WO2023155229A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2023155229A1
WO2023155229A1 PCT/CN2022/077885 CN2022077885W WO2023155229A1 WO 2023155229 A1 WO2023155229 A1 WO 2023155229A1 CN 2022077885 W CN2022077885 W CN 2022077885W WO 2023155229 A1 WO2023155229 A1 WO 2023155229A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
groove
display panel
printing
layer
Prior art date
Application number
PCT/CN2022/077885
Other languages
English (en)
French (fr)
Inventor
潘洪英
覃事建
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/754,289 priority Critical patent/US20240057389A1/en
Publication of WO2023155229A1 publication Critical patent/WO2023155229A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a manufacturing method thereof.
  • the preparation methods of the light-emitting functional layer of the OLED display device generally include vacuum thermal evaporation and ink-jet printing (Ink-jet Print, IJP).
  • IJP Ink-jet Print
  • IJP technology has many advantages such as material saving, mild process conditions, and more uniform film formation compared with traditional vacuum thermal evaporation, so it has more application potential.
  • IJP technology is to directly drop-coat the ink dissolved in OLED materials into the pre-made pixel definition layer, and form the required pattern after the solvent evaporates.
  • the pixel definition layer includes dams and a plurality of printing grooves arranged in an array surrounded by the dams, and the printing grooves are used to confine the ink, and after drying and baking, the ink shrinks in the printing grooves thin film is formed in the range.
  • the pixel design becomes smaller and smaller, which corresponds to higher and higher requirements for inkjet printing accuracy, and it becomes more and more difficult to control the printing accuracy and ink droplet volume.
  • the ink volume in the printing groove may be too large, which may cause the ink in two adjacent printing grooves to flow in the embankment. Bridging occurs on the display device, which in turn causes mura on the display device.
  • the present application provides a new display panel and a manufacturing method thereof, so as to avoid bridging of inks in adjacent printing grooves on dams during the manufacturing process.
  • a display panel comprising:
  • the light-emitting structure layer is arranged on one side of the substrate, including:
  • the pixel definition layer is arranged on one side of the substrate and includes a plurality of intersecting dams, and the dams surround and form a plurality of printing grooves arranged in an array;
  • a light-emitting functional layer is arranged in the printing groove
  • At least one diversion groove is provided on each of the dams, and the diversion groove has an opening on the side surface of the dam facing away from the substrate, and the extension direction of the diversion groove is the same as that of the corresponding said dam.
  • the extending directions of the guide grooves are the same, and the plurality of guide grooves are conducted at mutual intersections.
  • a method of manufacturing a display panel comprising:
  • Photoetching the first photoresist layer to obtain a pixel definition layer wherein the pixel definition layer includes a plurality of intersecting dams, and the dams surround and form a plurality of printing grooves arranged in an array, each of which At least one diversion groove is formed on the dam, the diversion groove has an opening on the surface of the dam facing away from the substrate, the extension direction of the diversion groove is the same as the extension direction corresponding to the dam, and The plurality of diversion grooves are conducted at intersections; and
  • the guide groove is used to guide excess ink overflowing from the printing groove.
  • the beneficial effects of the present application are: the display panel and the manufacturing method thereof of the present application are provided with diversion grooves that communicate with each other on the dam, and when the volume of ink in a single printing groove is too large, the ink overflows to all When the embankment is on the dam, the ink will flow into the guide groove, that is, the excess ink that overflows will be guided away by the guide groove instead of overflowing into the adjacent printing groove, thereby preventing Two different inks in the adjacent printing grooves cause poor display due to bridging.
  • FIG. 1 is a schematic structural diagram of a display panel in an embodiment of the present application.
  • FIG. 2 is a schematic plan view of the pixel definition layer shown in FIG. 1 .
  • 3A to 3F are schematic cross-sectional views of the pixel definition layer shown in FIG. 2 along line A-A or B-B in different embodiments.
  • FIG. 4 is a flow chart of manufacturing the display panel shown in the embodiment of the present application.
  • 5 to 13 are structural schematic diagrams of the display panel shown in the embodiment of the present application during the manufacturing process.
  • Display panel 100 substrate 10; substrate 11; driving circuit layer 12; light emitting structure layer 20; first electrode layer 21; pixel definition layer 22; light emitting function layer 23; second electrode layer 24; embankment 220; The first subsection 2201; the second subsection 2202; the printing groove 221; the inner wall 2210; the first annular side wall 2211; the second annular side wall 2212; 30; the first photoresist layer P1; the second photoresist layer P2; printing ink Ink.
  • the present application provides a display panel 100 .
  • the display panel 100 includes a substrate 10 , a light emitting structure layer 20 and an encapsulation layer 30 .
  • the substrate 10 at least includes a substrate 11 and a driving circuit layer 12 disposed on one side of the substrate 11 .
  • the light emitting structure layer 20 is disposed on one side of the substrate 10 , specifically, the light emitting structure layer 20 is disposed on the side of the driving circuit layer 12 facing away from the substrate 11 , and is connected to the driving circuit layer 12 Electrically connected to realize the light emitting function.
  • the encapsulation layer 30 covers the light emitting structure layer 20 to protect the light emitting structure layer 20 .
  • FIG. 1 is only a schematic structural view of a display panel 100 shown in one embodiment of the present application.
  • the substrate 10 may also include other functional layers, such as a light-shielding layer, Wait, no limit here.
  • the light emitting structure layer 20 includes a first electrode layer 21 , a pixel definition layer 22 , a light emitting functional layer 23 and a second electrode layer 24 .
  • the pixel definition layer 22 is disposed on one side of the substrate 10 and includes a plurality of intersecting dams 220 , and the dams 220 surround and form a plurality of printing grooves 221 arranged in an array.
  • the light-emitting functional layer 23 is disposed in the printing groove 221 to form a plurality of sub-pixel units.
  • the first electrode layer 21 is arranged between the light-emitting functional layer 23 and the substrate 10, that is, the pixel definition layer 22 is arranged on the substrate 10 and the first electrode layer 21, and the printing
  • the groove 221 corresponds to the first electrode layer 21
  • the light emitting functional layer 23 is located on the first electrode layer 21 .
  • the first electrode layer 21 is provided on the side of the driving circuit layer 12 facing away from the substrate 11, and the pixel definition layer 22 is provided on the driving circuit layer 12 and the first electrode layer. 21 facing away from the side of the substrate 11 .
  • the first electrode layer 21 is an anode layer
  • the second electrode layer 24 is a cathode layer.
  • the specific structure (not shown) of the driving circuit layer 12 can adopt the structure in the prior art, including at least a gate metal layer, a gate insulating layer, a source-drain metal layer and an interlayer insulating layer.
  • the first electrode layer 21 is formed on the interlayer insulating layer and electrically connected to the source-drain metal layer.
  • the specific structure of the driving circuit layer 12 may also include other functional layers than the above, which is not limited here.
  • the material of the luminescent functional layer 23 is printing ink added with a luminescent functional material, and the printing ink is drip-coated into the printing groove 221 by IJP technology, and the required sub-pixels of the luminescent functional layer 23 are formed after the solvent is volatilized. .
  • Each of the dams 220 is provided with at least one diversion groove 222, and the diversion groove 222 has an opening on the side surface of the dam 220 facing away from the substrate 10, that is, the diversion groove 222 is formed from the corresponding
  • the side surface of the dam 220 facing away from the substrate 10 (that is, the platform surface of the dam 220) is formed by inward depression.
  • the surface of the side of the dam 220 facing away from the substrate 10 is defined as Platform surface 2200.
  • the extension direction of the diversion grooves 222 is the same as the extension direction of the corresponding dam 220, and a plurality of the diversion grooves 222 are connected at mutual intersections, thereby forming a whole through network, which is convenient for printing the Drainage of overflowing ink when the light-emitting functional layer 23 is used.
  • the present application does not limit the number of diversion grooves 222 provided on each embankment 220, which may be one as shown in Figures 1 and 2, or two, three, etc. , mainly depends on the process and actual needs.
  • the present application does not limit the cross-sectional shape of the diversion groove 222, which may be an inverted trapezoid as shown in FIG. 1, or a rectangle as shown in FIG. 3A, or other regular geometries not listed.
  • Graphic or irregular geometry mainly depends on the process and actual needs.
  • the extension direction of the flow guide groove 222 as the first direction, and define The direction is the second direction; define the width of the diversion groove 222 at the opening as a, and the width of the side of the dam 220 corresponding to the diversion groove 222 facing away from the substrate 10 (total width, including the opening
  • the width a) is b, that is, the width of the diversion groove 222 at the opening corresponding to the second direction is a, and the side of the dam 220 facing away from the substrate 10 is in the second direction has a width of b.
  • a:b can be equal to 1/4, or 4/15, and so on. It can be understood that the width b of different dams 220 may be the same or different, depending on actual requirements; similarly, the width a of different diversion grooves 222 may be the same or different.
  • the depth of the guide groove 222 is smaller than the depth of the printing groove 221, that is, the guide groove 222 does not penetrate the bank 220, so, in the process of drying the ink, because the guide The ink in the flow channel 222 is not in contact with the first electrode layer 21 and does not emit light by itself, so the ink drying in the flow guide channel 222 will not affect the display of the panel.
  • the distance between the bottom of the flow guiding groove 222 and the first electrode 21 is greater than 100 nm.
  • the diversion grooves 222 connected to each other on the dam 220 , when the volume of ink in a single printing groove 221 is too large and the ink overflows onto the dam 220 , the ink will flow into the guide groove 222, that is, the excess ink that overflows will be guided away by the guide groove 222, and will not overflow into the adjacent printing groove 221, thereby preventing the adjacent printing grooves from The bridging of the two different inks in the printing groove 221 causes poor display.
  • 3A to 3F show cross-sectional schematic diagrams of the dams 220 of the pixel definition layer 22 in different embodiments of the present application.
  • the side surface of the dam 220 facing away from the substrate 10 can be a plane, or an arched surface that protrudes away from the substrate 10 , as shown in Figure 3A to Figure 3F.
  • each of the embankments 220 includes a first subsection 2201 and a second subsection 2202 separated by the diversion groove 222 .
  • the surface of the first subsection 2201 facing away from the substrate 10 is a plane or an arched surface facing away from the substrate 10
  • the surface of the second subsection 2202 facing away from the substrate 10 is A plane or an arched surface that is convex away from the base plate 10 .
  • the surface of the side of the dam 220 facing away from the substrate 10 is flat, which is conducive to manufacturing design, and can save the process compared with the design of the arch surface; the side of the dam 220 facing away from the substrate 10
  • the side surface is an arched surface that protrudes away from the substrate 10.
  • the distance between the apex on the side of the first subsection 2201 of the dam 220 facing away from the substrate 10 and the apex of the substrate 10 is the same as the distance between the apex on the side of the second subsection 2202 of the dam 220 facing away from the apex of the substrate 10
  • the distance from the substrate 10 may be the same, as shown in FIGS. 3A to 3C , or different, as shown in FIGS. 3D to 3F .
  • FIG. 3A to FIG. 3F only show a partial combination embodiment of the structural features of the embankment 220 , and other combinations that are not shown but conform to the above description are also within the protection scope of the present application.
  • the inner wall 2210 of the printing groove 221 includes a first annular side wall 2211 and a second annular side wall 2212 .
  • the first annular side wall 2211 is close to the substrate 10 and has a hydrophilic surface
  • the second annular side wall 2212 is far away from the substrate 10 and has a hydrophobic surface, that is, the first annular side wall
  • the surface material of 2211 is a hydrophilic material
  • the surface material of the second annular side wall 2212 is a hydrophobic material.
  • first annular side wall 2211 and the second annular side wall 2212 are only hydrophilicity and hydrophobicity, which cannot be seen from the external structure, therefore, in the illustration There is no clear boundary distinction between the first annular side wall 2211 and the second annular side wall 2212 .
  • the ink used in inkjet printing is an organic material dissolved in a lipid or alcohol solvent, which has two properties of water and oil, and in the manufacturing process, the ink needs to be processed Dry, the dried ink is spread evenly on the substrate 10 .
  • the hydrophilicity of the material means that the ink can have a smaller contact angle on it and it is easy to level; the hydrophobicity of the material means that the ink will have a large contact angle on the material and it is not easy to spread. Therefore, only hydrophilic materials can make the ink dry on the material to maintain the uniformity of the film thickness. When the ink dries on the hydrophobic material, it will form protrusions, which seriously affects the uniformity of the film thickness.
  • the surface of the printing groove 221 close to the first annular side wall 2211 of the substrate 10 is hydrophilic, so that the printing ink can spread rapidly in the printing groove 221 , and is conducive to maintaining the uniformity of film thickness after drying.
  • the surface of the printing groove 221 away from the second annular side wall 2212 of the substrate 10 has hydrophobicity, so that the accumulation of printing ink in the printing groove 221 is enhanced. The effect, to a certain extent, improves the bad phenomenon of ink bridging.
  • the surface of the dam 220 facing away from the substrate 10 is hydrophobic. That is, the surface material of the side of the dam 220 facing away from the substrate 10 is a hydrophobic material.
  • the ink in the printing groove 221 overflows, the ink has a large contact angle with the surface of the dam 220 facing away from the substrate 10, so that it will not overflow quickly and avoid overflow.
  • the ink overflows into the adjacent printing groove 221 due to the fast flow rate, which improves the bad phenomenon of ink bridging to a certain extent.
  • the inner wall surface 2221 and the inner bottom surface 2222 of the guide groove 222 are all hydrophilic. That is, the surface materials of the inner wall and the inner bottom of the diversion groove 222 are both hydrophilic materials.
  • the ink in the printing groove 221 overflows, the ink overflows the surface of the embankment 220 facing away from the substrate 10 and then immediately levels off in the guide groove 222, Avoiding the overflow ink from overflowing into the adjacent printing groove 221 further improves the bad phenomenon of ink bridging.
  • the dam 220 uses a hydrophilic photoresist material.
  • the hydrophilic photoresist material is mixed with a resin, a photosensitive agent and a solvent, and a hydrophilic group is added to the resin.
  • the hydrophilic group here can be an ether bond composed of an oxygen-containing group, a hydroxyl group and a carboxylate, a block polyether, etc., and there is no specific limitation, as long as the basic functions can be satisfied.
  • the second annular sidewall 2212 is subjected to plasma surface treatment containing fluorine ions or fluorine-containing groups. Ions or fluorine-containing groups will bombard the surface of the photoresist material during plasma surface treatment. At this time, the process of breaking old bonds and forming new bonds on the surface of the photoresist will cause the fluorine-containing groups or fluorine ions to form bonds with the photoresist. Yes, in this way, there are fluoride ions or fluorine groups on the surface of the second annular side wall 2212, showing hydrophobic and oleophobic properties, that is, hydrophobic properties.
  • the embankment 220 can also be made of other alternative materials, as long as the final requirement can be met.
  • the material of the dam 220 can also be made of hydrophobic material, and then a part of the surface can be made hydrophilic through surface treatment, and such a method is also within the protection scope of the present application.
  • the present application also provides a method for manufacturing the above-mentioned display panel 100, the method at least includes the following steps:
  • the pixel definition layer includes a plurality of intersecting dams, and the dams surround and form a plurality of printing grooves arranged in an array, each At least one diversion groove is formed on the dam, and the diversion groove has an opening on the surface of the dam facing away from the base plate, and the extension direction of the diversion groove is the same as that corresponding to the extension direction of the dam , and the plurality of diversion grooves are conducted at mutual intersections;
  • a substrate 10 is provided.
  • the substrate 10 is a substrate that has undergone a previous process and at least includes a substrate 11 and a driving circuit layer 12 disposed on one side of the substrate 11 .
  • a first photoresist layer P1 is coated on the substrate 10 . It can be understood that, before the step S2, the fabrication method includes fabricating a patterned first electrode layer 21 on the substrate 10 .
  • the specific structure (not shown in the figure) of the driving circuit layer 12 may adopt a structure in the prior art, including at least a gate metal layer, a gate insulating layer, a source-drain metal layer and an interlayer insulating layer.
  • the first electrode layer 21 is formed on the interlayer insulating layer and electrically connected to the source-drain metal layer.
  • the specific structure of the driving circuit layer 12 may also include other functional layers than the above, which is not limited here.
  • the first photoresist layer P1 is photolithographically etched to obtain the pixel definition layer 22, wherein the pixel definition layer 22 includes a plurality of intersecting dams 220, and the dams 220 surround A plurality of printing grooves 221 arranged in an array are formed, and at least one diversion groove 222 is formed on each of the dams 220, and the diversion groove 222 has a
  • the opening, that is, the diversion groove 222 is formed by inward depression from the side surface corresponding to the dam 220 facing away from the substrate 10 , the extension direction of the diversion groove 222 is the same as the extension direction corresponding to the dam 220 , Moreover, the plurality of flow guide grooves 222 are connected at mutual intersections.
  • the photolithography when photoetching the first photoresist layer P1 to form the pixel definition layer 22 , the photolithography is completed through a photomask etching process.
  • the photolithography may be a half-tone mask etching process, or a grayscale mask etching process. It can be understood that, according to the actual production environment, the aforementioned one photomask etching process can also be divided into two photomask etching processes to complete, for example, the first photomask etching process is used to complete the patterning of the printing groove 221. etch, and then complete the patterned etching of the guide groove 222 through the second mask etching process.
  • the number, structure and size of the dam 220, the printing groove 221 and the flow guide groove 222 need to be designed in advance.
  • the dam 220 , the number, structure and size of the printing grooves 221 and the guide grooves 222 are as described above for the structure of the display panel 100 , and will not be repeated here.
  • step S4 the printing ink Ink added with luminescent functional material is provided and printed in the printing groove 221 to form the luminescent functional layer 23 .
  • the manufacturing process first use the IJP technology to drop-coat the printing ink Ink into the printing groove 221, and during the dispensing process, the printing ink Ink overflowing the printing groove 221 flows into the guide In the flow tank 222 , as shown in FIG. 11 ; then, the printing ink Ink in the printing groove 221 is dried to form the light-emitting functional layer 23 .
  • the solvent of the printing ink Ink flowing into the flow guide groove 222 will also be evaporated, but because the printing ink Ink in the flow guide groove 222 is not connected with the first electrode
  • the layers 21 are in contact with each other, and they themselves do not emit light, so the drying of the printing ink Ink in the flow guiding groove 222 will not affect the display of the panel.
  • the manufacturing method further includes: forming a second electrode layer 24 on the pixel definition layer 22 and the light-emitting functional layer 23, and forming a second electrode layer 24 on the second electrode layer 24
  • An encapsulation layer 30 is formed thereon.
  • the second electrode layer 24 is deposited on the pixel definition layer 22, on the light-emitting functional layer 23, and in the flow guide groove 222, and the encapsulation layer 30 fills up the flow guide groove 222 .
  • the ink used in inkjet printing is an organic material dissolved in a lipid or alcohol solvent, which has two properties of water and oil, and in the manufacturing process, the ink needs to be processed Dry, the dried ink is spread evenly on the substrate 10 .
  • the hydrophilicity of the material means that the ink can have a smaller contact angle on it and it is easy to level; the hydrophobicity of the material means that the ink will have a large contact angle on the material and it is not easy to spread. Therefore, only hydrophilic materials can make the ink dry on the material to maintain the uniformity of the film thickness. When the ink dries on the hydrophobic material, it will form protrusions, which seriously affects the uniformity of the film thickness.
  • the first photoresist P1 adopts a hydrophilic photoresist material. Therefore, the surface of the printing groove 221 close to the first annular side wall 2211 of the substrate 10 has hydrophilicity, so that the printing ink can spread quickly in the printing groove 221, which is beneficial to Maintains uniformity of film thickness after drying.
  • the inner wall surface 2221 and the inner bottom surface 2222 of the guide groove 222 are all hydrophilic, and when the ink in the printing groove 221 overflows, the ink overflows the dam 220 and faces away from the The surface on one side of the substrate 10 is then leveled instantly in the guide groove 222 to prevent the overflow ink from overflowing into the adjacent printing groove 221 and further improve the bad phenomenon of ink bridging.
  • this embodiment further includes steps after the step S3 and before the step S4:
  • S303 please refer to FIG. 10 , perform plasma surface treatment with fluorine-containing ions or fluorine-containing groups on the surface of the side of the dam 220 facing away from the substrate 10 and the surface of the second annular sidewall 2212, so that is hydrophobic;
  • step S301 to step S304 above is carried out before the inkjet printing in step S4, so that the surface of the printing groove 221 away from the second annular side wall 2212 of the substrate 10 is hydrophobic after surface treatment. It enhances the accumulation effect of printing ink in the printing groove 221, and improves the bad phenomenon of ink bridging to a certain extent.
  • the surface of the dam 220 facing away from the substrate 10 that is, the platform surface 2200 ) is also hydrophobic after surface treatment.
  • the ink in the printing groove 221 When the ink in the printing groove 221 overflows, the ink It has a large contact angle with the surface of the dam 220 facing away from the substrate 10, so it will not overflow quickly, and avoid overflowing ink from overflowing into the adjacent printing groove 221 due to too fast flow rate. To a certain extent, the bad phenomenon of ink bridging has been improved.
  • the embankment 220 can also be made of other alternative materials, as long as the final requirement can be met.
  • the material of the dam 220 can also be made of hydrophobic material, and then a part of the surface can be made hydrophilic through surface treatment, and such a method is also within the protection scope of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(100)及其制作方法,显示面板(100)包括基板(10)和发光结构层(20),发光结构层(20)包括像素定义层(22)和发光功能层(23),像素定义层(22)包括多条交叉设置的堤坝(220),堤坝(220)围设形成打印凹槽(221);发光功能层(23)设于打印凹槽(221)内;每一堤坝(220)上设有至少一条导流槽(222),导流槽(222)的延伸方向与对应堤坝(220)的延伸方向相同,且多条导流槽(222)在相互交叉处导通。

Description

显示面板及其制作方法 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及其制作方法。
背景技术
OLED显示装置的发光功能层的制备方式通常包括真空热蒸镀与喷墨打印(Ink-jet Print,IJP)两种。其中,IJP技术在OLED显示器件有机功能层的制备中,相比于传统的真空热蒸镀具有节省材料,制程条件温和、成膜更均匀等诸多优点,所以更具应用潜力。
IJP技术是将溶有OLED材料的墨水直接滴涂到预先制作好的像素定义层中,待溶剂挥发后形成所需图案。所述像素定义层包括堤坝、以及由堤坝围拢成的多个阵列排布的打印凹槽,所述打印凹槽由用来限制住墨水,通过干燥烘烤后,墨水收缩在该打印凹槽限制的范围内形成薄膜。
然而,随着显示面板的分辨率提高,像素设计也越来越小,这就对应喷墨打印的精度要求越来越高,打印的精度及墨滴量越来越难控制。在喷墨打印的过程中,可能会由于各种外在因素,如喷嘴稳定性变差,导致打印凹槽中墨水体积过大的现象,从而引起相邻两个打印凹槽中的墨水在堤坝上发生桥接,进而造成显示装置出现显示不良(mura)。
技术问题
本申请提供一种新的显示面板及其制作方法,以避免在制作过程中相邻打印凹槽中的墨水在堤坝上发生桥接。
技术解决方案
本申请提供的技术方案如下:
一种显示面板,所述显示面板包括:
基板;以及
发光结构层,设于所述基板的一侧,包括:
像素定义层,设于所述基板一侧,包括多条交叉设置的堤坝,所述堤坝围设形成多个呈阵列排布的打印凹槽;以及
发光功能层,设于所述打印凹槽内;
其中,每一所述堤坝上设有至少一条导流槽,所述导流槽在所述堤坝背向所述基板的一侧表面具有开口,所述导流槽的延伸方向与对应所述堤坝的延伸方向相同,且多条所述导流槽在相互交叉处导通。
一种显示面板的制造方法,包括:
提供一基板;
在所述基板上涂布第一光阻层;
光刻所述第一光阻层以得到像素定义层,其中,所述像素定义层包括多条交叉设置的堤坝,所述堤坝围设形成多个呈阵列排布的打印凹槽,每一所述堤坝上形成至少一条导流槽,所述导流槽在所述堤坝背向所述基板的一侧表面具有开口,所述导流槽的延伸方向与对应所述堤坝的延伸方向相同,且多条所述导流槽在交叉处导通;以及
提供添加发光功能材料的打印墨水并将打印墨水打印于所述打印凹槽内以形成发光功能层;
其中,所述导流槽用于导流从所述打印凹槽内溢出的多余墨水。
有益效果
本申请的有益效果为:本申请的所述显示面板及其制作方法通过在所述堤坝上设置相互贯通的导流槽,当单个所述打印凹槽内的墨水体积过大,墨水漫溢到所述堤坝上时,墨水就会流入所述导流槽内,即,溢出的多余墨水会被所述导流槽导流走,而不会溢流到相邻所述打印凹槽内,从而防止相邻所述打印凹槽内两种不同的墨水因发生桥接而引起显示不良。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例中的显示面板的结构示意图。
图2是图1中所示像素定义层的平面示意图。
图3A至图3F是图2中所示像素定义层在不同实施例中沿线A-A或B-B的剖面示意图。
图4是本申请实施例中所示显示面板的制作流程图。
图5至图13是本申请实施例中所示显示面板在制作过程中的结构示意图。
附图标记说明:
显示面板100;基板10;衬底11;驱动电路层12;发光结构层20;第一电极层21;像素定义层22;发光功能层23;第二电极层24;堤坝220;平台面2200;第一分部2201;第二分部2202;打印凹槽221;内壁2210;第一环形侧壁2211;第二环形侧壁2212;导流槽222;内壁表面2221;内底表面2222;封装层30;第一光阻层P1;第二光阻层P2;打印墨水Ink。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施例仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
下面对本申请提供的所述显示面板的具体实施例进行说明。
请参见图1和图2,本申请提供一种显示面板100。所述显示面板100包括基板10、发光结构层20和封装层30。所述基板10至少包括衬底11和设于所述衬底11一侧的驱动电路层12。所述发光结构层20设于所述基板10的一侧,具体地,所述发光结构层20设于所述驱动电路层12背向所述衬底11的一侧,且与驱动电路层12电性连接,以实现发光功能。所述封装层30覆盖所述发光结构层20,以保护所述发光结构层20。可以理解地,图1仅是本申请的其中一个实施例中所示显示面板100的结构示意图,根据实际需求,在其他实施例中,所述基板10还可以包括其它功能层,如遮光层,等等,此处不做限制。
所述发光结构层20包括第一电极层21、像素定义层22、发光功能层23和第二电极层24。所述像素定义层22设于所述基板10的一侧,且包括多条交叉设置的堤坝220,所述堤坝220围设形成多个呈阵列排布的打印凹槽221。所述发光功能层23设于所述打印凹槽221内,以形成多个子像素单元。所述第一电极层21设于所述发光功能层23和所述基板10之间,即,所述像素定义层22设于所述基板10和所述第一电极层21上,所述打印凹槽221对应所述第一电极层21,所述发光功能层23位于所述第一电极层21上。具体地,所述第一电极层21设于所述驱动电路层12背向所述衬底11的一侧,所述像素定义层22设于所述驱动电路层12和所述第一电极层21背向所述衬底11的一侧。具体地,所述第一电极层21为阳极层,所述第二电极层24为阴极层。
所述驱动电路层12的具体结构(图未示)可采用现有技术中的结构,至少包括栅极金属层、栅极绝缘层、源漏极金属层和层间绝缘层。所述第一电极层21形成于该层间绝缘层上并与该源漏极金属层电性连接。所述驱动电路层12只要能够满足其基本功能即可,其具体结构的位置关系在此处不赘述。可以理解地,在其它实施例中,根据实际需求,所述驱动电路层12的具体结构还可包括上述之外的其他功能层,此处不做限制。
所述发光功能层23的材料为添加发光功能材料的打印墨水,该打印墨水通过IJP技术滴涂到所述打印凹槽221内,待溶剂挥发后形成所需所述发光功能层23的子像素。
每一所述堤坝220上设有至少一条导流槽222,所述导流槽222在所述堤坝220背向所述基板10的一侧表面具有开口,即所述导流槽222自对应所述堤坝220背向所述基板10的一侧表面(即,所述堤坝220的平台面)向内凹陷形成,为方便后续说明,定义所述堤坝220背向所述基板10的一侧表面为平台面2200。同时,所述导流槽222的延伸方向与对应所述堤坝220的延伸方向相同,且多条所述导流槽222在相互交叉处导通,进而形成一整个贯通网,方便在打印所述发光功能层23时外溢墨水的引流。
具体地,本申请对每一所述堤坝220上设置的所述导流槽222的数量不做限制,其可以是如图1和图2所示的一条,也可以是两条、三条等等,主要取决于制程和实际需求。
具体地,本申请对所述导流槽222的截面形状不做限制,其可以是如图1所示的倒梯形,也可以如图3A所示的矩形,还可以其未列举的其它规则几何图形或不规则几何图形,主要取决于制程和实际需求。
具体地,在垂直于所述显示面板100的厚度方向的平面内,如图2所示平面,定义所述导流槽222的延伸方向为第一方向,定义垂直于对应所述第一方向的方向为第二方向;定义所述导流槽222在开口处的宽度为a,所述导流槽222对应的所述堤坝220背向所述基板10的一侧的宽度(总宽度,包括开口宽度a)为b,即,所述导流槽222在对应所述第二方向上的开口处的宽度为a,所述堤坝220背向所述基板10的一侧在所述第二方向上的宽度为b。在本申请中,优选地,1/5≤a/b≤1/3,如此可以同时保证所述导流槽222的导流功能和所述堤坝220本身的功能。具体地,a:b可以等于1/4,也可以等于4/15,等等。可以理解地,不同的所述堤坝220的宽度b可以相同,也可以不同,以实际需求为准;同样的,不同的所述导流槽222的宽度a可以相同,也可以不同。
具体地,所述导流槽222的深度小于所述打印凹槽221的深度,即,所述导流槽222并未贯穿所述堤坝220,如此,在干燥墨水的制程中,因为所述导流槽222内的墨水没有与所述第一电极层21相接触,其自身也不会发光,所以墨水干燥在所述导流槽222内不会影响面板的显示。优选地,在所述显示面板100的厚度方向上,所述导流槽222的底部与所述第一电极21之间的距离大于100nm。
本申请的所述显示面板100通过在所述堤坝220上设置相互贯通的导流槽222,当单个所述打印凹槽221内的墨水体积过大,墨水漫溢到所述堤坝220上时,墨水就会流入所述导流槽222内,即,溢出的多余墨水会被所述导流槽222导流走,而不会溢流到相邻所述打印凹槽221内,从而防止相邻所述打印凹槽221内两种不同的墨水因发生桥接而引起显示不良。
图3A至图3F示出了本申请的所述像素定义层22的所述堤坝220在不同实施例中的剖面示意图。
优选地,在一些实施例中,所述堤坝220的背向所述基板10的一侧表面,即所述平台面2200,可以是平面,也可以是背向所述基板10外凸的拱面,如图3A至图3F所示。
具体地,每一所述堤坝220包括被所述导流槽222分隔的第一分部2201和第二分部2202。所述第一分部2201背向所述基板10的一侧表面为平面或背向所述基板10外凸的拱面,所述第二分部2202背向所述基板10的一侧表面为平面或背向所述基板10外凸的拱面。可以理解地,所述堤坝220的背向所述基板10的一侧表面为平面,有利于制作设计,相较于拱面设计可以节省制程;所述堤坝220的背向所述基板10的一侧表面为背向所述基板10外凸的拱面,因拱面的设计,当所述打印凹槽221内墨水发生溢流时,因爬坡和下坡设计,增加了墨水外溢的难度且增加了墨水外溢之后流入所述导流槽222的容易程度,在一定程度上改善了墨水桥接的不良现象。
具体地,所述堤坝220的第一分部2201背向所述基板10一侧顶点和所述基板10之间距离与所述堤坝220的第二分部2202背向所述基板10一侧顶点和所述基板10之间距离可以相同,如图3A至图3C所示,也可以不同,如图3D至图3F所示。
可以理解地,图3A至图3F仅示出了所述堤坝220的结构特征的部分组合实施例,其它未示出的但是符合以上描述的组合也在本申请的保护范围内。
请再次参见图1,优选地,在一些实施例中,所述打印凹槽221的内壁2210包括相接的第一环形侧壁2211和第二环形侧壁2212。所述第一环形侧壁2211靠近所述基板10且其表面具备亲水性,所述第二环形侧壁2212远离所述基板10且其表面具备疏水性,即,所述第一环形侧壁2211的表面材料为亲水性材料,所述第二环形侧壁2212的表面材料为疏水性材料。需要说明的是,因为所述第一环形侧壁2211和所述第二环形侧壁2212的表面区别仅在于亲水性和疏水性,其外在表现结构上看不出来,因此,图示中并未对所述第一环形侧壁2211和所述第二环形侧壁2212的作明显的界限区分。
众所周知,在现有的OLED显示器件中,喷墨打印使用的墨水是有机材料溶解在脂类或者醇类的溶剂中,有水性和油性两种属性,且在制成工艺中,墨水是需要进行干燥的,干燥后的墨水要在所述基板10上均匀铺展。材料具有亲水性就代表墨水可以在其上有更小的接触角,容易流平;材料具有疏水性就代表墨水在该材料上时会具有大的接触角,不易铺展。因此,只有亲水性的材料才可以使得墨水在材料上方干燥后保持膜厚的均一性,墨水在疏水性的材料上干燥,会形成突起,严重影响膜厚均匀性。
在本实施例中,所述打印凹槽221靠近所述基板10的所述第一环形侧壁2211的表面具备亲水性,如此,打印墨水可以在所述打印凹槽221内快速的铺展开,且有利于在干燥后保持膜厚的均一性。同时,在本实施例中,所述打印凹槽221远离所述基板10的所述第二环形侧壁2212的表面具备疏水性,如此,增强了打印墨水在所述打印凹槽221内的堆积效果,在一定程度上改善了墨水桥接的不良现象。
优选地,在一些实施例中,所述堤坝220背向所述基板10一侧的表面(即,所述平台面2200)具备疏水性。即,所述堤坝220背向所述基板10一侧的表面材料为疏水性材料。如此设计,当所述打印凹槽221内的墨水发生溢流时,墨水与所述堤坝220背向所述基板10一侧的表面具有大的接触角,不会快速溢流,避免了溢流墨水因流速过快满溢至相邻所述打印凹槽221内,在一定程度上改善了墨水桥接的不良现象。
优选地,在一些实施例中,所述导流槽222的内壁表面2221和内底表面2222全部具备亲水性。即,所述导流槽222的内壁和内底的表面材料均为亲水性材料。如此设计,当所述打印凹槽221内的墨水发生溢流时,墨水满溢过所述堤坝220背向所述基板10一侧的表面后在所述导流槽222内瞬速流平,避免溢流墨水溢至相邻所述打印凹槽221内,进一步改善了墨水桥接的不良现象。
为了实现上述的亲水和疏水性设计,在一个实施例中,所述堤坝220采用亲水性的光阻材料。该亲水性的光阻材料为树脂,感光剂和溶剂混合而成,并且在该树脂中是添加了亲水基团。这里的亲水基团可以是含氧基团组成的醚键和羟基与羧酸酯、嵌段聚醚等,具体不做限制,只要能够满足基本功能即可。另外,在制作过程中,为了实现所述第二环形侧壁2212的表面的疏水性设计,通过对所述第二环形侧壁2212进行含氟离子或含氟基团的等离子表面处理,含氟离子或者含氟基团在等离子表面处理时会轰击光阻材料的表面,此时光阻表面会出现旧键断裂,新键形成的过程,这样会使得含氟基团或者氟离子与光阻形成键能,如此,所述第二环形侧壁2212的表面就有了氟离子或者氟基团,表现出疏水疏油性能,即疏水性能。
可以理解地,在其它实施例中,所述堤坝220也可以采用其它的替换材料制成,只要能够满足最终需求即可。同样地,所述堤坝220的材料也可以采用疏水性的材料制成,再通过表面处理使得部分表面具备亲水性,如此方式也在本申请的保护范围内。
请参见图4,本申请还提供一种上述显示面板100的制作方法,该制作方法至少包括以下步骤:
S1,提供一基板;
S2,在所述基板上涂布第一光阻层;
S3,光刻所述第一光阻层以得到像素定义层,其中,所述像素定义层包括多条交叉设置的堤坝,所述堤坝围设形成多个呈阵列排布的打印凹槽,每一所述堤坝上形成至少一条导流槽,所述导流槽在所述堤坝背向所述基板的一侧表面具有开口,所述导流槽的延伸方向与对应所述堤坝的延伸方向相同,且多条所述导流槽在相互交叉处导通;以及
S4,提供添加发光功能材料的打印墨水并将打印墨水打印于所述打印凹槽内以形成发光功能层。
具体地:
请参见图5,在步骤S1中,提供一基板10,所述基板10为经过前序制程的基板,其至少包括衬底11和设于所述衬底11一侧的驱动电路层12。
请参阅图6,在步骤S2中,在所述基板10上涂布第一光阻层P1。可以理解地,在所述步骤S2之前,该制作方法包括在所述基板10上制作图案化的第一电极层21。
具体地,所述驱动电路层12的具体结构(图未示)可采用现有技术中的结构,至少包括栅极金属层、栅极绝缘层、源漏极金属层和层间绝缘层。所述第一电极层21形成于该层间绝缘层上并与该源漏极金属层电性连接。所述驱动电路层12只要能够满足其基本功能即可,其具体结构的位置关系在此处不赘述。可以理解地,在其它实施例中,根据实际需求,所述驱动电路层12的具体结构还可包括上述之外的其他功能层,此处不做限制。
请参阅图7,在步骤S3中,光刻所述第一光阻层P1以得到像素定义层22,其中,所述像素定义层22包括多条交叉设置的堤坝220,所述堤坝220围设形成多个呈阵列排布的打印凹槽221,每一所述堤坝220上形成至少一条导流槽222,所述导流槽222在所述堤坝220背向所述基板10的一侧表面具有开口,即所述导流槽222自对应所述堤坝220背向所述基板10的一侧表面向内凹陷形成,所述导流槽222的延伸方向与对应所述堤坝220的延伸方向相同,且多条所述导流槽222在相互交叉处导通。具体地,在本实施例中,在光刻所述第一光阻层P1以形成所述像素定义层22时,该光刻是通过一道光罩刻蚀工艺完成。该光刻可以是一道半色调光罩刻蚀工艺,也可以是一道灰阶光罩刻蚀工艺。可以理解地,根据实际制作环境,前述一道光罩刻蚀工艺也可以分为两道光罩刻蚀工艺完成,如先通过第一道光罩刻蚀工艺完成所述打印凹槽221的图案化刻蚀,再通过第而道光罩刻蚀工艺完成所述导流槽222的图案化刻蚀。
具体地,在光刻之前,根据制程和实际需求,需要提前设计所述堤坝220、所述打印凹槽221和所述导流槽222的数量、结构和尺寸,光刻完成之后,所述堤坝220、所述打印凹槽221和所述导流槽222的数量、结构和尺寸如前述对所显示面板100的结构描述,此处不再次赘述。
请参阅图11和图12,在步骤S4中,提供添加发光功能材料的打印墨水Ink并将打印墨水Ink打印于所述打印凹槽221内以形成发光功能层23。
具体地,在制作过程中,先采用IJP技术将该打印墨水Ink滴涂到所述打印凹槽221内,在滴涂过程中,漫溢出所述打印凹槽221的打印墨水Ink流入所述导流槽222内,如图11所示;随后对所述打印凹槽221的打印墨水Ink进行干燥处理,形成所述发光功能层23。可以理解地,在干燥过程中,流入所述导流槽222内的打印墨水Ink的溶剂同样也会被蒸发掉,但是因为所述导流槽222内的打印墨水Ink没有与所述第一电极层21相接触,其自身也不会发光,所以打印墨水Ink干燥在所述导流槽222内不会影响面板的显示。
请参阅图13和图1,在步骤S4之后,该制作方法还包括:在所述像素定义层22和所述发光功能层23上形成第二电极层24,并在所述第二电极层24上形成封装层30。具体地,所述第二电极层24沉积于所述像素定义层22上、所述发光功能层23上、以及所述导流槽222内,所述封装层30填平所述导流槽222。
众所周知,在现有的OLED显示器件中,喷墨打印使用的墨水是有机材料溶解在脂类或者醇类的溶剂中,有水性和油性两种属性,且在制成工艺中,墨水是需要进行干燥的,干燥后的墨水要在所述基板10上均匀铺展。材料具有亲水性就代表墨水可以在其上有更小的接触角,容易流平;材料具有疏水性就代表墨水在该材料上时会具有大的接触角,不易铺展。因此,只有亲水性的材料才可以使得墨水在材料上方干燥后保持膜厚的均一性,墨水在疏水性的材料上干燥,会形成突起,严重影响膜厚均匀性。
因此,在本实施方式中,所述第一光阻P1采用亲水性的光阻材料。因而,所述打印凹槽221靠近所述基板10的所述第一环形侧壁2211的表面具备亲水性,如此,打印墨水可以在所述打印凹槽221内快速的铺展开,且有利于在干燥后保持膜厚的均一性。同时,所述导流槽222的内壁表面2221和内底表面2222全部具备亲水性,当所述打印凹槽221内的墨水发生溢流时,墨水满溢过所述堤坝220背向所述基板10一侧的表面后在所述导流槽222内瞬速流平,避免溢流墨水溢至相邻所述打印凹槽221内,进一步改善了墨水桥接的不良现象。
可以理解地,为了进一步改善了墨水桥接的不良现象,本实施例在所述步骤S3之后、在所述步骤S4之前还包括步骤:
S301,请参阅图8,在所述像素定义层22上涂布第二光阻层P2,其中,所述第二光阻层P2的极性与所述第一光阻层P1的极性相反;
S302,请参阅图9,光刻所述第二光阻层P2,以裸露所述堤坝220背向所述基板10的一侧的表面(即上述台阶面2200)和所述打印凹槽221的远离所述基板10的部分内侧壁表面(即,上述显示面板100的所述第二环形侧壁2212的表面);
S303,请参阅图10,对所述堤坝220背向所述基板10的一侧的表面和所述第二环形侧壁2212的表面进行含氟离子或含氟基团的等离子表面处理,使其具备疏水性;以及
S304,请参阅图11,剥离剩下的所述第二光阻层P2。
上述步骤S301至步骤S304的制程,在所述步骤S4进行喷墨打印之前进行,使得所述打印凹槽221远离所述基板10的所述第二环形侧壁2212的表面经过表面处理之后具备疏水性,增强了打印墨水在所述打印凹槽221内的堆积效果,在一定程度上改善了墨水桥接的不良现象。同时,所述堤坝220背向所述基板10一侧的表面(即,所述平台面2200)经过表面处理之后同样具备疏水性,当所述打印凹槽221内的墨水发生溢流时,墨水与所述堤坝220背向所述基板10一侧的表面具有大的接触角,不会快速溢流,避免了溢流墨水因流速过快满溢至相邻所述打印凹槽221内,在一定程度上改善了墨水桥接的不良现象。
可以理解地,在其它实施例中,所述堤坝220也可以采用其它的替换材料制成,只要能够满足最终需求即可。同样地,所述堤坝220的材料也可以采用疏水性的材料制成,再通过表面处理使得部分表面具备亲水性,如此方式也在本申请的保护范围内。
综上所述,虽然本申请已以优选实施例揭露如上,可以理解地,各种实施例可以进行任意组合,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (17)

  1. 一种显示面板,其中,所述显示面板包括:
    基板;以及
    发光结构层,设于所述基板的一侧,包括:
    像素定义层,设于所述基板一侧,包括多条交叉设置的堤坝,所述堤坝围设形成多个呈阵列排布的打印凹槽;以及
    发光功能层,设于所述打印凹槽内;
    其中,每一所述堤坝上设有至少一条导流槽,所述导流槽在所述堤坝背向所述基板的一侧表面具有开口,所述导流槽的延伸方向与对应所述堤坝的延伸方向相同,且多条所述导流槽在相互交叉处导通。
  2. 根据权利要求1所述的显示面板,其中,所述发光功能层的材料为添加发光功能材料的打印墨水,所述导流槽的内壁表面和内底表面全部具备亲水性。
  3. 根据权利要求2所述的显示面板,其中,所述堤坝背向所述基板一侧的表面具备疏水性。
  4. 根据权利要求2所述的显示面板,其中,所述打印凹槽的内壁包括相接的第一环形侧壁和第二环形侧壁,所述第一环形侧壁靠近所述基板且其表面具备亲水性,所述第二环形侧壁远离所述基板且其表面具备疏水性。
  5. 根据权利要求4所述的显示面板,其中,所述堤坝的材料为亲水性的光阻,所述第二环形侧壁和所述堤坝背向所述基板的一侧表面经表面处理后含氟离子或含氟基团。
  6. 根据权利要求1所述的显示面板,其中,所述导流槽在所述开口处的宽度为a,所述导流槽对应的所述堤坝背向所述基板的一侧的宽度为b,其中,1/5≤a/b≤1/3。
  7. 根据权利要求1所述的显示面板,其中,每一所述堤坝包括被所述导流槽分隔的第一分部和第二分部,所述第一分部背向所述基板的一侧与所述基板之间的距离小于或等于所述第二分部背向所述基板的一侧与所述基板之间的距离。
  8. 根据权利要求1所述的显示面板,其中,每一所述堤坝包括被所述导流槽分隔的第一分部和第二分部,所述第一分部背向所述基板的一侧表面为平面或背向所述基板外凸的拱面,所述第二分部背向所述基板的一侧表面为平面或背向所述基板外凸的拱面。
  9. 根据权利要求1所述的显示面板,其中,所述导流槽的深度小于所述打印凹槽的深度。
  10. 根据权利要求9所述的显示面板,其中,所述发光结构层还包括第一电极层,所述第一电极层设于所述基板上,所述像素定义层设于所述基板和所述第一电极层上,在所述显示面板的厚度方向上,所述导流槽的底部与所述第一电极之间的距离大于100nm。
  11. 一种显示面板,其中,所述显示面板包括:
    基板;以及
    发光结构层,设于所述基板的一侧,包括:
    像素定义层,设于所述基板一侧,包括多条交叉设置的堤坝,所述堤坝围设形成多个呈阵列排布的打印凹槽;以及
    发光功能层,设于所述打印凹槽内;
    其中,所述堤坝背向所述基板一侧的表面具备疏水性,每一所述堤坝上设有至少一条导流槽,所述导流槽在所述堤坝背向所述基板的一侧表面具有开口,所述导流槽的延伸方向与对应所述堤坝的延伸方向相同,且多条所述导流槽在相互交叉处导通。
  12. 根据权利要求11所述的显示面板,其中,所述打印凹槽的内壁包括相接的第一环形侧壁和第二环形侧壁,所述第一环形侧壁靠近所述基板且其表面具备亲水性,所述第二环形侧壁远离所述基板且其表面具备疏水性。
  13. 根据权利要求12所述的显示面板,其中,所述发光功能层的材料为添加发光功能材料的打印墨水,所述导流槽的内壁表面和内底表面全部具备亲水性。
  14. 根据权利要求12所述的显示面板,其中,所述堤坝的材料为亲水性的光阻,所述第二环形侧壁和所述堤坝背向所述基板的一侧表面经表面处理后含氟离子或含氟基团。
  15. 根据权利要求13所述的显示面板,其中,所述堤坝的材料为亲水性的光阻,所述第二环形侧壁和所述堤坝背向所述基板的一侧表面经表面处理后含氟离子或含氟基团。
  16. 一种显示面板的制造方法,包括:
    提供一基板;
    在所述基板上涂布第一光阻层;
    光刻所述第一光阻层以得到像素定义层,其中,所述像素定义层包括多条交叉设置的堤坝,所述堤坝围设形成多个呈阵列排布的打印凹槽,每一所述堤坝上形成至少一条导流槽,所述导流槽在所述堤坝背向所述基板的一侧表面具有开口,所述导流槽的延伸方向与对应所述堤坝的延伸方向相同,且多条所述导流槽在交叉处导通;以及
    提供添加发光功能材料的打印墨水并将打印墨水打印于所述打印凹槽内以形成发光功能层;
    其中,所述导流槽用于导流从所述打印凹槽内溢出的多余墨水。
  17. 如权利要求16所述的显示面板的制造方法,其中,所述第一光阻具备亲水性,所述打印凹槽的内壁包括相接的第一环形侧壁和第二环形侧壁,所述第一环形侧壁靠近所述基板且所述第二环形侧壁远离所述基板,在所述步骤“提供添加发光功能材料的打印墨水并将打印墨水打印于所述打印凹槽内以形成发光功能层”之前,还包括步骤:
    在所述像素定义层上涂布第二光阻层,其中,所述第二光阻层的极性与所述第一光阻层的极性相反;
    光刻所述第二光阻层,以裸露所述堤坝背向所述基板的一侧的表面和所述第二环形侧壁的表面;
    对所述堤坝背向所述基板的一侧的表面和所述第二环形侧壁的表面进行含氟离子或含氟基团的等离子表面处理,使其具备疏水性;以及
    剥离剩下的所述第二光阻层。
PCT/CN2022/077885 2022-02-17 2022-02-25 显示面板及其制作方法 WO2023155229A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/754,289 US20240057389A1 (en) 2022-02-17 2022-02-25 Display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210145844.X 2022-02-17
CN202210145844.XA CN114628470A (zh) 2022-02-17 2022-02-17 显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2023155229A1 true WO2023155229A1 (zh) 2023-08-24

Family

ID=81900294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077885 WO2023155229A1 (zh) 2022-02-17 2022-02-25 显示面板及其制作方法

Country Status (3)

Country Link
US (1) US20240057389A1 (zh)
CN (1) CN114628470A (zh)
WO (1) WO2023155229A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101529597A (zh) * 2006-09-22 2009-09-09 剑桥显示技术有限公司 分子电子器件制造方法和结构
US20150062870A1 (en) * 2012-04-16 2015-03-05 Sharp Kabushiki Kaisha Display device
CN105140236A (zh) * 2015-07-31 2015-12-09 京东方科技集团股份有限公司 基板组件及其制备方法以及显示装置
CN106990670A (zh) * 2017-05-02 2017-07-28 深圳市华星光电技术有限公司 黑矩阵光罩、黑矩阵的制造方法及阵列基板
CN107623082A (zh) * 2017-08-16 2018-01-23 上海天马微电子有限公司 一种有机电致发光显示面板及其制作方法、显示装置
CN108538892A (zh) * 2018-04-23 2018-09-14 深圳市华星光电技术有限公司 Oled显示器件的制作方法
CN110571246A (zh) * 2019-08-13 2019-12-13 深圳市华星光电技术有限公司 一种阵列基板及其制备方法、显示装置
CN110707128A (zh) * 2019-09-03 2020-01-17 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
CN111063817A (zh) * 2019-12-23 2020-04-24 深圳市华星光电半导体显示技术有限公司 有机发光显示面板及其制备方法、有机发光显示器
CN113540188A (zh) * 2021-06-29 2021-10-22 上海天马微电子有限公司 显示基板和显示面板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101529597A (zh) * 2006-09-22 2009-09-09 剑桥显示技术有限公司 分子电子器件制造方法和结构
US20150062870A1 (en) * 2012-04-16 2015-03-05 Sharp Kabushiki Kaisha Display device
CN105140236A (zh) * 2015-07-31 2015-12-09 京东方科技集团股份有限公司 基板组件及其制备方法以及显示装置
CN106990670A (zh) * 2017-05-02 2017-07-28 深圳市华星光电技术有限公司 黑矩阵光罩、黑矩阵的制造方法及阵列基板
CN107623082A (zh) * 2017-08-16 2018-01-23 上海天马微电子有限公司 一种有机电致发光显示面板及其制作方法、显示装置
CN108538892A (zh) * 2018-04-23 2018-09-14 深圳市华星光电技术有限公司 Oled显示器件的制作方法
CN110571246A (zh) * 2019-08-13 2019-12-13 深圳市华星光电技术有限公司 一种阵列基板及其制备方法、显示装置
CN110707128A (zh) * 2019-09-03 2020-01-17 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
CN111063817A (zh) * 2019-12-23 2020-04-24 深圳市华星光电半导体显示技术有限公司 有机发光显示面板及其制备方法、有机发光显示器
CN113540188A (zh) * 2021-06-29 2021-10-22 上海天马微电子有限公司 显示基板和显示面板

Also Published As

Publication number Publication date
CN114628470A (zh) 2022-06-14
US20240057389A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
JP6219685B2 (ja) 発光ディスプレイバックプレーン、ディスプレイデバイス、及び画素定義層の製造方法
CN107248523B (zh) 像素界定层及其制造方法
WO2016145965A1 (zh) 像素界定层及其制作方法以及相应的发光显示器
US10916602B2 (en) Base plate, method for manufacturing the same and display panel
US9373814B2 (en) Organic light-emitting diode (OLED) display panel, pixel define layer (PDL) and preparation method thereof
CN100530760C (zh) 薄膜构图的衬底及其表面处理
US8197294B2 (en) Organic EL light-emitting device and production method thereof
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
CN108538886B (zh) 像素界定层及制造方法、显示基板、显示装置
WO2019192529A1 (zh) 显示基板及其制备方法、显示装置
US9595548B2 (en) Method of manufacturing thin film transistor substrate having etched trenches with color filter material disposed therein
JP4745062B2 (ja) 平板表示装置及びその製造方法
US11387298B2 (en) Display panel, fabrication method thereof, and display device
WO2020224010A1 (zh) Oled 显示面板及其制备方法
CN111564478B (zh) 可拉伸显示基板及其制备方法、显示装置
CN103219336B (zh) 一种阵列基板、显示装置以及阵列基板的制备方法
CN105826355A (zh) 一种显示面板及其制作方法、显示装置
CN110828691A (zh) 柔性显示面板及其制备方法
CN109427847B (zh) 发光层的制造方法、电致发光器件及显示装置
WO2021136446A1 (zh) 驱动背板及其制备方法、显示面板、显示装置
CN108565358A (zh) 一种阳极刻蚀的方法及显示屏
WO2021128513A1 (zh) 有机发光显示面板及其制备方法、有机发光显示器
US20230157080A1 (en) Display panel, manufacturing method thereof, and display device
WO2023155229A1 (zh) 显示面板及其制作方法
US20230189623A1 (en) Display panel and method of manufacturing same, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17754289

Country of ref document: US