WO2023155363A1 - 服务器动态热备份的方法、装置、设备及存储介质 - Google Patents

服务器动态热备份的方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023155363A1
WO2023155363A1 PCT/CN2022/102602 CN2022102602W WO2023155363A1 WO 2023155363 A1 WO2023155363 A1 WO 2023155363A1 CN 2022102602 W CN2022102602 W CN 2022102602W WO 2023155363 A1 WO2023155363 A1 WO 2023155363A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot backup
pci link
hard disk
connection mode
power management
Prior art date
Application number
PCT/CN2022/102602
Other languages
English (en)
French (fr)
Inventor
孙秀强
黄家明
张炳会
刘佩雨
Original Assignee
浪潮(山东)计算机科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浪潮(山东)计算机科技有限公司 filed Critical 浪潮(山东)计算机科技有限公司
Publication of WO2023155363A1 publication Critical patent/WO2023155363A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1448Management of the data involved in backup or backup restore
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4204Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus
    • G06F13/4221Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being an input/output bus, e.g. ISA bus, EISA bus, PCI bus, SCSI bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings

Definitions

  • the present application relates to the technical field of servers, in particular to a method, device, device and storage medium for dynamic hot backup of servers.
  • the hot backup function is the non-volatile memory host controller interface specification (Non-Volatile Memory express, NVMe) hard disk hot swap function, when the NVMe hard disk is connected to the peripheral component interconnection standard (Peripheral Component Interconnection Standard) of the server using different connection methods Interconnect (PCI) link, such as direct connection or through a switching device (Switch chip), the advanced configuration and power management interface (Advanced Configuration and Power) of the server's Basic Input Output System (Basic Input Output System, BIOS) Management Interface, ACPI) protocol specification setting values have different requirements.
  • PCI Peripheral Component Interconnection Standard
  • the hot backup function of the server is configured when the equipment leaves the factory and cannot be replaced. That is, if the PCI link of the server is set to support the NVMe hard disk direct connection hot backup function, it cannot support the hot backup function of connecting the PCI link through the switching device, and vice versa. And in a basic input output system (Basic Input Output System, BIOS) image, each PCI link of the server can only support the same hot backup function.
  • BIOS Basic Input Output System
  • a method, device, device and storage medium for dynamic hot backup of a server are provided.
  • a method for dynamic hot backup of a server comprising: obtaining the bandwidth splitting situation of the PCI link of the device; determining the connection mode of the PCI link connected to the hard disk according to the bandwidth splitting situation of the PCI link; and according to the connection mode, advanced configuration Set correspondingly with the hot backup parameters in the power management interface protocol.
  • a device for dynamic hot backup of a server comprising: an acquisition unit configured to acquire the bandwidth splitting situation of a PCI link of a device; a determining unit configured to determine the connection of the PCI link to a hard disk according to the bandwidth splitting situation of the PCI link mode; and a setting unit, configured to set correspondingly the hot backup parameters in the advanced configuration and power management interface protocol according to the connection mode.
  • a device for dynamic hot backup of a server comprising: a memory for storing computer-readable instructions; a processor for executing computer-readable instructions, and when the computer-readable instructions are executed by the processor, any one of the above server dynamic Steps in the method of hot backup.
  • a non-transitory storage medium on which computer-readable instructions are stored, and when the computer-readable instructions are executed by a processor, the steps of any one of the above methods for dynamic hot backup of a server are implemented.
  • FIG. 1 is a schematic flowchart of a method for dynamic hot backup of a server according to one or more embodiments of the present application
  • FIG. 2 is a schematic diagram of a connection mode between a PCI link and a hard disk according to one or more embodiments of the present application;
  • FIG. 3 is a schematic structural diagram of an apparatus for dynamic hot backup of a server according to one or more exemplary embodiments of the present application
  • Fig. 4 is a schematic structural diagram of a device for dynamic hot backup of a server according to one or more embodiments of the present application.
  • the core of the embodiment of the present application is to provide a method, device, device and storage medium for dynamic hot backup of a server, which are used to realize dynamic hot backup of a PCI link of a server.
  • FIG. 1 is a flowchart of a method for dynamic hot backup of a server according to one or more embodiments of the present application
  • FIG. 2 is a schematic diagram of a connection method between a PCI link and a hard disk according to one or more embodiments of the present application.
  • the server dynamic hot backup method provided by the embodiment of the present application includes:
  • S102 Determine the connection mode of the hard disk connected to the PCI link according to the bandwidth splitting condition of the PCI link.
  • connection mode According to the connection mode, correspondingly set the hot backup parameters in the advanced configuration and power management interface protocol.
  • the server dynamic hot backup method provided by the embodiment of the present application can be applied to the chip where the Basic Input Output System (BIOS) resides, or other chips capable of communication control of the Basic Input Output System.
  • BIOS Basic Input Output System
  • the existing NVMe hard disk connection methods mainly include direct connection between the PCI link and the hard disk and connection between the PCI link and the hard disk through a switching device.
  • the PCI link is directly connected to the hard disk, there are four interfaces, and the corresponding bandwidth is divided.
  • the splitting situation is four-way (x4); the switch switching device (Switch chip) supported in the advanced configuration and power management interface protocol is eight interfaces, and the corresponding bandwidth splitting situation is eight-way (x8).
  • the server mainboard CPU supports a maximum of 16-way (x16) bandwidth, which can be divided into two eight-way (x8) or four four-way (x4); Switch chip) and supports a maximum of 32-way (x32) bandwidth, it can be split into a combination of 16-way (x16) and eight-way (x8) or three eight-way (x8) combinations, switching switching equipment (Switch chip) and NVMe Hard drives can be connected as x4 or x2. In practical applications, split settings are made according to actual needs. If the PCI link is directly connected to the hard disk, there are four four-way (x4), and eight NVMe hard disk backplanes have 16-way (x16) bandwidth, so it can be divided according to the split situation. Determine the actual need for hot spares.
  • the server dynamic hot backup method pre-adds the logic for judging the connection mode of the NVMe hard disk in the execution subject, that is, determines the connection mode of the PCI link to the hard disk according to the bandwidth splitting of the PCI link.
  • the server dynamic hot backup method pre-adds the logic for judging the connection mode of the NVMe hard disk in the execution subject, that is, determines the connection mode of the PCI link to the hard disk according to the bandwidth splitting of the PCI link.
  • the advanced configuration of the basic input and output system and the power management interface protocol program set the hot backup configuration corresponding to the connection mode of the hard disk connected to the PCI link, so as to dynamically switch to the hot backup configuration corresponding to the current connection mode when the device starts up. backup function.
  • step S101 when the equipment in this step S101 is an ARM (Advanced RISC Machine) server, and the PCI link is connected with a Riser card (a function expansion card or a transfer card inserted on the PCIe interface), the step S101 may specifically include: reading a general purpose input output interface (General Purpose Input Output, GPIO) status value of the riser card on the PCI link; determining the bandwidth splitting situation of the PCI link according to the status value of the general purpose input output interface.
  • the ARM server refers to a server using the ARM architecture
  • the ARM here refers to a RISC (Reduced Instruction Set Computer, reduced instruction set computer) microprocessor.
  • step S101 may also be: reading the bandwidth splitting situation of the PCI link recorded in the central processing unit (Central Processing Unit, CPU) of the device. If the operation and maintenance personnel configure the bandwidth splitting situation of the PCI link in the central processing unit in advance, they can read the bandwidth splitting situation of the PCI link recorded in the central processing unit.
  • CPU Central Processing Unit
  • step S102 the existing PCI link is connected to the hard disk in two ways: direct connection between the PCI link and the hard disk and connection between the PCI link and the hard disk through an exchange transfer device.
  • step S102 according to PCI
  • the bandwidth splitting situation of the link determines the connection mode of the hard disk connected to the PCI link, which may specifically include: in response to the bandwidth splitting situation of the PCI link, it is divided into four paths, and the connection mode is determined to be a direct connection between the PCI link and the hard disk; Or in response to the fact that the bandwidth of the PCI link is divided into eight channels, it is determined that the connection mode is that the PCI link is connected to the hard disk through a switching device.
  • connection modes supported in the advanced configuration and power management interface protocol are increased, the bandwidth splitting of the PCI link for the server dynamic hot backup method provided in the embodiment of the present application is different from that of the hard disk connected to the PCI link.
  • the corresponding relationship of the connection mode can be increased correspondingly, so as to realize the dynamic update of more hot backup functions.
  • DSDT table The Differentiated System Description Table, differentiated system description table
  • the PCI link connection status value of the link connected to the hard disk For example, "0" can be used to indicate that the PCI link is directly connected to the hard disk, and "1" can be used to indicate that the PCI link is connected to the hard disk through a switching device.
  • the connection mode of the PCI link to the hard disk is passed to the advanced configuration and power management interface protocol program, so that the advanced configuration and power management interface protocol program completes the hot backup configuration of the current PCI link to the hard disk connection mode during execution.
  • step S103 according to the connection mode, correspondingly set the hot backup parameters in the advanced configuration and power management interface protocol, which may specifically include: setting the PCI link connection status value in the DSDT table of the advanced configuration and power management interface protocol It is the state value corresponding to the connection mode; and executing the advanced configuration and power management interface protocol program, setting the hot backup parameters in the advanced configuration and power management interface protocol corresponding to the PCI link connection state value.
  • the advanced configuration and power management interface protocol specification can judge the variables transferred by the DSDT table and switch to the corresponding hot backup function.
  • the above-mentioned PCI link and the hot backup setting corresponding to the direct connection of the hard disk can include: two-wire serial bus (Inter-Integrated Circuit, I2C) hot backup, general input and output interface (General Purpose Input Output, GPIO)
  • I2C hot backup method is to trigger the Altert signal when the NVMe hard disk is inserted and notify the CPU to identify the newly inserted hard disk and display that it meets the usage requirements
  • GPIO hot backup method is to first pull the GPIO to a high level by default. When the hard disk is on, the GPIO will be pulled down and a trigger command will be sent to the CPU. The CPU will recognize the newly inserted hard disk and display that it meets the usage requirements.
  • the I2C hot backup method can be adopted by default.
  • each PCI link can support the hot backup function corresponding to the connection mode of the hard disk connected to itself, and different PCI links can be configured as Different hot backup functions, and can be replaced with other hot backup functions after the next restart.
  • the method for server dynamic hot backup includes obtaining the bandwidth splitting situation of the PCI link of the device, and determining the connection mode of the PCI link to the hard disk according to the bandwidth splitting situation of the PCI link, and according to the connection In this mode, set the corresponding hot backup parameters in the advanced configuration and power management interface protocol. Since the PCI link is connected to the hard disk in different ways, such as direct connection or connecting the hard disk through a switching device, the corresponding bandwidth splitting conditions are different, so the connection mode of the PCI link to the hard disk can be determined according to the bandwidth splitting situation. For advanced configuration Corresponding settings are made to the hot backup parameters in the power management interface protocol, which solves the problem that the advanced configuration and power management interface protocols do not support dynamic hot backup of PCI links.
  • the server dynamic hot backup method provided by the embodiment of the present application can support different PCI links to be set as different hot backup functions, so that users
  • the required hot backup form can be flexibly selected, which provides reliability and stability for the safe operation of the data center server, and provides a strong guarantee for the batch deployment of the server in the Internet data center.
  • step S103 according to the connection mode, configure the hot backup in the advanced configuration and power management interface protocol
  • the parameters are set correspondingly, specifically including: setting the default value of the hot backup parameter in the advanced configuration and power management interface protocol in advance as the parameter value corresponding to the direct connection mode; and responding to the connection mode as PCI link and hard disk through exchange transfer Device connection, change the hot backup parameter in the advanced configuration and power management interface protocol to the parameter value corresponding to the device connection method through switching.
  • step S103 according to the connection mode, correspondingly setting the hot backup parameters in the advanced configuration and power management interface protocol, specifically includes: responding to the connection mode being The PCI link is directly connected to the hard disk, and the hot backup parameters in the advanced configuration and power management interface protocols are not changed.
  • the two default values can be the values corresponding to the direct connection mode, or both can be specific values corresponding to the connection mode between the PCI link and the hard disk through the switching device.
  • the value corresponding to the direct connection mode is set as the default value as an example.
  • the following process may be specifically included:
  • the BIOS obtains the bandwidth splitting situation of each PCI link of the central processing unit (CPU) during the boot process;
  • connection method is determined to be the direct connection between the PCI link and the hard disk, and the parameter variables of the advanced configuration and power management interface protocols of the BIOS keep the default settings. If the device is an ARM server, the above-mentioned Embodiment A kind of I2C mode or GPIO mode provided carry out hot backup function;
  • the parameter variables of the BIOS in the advanced configuration and power management interface protocols will pass the DSDT table to the advanced configuration and The PCI link connection status value in the power management interface protocol is updated, and the latest PCI link connection status value is passed to the advanced configuration and power management interface protocol by updating the DSDT table;
  • the traditional PCI link is directly connected to the hard disk for hot backup function support, and the hot backup function that supports the connection between the PCI link and the hard disk through a switching device is not enabled ;
  • Update in response to the PCI link connection status value being inconsistent with the default value, enable the hot backup function in the advanced configuration and power management interface protocol that supports the connection between the PCI link and the hard disk through a switching transfer device, and turn off the PCI link Directly connected to the hard disk for hot backup function;
  • steps in the flow chart of FIG. 1 are displayed sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in Fig. 1 may include multiple sub-steps or multiple stages, these sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, the execution of these sub-steps or stages The order is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • FIG. 3 is a schematic structural diagram of an apparatus for dynamic hot backup of a server provided by an embodiment of the present application.
  • the device for dynamic hot backup of the server provided by the embodiment of the present application includes:
  • An acquisition unit 301 configured to acquire the bandwidth splitting situation of the PCI link of the device
  • Determining unit 302 for determining the connection mode of the hard disk connected to the PCI link according to the bandwidth splitting situation of the PCI link;
  • the setting unit 303 is configured to set correspondingly the hot backup parameters in the advanced configuration and power management interface protocol according to the connection mode.
  • each module in the above-mentioned device for dynamic hot backup of the server can be fully or partially realized by software, hardware and combinations thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • FIG. 4 is a schematic structural diagram of a device for dynamic hot backup of a server provided by an embodiment of the present application.
  • the equipment for server dynamic hot backup provided by the embodiment of the present application includes:
  • memory 410 for storing computer readable instructions 411;
  • the processor 420 is configured to execute computer-readable instructions 411.
  • the steps of the method for dynamic hot backup of a server according to any one of the above-mentioned embodiments are implemented.
  • the processor 420 may include one or more processing cores, such as a 3-core processor, an 8-core processor, and the like.
  • the processor 420 may be realized by at least one hardware form of digital signal processing DSP (Digital Signal Processing), field programmable gate array FPGA (Field-Programmable Gate Array), and programmable logic array PLA (Programmable Logic Array).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic array
  • the processor 420 can also include a main processor and a coprocessor, the main processor is a processor for processing data in the wake-up state, and is also called a central processing unit CPU (Central Processing Unit); Low-power processor for processing data in standby state.
  • CPU Central Processing Unit
  • the processor 420 may be integrated with an image processor GPU (Graphics Processing Unit), and the GPU is used for rendering and drawing the content that needs to be displayed on the display screen.
  • the processor 420 may also include an artificial intelligence AI (Artificial Intelligence) processor, which is used to process computing operations related to machine learning.
  • AI Artificial Intelligence
  • Memory 410 may include one or more storage media, which may be non-transitory.
  • the memory 410 may also include high-speed random access memory, and non-volatile memory, such as one or more magnetic disk storage devices, flash memory storage devices.
  • the memory 410 is at least used to store the following computer-readable instructions 411, wherein, after the computer-readable instructions 411 are loaded and executed by the processor 420, the server dynamic hot backup method disclosed in any of the foregoing embodiments can be implemented The relevant steps in .
  • the resources stored in the memory 410 may also include an operating system 412 and data 413, etc., and the storage method may be temporary storage or permanent storage.
  • the operating system 412 may be Windows.
  • the data 413 may include but not limited to the data involved in the above method.
  • the device for dynamic hot backup of the server may further include a display screen 430 , a power supply 440 , a communication interface 450 , an input/output interface 460 , a sensor 470 and a communication bus 480 .
  • FIG. 4 does not constitute a limitation on the device for dynamic hot backup of the server, and may include more or less components than those shown in the figure.
  • the device for dynamic hot backup of the server provided by the embodiment of the present application includes a memory and a processor.
  • the processor executes the computer-readable instructions stored in the memory, it can implement the above method for dynamic hot backup of the server, and the effect is the same as above.
  • the above-described device and device embodiments are only illustrative.
  • the division of modules is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • a module described as a separate component may or may not be physically separated, and a component shown as a module may or may not be a physical module, that is, it may be located in one place, or may also be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • an integrated module is realized in the form of a software function module and sold or used as an independent product, it can be stored in a storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , executing all or part of the steps of the methods in the various embodiments of the present application.
  • the embodiments of the present application also provide one or more non-transitory storage media, on which computer-readable instructions are stored, and when the computer-readable instructions are executed by a processor, the server dynamic Steps in the method of hot backup.
  • the storage medium may include: U disk, mobile hard disk, read-only memory ROM (Read-Only Memory), random access memory RAM (Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
  • the computer-readable instructions stored in the non-transitory storage medium provided in this embodiment can realize the steps of the above method for server dynamic hot backup when executed by the processor, and the effect is the same as above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Power Sources (AREA)

Abstract

一种服务器动态热备份的方法、装置、设备及存储介质,通过获取设备的PCI链路的带宽拆分情况以确定PCI链路连接硬盘的连接方式,根据连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置。由于PCI链路通过不同方式连接硬盘,如直接连接或通过交换转接设备连接硬盘时对应的带宽拆分情况不同,故可以根据带宽拆分情况确定PCI链路连接硬盘的连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置,解决了高级配置和电源管理接口协议不支持PCI链路动态热备份的问题,且相较于现有技术还能够支持不同的PCI链路设置为不同的热备份功能,适应了用户需求。

Description

服务器动态热备份的方法、装置、设备及存储介质
相关申请的交叉引用
本申请要求于2022年02月17日提交中国专利局,申请号为202210144068.1,申请名称为“服务器动态热备份的方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器技术领域,特别是涉及一种服务器动态热备份的方法、装置、设备及存储介质。
背景技术
热备份功能即非易失性内存主机控制器接口规范(Non-Volatile Memory express,NVMe)硬盘热插拔功能,当NVMe硬盘采用不同的连接方式接入服务器的外设部件互连标准(Peripheral Component Interconnect,PCI)链路,如直连方式或经过交换转接设备(Switch芯片)时,对服务器的基本输入输出系统(Basic Input Output System,BIOS)的高级配置和电源管理接口(Advanced Configuration and Power Management Interface,ACPI)协议规范的设置值有着不同的要求。
发明人意识到,服务器的热备份功能是在设备出厂时配置好的,无法进行更换。即若服务器的PCI链路设置为支持NVMe硬盘直连热备份功能,则无法支持经过交换转接设备连接PCI链路的热备份功能,反之亦然。且在一个基本输入输出系统(Basic Input Output System,BIOS)镜像中,服务器的各PCI链路均只能支持同一种热备份功能。
如何根据用户需要而切换服务器的热备份功能,实现服务器的动态热备份,是本领域技术人员需要解决的技术问题。
发明内容
根据本申请公开的各种实施例,提供一种服务器动态热备份的方法、装置、设备及存储介质。
一种服务器动态热备份的方法,包括:获取设备的PCI链路的带宽拆分情况;根据PCI链路的带宽拆分情况确定PCI链路连接硬盘的连接方式;及根据连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置。
一种服务器动态热备份的装置,包括:获取单元,用于获取设备的PCI链路的带宽拆分情况;确定单元,用于根据PCI链路的带宽拆分情况确定PCI链路连接硬盘的连接方式;及设置单元,用于根据连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置。
一种服务器动态热备份的设备,包括:存储器,用于存储计算机可读指令;处理器,用于执行计算机可读指令,该计算机可读指令被处理器执行时实现如上述任意一项服务器动态热备份的方法的步骤。
一种非暂态存储介质,其上存储有计算机可读指令,该计算机可读指令被处理器执行时实现如上述任意一项服务器动态热备份的方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚的说明本申请实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本申请一个或多个实施例中服务器动态热备份的方法的流程示意图;
图2为根据本申请一个或多个实施例中PCI链路与硬盘连接方式示意图;
图3为根据本申请一个或多个示例性实施例中服务器动态热备份的装置的结构示意图;
图4为根据本申请一个或多个实施例中服务器动态热备份的设备的结构示意图。
具体实施方式
本申请实施例的核心是提供一种服务器动态热备份的方法、装置、设备及存储介质,用于实现服务器PCI链路的动态热备份。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为根据本申请一个或多个实施例中服务器动态热备份的方法的流程图;图2为根据本申请一个或多个实施例中PCI链路与硬盘连接方式示意图。
如图1所示,本申请实施例提供的服务器动态热备份的方法包括:
S101:获取设备的PCI链路的带宽拆分情况。
S102:根据PCI链路的带宽拆分情况确定PCI链路连接硬盘的连接方式。
S103:根据连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置。
在具体实施中,本申请实施例提供的服务器动态热备份的方法可以应用于基本输入输出系统(Basic Input Output System,BIOS)所在芯片,或其他能够对基本输入输出系统进行通信控制的芯片。
由于在现有技术中,服务器不能够识别NVMe硬盘的连接方式,故没有实现切换到对应的热备份功能的基础。现有的NVMe硬盘的连接方式主要有PCI链路与硬盘直接连接和PCI链路与硬盘通过交换转接设备连接两种,PCI链路与硬盘直接连接时是四接口的,则对应的带宽拆分情况为四路(x4);高级配置和电源管理接口协议中支持的交换转接设备(Switch芯片)是八接口的,则对应的带宽拆分情况为八路(x8)。如图2所示,服务器主板CPU最大支持16路(x16)带宽,支持拆分为两个八路(x8),或拆分为四个四路(x4);若主板上使用交换转接设备(Switch芯片)且最 大支持32路(x32)带宽,则可以拆分为16路(x16)及八路(x8)的组合或三个八路(x8)等组合,交换转接设备(Switch芯片)与NVMe硬盘可以为x4或x2方式连接。在实际应用中根据实际需求进行拆分设置,若PCI链路与硬盘直接连接则是四个四路(x4),八个NVMe硬盘背板是16路(x16)带宽,故可以根据拆分情况确定热备份的实际需求。
对此,本申请实施例提供的服务器动态热备份的方法预先在执行主体中增加判断NVMe硬盘的连接方式的逻辑,即通过PCI链路的带宽拆分情况确定PCI链路连接硬盘的连接方式。同时,在基本输入输出系统的高级配置和电源管理接口协议程序中设置与不同的PCI链路连接硬盘的连接方式对应的热备份配置,以供设备开机启动时动态切换到当前连接方式对应的热备份功能。
对于步骤S101来说,在该步骤S101中的设备为ARM(Advanced RISC Machine)服务器,且PCI链路上连接有Riser卡(插接在PCIe接口上的功能扩展卡或转接卡)时,步骤S101具体可以包括:读取PCI链路上的Riser卡的通用输入输出接口(General Purpose Input Output,GPIO)状态值;根据通用输入输出接口状态值确定PCI链路的带宽拆分情况。这里,ARM服务器,是指采用ARM架构的服务器,这里的ARM指一款RISC(Reduced Instruction Set Computer,精简指令集计算机)微处理器。
或者,步骤S101还可以为:读取设备的中央处理器(Central Processing Unit,CPU)中记载的PCI链路的带宽拆分情况。若运维人员预先在中央处理器中配置了PCI链路的带宽拆分情况,则可以读取中央处理器中记载的PCI链路的带宽拆分情况。
对于步骤S102来说,如上文,现有的PCI链路连接硬盘的连接方式主要有PCI链路与硬盘直接连接和PCI链路与硬盘通过交换转接设备连接两种,则步骤S102:根据PCI链路的带宽拆分情况确定PCI链路连接硬盘的连接方式,具体可以包括:响应于PCI链路的带宽拆分情况为拆分为四路,确定连接方式为PCI链路与硬盘直接连接;或者响应于PCI链路的带宽拆分情况为拆分为八路,确定连接方式为PCI链路与硬盘通过交换转接设备连接。
可以理解的是,当高级配置和电源管理接口协议中支持的连接方式增加后,本申 请实施例提供的服务器动态热备份的方法所针对的PCI链路的带宽拆分情况与PCI链路连接硬盘的连接方式的对应关系可以对应增加,以实现对更多热备份功能的动态更新。
对于步骤S103来说,高级配置和电源管理接口协议中有一个DSDT表(The Differentiated System Description Table,差异化系统描述表),即一个描述系统不同信息的表,通过预先在DSDT表中增加表征PCI链路连接硬盘的连接方式的PCI链路连接状态值,如可以以“0”表示PCI链路与硬盘直接连接,以“1”表示PCI链路与硬盘通过交换转接设备连接,从而实现将PCI链路连接硬盘的连接方式传递给高级配置和电源管理接口协议程序,从而使高级配置和电源管理接口协议程序在执行过程中完成当前PCI链路连接硬盘的连接方式的热备份配置。
上述的步骤S103:根据连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置,具体可以包括:将高级配置和电源管理接口协议的DSDT表中的PCI链路连接状态值设置为与连接方式对应的状态值;及执行高级配置和电源管理接口协议程序,将高级配置和电源管理接口协议中的热备份参数进行与PCI链路连接状态值对应的设置。
通过对DSDT表中的PCI链路连接状态值进行更新,使高级配置和电源管理接口协议规范对DSDT表传递的变量进行判断,并切换到对应的热备份功能。
对于步骤S101中的设备为ARM服务器的情况,上述的PCI链路与硬盘直接连接对应的热备份设置可以包括:两线式串行总线(Inter-Integrated Circuit,I2C)热备份、通用输入输出接口(General Purpose Input Output,GPIO)热备份两种方式。其中,I2C热备份方式为当NVMe硬盘插入时触发Altert信号并通知CPU将新插入的硬盘进行识别并显示满足使用需求;GPIO热备份方式是先将GPIO默认拉高即高电平,当插入NVMe硬盘时会将GPIO拉低并触发命令发送给CPU,CPU将新插入的硬盘进行识别并显示满足使用需求。在确认PCI链路与硬盘直接连接时,可以默认采用I2C热备份方式。
当确认PCI链路与硬盘通过交换转接设备连接时,根据配置信息将ACPI协议中的DSDT表预先定义的全局变量进行更新已告知ACPI协议此时是NVMe硬盘通过八接口 的交换转接设备(Switch芯片)连接,将NVMe硬盘直接连接的ACPI程序进行跳过,使用支持八接口的交换转接设备(Switch芯片)的ACPI程序进行执行并支持NVMe热插板功能。
在设备开机启动中完成上述步骤后,在进入操作系统(Operating System,OS)之后,各PCI链路即可支持与自身连接硬盘的连接方式对应的热备份功能,不同的PCI链路可以配置为不同的热备份功能,且在下一次重启后还可以更换为其他热备份功能。
本申请实施例提供的服务器动态热备份的方法,包括通过获取设备的PCI链路的带宽拆分情况,根据该PCI链路的带宽拆分情况确定PCI链路连接硬盘的连接方式,根据该连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置。由于PCI链路通过不同方式连接硬盘,如直接连接或通过交换转接设备连接硬盘时对应的带宽拆分情况不同,故可以根据带宽拆分情况确定PCI链路连接硬盘的连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置,解决了高级配置和电源管理接口协议不支持PCI链路动态热备份的问题。且相较于现有技术中一个BIOS镜像只支持一种热备份功能来说,本申请实施例提供的服务器动态热备份的方法能够支持不同的PCI链路设置为不同的热备份功能,使得用户可以灵活选择所需的热备份形式,对数据中心服务器的安全运行提供了可靠性和稳定性,对服务器在互联网数据中心的批量部署提供了有力的保证。
实施例二
在上述实施例的基础上,为加快初始化热备份设置进程,在本申请实施例提供的服务器动态热备份的方法中,步骤S103:根据连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置,具体包括:预先将高级配置和电源管理接口协议中的热备份参数的默认值设置为直接连接方式对应的参数值;及响应于连接方式为PCI链路与硬盘通过交换转接设备连接,将高级配置和电源管理接口协议中的热备份参数更改为与通过交换转接设备连接方式对应的参数值。
进一步地,本申请实施例提供的服务器动态热备份的方法中,步骤S103:根据连 接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置,还具体包括:响应于连接方式为PCI链路与硬盘直接连接,不改动高级配置和电源管理接口协议中的热备份参数。
在具体实施中,为加快初始化热备份设置进程,除了预先将高级配置和电源管理接口协议中的热备份参数设置为默认值,也可以预先将DSDT表中的PCI链路连接状态值设置为默认值,此两个默认值均具体可以为直接连接方式对应的值,也可以均具体为PCI链路与硬盘通过交换转接设备连接方式对应的值。
本申请实施例以将直接连接方式对应的值设置为默认值为例,在实际应用中,具体可以包括如下过程:
BIOS在启动过程中获取中央处理器(CPU)每个PCI链路的带宽拆分情况;
响应于PCI链路的带宽拆分情况为x4,确定接方式为PCI链路与硬盘直接连接,BIOS在高级配置和电源管理接口协议的参数变量保持默认值设置,如设备为ARM服务器即采用上述实施例一种提供的I2C方式或GPIO方式进行热备份功能;
响应于PCI链路的带宽拆分情况为x8,确定接方式为PCI链路与硬盘通过交换转接设备连接,则BIOS在高级配置和电源管理接口协议的参数变量将通过DSDT表对高级配置和电源管理接口协议中的PCI链路连接状态值进行更新,将最新的PCI链路连接状态值通过更新DSDT表传递给高级配置和电源管理接口协议;
执行高级配置和电源管理接口协议程序,对DSDT表传递的PCI链路连接状态值进行判断;
响应于PCI链路连接状态值与默认值保持一致,则采用传统PCI链路与硬盘直接连接的方式进行热备份功能支持,不开启支持PCI链路与硬盘通过交换转接设备连接的热备份功能;
响应于PCI链路连接状态值与默认值不一致即进行更新,则将高级配置和电源管理接口协议中支持PCI链路与硬盘通过交换转接设备连接的热备份功能进行开启,并关闭PCI链路与硬盘直接连接的方式进行热备份功能;及
开机进入操作系统后,则可以支持与PCI链路与硬盘的连接方式对应的热备份功能。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
上文详述了服务器动态热备份的方法对应的各个实施例,在此基础上,本申请还公开了与上述方法对应的服务器动态热备份的装置、设备及存储介质。
实施例三
图3为本申请实施例提供的一种服务器动态热备份的装置的结构示意图。
如图3所示,本申请实施例提供的服务器动态热备份的装置包括:
获取单元301,用于获取设备的PCI链路的带宽拆分情况;
确定单元302,用于根据PCI链路的带宽拆分情况确定PCI链路连接硬盘的连接方式;及
设置单元303,用于根据连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置。
关于服务器动态热备份的装置的具体限定可以参见上文中对于服务器动态热备份的方法的限定,在此不再赘述。上述服务器动态热备份的装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
实施例四
图4为本申请实施例提供的一种服务器动态热备份的设备的结构示意图。
如图4所示,本申请实施例提供的服务器动态热备份的设备包括:
存储器410,用于存储计算机可读指令411;及
处理器420,用于执行计算机可读指令411,该计算机可读指令411被该处理器420执行时实现如上述任意一项实施例的服务器动态热备份的方法的步骤。
其中,处理器420可以包括一个或多个处理核心,比如3核心处理器、8核心处理器等。处理器420可以采用数字信号处理DSP(Digital Signal Processing)、现场可编程门阵列FPGA(Field-Programmable Gate Array)、可编程逻辑阵列PLA(Programmable Logic Array)中的至少一种硬件形式来实现。处理器420也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称中央处理器CPU(Central Processing Unit);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器420可以集成有图像处理器GPU(Graphics Processing Unit),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器420还可以包括人工智能AI(Artificial Intelligence)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器410可以包括一个或多个存储介质,该存储介质可以是非暂态的。存储器410还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。本实施例中,存储器410至少用于存储以下计算机可读指令411,其中,该计算机可读指令411被处理器420加载并执行之后,能够实现前述任一实施例公开的服务器动态热备份的方法中的相关步骤。另外,存储器410所存储的资源还可以包括操作系统412和数据413等,存储方式可以是短暂存储或者永久存储。其中,操作系统412可以为Windows。数据413可以包括但不限于上述方法所涉及到的数据。
在一些实施例中,服务器动态热备份的设备还可包括有显示屏430、电源440、通信接口450、输入输出接口460、传感器470以及通信总线480。
本领域技术人员可以理解,图4中示出的结构并不构成对服务器动态热备份的设备的限定,可以包括比图示更多或更少的组件。
本申请实施例提供的服务器动态热备份的设备,包括存储器和处理器,处理器在执行存储器存储的计算机可读指令时,能够实现如上的服务器动态热备份的方法,效果同上。
实施例五
需要说明的是,以上所描述的装置、设备实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,执行本申请各个实施例方法的全部或部分步骤。
为此,本申请实施例还提供一个或多个非暂态存储介质,该存储介质上存储有计算机可读指令,计算机可读指令被处理器执行时实现如上述任意一项实施例的服务器动态热备份的方法的步骤。
该存储介质可以包括:U盘、移动硬盘、只读存储器ROM(Read-Only Memory)、随机存取存储器RAM(Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例中提供的非暂态存储介质所存储的计算机可读指令能够在被处理器执行时实现如上的服务器动态热备份的方法的步骤,效果同上。
以上对本申请所提供的一种服务器动态热备份的方法、装置、设备及存储介质进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置、设备及存储介质而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (13)

  1. 一种服务器动态热备份的方法,其特征在于,包括:
    获取设备的PCI链路的带宽拆分情况;
    根据所述PCI链路的带宽拆分情况确定所述PCI链路连接硬盘的连接方式;及
    根据所述连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述PCI链路的带宽拆分情况确定所述PCI链路连接硬盘的连接方式,包括:
    响应于所述PCI链路的带宽拆分情况为拆分为四路,确定所述连接方式为所述PCI链路与所述硬盘直接连接;或者
    响应于所述PCI链路的带宽拆分情况为拆分为八路,确定所述连接方式为所述PCI链路与所述硬盘通过交换转接设备连接。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置,包括:
    预先将所述高级配置和电源管理接口协议中的热备份参数的默认值设置为直接连接方式对应的参数值;及
    响应于所述连接方式为所述PCI链路与所述硬盘通过交换转接设备连接,将所述高级配置和电源管理接口协议中的热备份参数更改为与通过所述交换转接设备连接方式对应的参数值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置,还包括:
    响应于所述连接方式为所述PCI链路与所述硬盘直接连接,不改动所述高级配置和电源管理接口协议中的热备份参数。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述设备为ARM服务器,所述获取设备的PCI链路的带宽拆分情况,包括:
    读取所述PCI链路上的Riser卡的通用输入输出接口状态值;及
    根据所述通用输入输出接口状态值确定所述PCI链路的带宽拆分情况。
  6. 根据权利要求5所述的方法,其特征在于,所述Riser卡包括插接在PCIe接口上的功能扩展卡或转接卡。
  7. 根据权利要求1至4任意一项所述的方法,其特征在于,所述获取设备的PCI链路的带宽拆分情况,包括:
    读取所述设备的中央处理器中记载的所述PCI链路的带宽拆分情况。
  8. 根据权利要求1或2所述的方法,其特征在于,所述根据所述连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置,包括:
    将所述高级配置和电源管理接口协议的DSDT表中的PCI链路连接状态值设置为与所述连接方式对应的状态值;及
    执行高级配置和电源管理接口协议程序,将所述高级配置和电源管理接口协议中的热备份参数进行与所述PCI链路连接状态值对应的设置。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,所述热备份参数为Nvme硬盘的热插拔功能的参数。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,所述方法应用于基本输入输出系统所在芯片。
  11. 一种服务器动态热备份的装置,其特征在于,包括:
    获取单元,用于获取设备的PCI链路的带宽拆分情况;
    确定单元,用于根据所述PCI链路的带宽拆分情况确定所述PCI链路连接硬盘的连接方式;及
    设置单元,用于根据所述连接方式,对高级配置和电源管理接口协议中的热备份参数进行对应设置。
  12. 一种服务器动态热备份的设备,其特征在于,包括:
    存储器,用于存储计算机可读指令;及
    处理器,用于执行所述计算机可读指令,所述计算机可读指令被所述处理器执行时实现如权利要求1至10任意一项所述服务器动态热备份的方法的步骤。
  13. 一个或多个非暂态存储介质,其上存储有计算机可读指令,其特征在于,所述计算机可读指令被处理器执行时实现如权利要求1至10任意一项所述服务器动态热 备份的方法的步骤。
PCT/CN2022/102602 2022-02-17 2022-06-30 服务器动态热备份的方法、装置、设备及存储介质 WO2023155363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210144068.1A CN114185720B (zh) 2022-02-17 2022-02-17 服务器动态热备份的方法、装置、设备及存储介质
CN202210144068.1 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023155363A1 true WO2023155363A1 (zh) 2023-08-24

Family

ID=80546104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102602 WO2023155363A1 (zh) 2022-02-17 2022-06-30 服务器动态热备份的方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114185720B (zh)
WO (1) WO2023155363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185720B (zh) * 2022-02-17 2022-05-10 浪潮(山东)计算机科技有限公司 服务器动态热备份的方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108647169A (zh) * 2018-05-14 2018-10-12 杭州宏杉科技股份有限公司 一种热插拔处理方法及装置
CN110532212A (zh) * 2018-05-23 2019-12-03 英特尔公司 用于有效外围组件管理的dvsec的系统、方法和装置
CN111858197A (zh) * 2020-06-15 2020-10-30 詹毕旺 一种支持多种ssd测试的装置、系统和方法
US20200394303A1 (en) * 2019-06-12 2020-12-17 Dell Products, Lp Secure Firmware Capsule Update Using NVMe Storage and Method Therefor
CN112445738A (zh) * 2020-11-27 2021-03-05 苏州浪潮智能科技有限公司 一种热插拔处理方法、装置及设备
CN114185720A (zh) * 2022-02-17 2022-03-15 浪潮(山东)计算机科技有限公司 服务器动态热备份的方法、装置、设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058801B2 (en) * 2003-02-19 2006-06-06 American Megatrends, Inc. Methods and computer systems for updating values of a DSDT
CN100476794C (zh) * 2004-06-09 2009-04-08 中国科学院计算技术研究所 一种四路服务器主板
CN2919707Y (zh) * 2005-10-20 2007-07-04 上海电器科学研究所(集团)有限公司 一种带有总线接口的pci卡
US7516263B2 (en) * 2006-02-27 2009-04-07 Emerson Network Power - Embedded Computing, Inc. Re-configurable PCI-Express switching device
CN101882126B (zh) * 2010-07-13 2012-01-04 中国科学院计算技术研究所 多个HT总线到单个PCIe总线的桥接装置及其方法
CN107145430A (zh) * 2017-04-21 2017-09-08 深圳市同泰怡信息技术有限公司 一种基于I2C接口通过CPLD来实现NVMe SSD点灯的方法
CN210006040U (zh) * 2019-07-23 2020-01-31 浪潮商用机器有限公司 一种扩展卡
CN110633131B (zh) * 2019-09-16 2022-05-31 东软集团股份有限公司 一种对固件进行虚拟化的方法、装置、设备及系统
US11016923B1 (en) * 2019-11-22 2021-05-25 Dell Products L.P. Configuring hot-inserted device via management controller
CN112015477B (zh) * 2020-08-06 2022-10-25 苏州浪潮智能科技有限公司 一种pcie链路的拆分方法、系统及扩展装置
CN112181505A (zh) * 2020-09-27 2021-01-05 苏州浪潮智能科技有限公司 一种支持多主机服务器PCIe带宽分配方法、装置及介质
CN112559425A (zh) * 2020-11-27 2021-03-26 山东云海国创云计算装备产业创新中心有限公司 一种pcie端口的拆分方法、装置、设备及介质
CN113448903B (zh) * 2021-05-21 2023-02-28 山东英信计算机技术有限公司 一种NVMe扩展卡PCIe带宽调整方法、装置、设备及存储介质
CN113986796A (zh) * 2021-10-24 2022-01-28 苏州浪潮智能科技有限公司 一种PCIe链路宽度的动态配置方法、装置、设备及可读介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108647169A (zh) * 2018-05-14 2018-10-12 杭州宏杉科技股份有限公司 一种热插拔处理方法及装置
CN110532212A (zh) * 2018-05-23 2019-12-03 英特尔公司 用于有效外围组件管理的dvsec的系统、方法和装置
US20200394303A1 (en) * 2019-06-12 2020-12-17 Dell Products, Lp Secure Firmware Capsule Update Using NVMe Storage and Method Therefor
CN111858197A (zh) * 2020-06-15 2020-10-30 詹毕旺 一种支持多种ssd测试的装置、系统和方法
CN112445738A (zh) * 2020-11-27 2021-03-05 苏州浪潮智能科技有限公司 一种热插拔处理方法、装置及设备
CN114185720A (zh) * 2022-02-17 2022-03-15 浪潮(山东)计算机科技有限公司 服务器动态热备份的方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114185720A (zh) 2022-03-15
CN114185720B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
TWI684859B (zh) 遠端系統復原之方法
JP6360588B2 (ja) 動的pcieスイッチ再配置システムおよびその方法
US9979627B2 (en) Systems and methods for bare-metal network topology discovery
KR101565357B1 (ko) 타임아웃을 처리하기 위한 시스템, 방법 및 장치
JP5916881B2 (ja) ポータブルコンピューティングデバイス(pcd)上で動作可能なオペレーティングシステムに周辺構成要素インターフェースエクスプレス(pcie)結合デバイスを見せるための方法およびpcd
US20230117996A1 (en) Storage system boot method and apparatus, and computer-readable storage medium
US9542201B2 (en) Network bios management
KR20110098974A (ko) Usb 디바이스의 빠른 시동을 위한 시스템, 장치, 및 방법
WO2023147748A1 (zh) 一种服务器初始化智能网卡的方法、装置、设备及介质
CN109743105A (zh) 智能网卡光模块管理方法、装置、系统及智能网卡和介质
WO2023155363A1 (zh) 服务器动态热备份的方法、装置、设备及存储介质
JP2018116648A (ja) 情報処理装置、その制御方法、及びプログラム
US20150089276A1 (en) Method for Shortening Enumeration of Tightly Coupled USB Device
WO2023082622A1 (zh) 一种主从设备兼容的通信模块设计方法及装置
WO2024103829A1 (zh) 一种端口配置方法、组件及硬盘扩展装置
US10115375B2 (en) Systems and methods for enabling a systems management interface with an alternate frame buffer
TW201112131A (en) Controllers, apparatuses, and methods for transferring data
CN108108314B (zh) 交换器系统
US20170308154A1 (en) Fast system setting changes
WO2009145098A1 (ja) I/o接続システム、方法及びプログラム
CN112306558A (zh) 处理单元、处理器、处理系统、电子设备和处理方法
TWI706258B (zh) 計算裝置
CN114924802B (zh) 基于bmc和bios的系统启动方法、装置设备及介质
CN113485768B (zh) 一种phy参数配置装置及ssd
CN114967890B (zh) 管理计算系统的方法、可管理性控制器和机器可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926671

Country of ref document: EP

Kind code of ref document: A1