WO2023155188A1 - 空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆 - Google Patents

空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆 Download PDF

Info

Publication number
WO2023155188A1
WO2023155188A1 PCT/CN2022/077074 CN2022077074W WO2023155188A1 WO 2023155188 A1 WO2023155188 A1 WO 2023155188A1 CN 2022077074 W CN2022077074 W CN 2022077074W WO 2023155188 A1 WO2023155188 A1 WO 2023155188A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air chamber
spring
chamber
air spring
Prior art date
Application number
PCT/CN2022/077074
Other languages
English (en)
French (fr)
Inventor
杨昱
周伟
周杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/077074 priority Critical patent/WO2023155188A1/zh
Priority to CN202280004151.7A priority patent/CN117222824A/zh
Publication of WO2023155188A1 publication Critical patent/WO2023155188A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics

Definitions

  • the present application relates to the field of vibration control, in particular to an air spring, a vibration isolation device, a sensor assembly, a vibration isolation control method and a vehicle.
  • autonomous vehicles are generally equipped with sensors for sensing the surrounding environment during unmanned driving. In this way, the vehicle can automatically adjust its own driving state based on the sensor data obtained from these sensors.
  • the sensor may be a laser radar or the like.
  • unmanned mining vehicles such as wide-body dump trucks
  • wide-body dump trucks have a harsh driving environment in mines
  • wide-body dump trucks vibrate under the action of external forces.
  • the sensors on the wide-body dump trucks are directly connected to the steel plates of the wide-body dump trucks.
  • the suspension system of the wide-body dump truck is a leaf spring, which has poor shock absorption performance.
  • Sensors especially built-in mechanical components such as laser radar and millimeter-wave radar, and micro-electro-mechanical system (Micro-Electro-Mechanical System, MEMS) components are susceptible to vibration.
  • the sensor on the wide-body dump truck will also vibrate with the vibration of the wide-body dump truck.
  • the detection accuracy of the sensor, especially the laser radar will be affected by the vibration. Long-term use will cause problems such as mechanical fatigue of the sensor, structural fracture, and performance degradation. As a result, the service life of the sensor is reduced, and the cost of sensor replacement increases.
  • Embodiments of the present application provide an air spring, a vibration isolation device, a sensor assembly, a vibration isolation control method, and a vehicle.
  • the embodiment of the present application provides an air spring, including an air channel and at least two air chambers; wherein the at least two air chambers include a first air chamber and a second air chamber; the first air chamber and the second air chamber The air chambers are distributed at intervals along the air passage; the first air chamber is connected with the air passage through the first control valve, and the second air chamber is connected with the air passage through the second control valve.
  • the air spring may refer to the third air spring in a specific embodiment, such as the third air spring 23a and the third air spring 24a.
  • the air spring in the embodiment of the present application when the target object such as the sensor is vibrated, the air spring can slow down the lateral vibration of the target object such as the sensor, thereby reducing the mechanical fatigue of the sensor, reducing the risk of fracture of the sensor assembly and performance degradation Speed, improve the service life of the sensor, reduce the number of replacements, reduce the cost of replacement, and reduce the impact of sensor measurement accuracy by vibration.
  • the at least two air chambers further include a third air chamber and a fourth air chamber; wherein, the first air chamber, the second air chamber, the third air chamber and the fourth air chamber The chambers are evenly distributed along the airway; the third air chamber is connected with the airway through the third control valve, and the fourth air chamber is connected with the airway through the fourth control valve.
  • the first air chamber, the second air chamber, the third air chamber and the fourth air chamber are evenly distributed along the air passage, which facilitates the decomposition and calculation of physical quantities in the vibration control process, and can effectively improve the accuracy of vibration control, and It can also improve the calibration efficiency of vibration isolation devices or air springs.
  • the air channel is annular, and the first air chamber, the second air chamber, and the third air chamber are evenly distributed along the circumferential direction of the air channel.
  • the air passage is further provided with an inlet valve and an outlet valve, wherein the inlet valve and the outlet valve are arranged on the same side of the circumference diameter of the air passage.
  • the air inlet valve and the air outlet valve are arranged on the same side of the circumference diameter of the air passage, which is conducive to reducing the volume of the device, and is convenient for simplification and installation of the air inlet and exhaust pipelines.
  • the intake valve 232a and the exhaust valve 233a are disposed on the same side of the diameter of the third air spring 23a. In this way, to a certain extent, the connection distance between the inlet valve 232a and the outlet valve 233a and the air supply device can be shortened, the volume of the vibration isolation device can be reduced, and the installation is convenient.
  • each of the at least two air chambers is provided with an air pressure sensor.
  • the air pressure sensor is used to measure the air pressure of each air chamber.
  • a groove portion is further included, and the groove portion is arranged on a vertical bisector between two adjacent air chambers among the at least two air chambers.
  • the wire harness of the sensor can pass through the groove.
  • Setting on the vertical bisector is beneficial to simplify calibration parameters, improve calibration efficiency, simplify vibration control calculation parameters, and improve vibration control accuracy.
  • the embodiment of the present application provides a vibration isolation device, the vibration isolation device includes a first air spring and a second air spring; the first air spring includes a first air channel, a first air chamber and a second air chamber, Wherein, the first air chamber and the second air chamber are distributed at intervals along the first air passage; the first air chamber is connected to the first air passage through the first control valve, and the second air chamber is connected to the first air passage through the second control valve ;
  • the second air spring is used to attenuate the vibration component perpendicular to the plane where the first air spring is located.
  • the first air spring may refer to a third air spring in a specific embodiment, for example, the third air spring 24a.
  • the second air spring may refer to the first air spring and the second air spring in specific embodiments, for example, the first air spring 21a and the second air spring 22a.
  • the first air spring further includes a third air chamber and a fourth air chamber;
  • the third air chamber is connected with the first air passage through the third control valve, and the fourth air chamber is connected with the first air passage through the fourth control valve;
  • the first air passage is annular, and the first air chamber, the second air chamber, the The third air chamber and the fourth air chamber are evenly distributed along the circumferential direction of the first air passage; the first air chamber, the second air chamber, the third air chamber and the fourth air chamber are all provided with air pressure sensors.
  • the first airway is further provided with a first intake valve and a first outlet valve, wherein the first intake valve and the first outlet valve are arranged at the same side of the circumference diameter.
  • the first air spring and the second air spring are integrally formed; or, the first air spring and the second air spring are fixedly connected.
  • the way of the fixed connection can be a detachable fixed connection or a non-detachable fixed connection
  • the detachable fixed connection can be a bolt connection
  • the non-detachable fixed connection can be glued, but not limited thereto.
  • the integrated molding structure can improve the reliability of the connection, and reduce the volume and cost of the connection part.
  • the detachable fixed connection can flexibly replace the types of the first air spring, the second air spring and the third air spring, and the adaptability is stronger.
  • the types of the first air spring, the second air spring and the third air spring are determined at the manufacturing stage of the non-detachable fixed connection before the vibration isolation device leaves the factory.
  • the device further includes a third air spring, a fourth air spring, and a bracket; the second spring, the first spring, the third spring, and the fourth spring are arranged in sequence; the second air The spring is fixedly connected to the bracket, and the fourth air spring is fixedly connected to the bracket; the third air spring includes a second air channel, a fifth air chamber, a sixth air chamber, a seventh air chamber and an eighth air chamber, wherein the second air The channel is annular, and the second air channel is also provided with a second air inlet valve and a second air outlet valve, and the second air inlet valve and the second air outlet valve are arranged on the same side of the circumference diameter of the second air channel; the fifth air chamber, The sixth air chamber, the seventh air chamber and the eighth air chamber are evenly distributed along the circumferential direction of the second air passage, and the fifth air chamber, the sixth air chamber, the seventh air chamber and the eighth air chamber are equipped with air pressure sensors ; The fourth air spring is used to attenuate the vibration
  • the bracket may include a structure composed of iron frames and supporting suspension beams, but is not limited thereto.
  • the third air spring may refer to the third air spring in specific embodiments, for example, the third air spring 24a.
  • the fourth air spring may refer to the first air spring and the second air spring in specific embodiments, for example, the first air spring 21a and the second air spring 22a.
  • the bracket is used to fixedly connect the vibration isolation device to the vehicle.
  • both the second air spring and the fourth air spring are single air springs.
  • the embodiment of the present application provides a sensor assembly, including a vibration isolation device and a sensor;
  • the vibration isolation device includes a first air spring and a second air spring, the first air spring is sleeved on the side of the sensor, and the second air spring is arranged on the first end of the sensor; the second air spring is used to attenuate The vibration component of the plane; the first air spring includes the first air channel, the first air chamber, the second air chamber, the third air chamber and the fourth air chamber; wherein, the first air chamber, the second air chamber, the third air chamber The air chamber and the fourth air chamber are evenly distributed along the air passage; the first air chamber is connected to the first air passage through the first control valve, the second air chamber is connected to the first air passage through the second control valve, and the third air chamber is connected to the first air passage through the second control valve.
  • the third control valve is connected with the airway, and the fourth air chamber is connected with the airway through the fourth control valve.
  • the first air spring may refer to a third air spring in a specific embodiment, for example, the third air spring 24a.
  • the second air spring may refer to the first air spring and the second air spring in specific embodiments, for example, the first air spring 21a and the second air spring 22a.
  • the first aspect above also includes a third air spring and a fourth air spring; the second spring, the first spring, the third spring, and the fourth spring are arranged in sequence; the third air spring is sleeved On the side of the sensor, the fourth air spring is arranged at the second end of the sensor; the third air spring includes a second air passage, a fifth air chamber, a sixth air chamber, a seventh air chamber and an eighth air chamber, wherein the first The second air passage is annular, and the second air passage is also provided with a second air inlet valve and a second air outlet valve, and the second air inlet valve and the second air outlet valve are arranged on the same side of the circumference diameter of the second air passage; chamber, the sixth air chamber, the seventh air chamber and the eighth air chamber are evenly distributed along the circumferential direction of the second air passage, and the fifth air chamber, the sixth air chamber, the seventh air chamber and the eighth air chamber are all provided with The air pressure sensor; the fourth air spring is used to attenuate the vibration
  • the third air spring may refer to the third air spring in specific embodiments, for example, the third air spring 24a.
  • the fourth air spring may refer to the first air spring and the second air spring in specific embodiments, for example, the first air spring 21a and the second air spring 22a.
  • an embodiment of the present application provides a vibration isolation control method, the method is applied to a vibration isolation control system, the vibration isolation control system includes an electronic control unit and an air spring, and the air spring includes an air channel and at least two air chambers; wherein , at least two air chambers include a first air chamber and a second air chamber; the first air chamber and the second air chamber are distributed along the air passage at intervals; the first air chamber is connected with the air passage through the first control valve, and the second air chamber Connected to the airway through the second control valve
  • Methods include:
  • the electronic control unit obtains the acceleration of the sensor
  • the electronic control unit determines the expected stiffness and damping of the air chamber based on the component of the preset direction by decomposing the acceleration into the component of the preset direction;
  • the embodiment of the present application provides a vehicle, which is characterized in that an air spring is provided on the vehicle, and the air spring is any one of the various possible implementations of the first aspect.
  • the embodiment of the present application provides a computer-readable storage medium, which is characterized in that instructions are stored on the computer-readable storage medium, and when the instructions are executed on the electronic device, the electronic device executes various possibilities of the fourth aspect. Implemented vibration isolation control method.
  • Fig. 1 shows an exploded schematic diagram of a sensor assembly according to some embodiments of the present application
  • Fig. 2A shows a front view of an assembled state of the sensor assembly shown in Fig. 1 according to some embodiments of the present application;
  • Fig. 2B shows a left side view of the assembled state of the sensor assembly shown in Fig. 1 according to some embodiments of the present application;
  • FIG. 2C shows a top view of an assembled state of the sensor assembly shown in FIG. 1 according to some embodiments of the present application;
  • FIG. 3A is a top view of the third air spring 23a in FIG. 1;
  • Fig. 3B shows a cross-sectional view of a third air spring 23a along the direction A-A in Fig. 1 according to some embodiments of the present application;
  • FIG. 3C is a top view of the third air spring 24a in FIG. 1;
  • FIG. 3D is a schematic diagram of a damping principle of the third air spring 24a in FIG. 3C;
  • Fig. 4 shows a schematic diagram of a vibration isolation system according to some embodiments of the present application
  • Fig. 5 shows a schematic flowchart of a vibration isolation control method of the vibration isolation device 20a;
  • FIG. 6 shows a schematic diagram of the electronic control unit 30 decomposing the acceleration of the sensor 10a into components in the x-axis, y-axis and z-axis directions;
  • Fig. 7 shows a schematic diagram of the principle of converting the acceleration in the x-axis direction and the acceleration in the y-axis direction to the acceleration component in the direction of the center of the air chamber on the xy plane where the third air spring 23a is located, according to some embodiments of the present application;
  • Fig. 8 shows a schematic diagram of the principle of adjusting the air pressure of the air chamber based on the control valve opening adjustment instruction according to some embodiments of the present application
  • Fig. 9 shows a top view of an unmanned mining vehicle according to some embodiments of the present application.
  • Fig. 10 shows a schematic diagram of the connection structure of a laser radar 10a, a vibration isolation device 20a, and an unmanned mining vehicle 1 according to some embodiments of the present application.
  • 20a-vibration isolation device 21a-first air spring; 22a-second air spring; 23a-third air spring; 24a-third air spring; 211a-positioning hole; 212a-positioning hole; 213a-intake valve; 232a-intake valve; 102a-top protective cover; 103a-lidar working area; 104a-harness plug; 105a-bottom protective cover; 241a-connection; 242a-opening; 243a-exhaust valve; 222a-positioning hole; 223a-intake valve; 214a-positioning hole; 234a-third air chamber; 235a-third air chamber; 236a-third air chamber; 237a-third air chamber; 238a-airway; 202a -control valve; 245a-the third air chamber; 246a-the third air chamber; 247a-the third air chamber; 248a-the third air chamber; 30-electronic control unit; 201a-air pressure sensor; 40-air supply device; 10a
  • connection can be detachable ground connection, or a non-detachable connection; it can be a direct connection or an indirect connection through an intermediary.
  • connection can be detachable ground connection, or a non-detachable connection; it can be a direct connection or an indirect connection through an intermediary.
  • similar numerals and letters denote similar items in the following drawings, therefore, once an item is defined in one drawing, it does not need further definition and explanation in subsequent drawings .
  • center “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inner”, “outer” etc.
  • the embodiment of the present application provides a vibration isolation device, the vibration isolation device includes a first vibration isolation device and a second vibration isolation device, the first vibration isolation device is used for In the first direction, the first vibration isolation device is used to slow down the vibration component of the target object in the first direction, the second vibration isolation device is used to be installed in the second direction of the target object, and the second vibration isolation device is used to slow down the vibration component of the target object in the second direction vibration component.
  • the vibration isolation device when the target object is vibrated, the vibration isolation device can simultaneously slow down the vibration of the target object in the first direction and the vibration in the second direction, reduce the mechanical fatigue of the target object, and reduce the risk of structural fracture of the target object As well as the performance degradation speed, the service life of the target object is improved.
  • the first vibration isolation device may include a first air spring and a second air spring, the first air spring is used to be arranged on the top and the bottom of the target object, and the first air spring is used to slow down the vibration from the top to the bottom of the target object. direction of vibration.
  • the second vibration isolation device may include at least one third air spring, the at least one third air spring is arranged around the side of the target object, and the at least one third air spring is used to slow down the lateral vibration component of the target object.
  • the first air spring and the third air spring adjacent thereto may be integrally formed; or, the first air spring and the third air spring adjacent thereto may be fixedly connected.
  • the way of fixed connection may be bolted connection or glued, but not limited thereto.
  • the second air spring and the third air spring close to it can be integrally formed; or, the second air spring and the third air spring close to it can be fixedly connected.
  • the way of the fixed connection can be a detachable fixed connection or a non-detachable fixed connection
  • the detachable fixed connection can be a bolt connection
  • the non-detachable fixed connection can be glued, but not limited thereto.
  • the integrated molding structure can improve the reliability of the connection, and reduce the volume and cost of the connection part.
  • the detachable fixed connection can flexibly replace the types of the first air spring, the second air spring and the third air spring, and the adaptability is stronger.
  • the types of the first air spring, the second air spring and the third air spring are determined at the manufacturing stage of the non-detachable fixed connection before the vibration isolation device leaves the factory.
  • the vibration isolation device when the sensor is subjected to vibration, the vibration isolation device can slow down the vibration from the top to the bottom of the sensor and the sideways vibration, thereby reducing the mechanical fatigue of the sensor, reducing the risk of sensor assembly fracture and performance degradation Speed, improve the service life of the sensor, reduce the number of replacements, reduce the cost of replacement, and reduce the impact of sensor measurement accuracy by vibration.
  • the target object may be a sensor.
  • the first vibration isolation device may include a first air spring and a second air spring; the first air spring is used to be arranged on the top of the sensor, the second air spring is used to be arranged on the bottom of the sensor, and the second vibration isolation device may include at least one Third air springs, at least one third air spring is arranged around the side of the sensor.
  • the first air spring can be a single-curved air spring, a hyperbolic air spring, etc., but not limited to;
  • the second air spring can be a single-curved air spring, a hyperbolic air spring, etc., but not limited to;
  • the third The air spring is an annular air spring. Each annular air spring is sheathed on the side of the sensor respectively.
  • the vibration isolation device may also be a plurality of air springs, and the plurality of air springs are arranged around the side of the sensor.
  • Air spring refers to a spring that is filled with compressed air in a retractable airtight container and utilizes the elastic action of air. Commonly known as airbags, etc.
  • FIG. 1 shows an exploded schematic diagram of a sensor assembly according to some embodiments of the present application.
  • the sensor assembly includes a sensor 10a and a vibration isolation device 20a.
  • the sensor 10a may be a laser radar.
  • the type of lidar can be millimeter-wave radar, solid-state lidar, etc.
  • the vibration isolation device 20a includes a first vibration isolation device and a second vibration isolation device; the first vibration isolation device includes a first air spring 21a and a second air spring 22a.
  • the second vibration isolation device includes a third air spring 23a and a third air spring 24a.
  • the first air spring 21a is arranged on the top of the sensor 10a, and the second air spring 22a is arranged on the bottom of the sensor 10a.
  • the third air spring 23a and the third air spring 24a are arranged around the sides of the sensor 10a.
  • the bottom of the first air spring 21a is fixedly connected with the top of the sensor 10a; the top of the second air spring 22a is fixedly connected with the bottom of the sensor 10a; the top of the third air spring 23a is fixedly connected with the bottom of the first air spring 21a; the third The bottom of the air spring 24a is fixedly connected to the top of the second air spring 22a.
  • the top of the first air spring 21a is provided with a plurality of positioning holes 211a, and these positioning holes 211a are used for fixedly connecting the first air spring 21a with an external fixing structure.
  • the top of the first air spring 21a is provided with a plurality of positioning holes 221a, and these positioning holes 221a are used for fixedly connecting the second air spring 22a with an external fixing structure.
  • the third air spring 23a and the third air spring 24a may be square or ring-shaped.
  • FIG. 2A shows a front view of the sensor assembly shown in FIG. 1 in an assembled state, according to some embodiments of the present application.
  • the assembly structure in which the sensor 10a is installed in the vibration isolation device 20a may be as shown in FIG. 2A .
  • the third air spring 23a is provided with a connecting portion 231a near the top of the first air spring 21a, the first air spring 21a is provided with a connecting portion near the bottom of the third air spring 23a, and the connecting portion 231a of the third air spring 23a is It is fixedly connected with the connection part of the first air spring 21a.
  • the third air spring 24a is provided with a connecting portion 241a near the top of the second air spring 22a, and the second air spring 22a is provided with a connecting portion near the bottom of the third air spring 24a, and the connecting portion 241a of the third air spring 24a It is fixedly connected with the connection part of the second air spring 22a.
  • the connecting parts may be screw holes, and the two connecting parts are fixedly connected by bolts. In some other embodiments, the two connecting parts may be fixedly connected by gluing or integral molding.
  • the above-mentioned first air spring 21a can be a single air spring
  • the second air spring 22a can be a single air spring
  • the third air spring 23a can be an annular air spring
  • the third air spring 24a can be For annular air spring.
  • the single air spring is only exemplary, and the single air spring can also be replaced by other structures with the same function, which is not limited here.
  • the annular air spring is only exemplary, and the annular air spring can also be replaced by other structures with the same function, which is not limited here.
  • the annular air spring can be arranged in the non-sensor area of the sensor 10a, because the sensor area of the sensor 10a is used for transmitting and receiving signals, if it is blocked, it will affect the detection accuracy of the sensor 10a. If the side of the sensor 10a includes a sensing area and two non-sensing areas, and a sensing area is arranged between one non-sensing area and the other non-sensing area, then two annular air springs are respectively arranged in a non-sensing area and another non-sensing area.
  • lidar 10a includes a top protective cover 102a, a lidar work area 103a, a bottom protective cover 105a, and a harness plug 104a.
  • the harness plug 104a is provided on the bottom protective cover 105a.
  • the lidar working area 103a is located between the top protective cover 102a and the bottom protective cover 105a.
  • the laser radar working area 103a is an optical path propagation area for emitting laser light and receiving laser light, and acquiring sensing data.
  • the third air spring 24a is provided with a groove portion 242a, and the groove portion 242a is arranged on a vertical bisector between two adjacent air chambers among at least two air chambers.
  • the harness plug 104a can pass through the groove portion 242a.
  • the laser radar working area 103a is an optical path propagation area for emitting laser light and receiving laser light, if other structures are arranged on the laser radar working area 103a, the accuracy of data sensed by the laser radar working area 103a will be affected. Because, in some embodiments, the third air spring 23a and the third air spring 24a are sleeved on the outer surface of the laser radar 10a except for the part of the laser radar working area 103a, leaving the laser radar working area 103a for optical path propagation .
  • the first air spring 21a is sheathed on the peripheral outer wall of the top protective cover 102a of the lidar 10a.
  • the second air spring 22a and the third air spring 23a are sheathed on the peripheral outer wall of the bottom protective cover 105a of the lidar 10a.
  • the sensor 10a can be other arbitrary types of sensors besides laser radar.
  • the first air spring 21a, the second air spring 22a, the third air spring 23a, and the third air spring 24a can partially cover the fixed lidar 10a without blocking the optical propagation path of the lidar 10a.
  • the vibration isolation device provided by the embodiment of the present application can not only perform vibration isolation on the laser radar 10a, but also not interfere with the measurement of the laser radar 10a during the vibration isolation process, which reduces the mechanical fatigue of the laser radar 10a and reduces the vibration of the laser radar 10a.
  • the risk of structural fracture and the speed of performance degradation increase the service life of the sensor while reducing the impact of vibration on the measurement accuracy of the laser radar 10a.
  • the structure of the first air spring 21a, the second air spring 22a, the third air spring 23a and the third air spring 24a, and the first air spring 21a, the second air spring 22a, the third air spring 23a and the third air spring 24a can be changed according to the structural features of the sensor 10a, so as to satisfy the vibration isolation of the sensor 10a by the first air spring 21a, the second air spring 22a, the third air spring 23a and the third air spring 24a Require.
  • the sensor 10a is fixedly connected to the external fixed structure, and the sensor 10a is arranged between the first air spring 21a and the second air spring 22a, and the first air spring 21a and the second air spring 22a clamp the sensor 10a In this way, the center of gravity of the sensor 10a can be effectively prevented from drifting and shaking, and the extra vibration caused by an unstable center of gravity can be effectively reduced.
  • the way of fixed connection can be fixed connection through the positioning hole.
  • FIG. 2B shows a left side view of the sensor assembly shown in FIG. 1 in an assembled state, according to some embodiments of the present application.
  • a plurality of positioning holes 212a are evenly distributed along the axial direction of the first air spring 21a.
  • the positioning holes 212a may be bolt holes.
  • a plurality of positioning holes 222a are evenly distributed along the axial direction of the second air spring 22a.
  • the positioning holes 222a may be bolt holes.
  • the first air spring 21a, the second air spring 22a, the third air spring 23a, and the third air spring 24a may be inflatable structures.
  • the gas-inflatable structure may be an inflatable air chamber.
  • the first air spring 21a includes a first air chamber that can be filled with gas;
  • the second air spring 22a includes a second air chamber that can be filled with gas;
  • the third air spring 23a includes a plurality of third air chambers that are isolated from each other in the circumferential direction.
  • the third air spring 24a includes a plurality of third air chambers isolated from each other in the circumferential direction; the first air chamber, the second air chamber and the third air chamber are filled with gas, and when the sensor is vibrated, the first air chamber
  • the first air chamber, the second air chamber and the third air chamber can damp the vibration and slow down the vibration of the sensor 10a.
  • FIG. 2C shows a top view of the sensor assembly shown in FIG. 1 in an assembled state, according to some embodiments of the present application.
  • the top of the first air spring 21a is provided with an inlet valve 213a and an outlet valve 214a, and the inlet valve 213a is used to connect with an air supply device to pass gas into the first air chamber of the first air spring 21a.
  • the structure of the air supply in the second air spring 22a is the same as the structure of the air supply in the first air spring 21a, and will not be repeated here.
  • the inlet valve and the outlet valve are arranged on the same side of the circumference diameter of the airway, so that, to a certain extent, the connection distance between the inlet valve and the outlet valve and the air supply device can be shortened respectively, Reduce the volume of the vibration isolation device and facilitate installation.
  • the vibration direction in the radial direction may be different every time the sensor 10a vibrates. Therefore, in order to facilitate the decomposition and calculation of the physical quantity in the vibration control process, for example, in order to more accurately reduce each vibration and/or to facilitate the decomposition and calculation of the acceleration.
  • a plurality of independent, uniformly distributed vibration isolation structures with variable vibration isolation degrees may be provided on the circumference of the third air spring 23a.
  • the vibration isolation structure is an air chamber.
  • the third air spring 23a includes a plurality of third air chambers that are isolated from each other and evenly distributed in the circumferential direction. In this way, the precision of vibration control can be effectively improved, and the calibration efficiency of the vibration isolation device or air spring can also be improved.
  • FIG. 3A is a top view of the third air spring 23a in FIG. 1 .
  • four third air chambers are evenly spaced circumferentially on the third air spring 23 a : the third air chamber 234 a , the third air chamber 235 a , the third air chamber 236 a and the third air chamber 237 a .
  • the third air chamber 234a, the third air chamber 235a, the third air chamber 236a and the third air chamber 237a can be in various shapes, for example, Fig. 3B shows a third air spring according to some embodiments of the present application 23a is a cross-sectional view along the direction A-A in FIG. 1 . As shown in Figure 3B, the third air chamber 234a, the third air chamber 235a, the third air chamber 236a and the third air chamber 237a have the same structure, all of which are surrounded by a part of the inner wall of the third air spring 23a and the arc surface closed chamber.
  • the partial area of the inner wall of the third air spring 23a forming the third air chamber 234a, the third air chamber 235a, the third air chamber 236a and the third air chamber 237a is A, and the area of the area A is less than the preset area, so that The third air chamber 234a, the third air chamber 235a, the third air chamber 236a, and the third air chamber 237a are more concentrated in mutual force with the sensor 10a, which improves the vibration reduction response effect on the sensor 10a.
  • FIG. 3C is a top view of the third air spring 24a in FIG. 1 .
  • the third air spring 24a is provided with four third air chambers evenly spaced circumferentially, and the four third air chambers are vibration isolation structures: the third air chamber 245a, the third air chamber 246a, the third air chamber chamber 247a and a third air chamber 248a.
  • an air channel 238a can be provided in the circumferential direction of the third air spring 23a, and an air inlet valve 232a and an exhaust valve 233a can be arranged on the outer surface of the air channel 238a, and the air inlet valve 232a can be used to communicate with the air supply device.
  • the gas supply device can pass gas into the air channel 238a through the intake valve 232a.
  • the intake valve 232a and the exhaust valve 233a are disposed on the same side of the diameter of the third air spring 23a. In this way, to a certain extent, the connection distance between the inlet valve 232a and the outlet valve 233a and the air supply device can be shortened, the volume of the vibration isolation device can be reduced, and the installation is convenient.
  • Control valve 202 is arranged between the third air chamber 234a, the third air chamber 235a, the third air chamber 236a and the third air chamber 237a and the air passage 238a, and the control valve 202 of the corresponding air chamber is opened, then the gas in the air passage 238a will flow into the corresponding air chamber.
  • the third air spring 24a may also include a plurality of third air chambers isolated from each other in the circumferential direction; the first air chamber, the second air chamber and the third air chamber are filled with gas.
  • the air passage in the embodiments of the present application refers to a pipeline for supplying and exhausting air.
  • the control valve in the embodiment of the present application may include a control valve, and also include other structures that can be used to control switches.
  • the control valve When the control valve is open, the gas in the air passage can be controlled to flow into the air chamber; when the control valve is closed, the gas in the air passage can be prevented from entering the air chamber.
  • the inlet valve 232a and the outlet valve 233a are disposed on the same side of the diameter of the third air spring 23a. In this way, to a certain extent, the connection distance between the inlet valve 232a and the outlet valve 233a and the air supply device can be shortened, the volume of the vibration isolation device can be reduced, and the installation is convenient.
  • each third air chamber may be spherical, such as an oblate spheroid.
  • the air supply device includes an air tank, an air pump and an air circuit, wherein the air tank is connected to the air pump through an air circuit, and the air pump is connected to the intake valves in each vibration isolation device through an air circuit.
  • the gas tank is the gas supply source for each of the above gas chambers.
  • the air pump provides power for the gas tank gas circuit inflation.
  • the structure of the third air chamber, control valve, intake valve, exhaust valve and airway in the third air spring 24a is the same as that of the third air chamber, control valve, intake valve, exhaust valve and air passage in the second air spring 22a.
  • the structure of the Tao is the same and will not be repeated here.
  • the damping and stiffness of the air spring can be adjusted.
  • the air spring when the sensor 10a is vibrated and acts on the air spring, the air spring generates a force opposite to the force of the buffer sensor 10a toward the air spring based on the adjusted damping and stiffness to slow down the vibration of the sensor 10a.
  • the larger the value of the acceleration that characterizes the vibration of the sensor 10a the greater the damping and stiffness of the air spring are adjusted, conversely, the smaller the value of the acceleration that characterizes the vibration of the sensor 10a, the smaller the damping and stiffness of the air spring are adjusted .
  • the air spring may be any one or more of the first air spring 21a, the second air spring 22a, the third air spring 23a and the third air spring 24a.
  • FIG. 3D is a schematic diagram of a damping principle of the third air spring 24a in FIG. 3C.
  • the damping and stiffness of the third air spring 24a can be adjusted.
  • the third air spring 24a generates a force F2 opposite to the force F1 of the buffer sensor 10a toward the third air spring 24a based on the adjusted damping and stiffness. To slow down the vibration of the sensor 10a.
  • Fig. 4 shows a schematic diagram of a vibration isolation system according to some embodiments of the present application.
  • the vibration isolation system includes an electronic control unit 30 , a vibration isolation device 20 a , a sensor 10 a and an air supply device 40 .
  • the vibration isolation device 20a includes an air pressure sensor 201a and a control valve 202a; the air pressure sensor 201a is used to measure the air pressure of each air chamber in the vibration isolation device 20a.
  • the control valve 202a is used to adjust the gas volume entering each air chamber in the vibration isolation device 20a.
  • An inertial measurement unit (Inertial Measurement Unit, IMU) 101a is built in the sensor 10a, and the inertial measurement unit 101a is used to measure the acceleration when the sensor 10a vibrates. In some other embodiments, an inertial measurement unit 101a is disposed on the surface of the sensor 10a.
  • IMU Inertial Measurement Unit
  • control valve 202a is connected to the air supply device 40, and the air pressure sensor 201a, the control valve 202a and the sensor 10a are respectively connected to the electronic control unit 30;
  • the electronic control unit 30 is used to receive the acceleration when the laser radar 10b vibrates sent by the inertial measurement unit 101b , the electronic control unit 30 determines the desired damping and the desired stiffness of each air chamber based on this acceleration.
  • the electronic control unit 30 determines the opening degree of the control valve based on the expected stiffness and the expected damping of each air chamber, and sends a corresponding control valve opening adjustment instruction to each control valve.
  • the electronic control unit 30 executes the above steps in the next cycle to weaken the vibration of the sensor 10a in real time.
  • Fig. 5 shows a schematic flowchart of a vibration isolation control method for the vibration isolation device 20a, corresponding to the vibration isolation device 20a and Fig. 4 , according to some embodiments of the present application.
  • the execution subject of this process may be an electronic control unit (Electronic Control Unit, ECU) 30.
  • ECU Electronic Control Unit
  • the process includes the following steps:
  • the acceleration of the lidar in the embodiment of the present application is used to represent the current vibration state of the lidar.
  • the degree of vibration reduction of the sensor 10a by the first air spring 21a, the second air spring 22a, the third air spring 23a, and the third air spring 24a can be determined by decomposing the acceleration in the vibration direction of the laser radar. Therefore, it is necessary to establish a coordinate system for the gas chamber.
  • the four air chambers in the third air spring 23a and the third air spring 24a are distributed according to the xy axis of the orthogonal coordinate system.
  • the direction of the center line between the midpoint of the line passing between the intake valve 232a and the exhaust valve 233a and the center of the circle of the third air spring 23a is the positive direction of the x-axis
  • the third air spring The axial direction from the bottom to the top of 23a is the positive direction of the z-axis (as shown in FIG. direction, so as to establish the xyz space Cartesian coordinate system, which is used for parameter calibration in actual use.
  • the intake valve 232a is located in the first quadrant of the xy orthogonal coordinate system
  • the exhaust valve 233a is located in the second quadrant of the orthogonal coordinate system.
  • the vibration transmitted to the sensor 10a in different directions from the outside world will be decomposed along the xyz axis, so as to be converted to the center direction of the four air chambers corresponding to the third air spring 23a to meet the lateral vibration isolation requirements, and the part of the external vibration decomposed to the z axis will be Switch to the first air spring 21a and the second air spring 22a, so as to meet the vertical vibration isolation requirements.
  • FIG. 6 shows a schematic diagram of the principle that the electronic control unit 30 decomposes the acceleration of the sensor 10a into components in the x-axis, y-axis and z-axis directions.
  • the electronic control unit 30 obtains the acceleration a of the sensor 10 a through the inertial measurement unit 101 a, and the acceleration a has a certain angle with the x-axis, y-axis and z-axis.
  • the vehicle 1 Since the vehicle 1 is vibrated, it will transmit the vibration to the sensor 10a, and the vibration state of the sensor 10a can be reflected by the acceleration of the sensor 10a. Therefore, after the vehicle 1 is started, the inertial measurement unit 101 can measure the acceleration of the sensor 10a, and The acceleration is sent to the electronic control unit 30 . In this way, the electronic control unit 30 can determine the expected damping and expected stiffness of each air chamber to deal with the vibration state based on the acceleration of the sensor 10a, so as to weaken the vibration of the sensor 10a, reduce the mechanical fatigue of the sensor 10a, reduce the risk of structural fracture of the sensor 10a and Performance degradation speed, improve the service life of the sensor.
  • the electronic control unit 30 Before the electronic control unit 30 executes this step, the electronic control unit 30 has passed through the control valves 202 controlling the air chambers in the first air spring 21a, the second air spring 22a, the third air spring 23a and the third air spring 24a, Fill each air chamber with a preset volume of gas to make its internal pressure reach a preset value. In this way, when the vehicle 1 is vibrated and the vibration is transmitted to the sensor 10a, the first air spring 21a, the second air spring 22a, the third air spring 23a and the third air spring 24a filled with a preset volume of gas can The laser radar 10 plays a certain role of vibration isolation.
  • the electronic control unit 30 decomposes the acceleration of the sensor 10 a into the xy plane, and then decomposes the force decomposed into the xy plane into the x axis to obtain the acceleration component ax1 of the acceleration a in the x axis direction.
  • the electronic control unit 30 decomposes the acceleration of the sensor 10a into the xz plane, and then decomposes the force decomposed into the xz plane into the x-axis to obtain the acceleration component ax2 of the acceleration a in the x-axis direction, and finally adds ax1 and ax2 and get the total acceleration component ax on the x-axis.
  • the electronic control unit 30 decomposes the acceleration of the sensor 10a to the y-axis to obtain the total acceleration component ay of the acceleration a in the y-axis direction; the electronic control unit 30 decomposes the acceleration of the sensor 10a to the z-axis to obtain the acceleration a in the z-axis The total acceleration component az in the axial direction.
  • FIG. 7 shows a schematic diagram of the principle of converting the acceleration in the x-axis direction and the acceleration in the y-axis direction to the acceleration component in the direction of the center of the air chamber on the xy plane where the third air spring 23a is located.
  • the electronic control unit 30 obtains the third air spring 23a and the third air spring 24a based on the acceleration ax in the x-axis direction and the acceleration component ay in the y-axis, and the angle between the acceleration a1 and the central direction of the air chamber.
  • the components a131, a132, a133 and a134 of the centerline direction of each air chamber.
  • the four air chambers are evenly spaced along the circumference, so that it is more conducive to decompose the acceleration to the x-axis and y-axis for the decomposition calculation of the acceleration.
  • the expected stiffness of each air chamber refers to the resistance to elastic deformation of each air chamber in the first air spring 21a, the second air spring 22a, the third air spring 23a and the third air spring 24a when stressed. ability.
  • Damping refers to the characteristic that the vibration amplitude of any vibrating system gradually decreases due to external effects or inherent reasons of the system itself. Damping helps to reduce the resonance amplitude of the mechanical structure, thereby avoiding structural damage caused by the vibration stress reaching the limit; in the embodiment of this application, the damping of each air chamber helps the sensor 10a to quickly return to a stable state after being subjected to an instantaneous impact , the effect of vibration isolation and vibration reduction is higher.
  • the electronic control unit 30 calculates the expected damping and stiffness of each air chamber based on the acceleration components in the central direction of the four air chambers, the acceleration in the z-axis direction, and a preset cooperative control algorithm.
  • the preset cooperative control algorithm may be ceiling damping algorithm, linear quadratic regulator (Linear Quadratic Regulator, LQR), model predictive control (Model Predictive Control, MPC) and other algorithms, but is not limited thereto.
  • the expected stiffness and damping of each air chamber correspond to the expected air pressure of each air chamber, that is, according to the expected air pressure of each air chamber and the fixed parameters of each air chamber, it is calibrated through theoretical calculations and experimental tests and other means, which can be transformed into the desired stiffness and desired damping of each air chamber.
  • the air pressure of each air chamber can be measured in real time by an air pressure sensor, so the opening of the control valve 202 of each air chamber can be adjusted so that the air pressure of each air chamber can reach the desired air pressure, and then the air pressure of each air chamber can be adjusted. Damping and stiffness are as expected.
  • the electronic control unit 30 can find the opening of the control valve of each air chamber and the opening of each air chamber from the mapping table of stiffness, damping, opening of the control valve, and air pressure based on the expected stiffness and expected damping of each air chamber. desired air pressure.
  • step 506 Send corresponding control valve opening adjustment instructions to each control valve, and then continue to execute step 501 every preset time.
  • the control valve opening degree adjustment instruction carries the opening degree of the control valve of each air chamber and the expected air pressure information of each air chamber.
  • the electronic control unit 30 controls the air pressure of each air chamber to achieve the desired stiffness and damping, and the cooperative control based on closed-loop feedback reduces the vertical (z-axis) and lateral (xy-plane) vibration of the sensor 10a.
  • An embodiment of the present application provides a computer-readable storage medium, where instructions are stored on the computer-readable storage medium, and when the instructions are executed on an electronic device, the electronic device executes the steps in the foregoing method embodiments.
  • the disclosed embodiments may be implemented in hardware, firmware, software, or any combination thereof.
  • the disclosed embodiments can also be implemented as instructions carried by or stored on one or more transitory or non-transitory computer-readable (e.g., computer-readable) storage media, which can be executed by one or more processors read and execute.
  • instructions may be distributed over a network or via other computer-readable media.
  • a computer-readable medium may include any mechanism for storing or transmitting information in a form readable by a computer (e.g., a computer), including, but not limited to, floppy disks, optical disks, optical disks, read-only memories (CD-ROMs), magnetic CD-ROM, Read Only Memory (ROM), Random Access Memory (Random Access Memory, RAM), Erasable Programmable Read Only Memory (EPROM), Electrically Erasable Programmable Only Memory Read memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), magnetic card or optical card, flash memory, or use the Internet to transmit information by means of electricity, light, sound or other forms of propagation signals (for example, carrier waves, infrared signals, digital signals etc.) tangible computer readable memory.
  • computer-readable media includes any type of computer-readable media suitable for storing or transmitting electronic instructions or information in a form readable by a computer (eg, a computer).
  • Fig. 8 shows a schematic diagram of the principle of adjusting the air pressure of the air chamber based on the adjustment instruction of the opening degree of the control valve according to some embodiments of the present application.
  • the air chamber in FIG. 8 may be any one of the first air spring 21a, the second air spring 22a, the third air spring 23a and the third air spring 24a.
  • the air pressure sensor 201a can measure the air pressure of the air chamber in real time, and the comparator compares the air pressure measured in real time with the expected air pressure. 705 Obtain the determined opening of the control valve, and adjust the opening of the control valve 202 to adjust the amount of gas passed into the air chamber, so that the air chamber can meet the desired air pressure as much as possible, and then make the air chamber meet the desired damping and desired air pressure as much as possible. stiffness.
  • the electronic control unit 30 needs to periodically execute the control method of the vibration isolation device 20a provided by the embodiment of the present application to slow down the vibration of the sensor 10a in real time, so as to improve the effect of slowing down the vibration of the sensor 10a.
  • the above-mentioned air spring, vibration isolation device or sensor assembly can not only be applied to unmanned mining vehicles in the field of large-scale unmanned engineering operations, but also can be applied to other vehicles.
  • vehicle is a vehicle in a broad sense, which can be a means of transportation (such as automobiles, trucks, motorcycles, trains, airplanes, ships, etc.), industrial vehicles (such as forklifts, trailers, tractors, etc.), engineering vehicles (such as: excavators, bulldozers, cranes, etc.), agricultural equipment (such as lawn mowers, harvesters, etc.), amusement equipment, toy vehicles, etc.
  • transportation such as automobiles, trucks, motorcycles, trains, airplanes, ships, etc.
  • industrial vehicles such as forklifts, trailers, tractors, etc.
  • engineering vehicles Such as: excavators, bulldozers, cranes, etc.
  • agricultural equipment such as lawn mowers, harvesters, etc.
  • amusement equipment toy vehicles, etc.
  • Fig. 9 shows a top view of an unmanned mining vehicle according to some embodiments of the present application.
  • the unmanned mining vehicle 1 includes three groups of laser radars: laser radar 10a, laser radar 10b and laser radar 10c.
  • Three groups of laser radars are respectively arranged at different positions on the body of the unmanned mining vehicle 1 .
  • the laser radar 10a and the laser radar 10b are respectively arranged at both ends of the front of the unmanned mining vehicle 1
  • the laser radar 10c is arranged at the rear of the unmanned mining vehicle 1 .
  • the three sets of laser radars are used to scan different areas, for example, the laser radar 10a is used to scan the fan-shaped area a at the left end of the front of the vehicle with the preset radius r1 centered on the laser radar 10a, and the laser radar 10b is used to scan the laser radar 10b The fan-shaped area b at the right end of the front of the car with a preset radius r2 as the center of the circle, and the laser radar 10c is used to scan the fan-shaped area c at the rear of the car with the laser radar 10c as the center and a preset radius r3.
  • the type of lidar may be mechanical lidar or solid-state lidar, but is not limited thereto.
  • Fig. 10 shows a schematic diagram of the connection structure of a laser radar 10a, a vibration isolation device 20a, and an unmanned mining vehicle 1 according to some embodiments of the present application.
  • the unmanned mining vehicle 1 includes a headstock 50 , an iron frame 30 , a supporting suspension beam 60 , a laser radar 10 a and a vibration isolation device 20 a.
  • a supporting suspension beam 60 is extended from the front of the unmanned mining vehicle 1
  • the iron frame 30 is vertically arranged on the supporting suspension beam 60
  • the iron frame 30 is fixedly connected with the supporting suspension beam 60
  • the upper surface of the vibration isolation device 20a is fixed to the iron frame 30 Connection
  • the lower surface of the vibration isolation device 20a is fixedly connected with the iron frame 30 .
  • the laser radar 10b and the vibration isolation device 20b shown in Figure 9 can also be fixedly connected to the unmanned mining vehicle 1 through the connection structure of the iron frame and the supporting suspension beam above, and the laser radar 10c and the vibration isolation device 20c can also be connected through the upper
  • the connection structure of the iron frame and the supporting suspension beam in this paper is fixedly connected with the unmanned mining vehicle 1, and will not be described in detail here.
  • the laser radar 10a is installed on the supporting cantilever beam 60 of the unmanned mining vehicle 1.
  • the supporting cantilever beam 60 is also called a cantilever beam structure.
  • the cantilever beam has a natural vibration frequency, and when the uneven road surface is transmitted to the cantilever beam, its vibration mode There will be a first-order bending mode in the state, and there may be second-order and third-order bending modes depending on the parameters of the material, cross-section, moment of inertia, and height of the cantilever beam, which will affect the stability of the sensor. Even if there is vertical steel plate reinforcement, it is difficult to guarantee that it will not be affected by the vibration of the cantilever beam itself in certain vibration directions and frequencies.
  • lidar 10a owing to adopt the vibration isolation device 20a that the embodiment of the present application provides, when unmanned mining car 1 travels on the unstructured road, when being vibrated, due to the first air spring 21a, the second air spring 22a, the first air spring 21a, the second air spring 22a, The third air spring 23a and the third air spring 24a have damping, and the damping helps the lidar 10a to reduce the amplitude of the deviation from the initial position caused by the vibration after being vibrated, so that it can return to a stable state as quickly as possible.
  • the vibration isolation device 20a utilizes the damping characteristics of the first air spring 21a and the second air spring 22a to the laser radar 10a, and performs vibration isolation on the laser radar 10a in the vertical direction (for example, a direction perpendicular to the road surface), and utilizes the third air spring 23a and the third air spring 24a have the damping characteristic of the laser radar 10a, and perform vibration isolation on the horizontal direction perpendicular to the axial direction of the laser radar 10a.
  • the vertical (y-axis direction) and lateral (non-y-axis direction) vibration of the laser radar 10a is reduced, the mechanical fatigue of the laser radar 10a is reduced, and the risk of structural fracture of the laser radar 10a is reduced.
  • the performance degradation speed improves the service life of the laser radar 10a.
  • the vibration isolation device of the embodiment of the present application can effectively solve the multi-dimensional vibration isolation problem of the sensor of a large engineering vehicle (such as a mine car) on a complex road such as a mine or a sensor on a suspension with poor performance. Or, extend the life cycle of precision sensors and save costs.
  • a large engineering vehicle such as a mine car
  • a complex road such as a mine or a sensor on a suspension with poor performance.
  • the vibration isolation device of the embodiments of the present application can reduce the problem of measurement accuracy of vibration-sensitive sensors.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.

Abstract

本申请涉及振动控制领域,特别涉及新能源汽车和智能汽车领域中的振动控制技术,公开了一种空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆。该空气弹簧(21a, 22a, 23a, 24a)包括气道和至少两个气室;其中,至少两个气室包括第一气室和第二气室;第一气室和第二气室沿气道间隔分布;第一气室通过第一控制阀与气道连接,第二气室通过第二控制阀与气道连接。基于本申请实施例中的空气弹簧,在传感器等目标物体受到振动的情况下,空气弹簧可以减缓传感器等目标物体侧向的振动,进而减轻传感器的机械疲劳,降低传感器总成断裂风险以及性能退化速度,提高传感器的使用寿命,减少更换次数,降低更换成本,减小传感器测量精度受到振动的影响。

Description

空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆 技术领域
本申请涉及振动控制领域,特别涉及一种空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆。
背景技术
目前,自动驾驶车辆上一般设置有用于在无人驾驶过程中感测周围环境的传感器。如此,车辆便可以基于该些传感器得到的传感器数据自动调整自身驾驶状态。其中,传感器可以为激光雷达等。
对于大型无人驾驶工程作业车辆,会经常在野外道路、涉水泥路、矿山道路等非结构化道路上行驶。由于非结构化道路的路面不平整,车辆会因为不平整的路面而振动,甚至剧烈振动,且当前大部分传感器与大型无人驾驶工程作业车辆的车身或外接支撑悬梁直接连接,所以车辆上的传感器也会随车辆的振动而振动。如此,在长时间的机械振动下,会引发传感器机械疲劳,结构断裂以及性能退化等问题,导致缩短了传感器使用寿命,降低了传感器的测量精度。
例如,无人驾驶矿车(例如宽体自卸车)在矿山上的行驶环境恶劣,宽体自卸车受外界力作用下振动,宽体自卸车上的传感器与宽体自卸车车身钢板直连,宽体自卸车自身悬架系统为钢板弹簧,减震性能较差,传感器尤其是激光雷达、毫米波雷达等内置的机械元件、微机电系统(Micro-Electro-Mechanical System,MEMS)元件容易受到振动影响,宽体自卸车上的传感器也会随宽体自卸车振动而振动,传感器尤其是激光雷达的探测精度会受到振动影响,长时间作用会引发传感器机械疲劳,结构断裂以及性能退化等问题,导致传感器使用寿命降低,传感器更换成本上升。
发明内容
本申请实施例提供了一种空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆。
第一方面,本申请实施例提供了一种空气弹簧,包括气道和至少两个气室;其中,至少两个气室包括第一气室和第二气室;第一气室和第二气室沿气道间隔分布;第一气室通过第一控制阀与气道连接,第二气室通过第二控制阀与气道连接。
空气弹簧可以指具体实施例中的第三空气弹簧,例如第三空气弹簧23a和第三空气弹簧24a。
本申请实施例中的空气弹簧,在传感器等目标物体受到振动的情况下,空气弹簧可以减缓传感器等目标物体侧向的振动,进而减轻传感器的机械疲劳,降低了传感器总成断裂风险以及性能退化速度,提高传感器的使用寿命,降低了更换次数,降低了更换成本,同时降低了传感器测量精度受到振动的影响。
在上述第一方面的一种可能的实现中,至少两个气室还包括第三气室和第四气室;其中,第一气室、第二气室、第三气室和第四气室沿气道均匀分布;第三气室通过第三控制阀与气道连接,第四气室通过第四控制阀与气道连接。
本申请实施例中,第一气室、第二气室、第三气室和第四气室沿气道均匀分布,便于振动控制过程物理量的分解和计算,可以有效提高振动控制的精度,并且还可以提高隔振装置或空气弹簧的标定效率。
在上述第一方面的一种可能的实现中,气道为环形,第一气室、第二气室、第三气室沿气道的圆周方向均匀分布。
在上述第一方面的一种可能的实现中,气道还设置有进气阀门和出气阀门,其中,进气阀门和出气阀门设置在气道的圆周直径的同一侧。
进气阀门和出气阀门设置在气道的圆周直径的同一侧,有利于缩小装置体积,便于简化和安装进排气管路等。
例如,进气阀门232a和出气阀门233a设置在第三空气弹簧23a的直径的同一侧。如此,在一定程度上,可以缩短进气阀门232a和出气阀门233a分别与供气装置的连接距离,减小隔振装置的体积,方便安装。
在上述第一方面的一种可能的实现中,至少两个气室中的每一个均设置有气压传感器。
气压传感器用于测量各气室的气压。
在上述第一方面的一种可能的实现中,还包括凹槽部,凹槽部设置于至少两个气室中相邻的两个气室之间的垂直平分线上。
传感器的线束可以穿设于该凹槽部。设置于垂直平分线上,有利于简化标定参数,提高标定效率,简化振动控制计算参数,提高振动控制精度。
第二方面,本申请实施例提供了一种隔振装置,隔振装置包括第一空气弹簧和第二空气弹簧;第一空气弹簧包括第一气道、第一气室和第二气室,其中,第一气室和第二气室沿第一气道间隔分布;第一气室通过第一控制阀与第一气道连接,第二气室通过第二控制阀与第一气道连接;第二空气弹簧用于衰减垂直于第一空气弹簧所在平面的振动分量。
第一空气弹簧可以指具体实施例中的第三空气弹簧,例如,第三空气弹簧24a。
第二空气弹簧可以指具体实施例中的第一空气弹簧和第二空气弹簧,例如,第一空气弹簧21a,第二空气弹簧22a。
在上述第一方面的一种可能的实现中,第一空气弹簧还包括第三气室和第四气室;
第三气室通过第三控制阀与第一气道连接,第四气室通过第四控制阀与第一气道连接;第一气道为环形,第一气室、第二气室、第三气室和第四气室沿第一气道的圆周方向均匀分布;第一气室、第二气室、第三气室和第四气室均设置有气压传感器。
在上述第一方面的一种可能的实现中,第一气道还设置有第一进气阀门和第一出气阀门,其中,第一进气阀门和第一出气阀门设置在第一气道的圆周直径的同一侧。
在上述第一方面的一种可能的实现中,第一空气弹簧和第二空气弹簧为一体成型结构;或者,第一空气弹簧和第二空气弹簧固定连接。
固定连接的方式可以为可拆卸固定连接和不可拆卸固定连接,可拆卸固定连接可以为螺栓连接,不可拆卸固定连接可以是胶粘,但不限于此。
一体成型结构可以提高连接的可靠性,减小连接部的体积以及成本。可拆卸固定连接可以灵活替换第一空气弹簧、第二空气弹簧和第三空气弹簧的类型,适配性更强。不可拆卸固定连接在隔振装置出厂前的制造阶段,第一空气弹簧、第二空气弹簧和第三空气弹簧的类型即确定。
在上述第一方面的一种可能的实现中,装置还包括第三空气弹簧、第四空气弹簧和支架;第二弹簧、第一弹簧、第三弹簧、第四弹簧依次排布;第二空气弹簧与支架固定连接,第四空气弹簧与支架固定连接;第三空气弹簧包括第二气道、第五气室、第六气室、第七气室和第八气室,其中,第二气道为环形, 第二气道还设置有第二进气阀门和第二出气阀门,第二进气阀门和第二出气阀门设置在第二气道的圆周直径的同一侧;第五气室、第六气室、第七气室和第八气室沿第二气道的圆周方向均匀分布,且第五气室、第六气室、第七气室和第八气室均设有气压传感器;第四空气弹簧用于衰减垂直于第三空气弹簧所在平面的振动分量;第三空气弹簧和第四空气弹簧固定连接。
在一些实施中,支架可以包括铁架和支撑悬梁组成的结构,但不限于此。
第三空气弹簧可以指具体实施例中的第三空气弹簧,例如,第三空气弹簧24a。
第四空气弹簧可以指具体实施例中的第一空气弹簧和第二空气弹簧,例如,第一空气弹簧21a,第二空气弹簧22a。
在上述第一方面的一种可能的实现中,支架用于将隔振装置与车辆固定连接。
在上述第一方面的一种可能的实现中,第二空气弹簧和第四空气弹簧均为单曲空气弹簧。
第三方面,本申请实施例提供了一种传感器总成,包括隔振装置和传感器;
隔振装置包括第一空气弹簧和第二空气弹簧,第一空气弹簧套设于传感器的侧面,第二空气弹簧设置于传感器的第一端;第二空气弹簧用于衰减垂直于第一空气弹簧所在平面的振动分量;第一空气弹簧包括第一气道、第一气室、第二气室、第三气室和第四气室;其中,第一气室、第二气室、第三气室和第四气室沿气道均匀分布;第一气室通过第一控制阀与第一气道连接,第二气室通过第二控制阀与第一气道连接,第三气室通过第三控制阀与气道连接,第四气室通过第四控制阀与气道连接。
第一空气弹簧可以指具体实施例中的第三空气弹簧,例如,第三空气弹簧24a。
第二空气弹簧可以指具体实施例中的第一空气弹簧和第二空气弹簧,例如,第一空气弹簧21a,第二空气弹簧22a。
在上述第一方面的一种可能的实现中,还包括第三空气弹簧、第四空气弹簧;第二弹簧、第一弹簧、第三弹簧、第四弹簧依次排布;第三空气弹簧套设于传感器的侧面,第四空气弹簧设置于传感器的第二端;第三空气弹簧包括第二气道、第五气室、第六气室、第七气室和第八气室,其中,第二气道为环形,第二气道还设置有第二进气阀门和第二出气阀门,第二进气阀门和第二出气阀门设置在第二气道的圆周直径的同一侧;第五气室、第六气室、第七气室和第八气室沿第二气道的圆周方向均匀分布,且第五气室、第六气室、第七气室和第八气室均设有气压传感器;第四空气弹簧用于衰减垂直于第三空气弹簧所在平面的振动分量;第三空气弹簧和第四空气弹簧固定连接。
第三空气弹簧可以指具体实施例中的第三空气弹簧,例如,第三空气弹簧24a。第四空气弹簧可以指具体实施例中的第一空气弹簧和第二空气弹簧,例如,第一空气弹簧21a,第二空气弹簧22a。
第四方面,本申请实施例提供了一种隔振控制方法,方法应用于隔振控制系统,隔振控制系统包括电子控制单元和空气弹簧,空气弹簧包括气道和至少两个气室;其中,至少两个气室包括第一气室和第二气室;第一气室和第二气室沿气道间隔分布;第一气室通过第一控制阀与气道连接,第二气室通过第二控制阀与气道连接
方法包括:
电子控制单元获取传感器的加速度;
电子控制单元根据将加速度分解至预设方向的分量,基于预设方向的分量确定气室期望的刚度和阻尼;
根据期望的刚度和阻尼确定每个电磁阀期望的开度;
根据期望的开度向各电磁阀发送相应的电磁阀开度调节指令。
第四方面,本申请实施例提供了一种车辆,其特征在于,车辆上设置空气弹簧,空气弹簧为第一方面的各种可能实现中的任意一种的空气弹簧。
第五方面,本申请实施例提供了一种计算机可读存储介质,其特征在于,计算机可读存储介质上存储有指令,指令在电子设备上执行时使电子设备执行第四方面的各种可能实现中的隔振控制方法。
附图说明
图1根据本申请的一些实施例,示出了一种传感器总成的爆炸示意图;
图2A根据本申请的一些实施例,示出了一种图1中所示的传感器总成的组装状态的正视图;
图2B根据本申请的一些实施例,示出了一种图1中所示的传感器总成的组装状态的左视图;
图2C根据本申请的一些实施例,示出了一种图1中所示的传感器总成的组装状态的俯视图;
图3A为图1中第三空气弹簧23a的俯视图;
图3B根据本申请的一些实施例,示出了一种第三空气弹簧23a沿图1中A-A方向的截面图;
图3C为图1中第三空气弹簧24a的俯视图;
图3D为图3C中第三空气弹簧24a的一种减振原理示意图;
图4根据本申请的一些实施例,示出了一种隔振系统的示意图;
图5根据本申请的一些实施例,对应于隔振装置20a以及图4,示出了一种隔振装置20a的隔振控制方法的流程示意图;
图6示出了一种电子控制单元30将传感器10a的加速度分解至x轴,y轴和z轴方向的分量的原理示意图;
图7根据本申请的一些实施例,示出了一种将x轴方向的加速度和y轴方向的加速度转换至第三空气弹簧23a所在xy平面的气室中心方向的加速度分量的原理示意图;
图8根据本申请的一些实施例,示出了一种基于控制阀开度调节指令调节气室的气压的原理示意图;
图9根据本申请的一些实施例,示出了一种无人驾驶矿车的俯视图;
图10根据本申请的一些实施例,示出了一种激光雷达10a、隔振装置20a以及无人驾驶矿车1的连接结构示意图。
附图标记说明:
20a-隔振装置;21a-第一空气弹簧;22a-第二空气弹簧;23a-第三空气弹簧;24a-第三空气弹簧;211a-定位孔;212a-定位孔;213a-进气阀门;232a-进气阀门;102a-顶部保护罩;103a-激光雷达工作区;104a-线束插头;105a-底部保护罩;241a-连接部;242a-开口;243a-排气阀门;221a-定位孔;222a-定位孔;223a-进气阀门;214a-定位孔;234a-第三气室;235a-第三气室;236a-第三气室;237a-第三气室;238a-气道;202a-控制阀;245a-第三气室;246a-第三气室;247a-第三气室;248a-第三气室;30-电子控制单元;201a-气压传感器;40-供气装置;10a-传感器;101a-惯性测量单元;231a-连接部;214a-出气阀门;1-无人驾驶矿车;50-车头;30-铁架;60-支撑悬梁。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。
虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰 恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
为了解决背景技术中的技术问题,本申请实施例提供了一种隔振装置,该隔振装置包括第一隔振装置和第二隔振装置,第一隔振装置用于设置于目标物体的第一方向,第一隔振装置用于减缓目标物体第一方向的振动分量,第二隔振装置用于设置于目标物体的第二方向,第二隔振装置用于减缓目标物体第二方向的振动分量。
基于上述的隔振装置,在目标物体受到振动的情况下,隔振装置可以同时减缓目标物体第一方向的振动以及第二方向的振动,减轻目标物体的机械疲劳,降低了目标物体结构断裂风险以及性能退化速度,提高了目标物体的使用寿命。
在一些实施例中,第一隔振装置可以包括第一空气弹簧和第二空气弹簧,第一空气弹簧用于设置于目标物体的顶部和底部,第一空气弹簧用于减缓目标物体顶部至底部方向的振动分量。第二隔振装置可以包括至少一个第三空气弹簧,至少一个第三空气弹簧围绕目标物体的侧面设置,至少一个第三空气弹簧用于减缓目标物体侧向的振动分量。
第一空气弹簧和与之靠近的第三空气弹簧可以为一体成型结构;或者,第一空气弹簧和与之靠近的第三空气弹簧之间可以固定连接。固定连接的方式可以为螺栓连接,也可以是胶粘,但不限于此。
同理,第二空气弹簧和与之靠近的第三空气弹簧可以为一体成型结构;或者,第二空气弹簧和与之靠近的第三空气弹簧之间可以固定连接。固定连接的方式可以为可拆卸固定连接和不可拆卸固定连接,可拆卸固定连接可以为螺栓连接,不可拆卸固定连接可以是胶粘,但不限于此。
一体成型结构可以提高连接的可靠性,减小连接部的体积以及成本。可拆卸固定连接可以灵活替换第一空气弹簧、第二空气弹簧和第三空气弹簧的类型,适配性更强。不可拆卸固定连接在隔振装置出厂前的制造阶段,第一空气弹簧、第二空气弹簧和第三空气弹簧的类型即确定。
基于上述的隔振装置,在传感器受到振动的情况下,隔振装置可以减缓传感器顶部至底部方向的振动以及侧向的振动,进而减轻传感器的机械疲劳,降低了传感器总成断裂风险以及性能退化速度,提高传感器的使用寿命,降低了更换次数,降低了更换成本,同时降低了传感器测量精度受到振动的影响。
在一些实施例中,目标物体可以是传感器。例如,激光雷达等。第一隔振装置可以包括第一空气弹簧和第二空气弹簧;第一空气弹簧用于设置于传感器的顶部,第二空气弹簧用于设置于传感器的底部,第二隔振装置可以包括至少一个第三空气弹簧,至少一个第三空气弹簧围绕传感器的侧面设置。
在一些实施例中,第一空气弹簧可以为单曲空气弹簧、双曲空气弹簧等,但不限于;第二空气弹簧 可以为单曲空气弹簧、双曲空气弹簧等,但不限于;第三空气弹簧为环形空气弹簧。每个环形空气弹簧分别套设于传感器的侧面。
在其他一些实施例中,该隔振装置还可以为多个空气弹簧,多个空气弹簧环绕传感器的侧面设置。
空气弹簧是指在可伸缩的密闭容器中充以压缩空气,利用空气弹性作用的弹簧。俗称气囊等。
下面示例性地介绍一种包括本申请实施例提供的传感器总成,图1根据本申请的一些实施例,示出了一种传感器总成的爆炸示意图。如图1所示,该传感器总成包括传感器10a和隔振装置20a。其中,传感器10a可以为激光雷达。激光雷达的类型可以是毫米波雷达、固态激光雷达等。
隔振装置20a包括第一隔振装置和第二隔振装置;第一隔振装置包括第一空气弹簧21a和第二空气弹簧22a。第二隔振装置包括第三空气弹簧23a和第三空气弹簧24a。
第一空气弹簧21a设置于传感器10a的顶部,第二空气弹簧22a设置于传感器10a的底部。第三空气弹簧23a和第三空气弹簧24a围绕传感器10a的侧面设置。
第一空气弹簧21a的底部与传感器10a的顶部固定连接;第二空气弹簧22a的顶部与传感器10a的底部固定连接;第三空气弹簧23a的顶部与第一空气弹簧21a的底部固定连接;第三空气弹簧24a的底部与第二空气弹簧22a的顶部固定连接。
第一空气弹簧21a的顶部设置多个定位孔211a,该些定位孔211a用于将第一空气弹簧21a与外部固定结构固定连接。第一空气弹簧21a的顶部设置多个定位孔221a,该些定位孔221a用于将第二空气弹簧22a与外部固定结构固定连接。
第三空气弹簧23a和第三空气弹簧24a可以为方形的或者环形的。
下面示例性示出一种图1中传感器总成的组装示意图。例如,图2A根据本申请的一些实施例,示出了一种图1中所示的传感器总成的组装状态的正视图。传感器10a安装于隔振装置20a中的组装结构可以如图2A所示。
在一些实施例中,第三空气弹簧23a靠近第一空气弹簧21a的顶部设置连接部231a,第一空气弹簧21a靠近第三空气弹簧23a的底部设置连接部,第三空气弹簧23a的连接部231a与第一空气弹簧21a的连接部固定连接。
在一些实施例中,第三空气弹簧24a靠近第二空气弹簧22a的顶部设置连接部241a,第二空气弹簧22a靠近第三空气弹簧24a的底部设置连接部,第三空气弹簧24a的连接部241a与第二空气弹簧22a的连接部固定连接。
在一些实施例中,连接部可以是螺孔,两个连接部通过螺栓固定连接。在其他一些实施例中,两个连接部可以通过胶粘或者一体化成型固定连接。
其中,在一些实施例中,上述第一空气弹簧21a可以是单曲空气弹簧,第二空气弹簧22a可以是单曲空气弹簧;第三空气弹簧23a可以为环形空气弹簧;第三空气弹簧24a可以为环形空气弹簧。可以理解的是,单曲空气弹簧仅是示例性的,单曲空气弹簧还可以用其他相同功能的结构替代,在此不做限制。同理,环形空气弹簧仅是示例性的,环形空气弹簧还可以用其他相同功能的结构替代,在此不做限制。
在一些实施例中,环形空气弹簧可以设置于传感器10a的非传感器区,这是因为传感器10a的传感器区用于发射和接收信号,若是被遮挡,则会影响传感器10a的检测精度。若传感器10a的侧面包括传感区和两非传感区,一个非传感区和另一个非传感区之间设置有传感区,则两个环形空气弹簧分别设置于一个非传感区和另一个非传感区。
例如,激光雷达10a包括顶部保护罩102a、激光雷达工作区103a、底部保护罩105a和线束插头 104a。线束插头104a设置于底部保护罩105a。其中,激光雷达工作区103a位于顶部保护罩102a和底部保护罩105a之间。激光雷达工作区103a为用于发射激光和接收激光的光路传播区,获取感测数据。第三空气弹簧24a上设有凹槽部242a,凹槽部242a设置于至少两个气室中相邻的两个气室之间的垂直平分线上。线束插头104a可以穿设于该凹槽部242a。
由于激光雷达工作区103a为用于发射激光和接收激光的光路传播区,若是激光雷达工作区103a上设置其他结构,会影响激光雷达工作区103a感测数据的精度。因为,在一些实施例中,第三空气弹簧23a和第三空气弹簧24a套设于激光雷达10a的外侧面上除激光雷达工作区103a的部分,留出用于光路传播的激光雷达工作区103a。例如,第一空气弹簧21a套设于激光雷达10a的顶部保护罩102a周向的外侧壁。第二空气弹簧22a和第三空气弹簧23a套设于激光雷达10a的底部保护罩105a周向的外侧壁。
传感器10a除了可以为激光雷达,还可以为其他任意种类的传感器。
本申请实施例中,第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a可以局部包覆固定激光雷达10a,且不遮挡激光雷达10a的光路传播路径。如此,本申请实施例提供的隔振装置既能对激光雷达10a进行隔振,又能在隔振的过程中不干扰激光雷达10a的测量,在减轻激光雷达10a的机械疲劳,降低了激光雷达10a结构断裂风险以及性能退化速度,提高了传感器的使用寿命的同时,降低了激光雷达10a测量精度受到振动的影响。
第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a的结构、以及第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a与传感器10a的连接和位置关系,可以根据传感器10a的结构特征而改变,以满足第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a对传感器10a的隔振要求。
在一些实施例中,传感器10a与外部固定结构固定连接,且传感器10a设置于第一空气弹簧21a和第二空气弹簧22a之间,第一空气弹簧21a和第二空气弹簧22a对传感器10a进行夹紧,如此,有效防止传感器10a的重心漂移和晃动,有效减少重心不稳导致的额外振动。固定连接的方式可以通过定位孔固定连接。
例如,图2B根据本申请的一些实施例,示出了一种图1中所示的传感器总成的组装状态的左视图。
如图2B所示,多个定位孔212a沿第一空气弹簧21a的轴向均匀分布。在一些实施例中,定位孔212a可以为螺栓孔。多个定位孔222a沿第二空气弹簧22a的轴向均匀分布。在一些实施例中,定位孔222a可以为螺栓孔。
在一些实施例中,第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a可以为可充有气体的结构。
具体地,可充有气体的结构可以为能够充气的气室。例如,第一空气弹簧21a包括可充有气体的第一气室;第二空气弹簧22a包括可充有气体的第二气室;第三空气弹簧23a包括多个在周向上相互隔离的第三气室;第三空气弹簧24a包括多个在周向上相互隔离的第三气室;第一气室、第二气室和第三气室充有气体,且在传感器受到振动的情况下,第一气室、第二气室和第三气室能够对该振动产生阻尼,减缓传感器10a的振动。
第一空气弹簧21a中可以设置用于向第一气室供气的供气结构。例如,图2C根据本申请的一些实施例,示出了一种图1中所示的传感器总成的组装状态的俯视图。如图2C所示,第一空气弹簧21a的顶部设置进气阀门213a和出气阀门214a,进气阀门213a用于与供气装置连接,将气体通入第一空气 弹簧21a的第一气室。第二空气弹簧22a中的供气的结构与第一空气弹簧21a中的供气结构相同,在此不再赘述。
在本申请的一些实施例中,进气阀门和出气阀门设置在气道的圆周直径的同一侧,如此,在一定程度上,可以缩短进气阀门和出气阀门分别与供气装置的连接距离,减小隔振装置的体积,方便安装。
传感器10a每次振动时,在径向上的振动方向可能不同。因此,为了便于振动控制过程物理量的分解和计算,例如,为了较精确的减弱每次的振动和/或更方便将加速度分解计算。可以将第三空气弹簧23a的周向上设置多个独立的、均匀分布的、隔振程度可变化的隔振结构。在一些实施例中,该隔振结构为气室,具体地,第三空气弹簧23a包括多个在周向上相互隔离且均匀分布的第三气室。如此,可以有效提高振动控制的精度,并且还可以提高隔振装置或空气弹簧的标定效率。
例如,图3A为图1中第三空气弹簧23a的俯视图。如图3A所示,第三空气弹簧23a周向上均匀间隔设置四个第三气室:第三气室234a、第三气室235a、第三气室236a和第三气室237a。
第三气室234a、第三气室235a、第三气室236a和第三气室237a可以为各种形状,例如,图3B根据本申请的一些实施例,示出了一种第三空气弹簧23a沿图1中A-A方向的截面图。如图3B所示,第三气室234a、第三气室235a、第三气室236a和第三气室237a的结构相同,均为第三空气弹簧23a的内壁的部分区域与弧形表面包围的密闭腔室。组成第三气室234a、第三气室235a、第三气室236a和第三气室237a的第三空气弹簧23a的内壁的部分区域为A,区域A的面积为小于预设面积,以使第三气室234a、第三气室235a、第三气室236a和第三气室237a与传感器10a的互相受力更集中,提高对传感器10a的减振响应效果。
同理,第三空气弹簧24a与第三空气弹簧23a中气室的结构相同。例如,图3C为图1中第三空气弹簧24a的俯视图。如图3C所示,第三空气弹簧24a周向上均匀间隔设置四个第三气室,该四个第三气室为隔振结构:第三气室245a、第三气室246a、第三气室247a和第三气室248a。
为了在传感器10a受到振动时,减缓传感器10a的振动,就需要改变第三气室234a、第三气室235a、第三气室236a和第三气室237a中的气压值。因此,如图3B所示,可以在第三空气弹簧23a的周向设置气道238a,气道238a的外侧面设置进气阀门232a和排气阀门233a,进气阀门232a用于与供气装置连接,供气装置便可以通过进气阀门232a向气道238a通入气体。
进气阀门232a和出气阀门233a设置在第三空气弹簧23a的直径的同一侧。如此,在一定程度上,可以缩短进气阀门232a和出气阀门233a分别与供气装置的连接距离,减小隔振装置的体积,方便安装。
第三气室234a、第三气室235a、第三气室236a和第三气室237a与气道238a之间设置控制阀202,相应气室的控制阀202打开,则气道238a中的气体便会流入相应的气室。同理,第三空气弹簧24a也可以包括多个在周向上相互隔离的第三气室;第一气室、第二气室和第三气室充有气体。
本申请实施例中的气道是指供气排气的管道。可以为环形结构。
本申请实施例中的控制阀可以包括控制阀,还包括其他可用于控制开关的结构。当控制阀为开时,可以控制气道里的气体流入气室;当控制阀为关闭状态时,可以阻止气道里的气体进入气室。
在一些实施例中,进气阀门232a和出气阀门233a设置在第三空气弹簧23a的直径的同一侧。如此,在一定程度上,可以缩短进气阀门232a和出气阀门233a分别与供气装置的连接距离,减小隔振装置的体积,方便安装。
各第三气室的形状可以为球形,例如扁球体。
供气装置包括气罐、气泵和气路,其中,气罐与气泵通过气路连接,气泵与各隔振装置中的进气阀 门通过气路连接。气罐为上述各气室的供气源。气泵为气罐气路充气提供方动力。
第三空气弹簧24a中的第三气室、控制阀、进气阀门、排气阀门和气道的结构与第二空气弹簧22a中的第三气室、控制阀、进气阀门、排气阀门和气道的结构相同,在此不再赘述。
为了减缓传感器10a的振动,空气弹簧的阻尼和刚度可调节。如此,当传感器10a受到振动后作用于空气弹簧的情况下,空气弹簧基于调节后的阻尼和刚度产生与缓冲传感器10a朝向空气弹簧的作用力相反的力来减缓传感器10a的振动。且表征传感器10a的振动的加速度的值越大,空气弹簧的阻尼和刚度被调节的越大,反之,表征传感器10a的振动的加速度的值越小,空气弹簧的阻尼和刚度被调节的越小。空气弹簧可以为第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a中的任意一种或多种。
例如,图3D为图3C中第三空气弹簧24a的一种减振原理示意图。如图3D所示,为了减缓传感器10a的振动,第三空气弹簧24a的阻尼和刚度可调节。如此,当传感器10a受到振动后作用于第三空气弹簧24a的情况下,第三空气弹簧24a基于调节后的阻尼和刚度产生与缓冲传感器10a朝向第三空气弹簧24a的作用力F1相反的力F2来减缓传感器10a的振动。且表征传感器10a的振动的加速度的值越大,第三空气弹簧24a的阻尼和刚度被调节的越大,反之,表征传感器10a的振动的加速度的值越小,第三空气弹簧24a的阻尼和刚度被调节的越小。
图4根据本申请的一些实施例,示出了一种隔振系统的示意图。如图4所示,该隔振系统包括电子控制单元30、隔振装置20a和传感器10a以及供气装置40。
隔振装置20a包括气压传感器201a和控制阀202a;气压传感器201a用于测量隔振装置20a中各气室的气压。控制阀202a用于调节进入隔振装置20a中各气室的气体体积。
传感器10a中内置惯性测量单元(Inertial Measurement Unit,IMU)101a,惯性测量单元101a用于测量传感器10a振动时的加速度。在其他一些实施例中,传感器10a的表面上设置惯性测量单元101a。
其中,控制阀202a和供气装置40连接,气压传感器201a、控制阀202a和传感器10a分别与电子控制单元30连接;电子控制单元30用于接收惯性测量单元101b发送的激光雷达10b振动时的加速度,电子控制单元30基于该加速度确定各气室期望的阻尼和期望的刚度。电子控制单元30再基于各个气室期望的刚度和期望的阻尼确定控制阀的开度,向各控制阀发送相应的控制阀开度调节指令。电子控制单元30在下一个周期循环执行上述步骤,实时减弱传感器10a的振动。
图5根据本申请的一些实施例,对应于隔振装置20a以及图4,示出了一种隔振装置20a的隔振控制方法的流程示意图。该流程的执行主体可以为电子控制单元(Electronic Control Unit,ECU)30。
如图5所示,该流程包括如下步骤:
501:通过惯性测量单元101a获取传感器10a的加速度。
本申请实施例中的激光雷达的加速度用来表示激光雷达当前的振动状态。本申请实施例可以通过在激光雷达的振动方向分解加速度,确定第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a对传感器10a的减振程度。因此需要对气室建立坐标系。
例如,如图3A至图3D所示,第三空气弹簧23a和第三空气弹簧24a中的四个气室是按照正交坐标系xy轴分布的。
以第三空气弹簧23a为例,其过进气阀门232a和排气阀门233a之间连线的中点与第三空气弹簧23a的圆心的中心线方向为x轴的正方向,第三空气弹簧23a底部至顶部的轴向上为z轴正方向(如下文图6中所示,图3A至图3D中未示出),第三空气弹簧23a的左侧至右侧的方向为y轴正方向,以此 建立xyz空间直角坐标系,用于实际使用时做参数标定。对应地,进气阀门232a位于xy正交坐标系的第一象限,排气阀门233a位于正交坐标系的第二象限。
外界不同方向传导至传感器10a的振动会沿着xyz轴进行分解,从而转换到第三空气弹簧23a对应四个气室的中心方向以满足侧向隔振需求,外界振动分解到z轴的部分会转换到第一空气弹簧21a和第二空气弹簧22a上,从而满足垂向隔振需求。
例如,图6示出了一种电子控制单元30将传感器10a的加速度分解至x轴,y轴和z轴方向的分量的原理示意图。如图6所示,电子控制单元30通过惯性测量单元101a获取传感器10a的加速度a,加速度a与x轴、y轴和z轴有一定的夹角。
由于车辆1受到振动后,会将振动传至传感器10a,传感器10a的振动状态可以由传感器10a的加速度来反应,因此,在车辆1启动后,惯性测量单元101便可以测量传感器10a的加速度,并将加速度发送至电子控制单元30。如此,电子控制单元30便可以基于传感器10a的加速度确定各气室应对该振动状态的期望阻尼和期望刚度,以减弱传感器10a的振动,减轻传感器10a的机械疲劳,降低了传感器10a结构断裂风险以及性能退化速度,提高了传感器的使用寿命。
在电子控制单元30执行该步骤之前,电子控制单元30便已通过控制第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a中各个气室的控制阀202,将各个气室内充入预设体积的气体,使其的内部压力达到预设值。如此,在车辆1受振动,将振动传至传感器10a的情况下,充有预设体积气体的第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a能够对激光雷达10起到一定的隔振作用。
502:将传感器10a的加速度分解至x轴方向的加速度、y轴方向的加速度和z轴方向的加速度。
例如,如图6所示,电子控制单元30将传感器10a的加速度分解至xy平面,然后再将分解至xy平面的力分解至x轴,得到加速度a在x轴方向的加速度分量ax1。同理,电子控制单元30将传感器10a的加速度分解至xz平面,然后再将分解至xz平面的力分解至x轴,得到加速度a在x轴方向的加速度分量ax2,最后对ax1和ax2进行加和得到x轴上的总加速度分量ax。以此类推,电子控制单元30将传感器10a的加速度分解至y轴,得到加速度a在y轴方向的总加速度分量ay;电子控制单元30将传感器10a的加速度分解至z轴,得到加速度a在z轴方向的总加速度分量az。
503:将x轴方向的加速度和y轴方向的加速度转换至第三空气弹簧23a和第三空气弹簧24a所在xy平面的气室中心方向的加速度分量。
例如,图7根据本申请的一些实施例,示出了一种将x轴方向的加速度和y轴方向的加速度转换至第三空气弹簧23a所在xy平面的气室中心方向的加速度分量的原理示意图。如图7所示,电子控制单元30基于x轴方向的加速度ax和y轴的加速度分量ay,以及加速度a1与气室的中心方向的夹角,得到第三空气弹簧23a和第三空气弹簧24a的各个气室中线方向的分量a131、a132、a133和a134。
504:基于四气室中心方向的加速度分量和z轴方向的加速度,计算第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a中的各个气室的期望刚度和期望阻尼。
如图7所示,四气室沿周向均匀间隔分布,如此,更有利于将加速度分解至x轴和y轴,做加速度的分解计算。
本申请实施例中,各个气室的期望刚度是指第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a中的各个气室在受力时抵抗弹性变形的能力。阻尼是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性。阻尼有助于减少机械结构的共振 振幅,从而避免结构因振动应力达到极限造成机构破坏;本申请实施例中,各个气室的阻尼有助于传感器10a受到瞬时冲击后,很快恢复到稳定状态,隔振和减振的效果较高。
在一些实施例中,电子控制单元30基于四气室中心方向的加速度分量、z轴方向的加速度以及预设的协同控制的算法,计算每个气室期望的阻尼和刚度。预设的协同控制的算法可以为天棚阻尼算法、线性二次型调节器(Linear Quadratic Regulator,LQR)、模型预测控制(Model Predictive Control,MPC)等算法,但并不限于此。
505:基于各个气室期望的刚度和期望的阻尼确定各个气室的期望气压以及对应的控制阀期望开度。
基于空气弹簧自身特性,各个气室期望的刚度和期望的阻尼和各个气室的期望气压呈对应关系,即根据各个气室的期望气压和各个气室的固定参数,通过理论计算以及实验测试标定等手段,可以转化为各个气室期望的刚度和期望的阻尼。而且各个气室的气压可以通过气压传感器实时测量得到,所以,可以通过对各个气室的控制阀202的开度进行调节,进而使得各个气室的气压达到期望的气压,进而使得各个气室的阻尼和刚度达到期望值。
电子控制单元30可以基于各个气室期望的刚度和期望的阻尼,从刚度、阻尼、控制阀的开度以及气压的映射表中,查找到各个气室的控制阀的开度和各个气室的期望气压。
506:向各控制阀发送相应的控制阀开度调节指令,然后每个预设时间继续执行步骤501。
控制阀开度调节指令携带各个气室的控制阀的开度和各个气室的期望气压信息。电子控制单元30控制各气室的气压达到期望的刚度和阻尼,基于闭环反馈的协同控制减小传感器10a垂向(z轴)和侧向(xy平面)振动。
本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有指令,指令在电子设备上执行时使电子设备执行上述各个方法实施例中的步骤。
在一些情况下,所公开的实施例可以以硬件、固件、软件或其任何组合来实现。所公开的实施例还可以被实现为由一个或多个暂时或非暂时性计算机可读(例如,计算机可读)存储介质承载或存储在其上的指令,其可以由一个或多个处理器读取和执行。例如,指令可以通过网络或通过其他计算机可读介质分发。因此,计算机可读介质可以包括用于以计算机(例如,计算机)可读的形式存储或传输信息的任何机制,包括但不限于,软盘、光盘、光碟、只读存储器(CD-ROMs)、磁光盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁卡或光卡、闪存、或用于利用因特网以电、光、声或其他形式的传播信号来传输信息(例如,载波、红外信号数字信号等)的有形的计算机可读存储器。因此,计算机可读介质包括适合于以计算机(例如计算机)可读的形式存储或传输电子指令或信息的任何类型的计算机可读介质。
图8根据本申请的一些实施例,示出了一种基于控制阀开度调节指令调节气室的气压的原理示意图。
图8中的气室可以是第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a中的任意一个气室。
如图8所示,气压传感器201a可以实时测量气室的气压,比较器比较实时测量的气压与期望的气压,若不相等,则电子控制单元30便基于该不相等的比较结果,以及基于步骤705得到确定的控制阀的开度,调节控制阀202的开度,以调整通入气室的气体量,使得气室尽可能满足期望气压,进而使得气室尽可能满足期望的阻尼和期望的刚度。
若车辆1一直在行驶状态,由于矿山道路的平整度不一样,车辆1受到的振动程度会变化,传感器10a的加速度也会随之变化。因此,电子控制单元30需要周期性执行本申请实施例提供的隔振装置20a的控制方法,实时减缓传感器10a的振动,以提高减缓传感器10a振动的效果。
上述空气弹簧、隔振装置或传感器总成不只可以应用在大型无人驾驶工程作业领域中的无人驾驶矿车中,还可以应用在其他车辆中。
本申请中车辆为广义概念上的车辆,可以是交通工具(如:汽车,卡车,摩托车,火车,飞机,轮船等),工业车辆(如:叉车,挂车,牵引车等),工程车辆(如:挖掘机,推土机,吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请对车辆的类型不做限定。
下面以将上述传感器总成应用在无人驾驶矿车,以及传感器为激光雷达为例说明本申请的技术方案。
图9根据本申请的一些实施例,示出了一种无人驾驶矿车的俯视图。
如图9所示,无人驾驶矿车1包括三组激光雷达:激光雷达10a、激光雷达10b和激光雷达10c。三组激光雷达分别设置在无人驾驶矿车1车身上的不同位置。例如,激光雷达10a和激光雷达10b分别设置在无人驾驶矿车1的车头的两端,激光雷达10c设置在无人驾驶矿车1的车尾。
三组激光雷达分别用于扫描不同的区域,例如,激光雷达10a用于扫描以激光雷达10a为圆心,预设半径为r1的车头左端的扇形区域a,激光雷达10b用于扫描以激光雷达10b为圆心,预设半径为r2的车头右端的扇形区域b,激光雷达10c用于扫描以激光雷达10c为圆心,预设半径为r3的车后方的扇形区域c。
激光雷达的种类可以是机械式激光雷达或者固态激光雷达,但不限于此。
图10根据本申请的一些实施例,示出了一种激光雷达10a、隔振装置20a以及无人驾驶矿车1的连接结构示意图。
如图10所示,无人驾驶矿车1包括车头50、铁架30、支撑悬梁60、激光雷达10a和隔振装置20a。其中,无人驾驶矿车1的车头上延伸出支撑悬梁60,铁架30垂直设置于支撑悬梁60,且铁架30与支撑悬梁60固定连接,隔振装置20a的上表面与铁架30固定连接,隔振装置20a的下表面与铁架30固定连接。
图9所示的激光雷达10b和隔振装置20b也可以通过上文中的铁架和支撑悬梁这种连接结构与无人驾驶矿车1固定连接,激光雷达10c和隔振装置20c也可以通过上文中的铁架和支撑悬梁这种连接结构与无人驾驶矿车1固定连接,在此不再赘述。
激光雷达10a安装在无人驾驶矿车1的支撑悬梁60上,该支撑悬梁60也叫做悬臂梁结构件,一般悬臂梁存在固有振动频率,且在路面不平传导至悬臂梁上时,其振动模态会存在一阶弯曲振型,而根据悬臂梁的材料、截面、惯性力矩以及高度等参数存在不同,也可能会有二阶、三阶的弯曲振型,影响传感器的稳定性。即使有垂向钢板加固,但在某些振动方向和频率上也难以保证不受悬臂梁自身振动影响。
而激光雷达10a由于采用本申请实施例提供的隔振装置20a,在无人驾驶矿车1行驶在非结构化道路上,受到振动时,由于第一空气弹簧21a、第二空气弹簧22a、第三空气弹簧23a和第三空气弹簧24a具有阻尼,阻尼有助于激光雷达10a受到振动后,减少因振动产生的偏离初始位置的幅度,使其尽可能快的恢复稳定状态。隔振装置20a利用第一空气弹簧21a和第二空气弹簧22a对激光雷达10a这一阻尼特性,对激光雷达10a进行垂直方向(例如垂直于路面的方向)上的隔振,利用第三空气弹簧23a和第三空气弹簧24a对激光雷达10a这一阻尼特性,对激光雷达10a进行与轴向垂直的水平方向的隔振。如此,在一定程度上,减轻了激光雷达10a垂直方向(y轴方向)和侧向(非y轴方向)的振动,减轻了 激光雷达10a机械疲劳,降低了激光雷达10a的结构断裂的风险以及性能退化速度,提高了激光雷达10a的使用寿命。
综上,本申请实施例至少具有以下有益效果:
在一些程度上,本申请实施例的隔振装置能够有效解决矿山等复杂路面上的大型工程车辆(例如矿车)的传感器的或者性能不佳的悬架上的传感器的多维度隔振问题,或者,延长精密传感器生命周期,节约成本。
在一些程度上,本申请实施例的隔振装置能够降低对振动敏感的传感器测量精度的问题。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以上,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种空气弹簧,其特征在于,所述空气弹簧包括气道和至少两个气室;
    其中,所述至少两个气室包括第一气室和第二气室;
    所述第一气室和所述第二气室沿所述气道间隔分布;
    所述第一气室通过第一控制阀与所述气道连接,所述第二气室通过第二控制阀与所述气道连接。
  2. 根据权利要求1所述的空气弹簧,其特征在于,所述至少两个气室还包括第三气室和第四气室;
    其中,所述第一气室、所述第二气室、所述第三气室和所述第四气室沿所述气道均匀分布;
    所述第三气室通过第三控制阀与所述气道连接,所述第四气室通过第四控制阀与所述气道连接。
  3. 根据权利要求2所述的空气弹簧,其特征在于,所述气道为环形,所述第一气室、所述第二气室、所述第三气室沿所述气道的圆周方向均匀分布。
  4. 根据权利要求3所述的空气弹簧,其特征在于,所述气道还设置有进气阀门和出气阀门,其中,所述进气阀门和所述出气阀门设置在所述气道的圆周直径的同一侧。
  5. 根据权利要求1至4中任一项所述的空气弹簧,其特征在于,所述至少两个气室中的每一个均设置有气压传感器。
  6. 根据权利要求1至5中任一项所述的空气弹簧,其特征在于,还包括凹槽部,所述凹槽部设置于所述至少两个气室中相邻的两个气室之间的垂直平分线上。
  7. 一种隔振装置,其特征在于,所述隔振装置包括第一空气弹簧和第二空气弹簧;
    所述第一空气弹簧包括第一气道、第一气室和第二气室,其中,所述第一气室和所述第二气室沿所述第一气道间隔分布;
    所述第一气室通过第一控制阀与所述第一气道连接,所述第二气室通过第二控制阀与所述第一气道连接;
    所述第二空气弹簧用于衰减垂直于所述第一空气弹簧所在平面的振动分量。
  8. 根据权利要求7所述的装置,其特征在于,所述第一空气弹簧还包括第三气室和第四气室;
    所述第三气室通过第三控制阀与所述第一气道连接,所述第四气室通过第四控制阀与所述第一气道连接;
    所述第一气道为环形,所述第一气室、所述第二气室、所述第三气室和所述第四气室沿所述第一气道的圆周方向均匀分布;
    所述第一气室、所述第二气室、所述第三气室和所述第四气室均设置有气压传感器。
  9. 根据权利要求8所述的装置,其特征在于,所述第一气道还设置有第一进气阀门和第一出气阀门,其中,所述第一进气阀门和所述第一出气阀门设置在所述第一气道的圆周直径的同一侧。
  10. 根据权利要求7至9中任一项所述的装置,其特征在于,所述第一空气弹簧和所述第二空气弹簧为一体成型结构;或者,所述第一空气弹簧和所述第二空气弹簧固定连接。
  11. 根据权利要求7至10中任一项所述的装置,其特征在于,还包括第三空气弹簧、第四空气弹簧和支架;所述第二弹簧、所述第一弹簧、所述第三弹簧、所述第四弹簧依次排布;所述第二空气弹簧与所述支架固定连接,所述第四空气弹簧与所述支架固定连接;
    所述第三空气弹簧包括第二气道、第五气室、第六气室、第七气室和第八气室,其中,所述第二气道为环形,所述第二气道还设置有第二进气阀门和第二出气阀门,所述第二进气阀门和所述第二出气阀门设置在所述第二气道的圆周直径的同一侧;
    所述第五气室、所述第六气室、所述第七气室和所述第八气室沿所述第二气道的圆周方向均匀分布,且所述第五气室、所述第六气室、所述第七气室和所述第八气室均设有气压传感器;
    所述第四空气弹簧用于衰减垂直于所述第三空气弹簧所在平面的振动分量;所述第三空气弹簧和所述第四空气弹簧固定连接。
  12. 根据权利要求11所述的装置,其特征在于,所述支架用于将所述隔振装置与车辆固定连接。
  13. 根据权利要求7至12中任一项所述的装置,其特征在于,所述第二空气弹簧和所述第四空气弹簧均为单曲空气弹簧。
  14. 一种传感器总成,其特征在于,包括隔振装置和传感器;
    所述隔振装置包括第一空气弹簧和第二空气弹簧,所述第一空气弹簧套设于所述传感器的侧面,所述第二空气弹簧设置于所述传感器的第一端;所述第二空气弹簧用于衰减垂直于所述第一空气弹簧所在平面的振动分量;
    所述第一空气弹簧包括第一气道、第一气室、第二气室、第三气室和第四气室;其中,所述第一气室、所述第二气室、所述第三气室和所述第四气室沿所述气道均匀分布;
    所述第一气室通过第一控制阀与所述第一气道连接,所述第二气室通过第二控制阀与所述第一气道连接,所述第三气室通过第三控制阀与所述气道连接,所述第四气室通过第四控制阀与所述气道连接。
  15. 根据权利要求14所述的传感器总成,其特征在于,还包括第三空气弹簧、第四空气弹簧;所述第二弹簧、所述第一弹簧、所述第三弹簧、所述第四弹簧依次排布;所述第三空气弹簧套设于所述传感器的侧面,所述第四空气弹簧设置于所述传感器的第二端;
    所述第三空气弹簧包括第二气道、第五气室、第六气室、第七气室和第八气室,其中,所述第二气道为环形,所述第二气道还设置有第二进气阀门和第二出气阀门,所述第二进气阀门和所述第二出气阀门设置在所述第二气道的圆周直径的同一侧;
    所述第五气室、所述第六气室、所述第七气室和所述第八气室沿所述第二气道的圆周方向均匀分布,且所述第五气室、所述第六气室、所述第七气室和所述第八气室均设有气压传感器;
    所述第四空气弹簧用于衰减垂直于所述第三空气弹簧所在平面的振动分量;所述第三空气弹簧和所述第四空气弹簧固定连接。
  16. 一种隔振控制方法,其特征在于,所述方法应用于隔振控制系统,所述隔振控制系统包括电子控制单元和空气弹簧,所述空气弹簧包括气道和至少两个气室;
    其中,所述至少两个气室包括第一气室和第二气室;
    所述第一气室和所述第二气室沿所述气道间隔分布;
    所述第一气室通过第一控制阀与所述气道连接,所述第二气室通过第二控制阀与所述气道连接
    所述方法包括:
    所述电子控制单元获取所述传感器的加速度;
    所述电子控制单元根据将所述加速度分解至预设方向的分量,基于预设方向的分量确定所述气室期望的刚度和阻尼;
    根据所述期望的刚度和所述阻尼确定每个电磁阀期望的开度;
    根据所述期望的开度向各电磁阀发送相应的电磁阀开度调节指令。
  17. 一种车辆,其特征在于,所述车辆上设置空气弹簧,所述空气弹簧为权利要求1至6中任一项所述的空气弹簧。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,所述指令在电子设备上执行时使电子设备执行权利要求16所述的隔振控制方法。
PCT/CN2022/077074 2022-02-21 2022-02-21 空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆 WO2023155188A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/077074 WO2023155188A1 (zh) 2022-02-21 2022-02-21 空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆
CN202280004151.7A CN117222824A (zh) 2022-02-21 2022-02-21 空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077074 WO2023155188A1 (zh) 2022-02-21 2022-02-21 空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆

Publications (1)

Publication Number Publication Date
WO2023155188A1 true WO2023155188A1 (zh) 2023-08-24

Family

ID=87577248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077074 WO2023155188A1 (zh) 2022-02-21 2022-02-21 空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆

Country Status (2)

Country Link
CN (1) CN117222824A (zh)
WO (1) WO2023155188A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067103A1 (en) * 2001-10-04 2003-04-10 Easter Mark R. Dual rate air spring
JP2006151161A (ja) * 2004-11-29 2006-06-15 Kayaba Ind Co Ltd エアバネおよび懸架装置
CN102278408A (zh) * 2011-05-05 2011-12-14 江苏大学 刚度和阻尼联动可控的同轴一体式空气弹簧减振器
CN208074076U (zh) * 2018-04-16 2018-11-09 山东交通技师学院 一种带附加气室刚度可调式空气弹簧装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067103A1 (en) * 2001-10-04 2003-04-10 Easter Mark R. Dual rate air spring
JP2006151161A (ja) * 2004-11-29 2006-06-15 Kayaba Ind Co Ltd エアバネおよび懸架装置
CN102278408A (zh) * 2011-05-05 2011-12-14 江苏大学 刚度和阻尼联动可控的同轴一体式空气弹簧减振器
CN208074076U (zh) * 2018-04-16 2018-11-09 山东交通技师学院 一种带附加气室刚度可调式空气弹簧装置

Also Published As

Publication number Publication date
CN117222824A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
EP3436293B1 (en) Internal gas spring displacement sensors as well as gas spring assemblies and suspension systems including same
US6834736B2 (en) Active vehicle suspension with a hydraulic spring
CN206409570U (zh) 减振器和飞行器
US8915340B2 (en) Actuator arrangement for active vibration isolation comprising an inertial reference mass
US20170067526A1 (en) Planar Linkage, Methods of Decoupling, Mitigating Shock and Resonance, and Controlling Agricultural Spray Booms Mounted on Ground Vehicles
CN105952836B (zh) 可调阻尼的抗冲击微型惯性测量单元
US20220268913A1 (en) Gas spring sensors using millimeter wavelength radar and gas spring assemblies and suspension systems including same
CN206876182U (zh) 一种无人机及其惯性测量模块
CN104912988A (zh) 一种车辆的悬挂系统及其设计方法
CN204666157U (zh) 支柱悬挂式内隔振的惯性测量组件
WO2023155188A1 (zh) 空气弹簧、隔振装置、传感器总成、隔振控制方法和车辆
CN207814316U (zh) 一种悬挂式mems惯性导航产品的全向减震结构
US11597249B2 (en) Internal damper sensors as well as damper assemblies and suspension systems including same
Wright et al. The case for an irreversible active suspension system
CN106704425B (zh) 汽车、ecu及用于控制衬套刚度的控制系统
AU2008205075B2 (en) Reflector and gas spring assembly
CN114312196B (zh) 基于模型补偿的钟摆式悬架控制方法及其参数测量方法
Chen et al. Stiffness-damping matching method of an ECAS system based on LQG control
CN112976979A (zh) 一种高地隙喷雾机的空气悬架控制方法及装置
JP2010058704A (ja) 車両用サスペンションシステム
RU2569235C1 (ru) Способ снижения вертикальных и угловых перегрузок транспортного средства при движении по поверхности и транспортное средство, реализующее этот способ
Rahmfeld et al. Active vibration damping for off-road vehicles using valveless linear actuators
CN115010058B (zh) 具有调平功能的空中作业平台及其调姿方法
WO2022126417A1 (zh) 减振组件、无人机及无人机减振方法
CN117465180A (zh) 面向驾乘体验提升的可调负刚度空簧总成及系统控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926515

Country of ref document: EP

Kind code of ref document: A1