WO2023155439A1 - 一种电子设备及其基于忆阻器的逻辑门电路 - Google Patents

一种电子设备及其基于忆阻器的逻辑门电路 Download PDF

Info

Publication number
WO2023155439A1
WO2023155439A1 PCT/CN2022/122300 CN2022122300W WO2023155439A1 WO 2023155439 A1 WO2023155439 A1 WO 2023155439A1 CN 2022122300 W CN2022122300 W CN 2022122300W WO 2023155439 A1 WO2023155439 A1 WO 2023155439A1
Authority
WO
WIPO (PCT)
Prior art keywords
memristor
logic gate
gate circuit
power supply
circuit according
Prior art date
Application number
PCT/CN2022/122300
Other languages
English (en)
French (fr)
Inventor
苏康
郭芬
满宏涛
李拓
Original Assignee
苏州浪潮智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州浪潮智能科技有限公司 filed Critical 苏州浪潮智能科技有限公司
Publication of WO2023155439A1 publication Critical patent/WO2023155439A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • H03K19/21EXCLUSIVE-OR circuits, i.e. giving output if input signal exists at only one input; COINCIDENCE circuits, i.e. giving output only if all input signals are identical
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components

Definitions

  • the present application relates to the field of memristors, in particular to a memristor-based logic gate circuit, and also relates to an electronic device.
  • Memristor has the characteristics of non-volatility, low power consumption and simple structure, and has obvious advantages in scalability, compatibility with CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor) process and response speed.
  • CMOS Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor
  • the non-volatile logic unit of the resistor integrates computing and storage functions, and can build a computing architecture integrating storage and computing, breaking through the "storage wall" problem in the traditional von Neumann architecture.
  • MAGIC Micromristor-Aided Logic, auxiliary logic gate
  • auxiliary logic gate auxiliary logic gate
  • the MAGIC logic gate set only has basic logic gates such as "AND”, “NAND”, “OR”, “NOR”, and lacks other auxiliary logic gates, such as XOR gates.
  • the lack of XOR gates also further It affects the design of the half adder circuit, limits the application of MAGIC technology, and affects the user experience.
  • the purpose of this application is to provide a memristor-based logic gate circuit, which uses the combination of two input memristors and the second memristor in the AND logic gate based on MAGIC to form an exclusive OR logic gate, and the logic gate circuit It can also be used as a half-adder, which promotes the application of MAGIC technology and improves user experience;
  • another object of the present application is to provide an electronic device comprising the above-mentioned memristor-based logic gate circuit, utilizing the AND logic based on MAGIC
  • the two input memristors in the gate are combined with the second memristor to form an XOR logic gate, and the logic gate circuit can also be used as a half adder, which promotes the application of MAGIC technology and improves user experience.
  • the application provides a memristor-based logic gate circuit, including:
  • the AND logic gate based on the auxiliary logic gate MAGIC is used to realize the logical AND operation based on the three first memristors connected in series within itself;
  • the first power supply is used to output electric energy when the AND logic gate is in a steady state
  • a second memristor whose first terminal is connected to the first power supply, and is used to present a low-impedance state only when the first power supply supplies power to itself;
  • a controllable switch whose first end is connected to the second end of the second memristor, the second end is grounded, and the control end is connected to the negative end of the first memristor as an output memristor, and is used only in AND logic gates
  • the two first memristors used as input memristors are turned on when they present different resistance states.
  • the AND logic gate based on the auxiliary logic gate MAGIC includes a second power supply, a first control switch, a first input memristor, a second input memristor and an output memristor;
  • the second power supply is connected to the first end of the first control switch, the second end of the first control switch is connected to the negative end of the first input memristor, and the positive end of the first input memristor is connected to the second input memristor
  • the negative terminal of the second input memristor is connected to the negative terminal of the output memristor, and the positive terminal of the output memristor is grounded.
  • the first power supply includes a power supply unit and a second control switch;
  • the first power supply is connected to the first end of the second control switch, and the second end of the second control switch is connected to the first end of the second memristor;
  • the second control switch is configured to be closed when the AND logic gate is in a steady state, so that the power supply unit outputs electric energy.
  • the second power supply and the power supply unit are the same power supply.
  • the first control switch and the second control switch are of the same type.
  • both the first control switch and the second control switch are gate switches.
  • controllable switch is an N-type metal-oxide-semiconductor NMOS.
  • the present application also provides an electronic device, including the above memristor-based logic gate circuit.
  • This application provides a memristor-based logic gate circuit, considering that in the AND logic gate based on the auxiliary logic gate MAGIC, the voltage at the negative terminal of the output memristor will only show two different voltage levels, and the high and low voltage levels will be high and low.
  • the resistance states of the two input memristors are opposite at the voltage level, so this application connects the control terminal of the controllable switch to the negative terminal of the output memristor, and controls whether the second memristor is energized through the controllable switch.
  • the controllable switch will be turned on and the second memristor will be energized, and the second memristor will present a low resistance state ( represents logic "1"); when the resistance state of the two input memristors in the logic gate is the same, the controllable switch will not be turned on, and the state of the second memristor remains unchanged at this time, that is, it presents a high-impedance state (Represents logic "0").
  • the combination of the two input memristors and the second memristor forms an XOR logic gate at this time, and the logic gate circuit can also be used as a half adder, which promotes the application of MAGIC technology and improves user experience.
  • Fig. 1 is a schematic structural diagram of a memristor-based logic gate circuit provided by the present application
  • FIG. 2 is a schematic structural diagram of another memristor-based logic gate circuit provided by the present application.
  • FIG. 3 is a schematic diagram of the change of the resistance of the memristor with the voltage at both ends.
  • FIG. 1 is a schematic structural diagram of a memristor-based logic gate circuit provided by the present application.
  • the memristor-based logic gate circuit includes:
  • the AND logic gate based on the auxiliary logic gate MAGIC is used to realize the logical AND operation based on the three first memristors connected in series within itself;
  • the first power supply 2 is used to output electric energy when the AND logic gate is in a steady state
  • the second memristor 3 whose first end is connected to the first power supply 2 is used to present a low-impedance state only when the first power supply 2 supplies power for itself;
  • the first end is connected to the second end of the second memristor 3, the second end is grounded, and the control end is connected to the negative end of the first memristor as the output memristor.
  • the two first memristors used as input memristors in the logic gate are turned on when they present different resistance states.
  • FIG. 2 is a schematic structural diagram of another memristor-based logic gate circuit provided by the present application.
  • FIG. 3 is a memristor resistance with two The schematic diagram of the terminal voltage change. Figure 3 shows how the resistance of the memristor changes with the voltage at both ends.
  • the working principle of the memristor is that when certain conditions are met, the two states of high and low resistance will be reversed reversibly.
  • the memristors used in the embodiments of the present application are all threshold memristors, that is, two threshold voltages are needed to change the corresponding boundary resistance.
  • two kinds of boundary resistances R on and R off represent logic “1” and “0” respectively, and the voltage required to change the memristor from logic “0” to logic “1” should be Greater than or equal to the threshold voltage V T-ON , the applied voltage required to change the memristor from logic “1” to logic “0” should be less than or equal to the threshold voltage V T-OFF .
  • M in1 and M in2 are two input memristors in the AND logic gate
  • M out1 is an output memristor
  • the controllable switch 4 is NMOS 1
  • the second memristor 3 is M out2 .
  • the "exclusive OR" gate circuit and the half adder circuit based on the memristor MAGIC logic proposed in this application are improved and optimized on the basis of the "AND" gate circuit of the MAGIC logic. Therefore, first build the “AND” gate circuit of MAGIC logic, that is, connect the voltage sources V 0 , M in1 , M in2 and M out1 in series , and realize the operation process of "AND” logic as follows:
  • the above operation process can complete the logical operation of the "AND” gate. Assume that the two logic values of the input signal are "00", and the corresponding input memristor resistances are both R off , at this time, the two input memristors and the output memristor M out1 are connected in series, and the resistance values are both R off , so the voltage across the output memristor M out1 is V 0 /3, which does not reach the threshold voltage for the output memristor M out1 to change from R off to R on , so the logic state of the output memristor M out1 is still "0".
  • the range of the threshold voltage V TH of the above-mentioned NMOS is:
  • V 0 is the rated voltage of the first power supply 2 .
  • the "exclusive OR” logic operation is performed after the "AND” logic operation is completed, that is, after the voltages at the terminals of branch 1 are stabilized.
  • the operation process to realize the "exclusive OR” logic operation is as follows:
  • a and B are the addends (input terminals), S is the sum, and C is the carry to the high bit.
  • the two output terminals of the half adder are the results of the logical operation of "exclusive OR” and "AND” of the two input terminals respectively. Therefore, the circuit designed in the embodiment of the present application can also be used as a half adder circuit.
  • This application provides a memristor-based logic gate circuit, considering that in the AND logic gate based on the auxiliary logic gate MAGIC, the voltage at the negative terminal of the output memristor will only show two different voltage levels, and the high and low voltage levels will be high and low.
  • the resistance states of the two input memristors are opposite at the voltage level, so this application connects the control terminal of the controllable switch to the negative terminal of the output memristor, and controls whether the second memristor is energized through the controllable switch.
  • the controllable switch will be turned on and the second memristor will be energized, and the second memristor will present a low resistance state ( represents logic "1"); when the resistance state of the two input memristors in the logic gate is the same, the controllable switch will not be turned on, and the state of the second memristor remains unchanged at this time, that is, it presents a high-impedance state (Represents logic "0").
  • the combination of the two input memristors and the second memristor forms an XOR logic gate at this time, and the logic gate circuit can also be used as a half adder, which promotes the application of MAGIC technology and improves user experience.
  • the AND logic gate based on the auxiliary logic gate MAGIC includes a second power supply, a first control switch S 1 , a first input memristor, a second input memristor and an output memristor;
  • the second power supply is connected to the first terminal of the first control switch S1 , the second terminal of the first control switch S1 is connected to the negative terminal of the first input memristor, and the positive terminal of the first input memristor is connected to the second The negative terminal of the input memristor is connected, the positive terminal of the second input memristor is connected with the negative terminal of the output memristor, and the positive terminal of the output memristor is grounded.
  • the MAGIC-based AND logic gate 1 may also have other structures, which are not limited in this embodiment of the present application.
  • the first power supply 2 includes a power supply unit V 0 and a second control switch S 2 ;
  • the first power supply 2 is connected to the first end of the second control switch S2 , and the second end of the second control switch S2 is connected to the first end of the second memristor 3;
  • the second control switch is configured to be closed when the AND logic gate is in a steady state, so that the power supply unit V 0 outputs electric energy.
  • the second control switch S2 can be used to control whether the power supply unit V0 outputs electric energy.
  • the function of the second control switch S2 is to prevent each branch circuit 1 from The influence on the voltage of the control terminal of the controllable switch 4 caused by the instability of the terminal voltage leads to misoperation of the on and off states of the controllable switch 4 .
  • the first power supply 2 in the embodiment of the present application has the advantages of simple structure and low cost.
  • the first power supply 2 may also be of other types, which are not limited in this embodiment of the present application.
  • the second power supply and the power supply unit V0 are the same power supply.
  • designing the second power supply and the power supply unit V0 as the same power supply can simplify the structure and reduce the cost.
  • the second power supply and the power supply unit V 0 may be independent power supplies, which are not limited in this embodiment of the present application.
  • the first control switch S1 and the second control switch S2 are of the same type.
  • designing the first control switch S1 and the second control switch S2 to be of the same type can simplify the structure and reduce the cost.
  • first control switch S1 and the second control switch S2 may also be of different types, which is not limited in this embodiment of the present application.
  • both the first control switch S1 and the second control switch S2 are gate switches.
  • the door control switch has the advantages of high degree of automation and long service life.
  • the first control switch S 1 and the second control switch S 2 may also be of other types, which are not limited in this embodiment of the present application.
  • controllable switch 4 is an N-type metal-oxide-semiconductor NMOS.
  • NMOS has the advantages of small size, fast response, and long life.
  • controllable switch 4 may also be of other types, which is not limited in this embodiment of the present application.
  • the present application also provides an electronic device, including the memristor-based logic gate circuit in the foregoing embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

本发明公开了一种电子设备及其基于忆阻器的逻辑门电路,本申请将可控开关的控制端接在基于MAGIC的与逻辑门中的输出忆阻器负端,并通过可控开关控制第二忆阻器是否通电,如此一来,当与逻辑门中的两个输入忆阻器阻值状态不同时,可控开关便会导通并使得第二忆阻器通电,第二忆阻器此时便会呈现低阻状态(代表逻辑"1");当两个输入忆阻器阻值状态相同时,可控开关不会导通,第二忆阻器此时状态保持不变,即呈现高阻状态(代表逻辑"0")。也就是说此时两个输入忆阻器与第二忆阻器组合形成了异或逻辑门,同时该逻辑门电路还可用作半加器,促进了MAGIC技术的应用,提升了用户体验。

Description

一种电子设备及其基于忆阻器的逻辑门电路
相关申请的交叉引用
本申请要求于2022年02月18日提交中国专利局,申请号为202210148841.1,申请名称为“一种电子设备及其基于忆阻器的逻辑门电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及忆阻器领域,特别是涉及一种基于忆阻器的逻辑门电路,本申请还涉及一种电子设备。
背景技术
忆阻器具有非易失、功耗低和结构简单等特点,并且在可微缩性、与CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺兼容和响应速度等方面具有明显优势,基于忆阻器的非易失逻辑单元融合了计算与存储功能,可构建存算一体的计算架构,突破传统冯·诺依曼架构中出现的“存储墙”问题。
目前基于忆阻器的逻辑电路形式多样,其中,仅由忆阻器构成的(MAGIC(Memristor-Aided Logic,辅助逻辑门)电路的逻辑状态可以用阻值来代表,并可以实现逻辑运算和存储一体化,然而MAGIC逻辑门集合只有“与”、“与非”、“或”、“或非”等基本的逻辑门,缺少其他的辅助逻辑门,例如异或门,缺少异或门也进一步影响了半加器电路的设计,限制了MAGIC技术的应用,影响了用户体验。
发明内容
本申请的目的是提供一种基于忆阻器的逻辑门电路,利用基于MAGIC的与逻辑门中两个输入忆阻器与第二忆阻器组合形成了异或逻辑门,同时该逻辑门电路还可用作半加器,促进了MAGIC技术的应用,提升了用户体验;本申请的另一目的是提供一种包括上述基于忆阻器的逻辑门电路的电子设备,利用基于MAGIC的与逻辑门中两个输入忆阻器与第二忆阻器组合形成了异或逻辑门,同时该逻辑门电路还可用作半加器,促进了MAGIC技术的应用, 提升了用户体验。
为解决上述技术问题,本申请提供了一种基于忆阻器的逻辑门电路,包括:
基于辅助逻辑门MAGIC的与逻辑门,用于基于自身内部串联的三个第一忆阻器实现逻辑与的运算;
第一电源,用于在与逻辑门处于稳态时输出电能;
第一端与第一电源连接的第二忆阻器,用于仅在第一电源为自身供电时呈现低阻状态;
第一端与第二忆阻器的第二端连接,第二端接地,控制端与作为输出忆阻器的第一忆阻器的负端连接的可控开关,用于仅在与逻辑门中作为输入忆阻器的两个第一忆阻器呈现不同阻值状态时导通。
优选地,基于辅助逻辑门MAGIC的与逻辑门包括第二电源、第一控制开关、第一输入忆阻器、第二输入忆阻器以及输出忆阻器;
第二电源与第一控制开关的第一端连接,第一控制开关的第二端与第一输入忆阻器的负端连接,第一输入忆阻器的正端与第二输入忆阻器的负端连接,第二输入忆阻器的正端与输出忆阻器的负端连接,输出忆阻器的正端接地。
优选地,第一电源包括供电单元以及第二控制开关;
第一电源与第二控制开关的第一端连接,第二控制开关的第二端与第二忆阻器的第一端连接;
第二控制开关,用于在与逻辑门处于稳态时被控闭合,以便供电单元输出电能。
优选地,第二电源与供电单元为同一电源。
优选地,第一控制开关以及第二控制开关为相同类型。
优选地,第一控制开关以及第二控制开关均为门控开关。
优选地,可控开关为N型金属-氧化物-半导体NMOS。
为解决上述技术问题,本申请还提供了一种电子设备,包括如上的基于忆阻器的逻辑门电路。
本申请提供了一种基于忆阻器的逻辑门电路,考虑到在基于辅助逻辑门MAGIC的与逻辑门中,输出忆阻器负端的电压仅会呈现高低不同的两种电压等级,且呈现高电压等级时两个输入忆阻器的阻值状态相反,因此本申请将可控开关的控制端接在输出忆阻器负端,并通过可控开关控制第二忆阻器是否通电,如此一来,当与逻辑门中的两个输入忆阻器阻值状态不同时,可控开关便会导通并使得第二忆阻器通电,第二忆阻器此时便会呈现低阻状态(代表逻辑“1”);当与逻辑门中的两个输入忆阻器阻值状态相同时,可控开关不会导通,第二忆 阻器此时状态保持不变,即呈现高阻状态(代表逻辑“0”)。也就是说此时两个输入忆阻器与第二忆阻器组合形成了异或逻辑门,同时该逻辑门电路还可用作半加器,促进了MAGIC技术的应用,提升了用户体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种基于忆阻器的逻辑门电路的结构示意图;
图2为本申请提供的另一种基于忆阻器的逻辑门电路的结构示意图;
图3为忆阻器电阻随两端电压变化的示意图。
具体实施方式
本申请的核心是提供一种基于忆阻器的逻辑门电路,利用基于MAGIC的与逻辑门中两个输入忆阻器与第二忆阻器组合形成了异或逻辑门,同时该逻辑门电路还可用作半加器,促进了MAGIC技术的应用,提升了用户体验;本申请的另一目的是提供一种包括上述基于忆阻器的逻辑门电路的电子设备,利用基于MAGIC的与逻辑门中两个输入忆阻器与第二忆阻器组合形成了异或逻辑门,同时该逻辑门电路还可用作半加器,促进了MAGIC技术的应用,提升了用户体验。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,图1为本申请提供的一种基于忆阻器的逻辑门电路的结构示意图,该基于忆阻器的逻辑门电路包括:
基于辅助逻辑门MAGIC的与逻辑门,用于基于自身内部串联的三个第一忆阻器实现逻辑与的运算;
第一电源2,用于在与逻辑门处于稳态时输出电能;
第一端与第一电源2连接的第二忆阻器3,用于仅在第一电源2为自身供电时呈现低阻 状态;
第一端与第二忆阻器3的第二端连接,第二端接地,控制端与作为输出忆阻器的第一忆阻器的负端连接的可控开关4,用于仅在与逻辑门中作为输入忆阻器的两个第一忆阻器呈现不同阻值状态时导通。
为了更好地对本申请实施例进行说明,请参考图2以及图3,图2为本申请提供的另一种基于忆阻器的逻辑门电路的结构示意图,图3为忆阻器电阻随两端电压变化的示意图,图3中展示了忆阻器电阻如何随两端电压变化,忆阻器的工作原理是在满足一定条件时会发生高低阻值两个状态的可逆翻转,其中高低阻值可代表逻辑中的两种状态“0”和“1”,满足条件下的可逆翻转保证了逻辑状态间可控跳转,并且在撤电后,忆阻器的电阻状态依然保持稳定,具有非易失特性,因此忆阻器可满足非易失逻辑功能的实现。基于忆阻器的非易失逻辑运算在计算领域具有巨大潜在价值。
其中,本申请实施例中采用的忆阻器均为阈值型忆阻器,即需要两种阈值电压来改变相应边界电阻。例如两种边界电阻R on与R off(R off>>R on)分别代表逻辑“1”与“0”,将忆阻器从逻辑“0”变为逻辑“1”所需施加的电压应大于等于阈值电压V T-ON,将忆阻器从逻辑“1”变为逻辑“0”所需施加的电压应小于等于阈值电压V T-OFF
具体的,在图2中,M in1以及M in2为与逻辑门中的两个输入忆阻器,M out1为输出忆阻器,可控开关4为NMOS 1,第二忆阻器3为M out2
本申请提出的基于忆阻器MAGIC逻辑的“异或”门电路和半加器电路是在MAGIC逻辑的“与”门电路的基础上进行改进优化而来。因此首先搭建MAGIC逻辑的“与”门电路,即将电压源V 0、M in1、M in2与M out1串联,实现“与”逻辑的操作过程如下:
(1)设定初始状态,设置输出忆阻器M OUT1阻值为R off,即逻辑状态为“0”;
(2)对两个输入忆阻器设定相应的输入状态;
(3)闭合开关S 1,为支路1施加电压V 0
上述操作过程即可完成该“与”门的逻辑操作。假设输入信号的两个逻辑值为“00”,对应的输入忆阻器阻值均为R off,此时两个输入忆阻器与输出忆阻器M out1为串联,且阻值均为R off,因此输出忆阻器M out1两端的电压为V 0/3,未达到使输出忆阻器M out1由R off转变为R on的阈值电压,故输出忆阻器M out1的逻辑状态仍为“0”。类似的,若输入信号的逻辑值为“10”或“01”时,输出忆阻器M out1两端电压为
Figure PCTCN2022122300-appb-000001
近似为V 0/2,两种情况下的输出忆阻器M out1两端电压均小于V T_ON,未达到使输出忆阻器M out1由R off转变为R on的阈值电压,故输出忆阻器M out1的逻辑状态仍为“0”。只有当输入逻辑为“11”时,输出忆阻器M out1两端电压为
Figure PCTCN2022122300-appb-000002
大于V T_ON,从而实现输出逻辑由“0”转换为“1”。以上信号的输入与输出符合“与”门的真值表,从而实现了“与”逻辑门的功能。“与”逻辑门真值表如表1所示。
表1
输入A 输入B A AND B A XOR B
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
其中,在图2的与逻辑门中,
Figure PCTCN2022122300-appb-000003
因R off>>R on,所以V 0的取值范围为:
V T_ON<V 0<2V T_ON
上述NMOS(N-Metal-Oxide-Semiconductor,N型金属-氧化物-半导体)的阈值电压V TH取值范围为:
V 0/3<V TH<V 0/2;
其中,V 0为第一电源2的额定电压。
具体的,“异或”逻辑运算则是在“与”逻辑运算结束后进行,即支路1各端点电压稳定后进行。实现“异或”逻辑运算的操作过程如下:
(1)设定初始状态,设置输出忆阻器M OUT2阻值为R off,即逻辑状态为“0”,该步骤可与上述“与”逻辑运算中的(1)步骤同时进行;
(2)闭合开关S 2,为支路2施加电压V 0
上述操作过程即可完成“异或”门的逻辑操作。假设输入信号的两个逻辑值为“00”,则“与”逻辑输出忆阻器M out1的逻辑状态仍为“0”,此时M out1两端电压值为V 0/3,小于NMOS的阈值电压,NMOS源漏呈关断状态,输出忆阻器M out2的逻辑状态不变仍为“0”;若输入信号的两个逻辑值为“11”,则“与”逻辑输出忆阻器M out1的最终逻辑状态为“1”,此时M out1两端电压值为V 0/3,仍小于NMOS的阈值电压,NMOS源漏呈关断状态,输出忆阻器M out2的逻辑状态不变仍为“0”;当输入信号的两个逻辑值为“10”或“01”时,“与”逻辑输出忆阻器M out1的逻辑状态为“0”,此时M out1两端电压值为
Figure PCTCN2022122300-appb-000004
近似为V 0/2,大于NMOS的阈值电压,NMOS源漏呈导通状态,输出忆阻器M out2两端电压为V 0,大于V T_ON,从而实现输出忆阻器M out2的逻辑由“0”转换为“1”。以上信号的输入与输出符合“异或”门的真值表,从而实现了“异或”逻辑门的功能。“异或”逻辑门真值表如表1所示。
半加器的逻辑表达式为:
Figure PCTCN2022122300-appb-000005
C=A·B;
其中A、B为加数(输入端),S为和,C为向高位的进位。根据半加器的逻辑表达式可知半加器的两个输出端分别为两个输入端的“异或”和“与”逻辑运算结果。因此本申请实施例设计的电路也可作为半加器电路。
本申请提供了一种基于忆阻器的逻辑门电路,考虑到在基于辅助逻辑门MAGIC的与逻辑门中,输出忆阻器负端的电压仅会呈现高低不同的两种电压等级,且呈现高电压等级时两个输入忆阻器的阻值状态相反,因此本申请将可控开关的控制端接在输出忆阻器负端,并通过可控开关控制第二忆阻器是否通电,如此一来,当与逻辑门中的两个输入忆阻器阻值状态不同时,可控开关便会导通并使得第二忆阻器通电,第二忆阻器此时便会呈现低阻状态(代表逻辑“1”);当与逻辑门中的两个输入忆阻器阻值状态相同时,可控开关不会导通,第二忆阻器此时状态保持不变,即呈现高阻状态(代表逻辑“0”)。也就是说此时两个输入忆阻器与第二忆阻器组合形成了异或逻辑门,同时该逻辑门电路还可用作半加器,促进了MAGIC技术的应用,提升了用户体验。
在上述实施例的基础上:
作为一种优选的实施例,基于辅助逻辑门MAGIC的与逻辑门包括第二电源、第一控制开关S 1、第一输入忆阻器、第二输入忆阻器以及输出忆阻器;
第二电源与第一控制开关S 1的第一端连接,第一控制开关S 1的第二端与第一输入忆阻器的负端连接,第一输入忆阻器的正端与第二输入忆阻器的负端连接,第二输入忆阻器的正端与输出忆阻器的负端连接,输出忆阻器的正端接地。
具体的,除了该具体构造外,基于MAGIC的与逻辑门1还可以为其他构造,本申请实施例在此不做限定。
作为一种优选的实施例,第一电源2包括供电单元V 0以及第二控制开关S 2
第一电源2与第二控制开关S 2的第一端连接,第二控制开关S 2的第二端与第二忆阻器3的第一端连接;
第二控制开关,用于在与逻辑门处于稳态时被控闭合,以便供电单元V 0输出电能。
具体的,本申请实施例中可以通过第二控制开关S 2控制供电单元V 0是否输出电能,第二控制开关S 2的作用是防止在第一控制开关S 1闭合的瞬间支路1中各端点电压不稳定而引起的对可控开关4控制端电压的影响,从而导致对可控开关4导通与关断状态的误操作。
具体的,本申请实施例中的第一电源2具有结构简单以及成本低等优点。
当然,除了该具体构造外,第一电源2还可以为其他类型,本申请实施例在此不做限定。
作为一种优选的实施例,第二电源与供电单元V 0为同一电源。
具体的,将第二电源与供电单元V 0设计为同一电源可以简化结构并降低成本。
当然,第二电源与供电单元V 0可以为互相独立的电源,本申请实施例在此不做限定。
作为一种优选的实施例,第一控制开关S 1以及第二控制开关S 2为相同类型。
具体的,将第一控制开关S 1以及第二控制开关S 2设计为相同类型可以简化结构并降低成本。
当然,第一控制开关S 1以及第二控制开关S 2也可以为不同类型,本申请实施例在此不做限定。
作为一种优选的实施例,第一控制开关S 1以及第二控制开关S 2均为门控开关。
具体的,门控开关具有自动化程度高以及寿命长等优点。
当然,除了门控开关外,第一控制开关S 1以及第二控制开关S 2还可以为其他类型,本申请实施例在此不做限定。
作为一种优选的实施例,可控开关4为N型金属-氧化物-半导体NMOS。
具体的,NMOS具有体积小、响应快以及寿命长等优点。
当然,除了NMOS外,可控开关4还可以为其他类型,本申请实施例在此不做限定。
本申请还提供了一种电子设备,包括如前述实施例中的基于忆阻器的逻辑门电路。
对于本申请实施例提供的电子设备的介绍请参照前述的基于忆阻器的逻辑门电路的实施例,本申请实施例在此不再赘述。
本说明书中的实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,实施例之间相同相似部分互相参见即可。还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些 实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其他实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (20)

  1. 一种基于忆阻器的逻辑门电路,其特征在于,包括:
    基于辅助逻辑门MAGIC的与逻辑门,用于基于自身内部串联的三个第一忆阻器实现逻辑与的运算;
    第一电源,用于在所述与逻辑门处于稳态时输出电能;
    第一端与所述第一电源连接的第二忆阻器,用于仅在所述第一电源为自身供电时呈现低阻状态;
    第一端与所述第二忆阻器的第二端连接,第二端接地,控制端与作为输出忆阻器的所述第一忆阻器的负端连接的可控开关,用于仅在所述与逻辑门中作为输入忆阻器的两个所述第一忆阻器呈现不同阻值状态时导通。
  2. 根据权利要求1所述的基于忆阻器的逻辑门电路,其特征在于,所述基于辅助逻辑门MAGIC的与逻辑门包括第二电源、第一控制开关、第一输入忆阻器、第二输入忆阻器以及输出忆阻器;
    所述第二电源与所述第一控制开关的第一端连接,所述第一控制开关的第二端与所述第一输入忆阻器的负端连接,所述第一输入忆阻器的正端与所述第二输入忆阻器的负端连接,所述第二输入忆阻器的正端与所述输出忆阻器的负端连接,所述输出忆阻器的正端接地。
  3. 根据权利要求2所述的基于忆阻器的逻辑门电路,其特征在于,所述输出忆阻器在初始状态时呈现高阻状态。
  4. 根据权利要求2所述的基于忆阻器的逻辑门电路,其特征在于,所述第一电源包括供电单元以及第二控制开关;
    所述第一电源与所述第二控制开关的第一端连接,所述第二控制开关的第二端与所述第二忆阻器的第一端连接;
    所述第二控制开关,用于在所述与逻辑门处于稳态时被控闭合,以便所述供电单元输出电能。
  5. 根据权利要求4所述的基于忆阻器的逻辑门电路,其特征在于,所述第二电源与所述供电单元为同一电源。
  6. 根据权利要求4所述的基于忆阻器的逻辑门电路,其特征在于,所述第一控制开关以及所述第二控制开关为相同类型。
  7. 根据权利要求6所述的基于忆阻器的逻辑门电路,其特征在于,所述第一控制开关以及所述第二控制开关均为门控开关。
  8. 根据权利要求4所述的基于忆阻器的逻辑门电路,其特征在于,所述第一控制开关以及所述第二控制开关为不同类型。
  9. 根据权利要求4所述的基于忆阻器的逻辑门电路,其特征在于,所述第二电源与所述供电单元为互相独立的电源。
  10. 根据权利要求1至9任一项所述的基于忆阻器的逻辑门电路,其特征在于,所述可控开关为N型金属-氧化物-半导体NMOS。
  11. 根据权利要求10所述的基于忆阻器的逻辑门电路,其特征在于,所述N型金属-氧化物-半导体NMOS的阈值电压大于所述第一电源的额定电压的三分之一,且小于所述第一电源的额定电压的三分之一。
  12. 根据权利要求10所述的基于忆阻器的逻辑门电路,其特征在于,所述N型金属-氧化物-半导体NMOS的漏极与与所述第二忆阻器的第二端连接,所述所述N型金属-氧化物-半导体NMOS的源极接地,所述所述所述N型金属-氧化物-半导体NMOS的栅极与作为输出忆阻器的所述第一忆阻器的负端连接。
  13. 根据权利要求1所述的基于忆阻器的逻辑门电路,其特征在于,所述第一忆阻器和所述第二忆阻器为相同类型。
  14. 根据权利要求13所述的基于忆阻器的逻辑门电路,其特征在于,所述第一忆阻器和所述第二忆阻器为阈值型忆阻器。
  15. 根据权利要求14所述的基于忆阻器的逻辑门电路,其特征在于,所述第一电源的电压大于所述阈值型忆阻器的第一阈值电压,且小于两倍的所述阈值型忆阻器的第一阈值电压;所述阈值型忆阻器的第一阈值电压为所述阈值型忆阻器从低阻状态转为高阻状态的电压阈值。
  16. 根据权利要求1所述的基于忆阻器的逻辑门电路,其特征在于,所述第二忆阻器在初始状态时呈现高阻状态。
  17. 根据权利要求1所述的基于忆阻器的逻辑门电路,其特征在于,所述基于忆阻器的逻辑门电路用于组成半加器电路。
  18. 根据权利要求17所述的基于忆阻器的逻辑门电路,其特征在于,所述半加器电路的输出和值为所述作为输入忆阻器的两个所述第一忆阻器的阻值状态对应逻辑状态的异或运算之和。
  19. 根据权利要求17至18任一项所述的基于忆阻器的逻辑门电路,其特征在于,所述半加器电路的进位值为所述作为输入忆阻器的两个所述第一忆阻器的阻值状态对应逻辑状态的点积。
  20. 一种电子设备,其特征在于,包括如权利要求1至19任一项所述的基于忆阻器的逻辑门电路。
PCT/CN2022/122300 2022-02-18 2022-09-28 一种电子设备及其基于忆阻器的逻辑门电路 WO2023155439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210148841.1A CN114204936B (zh) 2022-02-18 2022-02-18 一种电子设备及其基于忆阻器的逻辑门电路
CN202210148841.1 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023155439A1 true WO2023155439A1 (zh) 2023-08-24

Family

ID=80645503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122300 WO2023155439A1 (zh) 2022-02-18 2022-09-28 一种电子设备及其基于忆阻器的逻辑门电路

Country Status (2)

Country Link
CN (1) CN114204936B (zh)
WO (1) WO2023155439A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204936B (zh) * 2022-02-18 2022-05-24 苏州浪潮智能科技有限公司 一种电子设备及其基于忆阻器的逻辑门电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217994A1 (en) * 2011-02-25 2012-08-30 Pino Robinson E Self-reconfigurable memristor-based analog resonant computer
CN106941350A (zh) * 2017-03-15 2017-07-11 东南大学 一种基于忆组器的异或门电路及设计制作方法
CN113676176A (zh) * 2021-07-31 2021-11-19 山东云海国创云计算装备产业创新中心有限公司 一种逻辑门电路
CN114204936A (zh) * 2022-02-18 2022-03-18 苏州浪潮智能科技有限公司 一种电子设备及其基于忆阻器的逻辑门电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105897254B (zh) * 2016-05-17 2018-10-30 福州大学 一种基于忆阻器与mos管的异或门逻辑电路及其实现方法
CN113131928A (zh) * 2019-12-31 2021-07-16 华为技术有限公司 一种基于忆阻器的异或门器件及其操作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217994A1 (en) * 2011-02-25 2012-08-30 Pino Robinson E Self-reconfigurable memristor-based analog resonant computer
CN106941350A (zh) * 2017-03-15 2017-07-11 东南大学 一种基于忆组器的异或门电路及设计制作方法
CN113676176A (zh) * 2021-07-31 2021-11-19 山东云海国创云计算装备产业创新中心有限公司 一种逻辑门电路
CN114204936A (zh) * 2022-02-18 2022-03-18 苏州浪潮智能科技有限公司 一种电子设备及其基于忆阻器的逻辑门电路

Also Published As

Publication number Publication date
CN114204936A (zh) 2022-03-18
CN114204936B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Kvatinsky et al. MRL—Memristor ratioed logic
CN111046617B (zh) 基于忆阻器的三值数字逻辑门电路
WO2015192414A1 (zh) 一种非易失性布尔逻辑运算电路及其操作方法
JP2019512196A (ja) メモリスタベースの論理ゲート
Cunha et al. Quaternary look-up tables using voltage-mode CMOS logic design
CN106941350B (zh) 一种基于忆阻器的异或门电路及设计制作方法
TWI616875B (zh) 記憶體儲存電路及驅動記憶體儲存電路之方法
TW200425641A (en) Level shift circuit
CN108418577B (zh) 具有减小的泄漏电流的电子电路的装置及相关方法
WO2023155439A1 (zh) 一种电子设备及其基于忆阻器的逻辑门电路
Puglisi et al. SIMPLY: Design of a RRAM-based smart logic-in-memory architecture using RRAM compact model
JP2010232959A (ja) 電子回路
WO2023130632A1 (zh) 基于存算一体晶体管的布尔逻辑实现方法、单元及电路
TW200525861A (en) System and method for reducing short circuit current in a buffer
Wang et al. An improved memristor-CMOS XOR logic gate and a novel full adder
JP3618424B2 (ja) 低消費電力論理回路
CN116436455A (zh) 状态逻辑电路及电子设备
JP3256715B2 (ja) 電流制限出力ドライバ
Azmine et al. An advanced 1-bit arithmetic logic unit (ALU) with hybrid memristor-CMOS architecture
CN112332813A (zh) 一种带异步置位复位的cmos混合型边沿忆阻d触发器电路
WO2016049862A1 (zh) 实现移位运算的电路以及阵列电路
US20210019114A1 (en) Configurable non-volatile arithmetic memory operators
CN113285705B (zh) 一种混合型cmos-忆阻全加器电路
CN117595859B (zh) 一种基于忆阻器的逻辑电路、输出方法及电子设备
CN111164892B (zh) 半导体电路及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18694941

Country of ref document: US