WO2023155619A1 - 故障诊断方法、装置、车辆及存储介质 - Google Patents

故障诊断方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2023155619A1
WO2023155619A1 PCT/CN2023/070059 CN2023070059W WO2023155619A1 WO 2023155619 A1 WO2023155619 A1 WO 2023155619A1 CN 2023070059 W CN2023070059 W CN 2023070059W WO 2023155619 A1 WO2023155619 A1 WO 2023155619A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
data
fault
fault information
information
Prior art date
Application number
PCT/CN2023/070059
Other languages
English (en)
French (fr)
Inventor
孙宗姚
张文杰
张赫
洪宇
金钊
周幸达
郭宗宾
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023155619A1 publication Critical patent/WO2023155619A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/079Root cause analysis, i.e. error or fault diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0766Error or fault reporting or storing

Definitions

  • the present application relates to computer technology, for example, to a fault diagnosis method, device, vehicle and storage medium.
  • the types of vehicle faults also increase, which increases the complexity of vehicle fault diagnosis.
  • the instrument lamp When a serious fault occurs in the current vehicle, the instrument lamp will usually light up to display and inform the user of the fault information, but the user cannot determine the cause of the fault and the maintenance method based on the fault information displayed by the instrument lamp.
  • the maintenance method of the vehicle fault is determined through the intelligent diagnosis application (Application, APP) running in the background or the means of remotely uploading the fault code, but due to the limited information contained in the fault code, the cause of the fault cannot be accurately determined , need to go back and forth to the maintenance point multiple times or cause the maintenance method to be incorrect, increasing the maintenance cost of the vehicle.
  • Application Application
  • the present application provides a fault diagnosis method, device, vehicle, and storage medium, so as to realize local monitoring of vehicle components, accurately perform fault diagnosis, reduce memory occupation, and reduce maintenance costs.
  • the present application provides a fault diagnosis method applied to a vehicle gateway, the method comprising:
  • the diagnosis report is sent to a cloud server, so that the vehicle obtains the maintenance plan corresponding to the fault information through the cloud server.
  • determining the fault information of the vehicle according to the display of the instrument light of the vehicle includes:
  • the fault information corresponding to the vehicle fault is obtained from the interface of the on-board diagnostic system of the vehicle, and the fault information includes the fault code.
  • the data task and diagnostic script corresponding to the fault information are obtained from the cloud server according to the fault code in the fault information, including:
  • the data task and the diagnosis script sent by the cloud server are received.
  • monitoring the component state data of the vehicle in real time according to the preset trigger condition in the data task, and determining whether the component state data satisfies the preset trigger condition includes:
  • the component state data of the vehicle When the component state data of the vehicle satisfies the data collection time and the data length, the component state data satisfies the preset trigger condition.
  • determining whether the component state data of the vehicle satisfies the data collection time in the preset trigger condition and the data length in the preset trigger condition includes:
  • the data task is canceled.
  • the diagnostic report is sent to a cloud server, so that the vehicle obtains the maintenance plan corresponding to the fault information through the cloud server, including:
  • the diagnosis report is used to obtain maintenance information corresponding to the diagnosis report from the cloud server, the maintenance information is all collected from the cloud server and a shared maintenance site Processing information corresponding to the diagnosis report;
  • selecting a maintenance solution corresponding to the fault information from the at least two maintenance solutions according to user requirements includes: acquiring user information, and determining the user requirement according to the user information;
  • the at least two maintenance solutions are sorted from the largest to the smallest according to the degree of satisfaction of the user needs, and the maintenance solution with the highest ranking is selected as the maintenance solution corresponding to the fault information.
  • the present application also provides a fault diagnosis device, which includes:
  • An information determination module configured to monitor the display of the instrument light of the vehicle, and determine the fault information of the vehicle according to the display of the instrument light of the vehicle;
  • the task obtaining module is configured to obtain the corresponding data tasks and diagnostic scripts of the fault information from the cloud server according to the fault code in the fault information;
  • the trigger determination module is configured to monitor the component status data of the vehicle in real time according to the preset trigger condition in the data task, and determine whether the component status data satisfies the preset trigger condition;
  • the report determination module is configured to acquire the component status data and use a diagnostic script to analyze the component status data when the component status data satisfies the preset trigger condition, and obtain a diagnostic report corresponding to the fault information;
  • the solution acquisition module is configured to send the diagnosis report to a cloud server, so that the vehicle can obtain the maintenance solution corresponding to the fault information through the cloud server.
  • the embodiment of the present application also provides a vehicle, the vehicle includes:
  • processors one or more processors
  • a storage device configured to store one or more programs
  • the vehicle gateway is set to exchange information with the cloud server
  • the one or more processors implement the above fault diagnosis method.
  • the embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the above fault diagnosis method is implemented.
  • FIG. 1 is a schematic flow chart of a fault diagnosis method provided in an embodiment of the present application
  • Fig. 2 is a schematic flow chart of another fault diagnosis method provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a fault diagnosis device provided in an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • Fig. 1 is a schematic flow chart of a fault diagnosis method provided by the embodiment of the present application.
  • the method can be executed by the fault diagnosis device provided by the embodiment of the present application, and the device can be realized by software and/or hardware.
  • the device can be integrated in an electronic device, such as a vehicle gateway. The following embodiments will be described by taking the device integrated in an electronic device as an example. Referring to FIG. 1, the method may include the following steps:
  • Step 110 monitor the display of the vehicle's instrument lights, and determine the fault information of the vehicle according to the display of the vehicle's instrument lights.
  • the instrument lights can be understood as all the lights displayed on the vehicle instrument, which are used to indicate, prompt or warn the driver of the performance changes of the vehicle components corresponding to the multiple lights on the vehicle, such as: the tire pressure indicator on the instrument light of the vehicle
  • the light is on, which is used to indicate that there is a problem with the tire of the vehicle, and the driver needs to check the tire failure of the vehicle.
  • the display status of the instrument lights of the vehicle can be understood as the lighting status of multiple lamps in the instrument lights of the vehicle, which is used to monitor the performance of multiple components of the vehicle.
  • the fault information of the vehicle can be understood as the fault information of the vehicle component determined according to the vehicle component's fault corresponding to the lighting conditions of a plurality of lamps in the vehicle's instrument lamp.
  • the vehicle gateway monitors the display of the vehicle's instrument lights in real time, and determines whether there is a fault according to the display of the vehicle's instrument lights and the lighting conditions of multiple lights in the instrument lights. If it is not lit, it means that the performance of the vehicle components has not changed; if the lights in the instrument lights are lit, perform fault diagnosis according to the vehicle components corresponding to the lights or check the performance of the vehicle components to determine the display of the vehicle’s instrument lights The fault information of the vehicle corresponding to the situation.
  • Step 120 according to the fault code in the fault information, obtain the data task and diagnosis script corresponding to the fault information from the cloud server.
  • the fault codes in the fault information can be understood as the fault codes analyzed by the vehicle diagnostic instrument for the faults of the vehicle components determined according to the display of the instrument lights.
  • the maintenance personnel can determine the status of the vehicle components according to the fault codes to perform maintenance , the fault code can be presented to the maintenance personnel in the form of a code, it can be a digital symbol, or a two-dimensional code, when the fault code is a digital symbol, it is necessary to determine the corresponding digit of the fault code through the symbol Faults of vehicle components; when the fault code is a two-dimensional code, scanning the two-dimensional code through a specific program shows the fault of the vehicle component corresponding to the fault code.
  • a cloud server can be understood as a server that does not need to rely on hardware facilities, has the functions of elastically scalable computing services and resource storage, and can reduce the difficulty and cost of development and operation.
  • the data task can be understood as the data content that needs to be monitored when determining the fault cause of the vehicle component failure corresponding to the fault code.
  • a car tire failure can be due to the inconsistent tire pressure of the left and right wheels of the vehicle, or the gas leakage in the tire caused by the nailing of any vehicle tire. It is necessary to monitor the integrity of the tire, the air pressure state of the tire, and whether there are attachments on the tire through sensors.
  • the diagnosis script can be understood as a script for determining the cause of the failure for any combination of one or two vehicle components, and for diagnosing the cause of the failure based on the data acquired by the data task.
  • the failure of the vehicle component is determined according to the display of the instrument light.
  • the fault code analyzed by the vehicle diagnostic instrument can determine the vehicle component that may fail according to the fault code, and the vehicle gateway sends the fault code in the fault information to
  • the cloud server matches the data tasks and diagnostic scripts corresponding to the fault information from the resource data according to the fault code.
  • the cloud server sends the data tasks and diagnostic scripts corresponding to the fault information to the vehicle gateway according to the fault codes, so that the vehicle gateway obtains the data tasks and diagnostic scripts corresponding to the fault information from the cloud server according to the fault codes in the fault information.
  • the vehicle gateway can determine the cause of the vehicle's failure and determine the maintenance plan.
  • Step 130 Monitor the component status data of the vehicle in real time according to the preset trigger condition in the data task, and determine whether the component status data satisfies the preset trigger condition.
  • the preset trigger condition can be understood as a condition that triggers the acquisition of monitoring data and the execution of the diagnostic script preset according to the vehicle's requirements and experimental data, and can also be understood as the threshold value of the data content monitored according to the data task.
  • the component status data of the vehicle can be understood as the data of the usage status of the components of the vehicle.
  • the component status data of the vehicle can be the normal status data of the components of the vehicle, or the fault status data of the components of the vehicle, wherein the normal status data can be the components of the vehicle Parking data and running data during normal use, and fault state data may be parking data and running data when a component of the vehicle fails.
  • the monitoring of the component status is performed according to the sensors corresponding to the vehicle components, and the vehicle component status data is collected according to the sensors corresponding to the vehicle components for query , used to determine whether the component status data of the query vehicle meets the preset trigger conditions. If the component status data of the vehicle meets the preset trigger conditions, it means that the monitoring data can determine the cause of the failure of the vehicle component, and data acquisition is required. And run the diagnostic script to get the diagnostic report of the vehicle.
  • Step 140 when the component status data meets the preset trigger condition, acquire the component status data and analyze the component status data with a diagnostic script to obtain a diagnostic report corresponding to the fault information.
  • the diagnosis report corresponding to the fault information can be understood as the report information presenting the fault cause corresponding to the fault information, which can be a report presented according to the preset format of the fault cause information.
  • the preset format is to highlight the core content of the fault cause , to achieve a clear effect and enhance the user's sense of use.
  • the vehicle gateway monitors the component status data of the vehicle in real time. When the component status data meets the preset trigger conditions in the data task, it means that the monitoring data can determine the cause of the component failure of the vehicle, obtain the component status data and run the diagnostic script to analyze the component status data The analysis is carried out so as to analyze the diagnosis report corresponding to the fault information according to the component state data, and determine the corresponding maintenance plan according to the diagnosis report.
  • Step 150 sending the diagnosis report to the cloud server, so that the vehicle obtains the maintenance plan corresponding to the fault information through the cloud server.
  • the vehicle gateway acquires the component status data and uses a diagnostic script to analyze the component status data, obtains a diagnostic report corresponding to the fault information, and sends the diagnostic report corresponding to the fault information to Cloud server
  • the cloud server sends the diagnostic report to the website and maintenance site related to the maintenance vehicle through broadcasting or information sharing, and obtains the maintenance information related to the diagnosis report, and forms multiple maintenance plans according to the maintenance information.
  • the maintenance plan has its corresponding evaluation index, and the evaluation index can be maintenance time, cost and maintenance convenience.
  • the fault information of the vehicle is determined by monitoring the display of the instrument light of the vehicle, and the fault information of the vehicle is determined according to the display of the instrument light of the vehicle; the data tasks and diagnostic scripts corresponding to the fault information are obtained from the cloud server according to the fault code in the fault information; Monitor the component status data of the vehicle in real time according to the preset trigger conditions in the data task, and determine whether the component status data meets the preset trigger conditions; when the component status data meets the preset trigger conditions, obtain the component status data and use the diagnostic script to analyze the component status data Perform analysis to obtain a diagnostic report corresponding to the fault information; send the diagnostic report to the cloud server, so that the vehicle can obtain the maintenance plan corresponding to the fault information through the cloud server.
  • the data tasks and diagnostic scripts corresponding to the fault codes are obtained through the interaction between the vehicle gateway and the cloud server, and the vehicle equipment is partially monitored, and the diagnostic scripts corresponding to the fault codes are obtained, and the fault diagnosis is performed accurately.
  • the running memory usage is reduced; useless information is filtered according to the preset trigger conditions, the diagnostic report is quickly determined, and a feasible maintenance plan is determined by cloud server sharing, reducing maintenance time and cost.
  • the fault diagnosis method provided by the embodiment of the present application is described below, as shown in Figure 2, the method may include the following steps:
  • Step 210 monitor the display of the instrument lights of the vehicle, and determine whether the vehicle acquires fault information according to the display of the instrument lights.
  • the vehicle gateway monitors the display of the vehicle's instrument lights in real time, and determines whether there is a fault according to the display of the vehicle's instrument lights and the lighting conditions of the lights in the instrument lights. If it is on, it means that the performance of the vehicle components has not changed, and there is no need to obtain the fault information of the vehicle, and continue to monitor the display of the instrument light of the vehicle; faults of the vehicle components, and obtain the fault information of the vehicle.
  • Step 220 when the instrument light shows that the vehicle is faulty, obtain fault information corresponding to the vehicle fault from the interface of the on-board diagnostic system of the vehicle, and the fault information includes a fault code.
  • the on-board diagnostic system can be understood as a fault self-diagnosis system inside the vehicle.
  • a fault indicator light appears on the instrument lamp to indicate a vehicle fault, it needs to automatically check and monitor the system according to the working status of multiple parts of the vehicle.
  • the interface of the OBD system can be understood as the communication interface between the OBD system and components of other vehicles, and is mainly used to send the fault codes determined by the OBD system to components of other vehicles.
  • an automatic inspection is performed according to the working status of multiple parts of the vehicle to determine the fault code corresponding to the fault information
  • the vehicle gateway obtains the fault code corresponding to the fault information from the interface of the on-board diagnostic system.
  • the fault code is used to obtain the data tasks and diagnostic scripts corresponding to the fault information from the cloud server according to the fault code corresponding to the fault information, and obtain the fault cause corresponding to the fault information for maintenance.
  • Step 230 according to the fault code in the fault information, obtain the data task and diagnosis script corresponding to the fault information from the cloud server.
  • the data tasks and diagnostic scripts corresponding to the fault information are obtained from the cloud server according to the fault code in the fault information, including:
  • the vehicle gateway sends the fault information determined by the on-board diagnostic system to the cloud server, and the cloud server configures the data tasks and diagnostic scripts corresponding to the fault information in the cloud script configuration tool according to the fault code in the fault information, and sends The data tasks and diagnostic scripts corresponding to the fault information are sent to the vehicle gateway.
  • the vehicle gateway receives the data tasks and diagnostic scripts corresponding to the fault information sent by the cloud server, so as to monitor the components of the vehicle in real time according to the data tasks.
  • the component status information of the vehicle determines the diagnostic report corresponding to the fault information.
  • Step 240 Monitor the component status data of the vehicle in real time according to the preset trigger condition in the data task, and determine whether the component status data satisfies the preset trigger condition.
  • Step 250 when the component status data meets the preset trigger condition, acquire the component status data and analyze the component status data with a diagnostic script to obtain a diagnostic report corresponding to the fault information.
  • monitoring the component state data of the vehicle in real time according to the preset trigger condition in the data task, and determining whether the component state data satisfies the preset trigger condition includes:
  • the preset trigger conditions include data collection time, data length and data collection components.
  • the data collection time can be understood as the time point when the sensor corresponding to the vehicle component acquires data, and is used to judge whether the data is the data at the time required by the data task. , It can also judge whether the data collection is within the data task period, and judge the validity of the data.
  • the data length can be understood as the number of bits of data collected by sensors corresponding to the components of the vehicle, and is used to determine whether the collected data can be run by a diagnostic script.
  • the data acquisition component can be understood as a component that determines the vehicle corresponding to the monitoring data of the vehicle gateway, and can also verify whether the data source is correct according to the data acquisition component in the preset trigger conditions when the collected data is large or confusing.
  • the vehicle gateway determines the data collection device corresponding to the preset trigger condition, and determines the component status data of the real-time monitored vehicle according to the data collection device corresponding to the preset trigger condition. Compare the component status data of the vehicle with the data collection time in the preset trigger conditions and the data length in the preset trigger conditions to determine whether the component status data of the vehicle meets the preset trigger conditions; when the component status data of the vehicle If the data collection time is within the data task period and the component status data is consistent with the data length in the preset trigger condition, then the vehicle component status data meets the data collection time and data length, and the component status data meets the preset trigger condition.
  • determining whether the component state data of the vehicle meets the data collection time in the preset trigger condition and the data length in the preset trigger condition includes:
  • the task period of the data task can be understood as the time period during which the cloud server determines the component status data of the monitoring vehicle corresponding to the fault information according to the fault information. Only the data within the task period can be analyzed by using the diagnostic script. The accuracy of diagnostic script analysis on periodic data is not high and has no reference value.
  • the task cycle of data tasks can be determined according to the preset time of diagnostic reports and the validity of data tasks.
  • the data collection device corresponding to the preset trigger condition determines the real-time monitored component status data of the vehicle, and determines whether the vehicle component status data satisfies the data collection time in the preset trigger condition and the preset trigger condition.
  • the length of the data when the component state data of the vehicle does not meet the data collection time, it is necessary to determine whether the collection time of the vehicle component state data is within the data task period. If it is determined that the collection time of the vehicle's component status data is not within the data task period, then determine whether the monitoring time of the vehicle component status data is within the task period. When the monitoring time exceeds the data task period, it means that the component status of the effective vehicle cannot be monitored
  • the data task has no monitoring significance, and the data task needs to be canceled to reduce the calculation amount of the vehicle gateway.
  • Step 260 sending the diagnosis report to the cloud server, so that the vehicle obtains the maintenance plan corresponding to the fault information through the cloud server.
  • the diagnostic report is sent to a cloud server, so that the vehicle obtains the maintenance plan corresponding to the fault information through the cloud server, including:
  • the diagnosis report is used to obtain maintenance information corresponding to the diagnosis report from the cloud server, the maintenance information is all collected from the cloud server and a shared maintenance site Processing information corresponding to the diagnosis report; receiving the maintenance information, determining at least two maintenance solutions according to the maintenance information; selecting the maintenance solution corresponding to the fault information from the at least two maintenance solutions according to user needs.
  • the maintenance information corresponding to the diagnosis report can be understood as the processing information corresponding to the fault cause in the diagnosis report, and the maintenance information is the processing information corresponding to all the diagnosis reports gathered through the cloud server and the shared maintenance site.
  • the vehicle gateway sends the analyzed diagnostic report to the cloud server, and through the cloud server, the diagnostic report is shared with multiple information resources and shared maintenance sites.
  • the first processing information can also obtain the second processing information corresponding to the diagnostic report from the maintenance personnel through the shared maintenance site, sort out the first processing information corresponding to the diagnostic report and the second processing information corresponding to the diagnostic report, and obtain the corresponding maintenance information.
  • the maintenance plan can be understood as analyzing and sorting out the maintenance information, and determining the maintenance steps that the user needs to implement.
  • User needs can be understood as the main evaluation factors that affect the user's maintenance plan determined based on user information. For example: the user has less funds, but has enough time for maintenance, the evaluation factor of user needs is the price.
  • the vehicle gateway sends the analyzed diagnostic report to the cloud server, and shares the diagnostic report with multiple information resources and shared maintenance sites through the cloud server to obtain maintenance information corresponding to the diagnostic report.
  • the analysis and processing of the maintenance information corresponding to the diagnosis report at least two maintenance solutions are determined for the user to process the failure information. Evaluate at least two maintenance schemes according to user needs, and select a maintenance scheme that meets the user needs as the maintenance scheme corresponding to the fault information.
  • the maintenance plan corresponding to the fault information is selected from the at least two maintenance plans according to user needs, including:
  • user information can be understood as user funds, time, and vehicle use information.
  • the user information is obtained through the information collection device, and the main evaluation factors for determining the maintenance plan when the user maintains the vehicle are determined based on the user information.
  • the at least two maintenance schemes are sorted, and the maintenance scheme with a higher degree of satisfaction of the user's needs is selected as the maintenance scheme corresponding to the fault information.
  • the maintenance scheme ranked first can be understood as the maintenance scheme that satisfies the user's needs with the highest degree among at least two maintenance schemes.
  • the fault information of the vehicle is determined by monitoring the display of the instrument light of the vehicle, and the fault information of the vehicle is determined according to the display of the instrument light of the vehicle; the data tasks and diagnostic scripts corresponding to the fault information are obtained from the cloud server according to the fault code in the fault information; Monitor the component status data of the vehicle in real time according to the preset trigger conditions in the data task, and determine whether the component status data meets the preset trigger conditions; when the component status data meets the preset trigger conditions, obtain the component status data and use the diagnostic script to analyze the component status data Perform analysis to obtain a diagnostic report corresponding to the fault information; send the diagnostic report to the cloud server, so that the vehicle can obtain the maintenance plan corresponding to the fault information through the cloud server.
  • the data tasks and diagnostic scripts corresponding to the fault codes are obtained through the interaction between the vehicle gateway and the cloud server, and the vehicle equipment is partially monitored, and the diagnostic scripts corresponding to the fault codes are obtained, and the fault diagnosis is performed accurately.
  • the running memory usage is reduced; useless information is filtered according to the preset trigger conditions, the diagnostic report is quickly determined, and a feasible maintenance plan is determined by cloud server sharing, reducing maintenance time and cost.
  • Fig. 3 is a schematic structural diagram of a fault diagnosis device provided in an embodiment of the present application. As shown in Fig. 3, the fault diagnosis device includes:
  • the information determination module 310 is configured to monitor the display of the instrument light of the vehicle, and determine the fault information of the vehicle according to the display of the instrument light of the vehicle; the task acquisition module 320 is configured to obtain from the fault code according to the fault code in the fault information The cloud server obtains the data task and diagnostic script corresponding to the fault information; the trigger determination module 330 is configured to monitor the component state data of the vehicle in real time according to the preset trigger conditions in the data task, and determine whether the component state data The preset trigger condition is met; the report determination module 340 is configured to acquire the component status data and use a diagnostic script to analyze the component status data to obtain the component status data when the component status data meets the preset trigger condition.
  • the diagnostic report corresponding to the fault information; the plan acquisition module 350 configured to send the diagnostic report to a cloud server, so that the vehicle obtains the maintenance plan corresponding to the fault information through the cloud server.
  • the information determining module 310 determines the fault information of the vehicle according to the display status of the instrument light of the vehicle, including:
  • the failure information includes the failure code.
  • the task obtaining module 320 obtains the data task and diagnostic script corresponding to the fault information from the cloud server according to the fault code in the fault information, including:
  • the trigger determination module 330 monitors the component status data of the vehicle in real time according to the preset trigger conditions in the data task, and determines whether the component status data meets the preset trigger conditions, including:
  • the trigger determination module 330 determines whether the component status data of the vehicle meets the data collection time in the preset trigger conditions and the data length in the preset trigger conditions, including:
  • the solution obtaining module 350 sends the diagnosis report to a cloud server, so that the vehicle obtains the maintenance solution corresponding to the fault information through the cloud server, including:
  • the diagnosis report is used to obtain maintenance information corresponding to the diagnosis report from the cloud server, the maintenance information is all collected from the cloud server and a shared maintenance site Processing information corresponding to the diagnosis report; receiving the maintenance information, determining at least two maintenance solutions according to the maintenance information; selecting the maintenance solution corresponding to the fault information from the at least two maintenance solutions according to user needs.
  • the data tasks and diagnostic scripts corresponding to the fault information are obtained from the cloud server ;
  • the preset trigger conditions in the data task monitor the component status data of the vehicle in real time to determine whether the component status data meets the preset trigger conditions; when the component status data meets the preset trigger conditions, obtain the component status data and use the diagnostic script to analyze the component status
  • the data is analyzed to obtain a diagnostic report corresponding to the fault information; the diagnostic report is sent to the cloud server, so that the vehicle can obtain the maintenance plan corresponding to the fault information through the cloud server.
  • the data tasks and diagnostic scripts corresponding to the fault codes are obtained through the interaction between the vehicle gateway and the cloud server, and the vehicle equipment is partially monitored, and the diagnostic scripts corresponding to the fault codes are obtained, and the fault diagnosis is performed accurately.
  • the running memory usage is reduced; useless information is filtered according to the preset trigger conditions, the diagnostic report is quickly determined, and a feasible maintenance plan is determined by cloud server sharing, reducing maintenance time and cost.
  • FIG. 4 is a schematic structural diagram of a vehicle provided in an embodiment of the present application.
  • FIG. 4 shows a block diagram of an exemplary vehicle 12 suitable for use in implementing embodiments of the present application.
  • the vehicle 12 shown in FIG. 4 is only an example, and should not limit the functions and scope of use of the embodiment of the present application.
  • vehicle 12 takes the form of a general-purpose computing device.
  • Components of vehicle 12 may include, but are not limited to, one or more processors or processing units 16 , system memory 28 , bus 18 connecting various system components including system memory 28 and processing unit 16 .
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include but are not limited to Industry Standard Architecture (Industry Standard Architecture, ISA) bus, Micro Channel Architecture (Micro Channel Architecture, MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association, VESA) local bus and peripheral component interconnect (Peripheral Component Interconnect, PCI) bus.
  • Vehicle 12 includes various computer system readable media. These media may be any available media that can be accessed by the vehicle 12, including volatile and non-volatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as Random Access Memory (RAM) 30 and/or cache memory 32 .
  • the vehicle 12 may include other removable/non-removable, volatile/nonvolatile computer system storage media.
  • storage system 34 may be used to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 4, commonly referred to as a "hard drive").
  • a disk drive for reading and writing to a removable non-volatile disk may be provided, as well as a removable non-volatile disk (such as a Compact Disc Read-Only Memory, CD-ROM), digital versatile disc read-only memory (Digital Video Disc-ROM, DVD-ROM) or other optical media) CD-ROM drive.
  • each drive may be connected to bus 18 via one or more data media interfaces.
  • the memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of the embodiments of the present application.
  • a program/utility 40 having a set (at least one) of program modules 42 may be stored, for example, in memory 28, such program modules 42 including but not limited to an operating system, one or more application programs, other program modules, and program data , each or a combination of these examples may include implementations of network environments.
  • the program modules 42 generally perform the functions and/or methods of the embodiments described herein.
  • the vehicle 12 may also communicate with one or more external devices 14 (e.g., a keyboard, pointing device, display 24, vehicle gateway, etc.), and with one or more devices that enable a user to interact with the vehicle 12, and/or Communicate with any device (eg, network card, modem, etc.) that enables the vehicle 12 to communicate with one or more other computing devices.
  • This communication can be performed through an input/output (Input/Output, I/O) interface 22 .
  • the vehicle 12 can also communicate with one or more networks (such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN) and/or a public network such as the Internet) through the network adapter 20.
  • networks such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN) and/or a public network such as the Internet
  • the network adapter 20 communicates with other modules of the vehicle 12 via the bus 18 .
  • other hardware and/or software modules may be used in conjunction with vehicle 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, Redundant Arrays of Independent Disks (Redundant Arrays of Independent Disks, RAID) systems, tape drives, and data backup storage systems.
  • the processing unit 16 executes a variety of functional applications and data processing by running the program stored in the system memory 28, such as implementing the fault diagnosis method provided in the embodiment of the present application, the method includes:
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the fault diagnosis method described above is implemented, and the method includes:
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. Examples (non-exhaustive list) of computer readable storage media include: electrical connection with one or more conductors, portable computer disk, hard disk, RAM, ROM, Erasable Programmable Read Only Memory (Erasable Programmable Read Only Memory) , EPROM or flash memory), optical fiber, CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • the program code contained on the computer readable medium can be transmitted by any appropriate medium, including but not limited to wireless, electric wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, electric wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer via any kind of network, including a LAN or WAN, or, alternatively, can be connected to an external computer (eg via the Internet using an Internet service provider).

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请提供了一种故障诊断方法、装置、车辆及存储介质。该故障诊断方法包括:监测车辆的仪表灯显示情况,并根据车辆的仪表灯显示情况确定车辆的故障信息;根据故障信息中的故障码从云服务器获取故障信息对应的数据任务和诊断脚本;根据数据任务中的预设触发条件实时监测车辆的组件状态数据,确定组件状态数据是否满足预设触发条件;当组件状态数据满足预设触发条件,获取组件状态数据并利用诊断脚本对组件状态数据进行分析,得到故障信息对应的诊断报告;将诊断报告发送给云服务器,以使得车辆获取故障信息对应的维修方案。

Description

故障诊断方法、装置、车辆及存储介质
本申请要求在2022年02月15日提交中国专利局、申请号为202210136524.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术,例如涉及一种故障诊断方法、装置、车辆及存储介质。
背景技术
随着车辆智能化程度的不断提升,使得车辆的故障类型也随之增长,增加了车辆故障诊断的复杂度。当前车辆发生严重故障时,通常仪表灯会亮灯进行显示,并告知用户故障信息,但用户并不能根据仪表灯显示的故障信息确定故障原因和维修方式。相关技术中,通过后台运行的智能诊断应用(Application,APP)或者远程上传故障码的手段确定车辆故障的维修方式,但是由于故障码所包含的信息有限,导致并不能准确的确定出故障的原因,需要多次往返维修点或者导致维修方式不正确,增加车辆的维修成本。
发明内容
本申请提供一种故障诊断方法、装置、车辆及存储介质,以实现局部监测车辆组件,精准进行故障诊断,减少内存占用,减少维修成本。
第一方面,本申请提供了一种故障诊断方法,应用于车辆网关,该方法包括:
监测车辆的仪表灯显示情况,并根据所述车辆的仪表灯显示情况确定所述车辆的故障信息;
根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本;
根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件;
当所述组件状态数据满足所述预设触发条件,获取所述组件状态数据并利用诊断脚本对所述组件状态数据进行分析,得到所述故障信息对应的诊断报告;
将所述诊断报告发送给云服务器,以使得所述车辆通过所述云服务器获取 所述故障信息对应的维修方案。
一实施方式中,根据所述车辆的仪表灯显示情况确定所述车辆的故障信息,包括:
根据所述仪表灯显示情况确定所述车辆是否获取故障信息;
当所述仪表灯显示情况为所述车辆故障,则从所述车辆的车载诊断系统的接口获取所述车辆故障对应的故障信息,所述故障信息包括所述故障码。
一实施方式中,根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本,包括:
将所述故障信息发送给所述云服务器,以使得所述云服务器根据所述故障信息中的故障码配置所述故障信息对应的数据任务和所述诊断脚本;
接收所述云服务器发送的所述数据任务和所述诊断脚本。
一实施方式中,根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件,包括:
根据所述预设触发条件对应的数据采集设备确定出实时监测的所述车辆的组件状态数据,并确定所述车辆的组件状态数据是否满足所述预设触发条件中的数据采集时间和所述预设触发条件中的数据长度;
当所述车辆的组件状态数据满足所述数据采集时间和所述数据长度,则所述组件状态数据满足所述预设触发条件。
一实施方式中,确定所述车辆的组件状态数据是否满足所述预设触发条件中的数据采集时间和所述预设触发条件中的数据长度,包括:
当所述车辆的组件状态数据不满足所述数据采集时间,确定所述数据任务的任务周期;
根据所述数据任务的任务周期确定所述车辆的组件状态数据的监测时间是否在所述任务周期内;
当所述监测时间超出所述数据任务的周期,则撤销所述数据任务。
一实施方式中,将所述诊断报告发送给云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案,包括:
将所述诊断报告发送给所述云服务器,所述诊断报告用于从所述云服务器获取所述诊断报告对应的维修信息,所述维修信息是从所述云服务器和共享维修站点汇集的所有所述诊断报告对应的处理信息;
接收所述维修信息,根据所述维修信息确定出至少两种维修方案;
根据用户需求从所述至少两种维修方案中选取所述故障信息对应的维修方案。
一实施方式中,根据用户需求从所述至少两种维修方案中选取所述故障信息对应的维修方案,包括:获取用户信息,并根据所述用户信息确定出所述用户需求;
根据所述用户需求的满足程度将所述至少两种维修方案从大到小排序,选择排序最靠前的维修方案作为所述故障信息对应的维修方案。
第二方面,本申请还提供了一种故障诊断装置,该故障诊断装置包括:
信息确定模块,设置为监测车辆的仪表灯显示情况,并根据所述车辆的仪表灯显示情况确定所述车辆的故障信息;
任务获取模块,设置为根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本;
触发确定模块,设置为根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件;
报告确定模块,设置为当所述组件状态数据满足所述预设触发条件,获取所述组件状态数据并利用诊断脚本对所述组件状态数据进行分析,得到所述故障信息对应的诊断报告;
方案获取模块,设置为将所述诊断报告发送给云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案。
第三方面,本申请实施例还提供了一种车辆,该车辆包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
车辆网关,设置为与云服务器进行信息交互;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的故障诊断方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的故障诊断方法。
附图说明
图1是本申请实施例提供的一种故障诊断方法的流程示意图;
图2是本申请实施例提供的另一种故障诊断方法的流程示意图;
图3是本申请实施例提供的一种故障诊断装置的结构示意图;
图4是本申请实施例提供的一种车辆的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
图1为本申请实施例提供的一种故障诊断方法的流程示意图,该方法可以由本申请实施例提供的故障诊断装置来执行,该装置可采用软件和/或硬件的方式实现。在一个实施例中,该装置可以集成在电子设备中,电子设备比如可以是车辆网关。以下实施例将以该装置集成在电子设备中为例进行说明,参考图1,该方法可以包括如下步骤:
步骤110、监测车辆的仪表灯显示情况,并根据车辆的仪表灯显示情况确定车辆的故障信息。
示例的,仪表灯可以理解为车辆仪表上显示的所有灯,用于指示、提示或警示驾驶员所在车辆上多个灯对应的车辆组件的性能变化,比如:车辆的仪表灯上的胎压指示灯点亮,用于指示车辆的轮胎出现了问题,需要驾驶员进行车辆的轮胎故障的排查。车辆的仪表灯显示情况可以理解为车辆的仪表灯中的多个灯的点亮情况,用于监测车辆的多个组件的性能情况。车辆的故障信息可以理解为根据车辆的仪表灯中的多个灯的点亮情况对应的车辆组件的故障,根据车载诊断系统确定出车辆组件的故障信息。
一实施例中,车辆网关实时监测车辆的仪表灯显示情况,并根据车辆仪表灯显示情况,根据仪表灯中的多个灯的点亮情况确定是否存在故障,如果仪表灯中的多个灯均未点亮,则说明车辆组件并未发生性能变化;如果仪表灯中的灯存在点亮情况,根据该灯对应的车辆组件进行故障诊断或查看车辆组件的性能情况,确定出车辆的仪表灯显示情况对应的车辆的故障信息。
步骤120、根据故障信息中的故障码从云服务器获取故障信息对应的数据任务和诊断脚本。
示例的,故障信息中的故障码可以理解为根据仪表灯显示情况确定出的车辆组件的故障经车辆故障诊断仪分析出来的故障码,维修人员可以根据故障码确定出车辆的组件状态从而进行维修,故障码可以是通过代码的形式呈给维修人员,可以是数字符号,也可以是二维码,当故障码是数字符号时,需要通过数字符号对应的位数上符号确定出故障码对应的车辆组件的故障;当故障码是二维码时,通过特定程序扫描二维码呈现出故障码对应的车辆组件的故障。云 服务器可以理解为不需要依赖硬件设施的服务器,具有可弹性伸缩的计算服务和资源存储的功能,并可以降低开发运营的难度和成本。数据任务可以理解为确定故障码对应的车辆组件故障的故障原因时,需要进行监测的数据内容。比如:汽车轮胎故障可以是车辆左右车轮的胎压不一致,或者任意一车辆轮胎扎钉导致胎内气体泄露,需要通过传感器监测车胎的完整度、车胎的气压状态、车胎上是否有附着物等监测。诊断脚本可以理解为针对任意一或者两个车辆组件的组合,用于确定故障原因的脚本,用于诊断根据数据任务获取的数据的故障原因。
一实施例中,根据仪表灯显示情况确定出车辆组件的故障经车辆故障诊断仪分析出来的故障码,根据故障码可以确定出可能发生故障的车辆组件,车辆网关将故障信息中的故障码发送给云服务器,云服务器根据故障码从资源数据中匹配出故障信息对应的数据任务和诊断脚本。云服务器根据故障码将故障信息对应的数据任务和诊断脚本发送给车辆网关,以使得车辆网关根据故障信息中的故障码从云服务器中获取到故障信息对应的数据任务和诊断脚本。车辆网关根据数据任务和诊断脚本,可以确定出车辆的故障原因,确定出维修方案。
步骤130、根据数据任务中的预设触发条件实时监测车辆的组件状态数据,确定组件状态数据是否满足预设触发条件。
示例的,预设触发条件可以理解为根据车辆的需求和实验数据预设的触发监测数据的获取和诊断脚本运行的条件,也可以理解为根据数据任务监测的数据内容的阈值。车辆的组件状态数据可以理解为车辆的组件使用状态的数据,车辆的组件状态数据可以是车辆的组件正常状态数据,也可以是车辆的组件故障状态数据,其中,正常状态数据可以是车辆的组件正常使用时的驻停数据和运行数据,故障状态数据可以是车辆的组件故障时的驻停数据和运行数据。
一实施例中,根据数据任务中的预设触发条件确定出需要监测车辆的组件,根据车辆的组件对应的传感器进行组件状态的监测,根据车辆的组件对应的传感器采集车辆的组件状态数据进行查询,用于确定查询车辆的组件状态数据是否满足预设触发条件,如果车辆的组件状态数据满足预设触发条件,则说明监测到可以判断出车辆的组件的故障原因的数据,需要进行数据获取,并运行诊断脚本得到车辆的诊断报告。
步骤140、当组件状态数据满足预设触发条件,获取组件状态数据并利用诊断脚本对组件状态数据进行分析,得到故障信息对应的诊断报告。
一实施例中,故障信息对应的诊断报告可以理解为呈现故障信息对应的故障原因的报告信息,可以是故障原因信息根据预设格式呈现出来的报告,预设格式是为了突出故障原因的核心内容,达到一目了然的效果,提升用户的使用 感。车辆网关实时监测车辆的组件状态数据,当组件状态数据满足数据任务中的预设触发条件,则说明监测到可以判断车辆的组件故障原因的数据,获取组件状态数据并运行诊断脚本对组件状态数据进行分析,以便于根据组件状态数据分析出故障信息对应的诊断报告,根据诊断报告确定出相应的维修方案。
步骤150、将诊断报告发送给云服务器,以使得车辆通过云服务器获取故障信息对应的维修方案。
一实施例中,当组件状态数据满足预设触发条件,车辆网关获取组件状态数据并利用诊断脚本对组件状态数据进行分析,得到故障信息对应的诊断报告,并将故障信息对应的诊断报告发送给云服务器,云服务器通过广播的方式或者信息共享的方式,将诊断报告发送给维修车辆相关的网站和维修站点,并获取到诊断报告相关的维修信息,根据维修信息形成多个维修方案,每个维修方案有其相应的评估指数,评估指数可以是维修时间、花费成本和维修便利程度。
本申请实施例中,通过监测车辆的仪表灯显示情况,并根据车辆的仪表灯显示情况确定车辆的故障信息;根据故障信息中的故障码从云服务器获取故障信息对应的数据任务和诊断脚本;根据数据任务中的预设触发条件实时监测车辆的组件状态数据,确定组件状态数据是否满足预设触发条件;当组件状态数据满足预设触发条件,获取组件状态数据并利用诊断脚本对组件状态数据进行分析,得到故障信息对应的诊断报告;将诊断报告发送给云服务器,以使得车辆通过云服务器获取故障信息对应的维修方案。即,本申请实施例,通过车辆网关与云服务器交互的方式,获取故障码对应的数据任务和诊断脚本,局部的对车辆设备进行监测,并获得故障码对应的诊断脚本,精准进行故障诊断,同时减少运行内存占用;根据预设触发条件过滤无用信息,快速确定出诊断报告,并利用云服务器共享方式确定出可行的维修方案,减少维修时间和成本。
下面描述本申请实施例提供的故障诊断方法,如图2所示,该方法可以包括如下步骤:
步骤210、监测车辆的仪表灯显示情况,根据仪表灯显示情况确定车辆是否获取故障信息。
一实施例中,车辆网关实时监测车辆的仪表灯显示情况,并根据车辆仪表灯显示情况,根据仪表灯中的灯的点亮情况确定是否存在故障,如果仪表灯中的多个灯均未点亮,则说明车辆组件并未发生性能变化,并不需要获取车辆的故障信息,继续监测车辆的仪表灯显示情况;如果仪表灯显示情况中存在仪表灯处于点亮状态,则根据点亮灯对应的车辆组件的故障,获取车辆的故障信息。
步骤220、当仪表灯显示情况为车辆故障,则从车辆的车载诊断系统的接口获取车辆故障对应的故障信息,故障信息包括故障码。
示例地,车载诊断系统可以理解为车辆内部的故障自诊断系统,在仪表灯出现故障指示灯,指示车辆故障时,需要根据车辆的多个部分的工作状态进行自动检查和监测的系统。车载诊断系统的接口可以理解为车载诊断系统与其他车辆的组件的通信接口,主要用于将车载诊断系统确定出的故障码发送给其他车辆的组件。
一实施例中,当仪表灯显示情况为车辆故障时,则根据车辆的多个部分的工作状态进行自动检查确定故障信息对应的故障码,车辆网关从车载诊断系统的接口处获取故障信息对应的故障码,以便于根据故障信息对应的故障码从云服务器中获取故障信息对应的数据任务和诊断脚本,得到故障信息对应的故障原因进行维修。
步骤230、根据故障信息中的故障码从云服务器获取故障信息对应的数据任务和诊断脚本。
一实施例中,根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本,包括:
将所述故障信息发送给所述云服务器,以使得所述云服务器根据所述故障信息中的故障码配置所述故障信息对应的数据任务和所述诊断脚本;接收所述云服务器发送的所述数据任务和所述诊断脚本。
一实施例中,车辆网关将根据车载诊断系统确定出的故障信息发送给云服务器,云服务器根据故障信息中的故障码在云端脚本配置工具中配置故障信息对应的数据任务和诊断脚本,并将故障信息对应的数据任务和诊断脚本下发给车辆网关。车辆网关接收云服务器发送的故障信息对应的数据任务和诊断脚本,以便于根据数据任务对车辆的组件进行实时监测,当出现符合数据任务中预设触发条件的车辆的组件状态信息,针对监测到的车辆的组件状态信息确定出故障信息对应的诊断报告。
步骤240、根据数据任务中的预设触发条件实时监测车辆的组件状态数据,确定组件状态数据是否满足预设触发条件。
步骤250、当组件状态数据满足预设触发条件,获取组件状态数据并利用诊断脚本对组件状态数据进行分析,得到故障信息对应的诊断报告。
一实施例中,根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件,包括:
根据所述预设触发条件对应的数据采集设备确定出实时监测的所述车辆的 组件状态数据,并确定所述车辆的组件状态数据是否满足所述预设触发条件中的数据采集时间和所述预设触发条件中的数据长度;当所述车辆的组件状态数据满足所述数据采集时间和所述数据长度,则所述组件状态数据满足所述预设触发条件。
示例地,预设触发条件包括数据采集时间、数据长度和数据采集组件,数据采集时间可以理解为车辆的组件对应的传感器获取到数据的时间点,用于判断数据是否为数据任务需要时刻的数据,还可以判断数据采集是否在数据任务周期内,判断数据的有效性。数据长度可以理解为车辆的组件对应的传感器采集数据的位数,用于判断采集数据是否可以进行诊断脚本运行。数据采集组件可以理解为确定车辆网关监测数据对应的车辆的组件,还可以在采集数据较多或者混乱时,根据预设触发条件中的数据采集组件核实数据来源是否正确。
一实施例中,根据预设触发条件中的数据采集组件,车辆网关确定预设触发条件对应的数据采集设备,根据预设触发条件对应的数据采集设备确定出实时监测的车辆的组件状态数据。将车辆的组件状态数据分别与预设触发条件中的数据采集时间和预设触发条件中的数据长度进行比对,确定车辆的组件状态数据是否满足预设触发条件;当车辆的组件状态数据的数据采集时间在数据任务周期内且组件状态数据与预设触发条件中的数据长度一致,则车辆的组件状态数据满足数据采集时间和数据长度,组件状态数据满足预设触发条件。
一实施例中,确定所述车辆的组件状态数据是否满足所述预设触发条件中的数据采集时间和所述预设触发条件中的数据长度,包括:
当所述车辆的组件状态数据不满足所述数据采集时间,确定所述数据任务的任务周期;根据所述数据任务的任务周期确定所述车辆的组件状态数据的监测时间是否在所述任务周期内;当所述监测时间超出所述数据任务的周期,则撤销所述数据任务。
示例地,数据任务的任务周期可以理解为云服务器根据故障信息确定出故障信息对应的监测车辆的组件状态数据的时间段,仅有在任务周期内的数据才可以利用诊断脚本进行分析,超出任务周期的数据进行诊断脚本分析的准确性不高,不具有参考价值,数据任务的任务周期可以根据诊断报告的预设时间和数据任务的有效性来确定。
一实施例中,根据预设触发条件对应的数据采集设备确定出实时监测的车辆的组件状态数据,并确定车辆的组件状态数据是否满足预设触发条件中的数据采集时间和预设触发条件中的数据长度;当车辆的组件状态数据不满足数据采集时间,需要确定车辆的组件状态数据的采集时间是否在数据任务周期内。如果确定车辆的组件状态数据的采集时间未在数据任务周期内,则确定车辆组 件状态数据的监测时间是否在任务周期内,当监测时间超出数据任务的周期,则说明无法监测有效车辆的组件状态数,数据任务没有任何监测意义,需要撤销数据任务,减少车辆网关的计算量。
步骤260、将诊断报告发送给云服务器,以使得车辆通过云服务器获取故障信息对应的维修方案。
一实施例中,将所述诊断报告发送给云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案,包括:
将所述诊断报告发送给所述云服务器,所述诊断报告用于从所述云服务器获取所述诊断报告对应的维修信息,所述维修信息是从所述云服务器和共享维修站点汇集的所有所述诊断报告对应的处理信息;接收所述维修信息,根据所述维修信息确定出至少两种维修方案;根据用户需求从所述至少两种维修方案中选取所述故障信息对应的维修方案。
示例地,诊断报告对应的维修信息可以理解为根据诊断报告中的故障原因对应的处理信息,维修信息是借助云服务器和共享维修站点汇聚的所有诊断报告对应的处理信息。车辆网关将分析出的诊断报告发送给云服务器,并通过云服务器将诊断报告共享给多个信息资源和共享维修站点,可以根据诊断报告中的故障原因从多个信息资源中汇聚诊断报告对应的第一处理信息,也可以通过共享维修站点从维修人员处获取到诊断报告对应的第二处理信息,将诊断报告对应的第一处理信息和诊断报告对应的第二处理信息整理,得到诊断报告对应的维修信息。维修方案可以理解为根据维修信息进行分析和整理,确定出的用户需要实施的维修步骤。用户需求可以理解为根据用户信息确定出的影响用户的维修方案的主要评估因素。比如:用户拥有的资金较少,但有足够的时间进行维修,用户需求的评估因素就是价格。
一实施例中,车辆网关将分析出的诊断报告发送给云服务器,并通过云服务器将诊断报告共享给多个信息资源和共享维修站点,得到诊断报告对应的维修信息。根据诊断报告对应的维修信息进行分析处理,确定出至少两种维修方案,用于用户进行故障信息的处理。根据用户需求对至少两种维修方案进行评估,选取满足用户需求维修方案作为故障信息对应的维修方案。
一实施例中,根据用户需求从所述至少两种维修方案中选取所述故障信息对应的维修方案,包括:
获取用户信息,并根据所述用户信息确定出所述用户需求;根据所述用户需求的满足程度将所述至少两种维修方案排序,选择排序最靠前的维修方案作为所述故障信息对应的维修方案。
一实施例中,用户信息可以理解为用户资金、时间和用车信息等,通过信息采集设备获取到用户信息,并根据用户信息确定出用户对车辆进行维修时,确定维修方案的主要评估因素。根据至少两种维修方案对用户需求的满足程度,将至少两种维修方案进行排序,选取用户需求的满足程度较高的维修方案作为故障信息对应的维修方案。其中,排序靠前的维修方案可以理解为在至少两种维修方案中用户需求的满足程度最高的维修方案。
本申请实施例中,通过监测车辆的仪表灯显示情况,并根据车辆的仪表灯显示情况确定车辆的故障信息;根据故障信息中的故障码从云服务器获取故障信息对应的数据任务和诊断脚本;根据数据任务中的预设触发条件实时监测车辆的组件状态数据,确定组件状态数据是否满足预设触发条件;当组件状态数据满足预设触发条件,获取组件状态数据并利用诊断脚本对组件状态数据进行分析,得到故障信息对应的诊断报告;将诊断报告发送给云服务器,以使得车辆通过云服务器获取故障信息对应的维修方案。即,本申请实施例,通过车辆网关与云服务器交互的方式,获取故障码对应的数据任务和诊断脚本,局部的对车辆设备进行监测,并获得故障码对应的诊断脚本,精准进行故障诊断,同时减少运行内存占用;根据预设触发条件过滤无用信息,快速确定出诊断报告,并利用云服务器共享方式确定出可行的维修方案,减少维修时间和成本。
图3是本申请实施例提供的故障诊断装置的结构示意图,如图3所示,该故障诊断装置包括:
信息确定模块310,设置为监测车辆的仪表灯显示情况,并根据所述车辆的仪表灯显示情况确定所述车辆的故障信息;任务获取模块320,设置为根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本;触发确定模块330,设置为根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件;报告确定模块340,设置为当所述组件状态数据满足所述预设触发条件,获取所述组件状态数据并利用诊断脚本对所述组件状态数据进行分析,得到所述故障信息对应的诊断报告;方案获取模块350,设置为将所述诊断报告发送给云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案。
一实施例中,所述信息确定模块310根据所述车辆的仪表灯显示情况确定所述车辆的故障信息,包括:
根据所述仪表灯显示情况确定所述车辆是否获取故障信息;当所述仪表灯 显示情况为所述车辆故障,则从所述车辆的车载诊断系统的接口获取所述车辆故障对应的故障信息,所述故障信息包括所述故障码。
一实施例中,所述任务获取模块320根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本,包括:
将所述故障信息发送给所述云服务器,以使得所述云服务器根据所述故障信息中的故障码配置所述故障信息对应的数据任务和所述诊断脚本;接收所述云服务器发送的所述数据任务和所述诊断脚本。
一实施例中,所述触发确定模块330根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件,包括:
根据所述预设触发条件对应的数据采集设备确定出实时监测的所述车辆的组件状态数据,并确定所述车辆的组件状态数据是否满足所述预设触发条件中的数据采集时间和所述预设触发条件中的数据长度;当所述车辆的组件状态数据满足所述数据采集时间和所述数据长度,则所述组件状态数据满足所述预设触发条件。
一实施例中,所述触发确定模块330确定所述车辆的组件状态数据是否满足所述预设触发条件中的数据采集时间和所述预设触发条件中的数据长度,包括:
当所述车辆的组件状态数据不满足所述数据采集时间,确定所述数据任务的任务周期;根据所述数据任务的任务周期确定所述车辆的组件状态数据的监测时间是否在所述任务周期内;当所述监测时间超出所述数据任务的周期,则撤销所述数据任务。
一实施例中,所述方案获取模块350将所述诊断报告发送给云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案,包括:
将所述诊断报告发送给所述云服务器,所述诊断报告用于从所述云服务器获取所述诊断报告对应的维修信息,所述维修信息是从所述云服务器和共享维修站点汇集的所有所述诊断报告对应的处理信息;接收所述维修信息,根据所述维修信息确定出至少两种维修方案;根据用户需求从所述至少两种维修方案中选取所述故障信息对应的维修方案。
一实施例中,所述方案获取模块350根据用户需求从所述至少两种维修方案中选取所述故障信息对应的维修方案,包括:
获取用户信息,并根据所述用户信息确定出所述用户需求;根据所述用户需求的满足程度将所述至少两种维修方案排序,选择排序最靠前的维修方案作 为所述故障信息对应的维修方案。
本申请装置实施例中,通过监测车辆的仪表灯显示情况,并根据车辆的仪表灯显示情况确定车辆的故障信息;根据故障信息中的故障码从云服务器获取故障信息对应的数据任务和诊断脚本;根据数据任务中的预设触发条件实时监测车辆的组件状态数据,确定组件状态数据是否满足预设触发条件;当组件状态数据满足预设触发条件,获取组件状态数据并利用诊断脚本对组件状态数据进行分析,得到故障信息对应的诊断报告;将诊断报告发送给云服务器,以使得车辆通过云服务器获取故障信息对应的维修方案。即,本申请实施例,通过车辆网关与云服务器交互的方式,获取故障码对应的数据任务和诊断脚本,局部的对车辆设备进行监测,并获得故障码对应的诊断脚本,精准进行故障诊断,同时减少运行内存占用;根据预设触发条件过滤无用信息,快速确定出诊断报告,并利用云服务器共享方式确定出可行的维修方案,减少维修时间和成本。
图4为本申请实施例提供的一种车辆的结构示意图。图4示出了适于用来实现本申请实施方式的示例性车辆12的框图。图4显示的车辆12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图4所示,车辆12以通用计算设备的形式表现。车辆12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(Micro Channel Architecture,MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
车辆12包括多种计算机系统可读介质。这些介质可以是任何能够被车辆12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory,RAM)30和/或高速缓存存储器32。车辆12可以包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移 动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如只读光盘存储器(Compact Disc Read-Only Memory,CD-ROM),数字通用光盘只读存储器(Digital Video Disc-ROM,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或一种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
车辆12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24、车辆网关等)通信,还可与一个或者多个使得用户能与该车辆12交互的设备通信,和/或与使得该车辆12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(Input/Output,I/O)接口22进行。并且,车辆12还可以通过网络适配器20与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与车辆12的其它模块通信。尽管图中未示出,可以结合车辆12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)系统、磁带驱动器以及数据备份存储系统等。
处理单元16通过运行存储在系统存储器28中的程序,从而执行多种功能应用以及数据处理,例如实现本申请实施例所提供的故障诊断方法,该方法包括:
监测车辆的仪表灯显示情况,并根据所述车辆的仪表灯显示情况确定所述车辆的故障信息;根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本;根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件;当所述组件状态数据满足所述预设触发条件,获取所述组件状态数据并利用诊断脚本对所述组件状态数据进行分析,得到所述故障信息对应的诊断报告;将所述诊断报告发送给云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现所述的故障诊断方法,方法包括:
监测车辆的仪表灯显示情况,并根据所述车辆的仪表灯显示情况确定所述车辆的故障信息;根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本;根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件;当所述组件状态数据满足所述预设触发条件,获取所述组件状态数据并利用诊断脚本对所述组件状态数据进行分析,得到所述故障信息对应的诊断报告;将所述诊断报告发送给云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、RAM、ROM、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM或闪存)、光纤、CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机 上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括LAN或WAN连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种故障诊断方法,应用于车辆网关,包括:
    监测车辆的仪表灯显示情况,并根据所述车辆的仪表灯显示情况确定所述车辆的故障信息;
    根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本;
    根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件;
    在所述组件状态数据满足所述预设触发条件的情况下,获取所述组件状态数据并利用所述诊断脚本对所述组件状态数据进行分析,得到所述故障信息对应的诊断报告;
    将所述诊断报告发送给所述云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案。
  2. 根据权利要求1所述的方法,其中,所述根据所述车辆的仪表灯显示情况确定所述车辆的故障信息,包括:
    根据所述仪表灯显示情况确定所述车辆是否获取故障信息;
    在所述仪表灯显示情况为所述车辆故障的情况下,从所述车辆的车载诊断系统的接口获取所述车辆故障对应的故障信息,其中,所述故障信息包括所述故障码。
  3. 根据权利要求1所述的方法,其中,所述根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本,包括:
    将所述故障信息发送给所述云服务器,以使得所述云服务器根据所述故障信息中的故障码配置所述故障信息对应的数据任务和所述诊断脚本;
    接收所述云服务器发送的所述数据任务和所述诊断脚本。
  4. 根据权利要求1所述的方法,其中,所述根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件,包括:
    根据所述预设触发条件对应的数据采集设备确定出实时监测的所述车辆的组件状态数据,并确定所述车辆的组件状态数据是否满足所述预设触发条件中的数据采集时间和所述预设触发条件中的数据长度;
    在所述车辆的组件状态数据满足所述数据采集时间和所述数据长度的情况下,确定所述组件状态数据满足所述预设触发条件。
  5. 根据权利要求4所述的方法,其中,所述确定所述车辆的组件状态数据是否满足所述预设触发条件中的数据采集时间和所述预设触发条件中的数据长度,包括:
    在所述车辆的组件状态数据不满足所述数据采集时间的情况下,确定所述数据任务的任务周期;
    根据所述数据任务的任务周期确定所述车辆的组件状态数据的监测时间是否在所述任务周期内;
    在所述监测时间超出所述数据任务的周期的情况下,撤销所述数据任务。
  6. 根据权利要求1所述的方法,其中,所述将所述诊断报告发送给所述云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案,包括:
    将所述诊断报告发送给所述云服务器,其中,所述诊断报告用于从所述云服务器获取所述诊断报告对应的维修信息,所述维修信息是从所述云服务器和共享维修站点汇集的所有所述诊断报告对应的处理信息;
    接收所述维修信息,根据所述维修信息确定出至少两种维修方案;
    根据用户需求从所述至少两种维修方案中选取所述故障信息对应的维修方案。
  7. 根据权利要求6所述的方法,其中,所述根据用户需求从所述至少两种维修方案中选取所述故障信息对应的维修方案,包括:
    获取用户信息,并根据所述用户信息确定出所述用户需求;
    根据所述用户需求的满足程度将所述至少两种维修方案排序,选择排序最靠前的维修方案作为所述故障信息对应的维修方案。
  8. 一种故障诊断装置,包括:
    信息确定模块,设置为监测车辆的仪表灯显示情况,并根据所述车辆的仪表灯显示情况确定所述车辆的故障信息;
    任务获取模块,设置为根据所述故障信息中的故障码从云服务器获取所述故障信息对应的数据任务和诊断脚本;
    触发确定模块,设置为根据所述数据任务中的预设触发条件实时监测所述车辆的组件状态数据,确定所述组件状态数据是否满足所述预设触发条件;
    报告确定模块,设置为在所述组件状态数据满足所述预设触发条件的情况下,获取所述组件状态数据并利用所述诊断脚本对所述组件状态数据进行分析, 得到所述故障信息对应的诊断报告;
    方案获取模块,设置为将所述诊断报告发送给所述云服务器,以使得所述车辆通过所述云服务器获取所述故障信息对应的维修方案。
  9. 一种车辆,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    车辆网关,设置为与云服务器进行信息交互;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1至7中任一所述的故障诊断方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1至7中任一所述的故障诊断方法。
PCT/CN2023/070059 2022-02-15 2023-01-03 故障诊断方法、装置、车辆及存储介质 WO2023155619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210136524.8A CN114490161B (zh) 2022-02-15 2022-02-15 一种故障诊断方法、装置、车辆及存储介质
CN202210136524.8 2022-02-15

Publications (1)

Publication Number Publication Date
WO2023155619A1 true WO2023155619A1 (zh) 2023-08-24

Family

ID=81481124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070059 WO2023155619A1 (zh) 2022-02-15 2023-01-03 故障诊断方法、装置、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN114490161B (zh)
WO (1) WO2023155619A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114490161B (zh) * 2022-02-15 2023-10-31 中国第一汽车股份有限公司 一种故障诊断方法、装置、车辆及存储介质
CN115373369B (zh) * 2022-08-24 2024-05-03 中国第一汽车股份有限公司 车辆故障诊断系统及方法
CN115469645A (zh) * 2022-09-28 2022-12-13 中国第一汽车股份有限公司 一种基于云建模技术的车辆故障检测方法及系统
CN117032162A (zh) * 2023-08-04 2023-11-10 广州汽车集团股份有限公司 车辆的远程诊断方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661352A (zh) * 2004-02-27 2005-08-31 富士重工业株式会社 操作员端系统以及模式文件识别方法
US20060052921A1 (en) * 2002-11-07 2006-03-09 Bodin William K On-demand system for supplemental diagnostic and service resource planning for mobile systems
CN109445405A (zh) * 2018-09-20 2019-03-08 上海博泰悦臻网络技术服务有限公司 解决车辆故障的方法及系统
CN111741117A (zh) * 2020-06-28 2020-10-02 北京智行者科技有限公司 故障信息的处理方法
CN114490161A (zh) * 2022-02-15 2022-05-13 中国第一汽车股份有限公司 一种故障诊断方法、装置、车辆及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103907A (ko) * 2000-05-10 2001-11-24 최태승 통신 네트워크를 이용한 자동차 자가진단 시스템
CN108469802B (zh) * 2018-01-31 2021-04-13 中汽研汽车检验中心(武汉)有限公司 一种车辆信息远程监控与故障诊断系统
CN112327807A (zh) * 2020-11-04 2021-02-05 一汽奔腾轿车有限公司 一种基于ivi主机的汽车故障诊断和监测系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052921A1 (en) * 2002-11-07 2006-03-09 Bodin William K On-demand system for supplemental diagnostic and service resource planning for mobile systems
CN1661352A (zh) * 2004-02-27 2005-08-31 富士重工业株式会社 操作员端系统以及模式文件识别方法
CN109445405A (zh) * 2018-09-20 2019-03-08 上海博泰悦臻网络技术服务有限公司 解决车辆故障的方法及系统
CN111741117A (zh) * 2020-06-28 2020-10-02 北京智行者科技有限公司 故障信息的处理方法
CN114490161A (zh) * 2022-02-15 2022-05-13 中国第一汽车股份有限公司 一种故障诊断方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
CN114490161A (zh) 2022-05-13
CN114490161B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2023155619A1 (zh) 故障诊断方法、装置、车辆及存储介质
CN111083030B (zh) 一种数据获取的方法、装置、设备及存储介质
CN103471621B (zh) 一种适用于车载导航多媒体终端的测试方法及测试设备
CN109976959A (zh) 一种用于服务器故障检测的便携式设备及方法
CN110674009B (zh) 应用服务器性能监测方法、装置、存储介质及电子设备
WO2023273267A1 (zh) 故障诊断方法、装置、电子设备及存储介质
CN111966081A (zh) 基于车载显示的故障诊断方法、系统、介质、设备及车辆
KR20120133711A (ko) 제품 테스트용 차량 데이터 제공 장치 및 방법
US9276826B1 (en) Combining multiple signals to determine global system state
CN113808299A (zh) 基于故障系统的车辆故障快照存储方法、装置及设备
CN111784176A (zh) 一种数据处理方法、装置、服务器及介质
KR20050000042A (ko) 디스크 드라이브의 고장 진단 서비스 시스템 및 방법
CN116030548A (zh) 一种日志远程诊断方法、装置、电子设备及存储介质
CN116244131A (zh) 服务器接口测试方法、装置、电子设备和介质
CN112861077A (zh) 一种车辆诊断数据流分析方法、系统、服务器和存储介质
CN115118754B (zh) 针对电动汽车的远程监控测试系统和监控测试方法
CN112346897B (zh) 一种处理计算机故障的方法及系统
CN115373369B (zh) 车辆故障诊断系统及方法
CN115599077B (zh) 车辆故障定界方法、装置、电子设备及存储介质
CN117409499A (zh) 故障诊断方法、装置、通信设备、可读存储介质及车辆
CN115292146B (zh) 一种系统容量预估方法、系统、设备及存储介质
WO2024080045A1 (ja) 検知装置、検知システム、検知方法および検知プログラム
CN107153550A (zh) 一种基于界面的计算机故障诊断方法
Xu et al. Design of on-board data center for in-vehicle networkings
CN114385476A (zh) 性能测试结果分析方法、装置、电子设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755623

Country of ref document: EP

Kind code of ref document: A1