WO2023155255A1 - Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用 - Google Patents

Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023155255A1
WO2023155255A1 PCT/CN2022/079768 CN2022079768W WO2023155255A1 WO 2023155255 A1 WO2023155255 A1 WO 2023155255A1 CN 2022079768 W CN2022079768 W CN 2022079768W WO 2023155255 A1 WO2023155255 A1 WO 2023155255A1
Authority
WO
WIPO (PCT)
Prior art keywords
nio
composite material
heterojunction
carbon composite
nio nano
Prior art date
Application number
PCT/CN2022/079768
Other languages
English (en)
French (fr)
Inventor
郎建平
李聪
倪春燕
虞虹
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023155255A1 publication Critical patent/WO2023155255A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to the field of nanomaterial preparation and electrochemical technology, in particular to a Ni/NiO nanometer heterojunction porous graphite carbon composite material and its preparation method and application.
  • transition metal Ni is considered to be the most promising metal material to replace Pt-based catalysts due to its better H adsorption activity.
  • the water dissociation rate is slow in alkaline medium, which greatly reduces its electrocatalytic activity.
  • transition metal oxides can effectively promote water splitting (see L.Zhao, Y.Zhang, Z.Zhao, Q.H.Zhang, L.B.Huang, L.Gu, G.Lu, J.S.Hu and L.J.Wan, Natl.Sci. Rev., 2020, 7, 27-36.), so constructing a transition metal/transition metal oxide heterojunction is an effective strategy to improve its overall electrocatalytic hydrogen evolution reaction rate.
  • Ni/NiO has poor electrical conductivity and easy aggregation, which makes its electrochemical activity unsatisfactory.
  • Combining them with conductive carbon nanostructures to obtain more catalytic active sites and enhance electrical conductivity is an ideal way to enhance their catalytic HER activity.
  • Ni-NiO nitrogen-doped reduced graphene oxide (Ni-NiO/N-rGO) reported by Jaephil Cho et al. showed excellent multifunctional catalytic activities for OER, HER, and ORR in alkaline media.
  • the technical problem to be solved in the present invention is to provide a method for synthesizing Ni/NiO heterojunction porous graphite carbon composite material derived from MOFs in situ reduction pyrolysis, named as Ni/NiO-PGC, wherein Ni represents simple nickel, NiO stands for nickel oxide, and PGC stands for porous graphitic carbon.
  • the invention can obtain the target product Ni/NiO-PGC through solvothermal reaction and one-step reduction pyrolysis method, the operation is simple, and the product is uniform.
  • the present invention provides the following technical solutions:
  • the invention provides a method for preparing a Ni/NiO nano-heterojunction porous graphite carbon composite material, comprising the following steps:
  • Ni-MOFs precursor materials Ni-MOFs precursor materials
  • Ni-MOFs precursor material is calcined in a reducing atmosphere, and the Ni/NiO nanometer heterojunction porous graphite carbon composite material is obtained after cooling.
  • the preparation method of the Ni-MOFs precursor material is:
  • Ni-MOFs precursor material Dissolve nickel salt and organic ligand in a mixed solvent of organic solvent and water, and react at 120-180°C for 3-12 hours to obtain a stacked Ni-MOFs precursor material.
  • the nickel salt is preferably nickel nitrate hexahydrate
  • the organic ligand is preferably terephthalic acid
  • the organic solvent is preferably N,N-dimethylformamide.
  • the molar ratio of the nickel salt to the organic ligand is 2:1 ⁇ 1:2, such as 2:1, 1:1, 1:2, etc.
  • the molar ratio of nickel salt to ligand is 1:2.
  • the reaction temperature is preferably 150° C., and the reaction time is preferably 4 hours.
  • the steps of washing and drying the reaction product are also included.
  • the reaction product is preferably washed with deionized water and ethanol, and dried in a blast drying oven; wherein, preferably, the drying temperature is 40-60°C, and the drying time is 2-12h; more preferably, the drying temperature is 60°C, drying time is 12h.
  • the reducing atmosphere used is preferably H 2 /N 2 atmosphere, and the use of H 2 atmosphere will greatly increase the risk of the reaction, so the present invention uses H 2 /N 2 mixed gas as the reducing atmosphere.
  • the H2 content in the mixed gas should not be too high, preferably less than 10%.
  • the reducing atmosphere is a 5%-10% H 2 /N 2 atmosphere, where "5%" and "10%” refer to the volume fraction of H 2 in the mixed gas. More preferably, the reducing atmosphere is a 10% H 2 /N 2 atmosphere. In this atmosphere, an appropriate amount of NiO is reduced to Ni, and the obtained Ni/NiO nano-heterojunction material has better catalytic performance. performance.
  • the calcination temperature is 400-600°C, and the calcination time is 30min-12h; preferably, the calcination temperature is 400°C, and the calcination time is 1h.
  • the rate of temperature rise before calcination is preferably 3 to 10° C./min.
  • the product After calcination, the product is cooled to room temperature, wherein the cooling process is carried out in a reducing atmosphere.
  • the invention also provides the Ni/NiO nano-heterojunction porous graphite carbon composite material prepared by the method, and the composite material has good electrocatalytic performance.
  • the present invention further provides the application of the Ni/NiO nano-heterojunction porous graphite carbon composite material as an electrocatalyst, especially the application of catalyzing hydrogen evolution reaction under alkaline conditions.
  • the preparation process of the present invention is simple, and the target product Ni-NiO nano-heterojunction porous graphitic carbon can be obtained by solvothermal reaction and one-step reduction pyrolysis, and the carbon nanostructure does not need to be pre-treated, and the operation is simple.
  • the present invention adopts the synthesis method of "in-situ reduction pyrolysis", and the obtained product has a uniform appearance.
  • the reduced Ni nanoparticles will catalyze the graphitization of the surrounding carbon, so that the Ni/NiO heterojunction is evenly embedded on the porous graphite carbon, and the Ni/NiO heterojunction is well combined with the carbon matrix .
  • the value is only 31.6mV, and the Tafel slope is also as low as 73.51mV ⁇ dec -1 . And there is no obvious drop at least 65h at a current density of 10mA ⁇ cm -2 , showing long-term stability.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • HRTEM high resolution transmission electron microscope
  • SAED selected area electron diffraction
  • EDX-Mapping Energy Distribution Surface Scanning
  • Embodiment 1 the preparation of Ni/NiO-PGC
  • Ni-MOFs precursor was obtained after drying at 60 °C for 12 h in a blast drying oven.
  • Ni-MOFs Take 60 mg of Ni-MOFs in a 2 cm ⁇ 5 cm porcelain boat and place it in a tube furnace, and ventilate it under 10% H 2 /N 2 flow for 30 minutes to wash off the residual air in the tube furnace, then start to use 10 °C/min The temperature was raised to 400 °C and maintained for 1 h.
  • the Ni/NiO-PGC sample was obtained after the calcination was completed and cooled to room temperature, wherein Ni represents simple nickel, NiO represents nickel oxide, and PGC represents porous graphitic carbon.
  • Figure 1 is the X-ray powder diffraction pattern of Ni-MOFs. It can be seen from Figure 1 that the powder diffraction pattern (PXRD) of Ni-MOFs is consistent with the peak of the simulated spectrum (CCDC no.638866).
  • the scanning electron microscope image shows that Ni-MOFs are assembled by stacking multiple layers of nanosheets.
  • the powder diffraction pattern (PXRD) of Ni/NiO-PGC is consistent with the standard card of Ni (PDF#96-210-2279) and the standard card of NiO (PDF#01-073-1523).
  • SEM images (4a) and TEM images (4b) show that Ni/NiO-PGC also retains the overall morphology of Ni-MOFs, and uniform Ni/NiO nanoparticles and porous particles generated by pyrolysis can be seen. shape.
  • the terephthalic acid ligand pyrolyzes around the Ni/NiO particles to form graphitized carbon.
  • the high-resolution transmission electron microscope image (4d) shows the lattice fringes of 0.204nm corresponding to the 111 crystal plane of Ni and 0.178nm corresponding to the 002 crystal plane, and the 0.241nm and 0.241nm corresponding to the 111 crystal plane and 200 crystal plane of NiO respectively.
  • Ni/NiO-PGC shows that Ni/NiO has good crystallinity, and the displayed diffraction pattern is consistent with the high-resolution transmission electron microscope pattern and PXRD results.
  • the distribution of Ni, O, and C in Ni/NiO-PGC is uniform.
  • the Raman spectrum shows the absorption peaks of NiO in Ni/NiO-PGC, while the absorption peaks at 1327cm -1 and 1591cm -1 are the D and G peaks of graphitized carbon.
  • the ratio of Ni to O is 2.63, which is greater than 1, which proves that part of NiO is reduced to Ni.
  • Ni/NiO-PGC photoelectron spectroscopy shows that Ni is a mixed valence state of 0 and +2, and the peak at 852.3eV is attributed to 2p 3/2 of Ni 0 , while the peak at 853.6eV and 855.7eV The peak is assigned to the multiple split peak of Ni 2+ 2p 3/2 . It proved the coexistence of Ni simple substance and NiO, and the existence of Ni/NiO heterojunction interface.
  • Embodiment 2 the preparation of Ni/NiO-PGC-5%
  • Ni-MOFs Take 60 mg of Ni-MOFs in a 2 cm ⁇ 5 cm porcelain boat and place it in a tube furnace, ventilate it under 5% H 2 /N 2 air flow for 30 minutes to wash off the residual air in the tube furnace, and start to use 10 °C/min The temperature was raised to 400 °C and maintained for 2h. The Ni/NiO-PGC-5% sample was obtained after the calcination was completed and cooled to room temperature.
  • the ratio of Ni:O in Ni/NiO-PGC - 5% is equal to 1.36, which is lower than that in Ni/NiO-PGC, indicating that less NiO is reduced to Ni in 5% H2N2 atmosphere Simple substance.
  • XPS also shows that the binding energy peak area of Ni 0 is smaller than that of Ni/NiO-PGC (Fig. 9), which is consistent with the EDX results.
  • Ni-MOFs Take 60 mg of Ni-MOFs and place it in a 2 cm ⁇ 5 cm porcelain boat and place it in a tube furnace, ventilate it under the non-reducing gas high-purity N 2 flow for 30 minutes to wash off the residual air in the tube furnace, and start heating at 10 °C /min to raise the temperature to 400°C and keep it for 8h.
  • the NiO-PC sample was obtained after the calcination was completed and cooled to room temperature. Wherein, NiO is nickel oxide, and PC represents porous carbon.
  • the transmission electron microscope image in Figure 12 shows that the morphology of NiO-PC is similar to that of Ni/NiO-PGC, and the overall morphology of Ni-MOFs is maintained, forming NiO particles embedded in porous carbon.
  • Higher resolution TEM images show that NiO-PC contains no There is no graphitized carbon present. So NiO-PC exhibits poor HER performance (Fig. 13).
  • Embodiment 3 HER performance test in alkaline electrolyte
  • the entire electrocatalytic test was carried out under the standard three-electrode system, 5 mg of Ni/NiO-PGC sample was dispersed in 485 ⁇ l of isopropanol, and 15 ⁇ l of 0.5wt.% perfluorosulfonic acid polymer (nafion ) solution, after ultrasonic uniformity, drop 50 ⁇ l on the carbon paper of 0.5cm ⁇ 1cm, and use it as the working electrode after drying, the reference electrode is Ag/AgCl (saturated chlorine KCl solution) electrode, and the auxiliary electrode is platinum wire electrode.
  • the reference electrode is Ag/AgCl (saturated chlorine KCl solution) electrode
  • the auxiliary electrode is platinum wire electrode.
  • the electrolyte solution used for the linear sweep voltammetry (LSV) test is 1M KOH solution, the potential scan range is -0.8-0V vs RHE, and the scan speed is 5mV/s.
  • the test data are all compensated by iR.
  • Ni/NiO-PGC exhibited excellent electrocatalytic performance for HER, with an overpotential value of only 31.6 at a current density of 10mA cm- 2 mV, the Tafel slope is also as low as 73.51mV ⁇ dec -1 , and has a small electrochemical impedance and a large Cdl value, reflecting that Ni/NiO-PGC has a large electrochemically active area (Fig. 14d).
  • the overpotentials of Ni/NiO-PGC, Ni/NiO-PGC-5% and Pt/C at a current density of 10mA cm- 2 are 31.6mV, 51.6mV and 17.6mV, respectively, and the overpotentials are The current densities at 150mV are 147.7mA ⁇ cm -2 , 67.26mA ⁇ cm -2 and 189.58mA ⁇ cm -2 , respectively.
  • Ni/NiO-PGC exhibits HER performance close to that of 20% commercial Pt/C.
  • Embodiment 4 OER stability performance test
  • the reference electrode, auxiliary electrode and working electrode were inserted into a saturated 1.0M KOH solution for chronopotentiometry with a constant current density of 10mA ⁇ cm -2 .
  • the present invention can obtain the target product Ni-NiO nano-heterojunction porous graphitic carbon through solvothermal reaction and one-step reduction pyrolysis, and the process is very simple, which is different from the preparation method of Ni/NiO heterojunction material in the prior art
  • the present invention does not need to pre-treat the carbon nanostructure, and the generated Ni/NiO heterojunction is evenly distributed on the porous graphitic carbon, and the Ni/NiO heterojunction is well combined with the carbon matrix.
  • the Ni/NiO-PGC nanomaterial catalyzes the HER reaction in alkaline electrolyte, exhibits excellent catalytic performance, and has good long-term stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,包括以下步骤:提供Ni-MOFs前驱体材料;将Ni-MOFs前驱体材料于还原性气氛下进行煅烧,冷却后得到Ni-NiO纳米异质结多孔石墨碳复合材料。所制备的Ni/NiO纳米异质结多孔石墨碳复合材料,以及将Ni/NiO纳米异质结多孔石墨碳复合材料作为电催化剂在碱性条件下催化氢气析出反应的应用。通过溶剂热反应和一步还原热解法即可得到目标产物Ni/NiO-PGC,操作简单,产物均一。

Description

Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用 技术领域
本发明涉及纳米材料制备及电化学技术领域,具体涉及一种Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用。
背景技术
随着社会的发展和人口的快速增长,环境污染和能源短缺问题受到了广泛关注。因此,发展清洁可持续能源和探索能源储存与转换技术成为了当务之急。而氢能作为一种零污染、高能量密度的新能源被认为是未来最理想的能源。据国际可再生能源机构(IRENA)统计,目前工业上生产氢气主要有三种途径:蒸汽甲烷转化、煤的气化以及水的电解,其中前两者生产了超过总量95%的氢气,而通过电解水产氢的量仅有4%左右(参见IRENA《IRENA-Hydrogen from Renewable Power 2018》)。但是由于电催化水裂解制氢的环保和经济等特点和能将可再生能源(如太阳能,潮汐能等)产生的电能储存为化学能,被认为是最有效的制氢方法。水的电解分解涉及的两个半反应:氢气析出反应(HER)和氧气析出反应(OER)要经历多电子转移过程,所以其动力学比较缓慢。到目前为止,铂(Pt)、钌(Ru)和铱(Ir)仍然被认为是电催化水裂解活性最高的材料,但它们地球丰度低和价格高昂限制了它们的规模化工业应用。因此,开发高效稳定的非贵金属电催化剂是电解水制氢工业化应用的关键。
在非贵金属催化剂的研究中,由于过渡金属Ni具有较佳的H吸附活性,它被认为是最有希望取代Pt类催化剂的金属材料。而在碱性介质中水解离速率缓慢,大大降低其电催化活性。有文献报道过渡金属氧化物可以有效促进水分解 (参见L.Zhao,Y.Zhang,Z.Zhao,Q.H.Zhang,L.B.Huang,L.Gu,G.Lu,J.S.Hu and L.J.Wan,Natl.Sci.Rev.,2020,7,27-36.),故而构建过渡金属/过渡金属氧化物异质结是提升其整体电催化析氢反应速率的有效策略。但Ni/NiO的导电性较差且易于聚集,这使得其电化学活性差强人意。将它们与导电性碳纳米结构复合来获得更多的催化活性位点和增强电导率是提高其催化HER活性的理想方式。如Jaephil Cho等人报道的Ni-NiO氮掺杂还原氧化石墨烯(Ni-NiO/N-rGO),在碱性介质中表现出了优异的OER、HER、ORR多功能催化活性。但是该策略需要预先引入导电碳纳米结构石墨烯,并且需要进行多步的氧化还原煅烧,制备工艺复杂且能耗高,生成的Ni-NiO在氮掺杂还原氧化石墨烯上的分布也并不均匀(参见X.Liu,W.Liu,M.Ko,M.Park,M.G.Kim,P.Oh,S.Chae,S.Park,A.Casimir,G.Wu and J.Cho,Adv.Funct.Mater.,2015,25,5799-5808.)。Dai等人报道了在碳纳米管侧壁上制备的纳米NiO/Ni异质结(NiO/Ni-CNT)是一种高效的HER电催化剂,但该制备方法需要在1.5torr(约200Pa)低压进行煅烧,还需对碳纳米管进行预氧化,制备工艺复杂(参见M.Gong,W.Zhou,M.C.Tsai,J.Zhou,M.Guan,M.C.Lin,B.Zhang,Y.Hu,D.Y.Wang,J.Yang,S.J.Pennycook,B.J.Hwang and H.Dai,Nat.Commun.,2014,5,4695-4701.)。所以探索如何构建丰富的Ni/NiO异质结界面、减少它们的聚集和实现Ni/NiO异质结与碳纳米结构的良好结合依然是提高电催化剂电化学性能需要解决的关键问题。所以开发一种简单可控的方法来制备具有高效HER活性的金属/金属氧化物异质结界面的非贵金属电催化剂仍然具有挑战性。
发明内容
本发明要解决的技术问题是提供一种由MOFs原位还原热解衍生的Ni/NiO异质结多孔石墨碳复合材料的合成方法,命名为Ni/NiO-PGC,其中,Ni代表镍单质,NiO代表氧化镍,PGC代表多孔石墨化碳(porous graphitic carbon)。本发明通过溶剂热反应和一步还原热解法即可得到目标产物Ni/NiO-PGC,操作简单,产物均一。
为了解决上述技术问题,本发明提供了如下的技术方案:
本发明提供了一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,包括以下步骤:
提供Ni-MOFs前驱体材料;
将所述Ni-MOFs前驱体材料于还原性气氛下进行煅烧,冷却后得到所述Ni/NiO纳米异质结多孔石墨碳复合材料。
进一步地,所述Ni-MOFs前驱体材料的制备方法为:
将镍盐、有机配体溶于有机溶剂与水的混合溶剂中,在120~180℃下反应3~12小时,即得到堆层状的Ni-MOFs前驱体材料。
本发明中,所述镍盐优选为六水合硝酸镍,所述有机配体优选为对苯二甲酸,所述有机溶剂优选为N,N-二甲基甲酰胺。
本发明中,所述镍盐与有机配体的摩尔比为2:1~1:2,例如可以是2:1、1:1、1:2等。优选地,镍盐与配体的摩尔比为1:2。
本发明中,所述反应的温度优选为150℃,反应时间优选为4h。
本发明中,反应结束后,还包括对反应产物进行洗涤和干燥的步骤。其中,优选地采用去离子水和乙醇对反应产物进行洗涤,采用鼓风干燥箱进行干燥;其中优选地,干燥温度为40~60℃,干燥时间为2~12h;更优选地,干燥温度为60℃,干燥时间为12h。
本发明中,所使用的还原性气氛优选为H 2/N 2气氛,采用H 2气氛会导致反应的危险性大大增加,因此本发明采用H 2/N 2混合气作为还原性气氛。其中,为了保证安全性,混合气中H 2的含量不宜过高,以低于10%为宜。优选地,所述还原性气氛为5%~10%的H 2/N 2气氛,此处“5%”、“10%”指的是混合气中H 2 的体积分数。更优选地,所述还原性气氛为10%的H 2/N 2气氛,在这一气氛下,有适量的NiO被还原成Ni,得到的Ni/NiO纳米异质结材料具有更好的催化性能。
本发明中,所述煅烧温度为400~600℃,煅烧时间为30min~12h;优选地,所述煅烧温度为400℃,煅烧时间为1h。煅烧前的升温速率优选为3~10℃/min。
经过煅烧后,产物冷却至室温,其中冷却过程是在还原气氛中进行。
本发明还提供了由所述的方法制备的Ni/NiO纳米异质结多孔石墨碳复合材料,该复合材料具有良好的电催化性能。
本发明进一步地提供了所述的Ni/NiO纳米异质结多孔石墨碳复合材料作为电催化剂的应用,尤其是在碱性条件下催化氢气析出反应的应用。
与现有技术相比,本发明的有益效果在于:
1.本发明的制备工艺简单,通过溶剂热反应和一步还原热解法即可得到目标产物Ni-NiO纳米异质结多孔石墨碳,不需预先处理碳纳米结构,操作简单。
2.本发明采用“原位还原热解”的合成方法,得到的产物形貌均匀。
3.本发明在制备过程中,还原的Ni纳米颗粒会催化周围的碳石墨化,使Ni/NiO异质结均匀镶嵌在多孔石墨碳上,并且Ni/NiO异质结与碳基质的结合良好。
4.本发明制备的Ni/NiO-PGC纳米材料在碱性电解质(pH=14)中催化HER反应,表现出了优异的催化性能,在10mA·cm -2的电流密度下,HER过电势的值仅为31.6mV,塔菲尔斜率也低至73.51mV·dec -1。并且在10mA·cm -2的电流密度下至少运行65h以上没有明显下降,展现出了长期稳定性。
附图说明
附图1为Ni-MOFs的X-射线粉末衍射(PXRD)图;
附图2为Ni-MOFs的扫描电镜(SEM)图和透射电镜(TEM)图;
附图3为Ni/NiO-PGC的X-射线粉末衍射(PXRD)图;
附图4为Ni/NiO-PGC的扫描电镜(SEM)图(a),透射电镜(TEM)图(b),高分辨透射电镜(HRTEM)图(c,d),选区电子衍射(SAED)图(e),能量分布面扫描(EDX-Mapping)图(f);
附图5为Ni/NiO-PGC的拉曼光谱图;
附图6为Ni/NiO-PGC的能量色散X射线光谱(EDX)图;
附图7为Ni/NiO-PGC的X射线光电子能谱(XPS)图;
附图8为Ni/NiO-PGC-5%的能量色散X射线光谱(EDX)图;
附图9为Ni/NiO-PGC-5%的X射线光电子能谱(XPS)图;
附图10为NiO-PC的X-射线粉末衍射(PXRD)图;
附图11为NiO-PC的X射线光电子能谱(XPS)图;
附图12为NiO-PC的透射电子显微镜(TEM)图;
附图13为NiO-PC在1.0M KOH中的HER极化曲线图;
附图14为Ni/NiO-PGC在1.0M KOH中的HER极化曲线图(a),塔菲尔斜率图(b),尼奎斯特图(c),双层电容图(d),电流密度为10mA·cm -2时的过电势和过电势为150mV时的电流密度的比较柱状图(e)和计时电位滴定图(f)。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:Ni/NiO-PGC的制备
分别称取29.01(0.10mmol)的六水合硝酸镍和33.20mg(0.20mmol)的对苯二甲酸分别溶于4.5mL N,N-二甲基甲酰胺(DMF)中,溶解后转移至含有聚四氟乙烯内衬的不锈钢反应釜中,再加入3mL去离子水,搅拌形成均匀的溶液,密封后置于烘箱中,在150℃下反应4h,反应结束后自然冷却至室温,经去离子水和乙醇洗涤,于鼓风干燥箱中60℃干燥12h后得到Ni-MOFs前驱物。取60mg Ni-MOFs置于2cm×5cm的瓷舟中并将其放置于管式炉中,在10%的H 2/N 2气流下通气30分钟洗去管式炉中残余空气后开始以10℃/min升温至400℃并保持1h。待煅烧结束冷却至室温后即得到Ni/NiO-PGC样品,其中,Ni代表镍单质,NiO代表氧化镍,PGC代表多孔石墨化碳(porous graphitic carbon)。
图1为Ni-MOFs的X-射线粉末衍射图,从图1中可以看出,Ni-MOFs的粉末衍射图谱(PXRD)与模拟谱图(CCDC no.638866)的峰吻合。
如图2所示,扫描电镜图显示,Ni-MOFs是由多层纳米片堆积而成的组装体。
如图3所示,Ni/NiO-PGC的粉末衍射图谱(PXRD)与Ni标准卡片(PDF#96-210-2279)和NiO的标准卡片(PDF#01-073-1523)吻合。
如图4所示,SEM图(4a)和TEM图(4b)显示Ni/NiO-PGC还保留了Ni-MOFs的整体形貌,可以看到均一的Ni/NiO纳米颗粒物和热解产生的多孔形貌。如图4c所示,对苯二甲酸配体在Ni/NiO颗粒周围热解形成了石墨化的碳。 高分辨透射电镜图(4d)显示了Ni的111晶面对应的0.204nm和002晶面所对应的0.178nm的晶格条纹,以及NiO的111晶面和200晶面分别对应的0.241nm和0.209nm的晶格条纹,这说明了Ni/NiO异质结的形成。如图4e所示,Ni/NiO-PGC的选区电子衍射(SAED)图显示Ni/NiO的结晶性良好,并且所显示的衍射花样与高分辨透射电镜图和PXRD结果相符。如图4f所示,Ni/NiO-PGC中的Ni,O和C分布均匀。
如图5所示,拉曼光谱图中显示了Ni/NiO-PGC中NiO的吸收峰,而位于1327cm -1和1591cm -1处的吸收峰为石墨化碳的D峰和G峰。
如图6所示,Ni和O的比例为2.63,大于1,证明了有部分NiO被还原为Ni。
如图7所示,Ni/NiO-PGC光电子能谱(XPS)显示Ni是0和+2的混合价态,且852.3eV的峰归属于Ni 0的2p 3/2,而853.6eV和855.7eV的峰归属于Ni 2+2p 3/2的多重裂分峰。证明了Ni单质与NiO共存,Ni/NiO异质结界面的存在。
实施例2:Ni/NiO-PGC-5%的制备
取60mg Ni-MOFs置于2cm×5cm的瓷舟中并将其放置于管式炉中,在5%的H 2/N 2气流下通气30分钟洗去管式炉中残余空气后开始以10℃/min升温至400℃并保持2h。待煅烧结束冷却至室温后即得到Ni/NiO-PGC-5%样品。
如图8所示,Ni/NiO-PGC-5%中Ni:O的比例等于1.36,比Ni/NiO-PGC中低,说明在5%H 2N 2气氛下较少的NiO被还原为Ni单质。XPS也显示出Ni 0的结合能峰面积比Ni/NiO-PGC小(图9),与EDX结果一致。
对比例1:NiO-PC的制备
取60mg Ni-MOFs置于2cm×5cm的瓷舟中并将其放置于管式炉中,在非还原气高纯N 2气流下通气30分钟洗去管式炉中残余空气后开始以10℃/min升温至400℃并保持8h。待煅烧结束冷却至室温后即得到NiO-PC样品。其中,NiO为氧化镍,PC代表多孔碳(porous carbon)。
如图10所示,NiO-PC样品的PXRD结果中仅出现NiO特征峰,XPS分析结果也显示仅存在归属于NiO的Ni 2+的峰(图11)。
图12的透射电镜图显示NiO-PC与Ni/NiO-PGC形貌类似,Ni-MOFs整体形貌得到保持,形成NiO颗粒嵌在多孔碳上,更高分辨的TEM图显示NiO-PC中并不存在石墨化的碳。所以NiO-PC表现出较差的HER性能(图13)。
实施例3:碱性电解质中HER性能测试
整个电催化测试都是在标准的三电极体系下进行,将5mg的Ni/NiO-PGC样品分散在485μl的异丙醇中,并加入15μl的0.5wt.%全氟磺酸型聚合物(nafion)溶液,超声均匀后滴加50μl在0.5cm×1cm的碳纸上,烘干后以它作为工作电极,参比电极为Ag/AgCl(饱和氯KCl溶液)电极,辅助电极为铂丝电极。用于线性扫描伏安法(LSV)测试的电解质溶液为1M KOH溶液,电势的扫描范围为-0.8-0V vs RHE,扫描速度为5mV/s,测试的数据都经过了iR的补偿。
如图14(a),(b)和(c)所示,Ni/NiO-PGC表现出了优异的HER电催化性能,在10mA·cm -2的电流密度下,过电势的值仅为31.6mV,塔菲尔斜率也低至73.51mV·dec -1,且具有较小的电化学阻抗,同时具有较大的Cdl值,反映了Ni/NiO-PGC具有较大的电化学活性面积(图14d)。如图14e所示,Ni/NiO-PGC,Ni/NiO-PGC-5%和Pt/C在电流密度为10mA·cm -2的过电势分别为31.6mV,51.6mV和17.6mV,过电势为150mV时的电流密度分别为147.7mA·cm -2,67.26mA·cm -2和189.58mA·cm -2,Ni/NiO-PGC显示出与20%商业Pt/C相近的HER性能。
实施例4:OER稳定性能测试
在标准的三电极体系下(参考实施例3),将参比电极、辅助电极和工作电极插入饱和的1.0M KOH溶液中,进行计时电位测试,测试的电流密度恒定为10mA·cm -2
如图14f所示,在恒电流计时电位测试时,经过65h后,Ni/NiO-PGC的电催化性能没有明显的下降,表现了出色的长期稳定性。
综上,本发明通过溶剂热反应和一步还原热解法即可得到目标产物Ni-NiO纳米异质结多孔石墨碳,工艺十分简单,与现有技术中Ni/NiO异质结材料的制备方法相比,本发明无需预先处理碳纳米结构,生成的Ni/NiO异质结在多孔石墨碳上均匀分布,并且Ni/NiO异质结与碳基质的结合良好。该Ni/NiO-PGC纳米材料在碱性电解质中催化HER反应,表现出了优异的催化性能,并且长期稳定性良好。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,其特征在于,包括以下步骤:
    提供Ni-MOFs前驱体材料;
    将所述Ni-MOFs前驱体材料于还原性气氛下进行煅烧,冷却后得到所述Ni/NiO纳米异质结多孔石墨碳复合材料。
  2. 根据权利要求1所述的一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,其特征在于,所述Ni-MOFs前驱体材料的制备方法为:
    将镍盐、有机配体溶于有机溶剂与水的混合溶剂中,在120~180℃下反应3~12小时,即得到所述Ni-MOFs前驱体材料。
  3. 根据权利要求2所述的一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,其特征在于,所述镍盐为六水合硝酸镍,所述有机配体为对苯二甲酸,所述有机溶剂为N,N-二甲基甲酰胺。
  4. 根据权利要求2所述的一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,其特征在于,所述镍盐与有机配体的摩尔比为2:1~1:2。
  5. 根据权利要求2所述的一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,其特征在于,反应结束后,采用水和乙醇对反应产物进行洗涤,并于40~60℃下干燥2~12h。
  6. 根据权利要求1所述的一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,其特征在于,所使用的还原性气氛为H 2/N 2
  7. 根据权利要求6所述的一种Ni/NiO纳米异质结多孔石墨碳复合材料的制 备方法,其特征在于,所述还原性气氛为5%~10%的H 2/N 2气氛。
  8. 根据权利要求1所述的一种Ni/NiO纳米异质结多孔石墨碳复合材料的制备方法,其特征在于,所述煅烧温度为400-600℃,煅烧时间为30min-12h。
  9. 根据权利要求1-8任一项所述的方法制备的Ni/NiO纳米异质结多孔石墨碳复合材料。
  10. 权利要求9所述的Ni/NiO纳米异质结多孔石墨碳复合材料作为电催化剂在碱性条件下催化氢气析出反应的应用。
PCT/CN2022/079768 2022-02-15 2022-03-08 Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用 WO2023155255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210138633.3A CN114622242B (zh) 2022-02-15 2022-02-15 Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用
CN202210138633.3 2022-02-15

Publications (1)

Publication Number Publication Date
WO2023155255A1 true WO2023155255A1 (zh) 2023-08-24

Family

ID=81898067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079768 WO2023155255A1 (zh) 2022-02-15 2022-03-08 Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114622242B (zh)
WO (1) WO2023155255A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717647A (zh) * 2011-08-05 2014-04-09 国立大学法人京都大学 金属纳米粒子的pcp复合体及其制造方法
CN104640908A (zh) * 2012-09-20 2015-05-20 国立大学法人京都大学 金属纳米粒子复合体及其制造方法
CN110459775A (zh) * 2019-08-12 2019-11-15 苏州大学 无机轻元素掺杂镍基材料及其制备方法与应用
CN111105935A (zh) * 2019-12-31 2020-05-05 苏州阿德旺斯新材料有限公司 一种一维金属氧化物/碳化物复合材料及其制备方法
CN111129468A (zh) * 2019-12-31 2020-05-08 苏州阿德旺斯新材料有限公司 一种一维金属氧化物/碳化物复合材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835343B2 (en) * 2010-09-27 2014-09-16 Uchicago Argonne, Llc Non-platinum group metal electrocatalysts using metal organic framework materials and method of preparation
EP3377444A4 (en) * 2015-11-13 2019-04-03 Robert Bosch GmbH SULFUR CARBON COMPOSITE COMPRISING HIGHLY GRAPHIC CARBON MATERIAL FOR LITHIUM SULFUR BATTERIES AND PROCESS FOR PREPARATION THEREOF
CN107267124B (zh) * 2017-07-03 2020-05-15 中山大学 一种含Ni/Fe双金属的MOFs含氮石墨化碳材料
CN110523422A (zh) * 2019-07-15 2019-12-03 中国科学技术大学 一种高活性、高稳定性IrFe纳米合金复合材料及其制备方法、催化剂、应用
CN112652778B (zh) * 2019-10-10 2022-08-02 华中科技大学 一种石墨烯负载氮掺杂碳纳米管复合材料及其制备和应用
CN111924894B (zh) * 2020-07-03 2022-12-27 东莞东阳光科研发有限公司 高镍三元正极材料及其制备方法
CN112371129B (zh) * 2020-12-01 2022-09-13 宁夏大学 一种用于催化转化愈创木酚的球形MOFs衍生碳包覆镍催化剂的制备方法
CN113198541B (zh) * 2021-05-19 2023-05-26 北京单原子催化科技有限公司 一种MOFs@M1-多酸的单原子位点催化剂、制备及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717647A (zh) * 2011-08-05 2014-04-09 国立大学法人京都大学 金属纳米粒子的pcp复合体及其制造方法
CN104640908A (zh) * 2012-09-20 2015-05-20 国立大学法人京都大学 金属纳米粒子复合体及其制造方法
CN110459775A (zh) * 2019-08-12 2019-11-15 苏州大学 无机轻元素掺杂镍基材料及其制备方法与应用
CN111105935A (zh) * 2019-12-31 2020-05-05 苏州阿德旺斯新材料有限公司 一种一维金属氧化物/碳化物复合材料及其制备方法
CN111129468A (zh) * 2019-12-31 2020-05-08 苏州阿德旺斯新材料有限公司 一种一维金属氧化物/碳化物复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAO YANG, HONG WEIZHAO, LI PEIYING, WANG LIXIN, CHEN GANG: "Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor", APPLIED CATALYSIS B. ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 244, 1 May 2019 (2019-05-01), AMSTERDAM, NL , pages 732 - 739, XP093086054, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2018.11.035 *
LIANG HAO, LI RAN, LI CE, HOU CHENGYI, LI YAOGANG, ZHANG QINGHONG, WANG HONGZHI: "Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism", MATER. HORIZ., vol. 6, no. 3, 18 March 2019 (2019-03-18), pages 571 - 579, XP093086062, ISSN: 2051-6347, DOI: 10.1039/C8MH01091A *
ZHONG YUXUE; CAO XUEYING; YING LIU; CUI LIANG; BARROW COLIN; YANG WENRONG; LIU JINGQUAN: "Homogeneous nickel metal-organic framework microspheres on reduced graphene oxide as novel electrode material for supercapacitors with outstanding performance", JOURNAL OF COLLOID AND INTERFACE SCIENCE, ACADEMIC PRESS,INC., US, vol. 561, 10 October 2019 (2019-10-10), US , pages 265 - 274, XP086038118, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2019.10.023 *

Also Published As

Publication number Publication date
CN114622242A (zh) 2022-06-14
CN114622242B (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
Li et al. Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction
Bai et al. Metal-organic framework-derived Nickel Cobalt oxysulfide nanocages as trifunctional electrocatalysts for high efficiency power to hydrogen
Jayaseelan et al. Co3O4 nanoparticles decorated Polypyrrole/carbon nanocomposite as efficient bi-functional electrocatalyst for electrochemical water splitting
Li et al. Heterostructured MoO2@ MoS2@ Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting
CN109847778B (zh) 一种用于电解水析氧的二硫化钴/碳氮复合材料及其合成方法
CN110252335B (zh) 一种碳包覆镍钌纳米材料及其制备方法和应用
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
Zhang et al. Facile synthesis of Fe–Ni bimetallic N-doped carbon framework for efficient electrochemical hydrogen evolution reaction
Xu et al. Fe-Doped CoP holey nanosheets as bifunctional electrocatalysts for efficient hydrogen and oxygen evolution reactions
Jiao et al. Co0. 5Ni0. 5P nanoparticles embedded in carbon layers for efficient electrochemical water splitting
CN113481534B (zh) 低结晶度的锆掺杂的钴铁层状双氢氧化物的制备方法及其应用于电解水制氢
Ye et al. Reduced graphene oxide supporting hollow bimetallic phosphide nanoparticle hybrids for electrocatalytic oxygen evolution
Bao et al. Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction
Chen et al. Fabrication of carbon nanotubes encapsulated cobalt phosphide on graphene: cobalt promoted hydrogen evolution reaction performance
Feng et al. Heterostructured CoO/Co3O4 nanowire array on Titanium mesh as efficient electrocatalysts for hydrogen evolution reaction
Chen et al. Spatial confinement of partially oxidized RuCo alloys in N-doped carbon frameworks for highly efficient oxygen evolution electrocatalysis under acidic conditions
Gu et al. Cobalt fluoride/nitrogen-doped carbon derived from ZIF-67 for oxygen evolution reaction
Kim et al. Zeolitic imidazolate frameworks derived novel polyhedral shaped hollow Co-BO@ Co3O4 electrocatalyst for oxygen evolution reaction
Pan et al. Carbon-encapsulated Co3V decorated Co2VO4 nanosheets for enhanced urea oxidation and hydrogen evolution reaction
Xu et al. MOFs derived NiFeP porous nanoflowers for boosted electrocatalytic water splitting
Liu et al. Highly purified dicobalt phosphide nanodendrites on exfoliated graphene: In situ synthesis and as robust bifunctional electrocatalysts for overall water splitting
Fu et al. Fe2O3 and Co bimetallic decorated nitrogen doped graphene nanomaterial for effective electrochemical water split hydrogen evolution reaction
Xiao et al. Co-Mn-S nanosheets decorated with CeO2: a highly active electrocatalyst toward oxygen evolution reaction
Liu et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting
Chen et al. Improving oxygen evolution reaction activity by constructing core-shell structure of Co/N-doped carbon polyhedron@ NiCo layered double hydroxides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926573

Country of ref document: EP

Kind code of ref document: A1