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2022030001A1 true WO2022030001A1 (ja) 2022-02-10

Family

ID=80117215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030394 WO2022030001A1 (ja) 2020-08-07 2020-08-07 光半導体モジュールおよびその製造方法

Country Status (3)

Country Link
US (1) US20230314740A1 (ja)
JP (1) JPWO2022030001A1 (ja)
WO (1) WO2022030001A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230308787A1 (en) * 2022-03-23 2023-09-28 Mellanox Technologies, Ltd. Hybrid optoelectrical switches

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245057A (ja) * 2005-02-28 2006-09-14 Sony Corp ハイブリットモジュール及びその製造方法並びにハイブリット回路装置
WO2010004850A1 (ja) * 2008-07-07 2010-01-14 日本電気株式会社 光配線構造
JP2011028111A (ja) * 2009-07-28 2011-02-10 Hitachi Ltd 光i/oアレイモジュールおよびその製造方法
JP2011158666A (ja) * 2010-01-29 2011-08-18 Toshiba Corp 光電気フレキシブル配線モジュール及びその製造方法
US9698564B1 (en) * 2016-02-09 2017-07-04 Oracle International Corporation Hybrid integrated MCM with waveguide-fiber connector
JP2017198778A (ja) * 2016-04-26 2017-11-02 富士通株式会社 光配線実装構造、光モジュール、及び電子機器
JP2018049892A (ja) * 2016-09-20 2018-03-29 株式会社東芝 光半導体モジュール及びその製造方法
JP2019078795A (ja) * 2017-10-20 2019-05-23 株式会社東芝 光電子集積半導体モジュールおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245057A (ja) * 2005-02-28 2006-09-14 Sony Corp ハイブリットモジュール及びその製造方法並びにハイブリット回路装置
WO2010004850A1 (ja) * 2008-07-07 2010-01-14 日本電気株式会社 光配線構造
JP2011028111A (ja) * 2009-07-28 2011-02-10 Hitachi Ltd 光i/oアレイモジュールおよびその製造方法
JP2011158666A (ja) * 2010-01-29 2011-08-18 Toshiba Corp 光電気フレキシブル配線モジュール及びその製造方法
US9698564B1 (en) * 2016-02-09 2017-07-04 Oracle International Corporation Hybrid integrated MCM with waveguide-fiber connector
JP2017198778A (ja) * 2016-04-26 2017-11-02 富士通株式会社 光配線実装構造、光モジュール、及び電子機器
JP2018049892A (ja) * 2016-09-20 2018-03-29 株式会社東芝 光半導体モジュール及びその製造方法
JP2019078795A (ja) * 2017-10-20 2019-05-23 株式会社東芝 光電子集積半導体モジュールおよびその製造方法

Also Published As

Publication number Publication date
US20230314740A1 (en) 2023-10-05
JPWO2022030001A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
CN111902755B (zh) 光转接板
US20220416900A1 (en) Integrated optical transceiver
TWI695198B (zh) 用於基板上晶圓上晶片總成之方法及系統
EP1723456B1 (en) System and method for the fabrication of an electro-optical module
US11611004B2 (en) Opto-electronic integrated circuit and computing apparatus
US10168474B2 (en) Method of manufacturing optical input/output device
TW201705701A (zh) 藉由拼接之大型矽光子中介層之方法及系統
JP4060023B2 (ja) 光導波路送受信モジュール
KR102619650B1 (ko) 초소형 광송신 모듈
WO2022030001A1 (ja) 光半導体モジュールおよびその製造方法
JP2005317658A (ja) 光・電気一括接続基板
JP7548413B2 (ja) 光接続構造、パッケージ構造、光モジュールおよびパッケージ構造の製造方法
WO2022264321A1 (ja) 光回路デバイスのパッケージ構造およびその製造方法
WO2022208662A1 (ja) 光接続構造、パッケージ構造および光モジュール
WO2024122071A1 (ja) 光デバイス、光デバイスの位置合わせ方法
WO2022254657A1 (ja) 集積型光デバイスおよびその製造方法
US20240192439A1 (en) Heterogeneous package structures with photonic devices
CN118276225A (zh) 芯片封装及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948741

Country of ref document: EP

Kind code of ref document: A1