WO2023155039A1 - 双燃料动力系统及其供气吹扫方法 - Google Patents

双燃料动力系统及其供气吹扫方法 Download PDF

Info

Publication number
WO2023155039A1
WO2023155039A1 PCT/CN2022/076322 CN2022076322W WO2023155039A1 WO 2023155039 A1 WO2023155039 A1 WO 2023155039A1 CN 2022076322 W CN2022076322 W CN 2022076322W WO 2023155039 A1 WO2023155039 A1 WO 2023155039A1
Authority
WO
WIPO (PCT)
Prior art keywords
dual
fuel
air compressor
pressure value
fuel power
Prior art date
Application number
PCT/CN2022/076322
Other languages
English (en)
French (fr)
Inventor
王建伟
张日奎
冯晓宇
李富红
张鹏
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to CN202280000704.1A priority Critical patent/CN114729600B/zh
Priority to PCT/CN2022/076322 priority patent/WO2023155039A1/zh
Priority to US17/774,116 priority patent/US20240175396A1/en
Publication of WO2023155039A1 publication Critical patent/WO2023155039A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/24Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being liquid at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/236Fuel delivery systems comprising two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • Embodiments of the present disclosure relate to a dual-fuel power system and a supply air purging method thereof.
  • Turbine engines have the advantages of small size, light weight, high power, and good fuel economy, and are widely used in oilfield fracturing equipment. Turbine engines have good fuel compatibility, and can be driven by diesel, wellhead gas, LNG, CNG, and even biofuels. Therefore, turbine engines equipped with fracturing equipment are mostly equipped with diesel/gas dual-fuel supply systems, and fracturing operations Diesel/gas can be switched seamlessly during the process.
  • the dual-fuel supply system of the turbine engine two kinds of fuel nozzles are equipped in the combustion chamber, and the two kinds of fuel nozzles do not work at the same time.
  • the external air compressor needs to provide compressed air with a certain pressure and flow rate to the gas nozzles for purging; similarly, While using gas as fuel to supply gas to the combustion chamber through the gas nozzle, the external air compressor needs to provide compressed air with a certain pressure and flow rate to the fuel nozzle for purging.
  • Embodiments of the present disclosure provide a dual-fuel power system and a supply air purging method thereof.
  • the dual-fuel power system can simultaneously start the first air compressor to perform air supply and purge work for any dual-fuel power device when any one of the multiple dual-fuel power devices starts to work.
  • the second air compressor can be started to supply air to any one dual-fuel power unit to perform air supply purge work.
  • At least one embodiment of the present disclosure provides a dual-fuel power system, which includes: multiple dual-fuel power devices, each dual-fuel power device of the multiple dual-fuel power devices includes a compressed air supply pipeline, a first fuel nozzle and the second fuel nozzle, the compressed air supply pipeline is connected with the first fuel nozzle and the second fuel nozzle, and the compressed air supply pipelines of the multiple dual-fuel power plants are connected in sequence; the first air compression The engine, including a first gas storage cylinder, is configured to be connected to the compressed air supply pipeline of any one of the multiple dual-fuel power devices, so as to supply air to the multiple dual-fuel power devices and purging at least one of the first nozzle and the second nozzle; and a second air compressor, including a second gas cylinder, configured to be connected to any one of the plurality of dual-fuel power devices
  • the compressed air supply pipelines of the dual-fuel power devices are connected to supply air to the multiple dual-fuel power devices and to purge at least one of the first nozzle and the second nozzle.
  • an embodiment of the present disclosure provides a dual-fuel power system, the first air compressor and the second air compressor are respectively connected to the first dual-fuel power device among the multiple dual-fuel power devices connected in sequence.
  • the fuel power unit is connected to the compressed air line of the last dual fuel power unit.
  • an embodiment of the present disclosure provides a dual-fuel power system further comprising: a control device including a first air compressor control module and a second air compressor control module, wherein the first air compressor control module and the second air compressor control module Two air compressor control modules are communicatively connected, the first air compressor control module is communicatively connected with the first air compressor, and is configured to control the start-up and exhaust volume of the first air compressor; A second air compressor control module is communicatively connected with the second air compressor and configured to control activation and discharge of the second air compressor.
  • an embodiment of the present disclosure provides that in a dual-fuel power system, the first air compressor control module is configured to control all The first air compressor is started, and when the pressure value of the first gas cylinder is less than the first set pressure value and the state of being less than the first set pressure value lasts for a predetermined time, it will compress the second air
  • the machine control module sends a start signal, and the second air compressor control module controls the start of the second air compressor according to the start signal.
  • an embodiment of the present disclosure provides that in a dual-fuel power system, the first air compressor control module is further configured to, when the pressure value of the first gas storage bottle is less than the first predetermined pressure value, Increase the displacement of the first air compressor to increase the pressure value of the first gas cylinder.
  • an embodiment of the present disclosure provides that in a dual-fuel power system, the second control compressor control module is further configured to start the second air compressor and the pressure of the second gas cylinder When the value is less than the first set pressure value, increase the displacement of the second air compressor to increase the pressure value of the second gas cylinder.
  • an embodiment of the present disclosure provides in a dual-fuel power system, the first air compressor control module is further configured to reduce the Decrease the displacement of the first air compressor to reduce the pressure value of the first gas storage bottle; and/or, the second air compressor control module is configured to When the pressure value of the bottle is greater than the second set pressure value, reduce the displacement of the second air compressor to reduce the pressure value of the second gas storage bottle, and the second set pressure value greater than or equal to the first set pressure value.
  • an embodiment of the present disclosure provides a dual-fuel power system
  • the control device further includes a nozzle purge control module
  • each dual-fuel power device of the plurality of dual-fuel power devices includes The fuel nozzle, the first valve and the second valve between the second fuel nozzle and the compressed air supply pipeline, the nozzle purge control module is connected in communication with the multiple dual-fuel power devices, and configured To control the opening and closing of the first valve and the second valve.
  • an embodiment of the present disclosure provides that in a dual-fuel power system, the nozzle purge control module is configured to control the first valve to close and the second valve to open to purge the second fuel nozzle; the nozzle purge control module is configured to control the first valve to open and the second valve to close to purge the second fuel nozzle when gas is supplied to the second fuel nozzle The first fuel nozzle purge is described.
  • an embodiment of the present disclosure provides that in a dual-fuel power system, the nozzle purge control module is configured such that when any one of the multiple dual-fuel power devices receives a shutdown command and is in the In a low-load running state, the first valve and the second valve of any one dual-fuel power device are controlled to be opened to simultaneously purge the first fuel nozzle and the second fuel nozzle.
  • an embodiment of the present disclosure provides a dual-fuel power system
  • the nozzle purge control module is further configured to control any one of the dual-fuel power devices to The first valve and the second valve of a dual fuel power plant are closed to stop purging the first fuel nozzle and the second fuel nozzle.
  • an embodiment of the present disclosure provides a dual-fuel power system, each dual-fuel power device of the multiple dual-fuel power devices further includes an electrical power supply circuit, an oil supply pipeline and an oil return pipeline;
  • the first The air compressor also includes a first electrical power supply circuit, a first oil supply pipeline and a first oil return pipeline, and the first electrical power supply circuit, the first oil supply pipeline and the first oil return pipeline are respectively connected with The electrical power supply line, the oil supply pipeline and the oil return pipeline of any one of the multiple dual-fuel power plants are connected; and/or, the second air compressor further includes The second electric power supply line, the second oil supply pipeline and the second oil return pipeline, the second electric power supply line, the second oil supply pipeline and the second oil return pipeline are respectively connected with the multiple dual The electrical power supply circuit, the oil supply pipeline and the oil return pipeline of any dual-fuel power equipment of the fuel power equipment are connected.
  • an embodiment of the present disclosure provides a dual-fuel power system, where the dual-fuel power device is a turbine engine.
  • At least one embodiment of the present disclosure provides an air supply purge method for a dual-fuel power system
  • the dual-fuel power system includes the dual-fuel power system described in any one of the above
  • the air supply purge method includes: When starting any one of the multiple dual-fuel power devices, the first air compressor is started to supply air to any one of the dual-fuel power devices; When the state of being lower than the first set pressure value and lower than the first set pressure value lasts for a predetermined time, the second air compressor is started to supply air to any one of the dual-fuel power devices.
  • an embodiment of the present disclosure provides an air supply purging method for a dual-fuel power system.
  • the pressure value of the first gas cylinder is lower than the first set pressure value, the first air The displacement of the compressor is used to increase the pressure value of the first gas cylinder.
  • an embodiment of the present disclosure provides an air supply purging method for a dual-fuel power system further comprising: when the second air compressor is started and the pressure value of the second gas storage bottle is lower than the first When setting the pressure value, increase the displacement of the second air compressor to increase the pressure value of the second gas cylinder.
  • an embodiment of the present disclosure provides an air supply purge method for a dual-fuel power system further comprising: reducing the pressure of the first air tank when the pressure value of the first gas cylinder is greater than the second set pressure value. compressor to reduce the pressure value of the first gas storage bottle; and/or, when the pressure value of the second gas storage bottle is greater than the second set pressure value, reduce the first The displacement of the second air compressor to reduce the pressure value of the second gas cylinder.
  • an embodiment of the present disclosure provides an air supply purging method for a dual-fuel power system further comprising: providing fuel to any one of the multiple dual-fuel power devices through the first fuel nozzle When the second fuel nozzle of any one of the dual-fuel power plants is purged; when any one of the multiple dual-fuel power plants provides fuel through the second fuel nozzle, the The first fuel nozzle of any one dual-fuel power plant is purged.
  • an embodiment of the present disclosure provides a method for purging air supply of a dual-fuel power system, which further includes: any one of the multiple dual-fuel power devices receives a shutdown command and operates at a low load In the state, the first fuel nozzle and the second fuel nozzle of any one dual-fuel power plant are simultaneously purged.
  • an embodiment of the present disclosure provides a method for purging air supply of a dual-fuel power system, which further includes: the exhaust temperature of any one of the multiple dual-fuel power devices is less than or equal to the set temperature, stop purging the first fuel nozzle and the second fuel nozzle of any dual-fuel power plant.
  • Fig. 1 is a schematic diagram of a dual-fuel power system
  • Fig. 2 is the schematic diagram of another kind of dual-fuel power system
  • Fig. 3 is a schematic diagram of a dual-fuel power system provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of another dual-fuel power system provided by an embodiment of the present disclosure.
  • Fig. 5 is a flow chart of a method for purging air supply of a dual-fuel power system according to an embodiment of the present disclosure.
  • the turbine engines usually used in fracturing equipment are equipped with an independent air compressor for each turbine engine, and the compressed air is stored in the gas cylinder for use in the turbine engine purge system.
  • the air compressor is driven by a hydraulic motor, and the speed of the hydraulic motor can be adjusted.
  • a solenoid valve controls the oil supply circuit of the hydraulic motor. When the solenoid valve is powered on, the air compressor starts to work. When the solenoid valve is powered off, the air compressor machine stops working. Every time before starting the turbine engine, the air compressor needs to be started to inflate the gas cylinder to prepare for the fuel nozzle blowing.
  • the air source requirements for the purge system of a turbine engine are: compressed air flow rate 5 cubic feet per minute (CFM), and air supply pressure 200 pounds force per square inch (PSI).
  • CFM cubic feet per minute
  • PSI pounds force per square inch
  • the blowing of compressed air to the fuel nozzle is controlled by the air solenoid valve.
  • Figure 1 is a schematic diagram of a dual-fuel power system.
  • the dual-fuel power system includes a piston air compressor 11, a booster valve 12, a gas storage bottle 13, a liquid fuel nozzle solenoid valve 14, a gas fuel nozzle solenoid valve 15, a liquid fuel nozzle 16 and a gas fuel nozzle. Nozzle 17.
  • the piston air compressor 11 is pressurized by the pressure boost valve 12
  • the compressed air is stored in the gas cylinder 13 .
  • the stored compressed air is controlled by the liquid fuel nozzle solenoid valve 14 and the gas fuel nozzle solenoid valve 15 to purge the liquid fuel nozzle 16 and the gas fuel nozzle 17 respectively.
  • the piston air compressor 11 is used to provide When the air source is used, an additional booster valve 12 is required.
  • the function of the booster valve 12 is to boost a lower pressure in proportion.
  • the compressed air is stored in the gas storage bottle 13 for double Purge systems for fuel powered devices such as turbine engines.
  • the performance of the booster valve is unstable and the failure rate is high; and one air compressor corresponds to one dual-fuel power plant such as a turbine engine. When the air compressor fails, it will affect the dual-fuel power plant. Fuel powered devices such as turbine engines operate normally.
  • Fig. 2 is a schematic diagram of another dual-fuel power system.
  • the dual-fuel power system includes a screw air compressor 21 , a gas storage bottle 23 , a liquid fuel nozzle solenoid valve 24 , a gas fuel nozzle solenoid valve 25 , a liquid fuel nozzle 26 and a gas fuel nozzle 27 .
  • the screw air compressor 21 compresses the air and stores the compressed air in the gas cylinder 23 .
  • the stored compressed air is controlled by the liquid fuel nozzle solenoid valve 24 and the gas fuel nozzle solenoid valve 25 to purge the liquid fuel nozzle 26 and the gas fuel nozzle 27 respectively.
  • the maximum output pressure of the screw air compressor is 200PSI, and the displacement is relatively large.
  • the maximum displacement can reach 90CFM under the pressure value of 200PSI.
  • screw air compressors for air supply purging has the following disadvantages: (1) the volume and weight of screw air compressors are relatively large, and it is installed on a single dual-fuel power plant such as a single turbine fracturing device, which increases the number of units The weight of each device affects the layout and maintenance space of a single device, and it is necessary to regularly maintain the filter elements and oil products of each air compressor, which consumes a lot of man-hours; (2) the high temperature and high pressure discharged from the screw air compressor After the air is cooled by the pipeline of the screw air compressor and the gas storage cylinder, a large amount of condensed water will be generated in the gas storage cylinder.
  • an air compressor corresponds to a dual-fuel power plant such as a turbine engine, when the air compressor When a failure occurs, it will affect the normal operation of the dual-fuel power plant such as the turbine engine.
  • the engine control module When the fracturing equipment operation is completed and the turbine engine is about to be turned off, if the temperature in the combustion chamber of the turbine engine cannot be lowered to a reasonable range, the fuel in the engine fuel nozzle cannot be completely emptied. Under this working condition, the engine fuel nozzle will also produce Carbon deposits.
  • the usual control method is that after the engine control module receives the flameout command, it will enter the "cool down" mode to run for two minutes, that is, a low-load operation state to reduce the temperature in the combustion chamber, and then flame out. Due to the different working conditions before the engine is turned off, the corresponding temperature in the combustion chamber is different.
  • the two-minute "cool down” mode sometimes cannot reduce the temperature in the combustion chamber to the ideal temperature, and after the engine control module receives the flameout command, it will The purging of the fuel nozzle was stopped, resulting in a small amount of fuel remaining in the fuel nozzle, and the engine fuel nozzle will also generate carbon deposits at this time.
  • an embodiment of the present disclosure provides a dual-fuel power system and a supply air purging method thereof.
  • the dual-fuel power system includes multiple dual-fuel power units, a first air compressor and a second air compressor.
  • Each dual-fuel power device of multiple dual-fuel power devices includes a compressed air supply pipeline, a first fuel nozzle and a second fuel nozzle, the compressed air supply pipeline is connected with the first fuel nozzle and the second fuel nozzle, and the multiple dual-fuel power devices
  • the compressed air supply pipelines of the fuel power unit are connected in sequence.
  • the first air compressor includes a first gas storage bottle, and the first gas storage bottle is configured to be connected to the compressed air supply pipeline of any dual-fuel power device of multiple dual-fuel power devices, so as to supply power to multiple dual-fuel power devices
  • the device supplies air and purges at least one of the first nozzle and the second nozzle.
  • the second air compressor includes a second gas storage bottle, and the second gas storage bottle is configured to be connected to the compressed air supply pipeline of any dual-fuel power device of multiple dual-fuel power devices, so as to supply power to multiple dual-fuel power devices
  • the device supplies air and purges at least one of the first nozzle and the second nozzle.
  • the first air compressor can be started at the same time to carry out the air supply and purge work for any one of the dual-fuel power plants.
  • the second air compressor can be started to blow the air supply to any dual-fuel power unit. Sweep work. Avoid affecting the normal operation of multiple dual-fuel power devices when the first air compressor cannot meet the requirements of the air supply pressure value.
  • FIG. 3 is a schematic diagram of a dual-fuel power system provided by an embodiment of the present disclosure.
  • the dual-fuel power system 30 includes a plurality of dual-fuel power devices 40 (three dual-fuel power devices 40 are shown in the figure as an example, but embodiments of the present disclosure are not limited thereto, dual-fuel power devices The number can be two or more than four), the first air compressor 50 and the second air compressor 60.
  • Each dual-fuel power plant 40 of a plurality of dual-fuel power plants 40 includes a compressed air supply pipeline 41, a first fuel nozzle 42 and a second fuel nozzle 43, and the compressed air supply pipeline 41 is connected to the first fuel nozzle 42 and the second fuel nozzle 43.
  • the fuel nozzles 43 are connected, and the compressed air supply pipes 41 of multiple dual-fuel power devices 40 are connected sequentially.
  • the first air compressor 50 includes a first gas storage bottle 51, and the first gas storage bottle 51 is configured to be connected to the compressed air supply pipeline 41 of any one dual-fuel power device 40 of a plurality of dual-fuel power devices 40, so as to Air is supplied to a plurality of dual-fuel power units 40 and at least one of the first nozzle and the second nozzle is purged.
  • the second air compressor 60 includes a second gas storage bottle 61, and the second gas storage bottle 61 is configured to be connected to the compressed air supply pipeline 41 of any one dual-fuel power device 40 of a plurality of dual-fuel power devices 40, so as to Air is supplied to a plurality of dual-fuel power units 40 and at least one of the first nozzle and the second nozzle is purged.
  • the multiple dual fuel power units could be multiple turbine engines powering oilfield fracturing equipment
  • the first fuel nozzle could be a liquid fuel nozzle
  • the second fuel nozzle could be a gaseous fuel nozzle
  • the first air compressor could be a
  • the second air compressor can be an auxiliary air compressor, as a backup air compressor for the main air compressor.
  • a turbine engine as a power unit may be used to drive a generator or a fracturing device, but embodiments according to the present disclosure are not limited thereto.
  • the turbine engine may also be integrated with the generator or frac rig to form an integrated turbogenerator or frac rig.
  • the compressed air supply pipelines of multiple dual-fuel power devices are connected in sequence, and the first air compressor and the second air compressor are connected to any one of the multiple dual-fuel power devices.
  • the compressed air supply pipeline of multiple dual-fuel power devices is connected, so that when any dual-fuel power device of multiple dual-fuel power devices starts to work, the first air compressor can be started at the same time to control any dual-fuel power device.
  • the fuel power unit performs supply air purge work.
  • the second air compressor can be started to perform air supply purge work on any dual-fuel power unit . Avoid affecting the normal operation of multiple dual-fuel power devices when the first air compressor cannot meet the requirements of the air supply pressure value.
  • the first air compressor 50 and the second air compressor 60 can be respectively connected to the first dual-fuel power plant 40A and the last dual-fuel power plant 40 among the sequentially connected multiple dual-fuel power plants 40.
  • the compressed air pipeline 41 of the dual-fuel power plant 40B is connected.
  • “sequentially connected multiple dual-fuel power plants 40 ” refers to the sequential connection of the compressed air pipelines 41 of multiple dual-fuel power plants 40 .
  • the dual-fuel power system 30 further includes a control device 70, the control device 70 includes a first air compressor control module 71 and a second air compressor control module 72, the first air compressor
  • the control module 71 is communicatively connected with the second air compressor control module 72
  • the first air compressor control module 71 is communicatively connected with the first air compressor 50, and is configured to control the start-up and exhaust volume of the first air compressor 50
  • the second air compressor control module 72 is connected in communication with the second air compressor 60, and is configured to control the start-up and exhaust volume of the second air compressor 60.
  • the above-mentioned communication connection can be realized by wired communication or wireless communication; wired communication includes the communication connection between the two through wires or optical fibers, and wireless communication includes Wifi, mobile communication network or Bluetooth, etc. Wireless communication method.
  • the above-mentioned modules or control devices may include a wireless communication module.
  • the displacement of the first air compressor and the second air compressor is positively related to the pressure value of the air compressed by the first air compressor and the second air compressor, that is, the larger the displacement, the higher the pressure value of the compressed air The larger; the smaller the displacement, the smaller the pressure value of the compressed air.
  • the first air compressor control module 71 is configured to control the first air compressor 50 to start when any one of the dual-fuel power plants 40 starts.
  • a start signal is sent to the second air compressor control module 72, and the second air compressor
  • the machine control module 72 controls the second air compressor 60 to start according to the start signal. Therefore, when the first air compressor breaks down, stops working, or the air supply is insufficient, etc. and does not meet the air supply pressure value and lasts for a predetermined time, the second air compressor can be started to control any dual-fuel power supply.
  • the device performs air supply purge work, so as to avoid affecting the normal operation of multiple dual-fuel power devices when the first air compressor cannot meet the requirements of the air supply pressure value.
  • the first set pressure value may be 200PSI, and the embodiment of the present disclosure does not limit the size of the first set pressure value.
  • the predetermined time may be 2 minutes to 5 minutes, and embodiments of the present disclosure do not limit the length of the predetermined time.
  • the first air compressor control module 71 is further configured to increase the displacement of the first air compressor 50 when the pressure value of the first gas storage bottle 51 is lower than the first predetermined pressure value. Gas volume to increase the pressure value of the first gas cylinder 51.
  • the first air compressor may also include a first hydraulic motor and a first hydraulic motor speed control proportional valve for controlling the speed of the first hydraulic motor, so that the first hydraulic motor speed control proportional valve can be used to adjust the first hydraulic motor speed.
  • the rotation speed of the first hydraulic motor increases the displacement of the first air compressor.
  • the second control compressor control module 72 is further configured to increase the pressure of the second air compressor 60 when the pressure value of the second gas cylinder 61 is lower than the first set pressure value. Exhaust volume, to increase the pressure value of the second gas cylinder 61.
  • the second air compressor may also include a second hydraulic motor and a second hydraulic motor speed control proportional valve for controlling the speed of the second hydraulic motor, so that the speed of the second air compressor may be adjusted through the second hydraulic motor speed control proportional valve.
  • the rotation speed of the second hydraulic motor increases the displacement of the second air compressor.
  • the first air compressor control module 71 is further configured to reduce the pressure of the first air compressor when the pressure value of the first gas cylinder 51 is greater than the second set pressure value. 50 displacement to reduce the pressure value of the first gas cylinder 51, and the second set pressure value is greater than or equal to the first set pressure value.
  • the second set pressure value is 10%-30% greater than the first set pressure value, but embodiments according to the present disclosure are not limited thereto.
  • the rotational speed of the first hydraulic motor of the first air compressor may be adjusted through the first hydraulic motor rotational speed control proportional valve to reduce the displacement of the first air compressor.
  • the second air compressor control module 72 is configured to reduce the pressure of the second air compressor 60 when the pressure value of the second gas cylinder 61 is greater than the second set pressure value. Exhaust volume, to reduce the pressure value of the second gas cylinder 61.
  • the second set pressure value is greater than or equal to the first set pressure value.
  • the rotational speed of the second hydraulic motor of the second air compressor can be adjusted through the second hydraulic motor rotational speed control proportional valve to reduce the displacement of the second air compressor.
  • At least one of the first air compressor and the second air compressor may be a screw air compressor, and the displacement of the screw air compressor is relatively large, which can provide Multiple dual-fuel power devices provide compressed air to improve the air supply efficiency of the dual-fuel power system.
  • the control device 70 further includes a nozzle purge control module 73, and each dual-fuel power device of multiple dual-fuel power devices 40 includes 43 and the first valve 44 and the second valve 45 between the compressed air supply pipeline, the nozzle purge control module 73 communicates with multiple dual-fuel power units 40, and is configured to control the first valve 44 and the second valve 45 on and off.
  • the first valve 44 can be a solenoid valve
  • the second valve 45 can also be a solenoid valve.
  • Embodiments of the present disclosure do not limit the forms of the first valve and the second valve.
  • the nozzle purge control module 73 is configured to control the first valve 44 to close and the second valve 45 to open to blow the second fuel nozzle 43 when the first fuel nozzle 42 supplies gas.
  • the nozzle purge control module 73 is configured to control the first valve 44 to open and the second valve 45 to close to purge the first fuel nozzle 42 when the second fuel nozzle 43 supplies gas.
  • the compressed air can be used to blow the first fuel nozzles or the second fuel nozzles of multiple dual-fuel power devices, so as to prevent the formation of carbon deposits at the first fuel nozzles or the second fuel nozzles.
  • the nozzle purge control module 73 is configured to, when any one of the multiple dual-fuel power devices 40 receives a shutdown command and is in a low-load operating state, Control the opening of the first valve 44 and the second valve 45 of any dual-fuel power unit 40 to simultaneously purge the first fuel nozzle 42 and the second fuel nozzle 43 .
  • a low-load running state although the first fuel nozzle and the second fuel nozzle have stopped supplying fuel to the power plant, there is still residual fuel in the pipeline and combustion chamber of the power plant.
  • the fuel can be emptied, and carbon deposits at the first fuel nozzle and the second fuel nozzle can be prevented from being formed due to fuel residue.
  • multiple dual-fuel power units When multiple dual-fuel power units need to stop working, multiple dual-fuel power units will receive a shutdown order and immediately prepare for shutdown. At this time, multiple dual-fuel power units will enter the "cool down" mode, that is, low Load operation state to achieve the reduction of the temperature in the combustion chamber of multiple dual-fuel power plants, if the purging of the first fuel nozzle and the second fuel nozzle is stopped at this time, it will result in the first fuel nozzle and the second fuel nozzle A small amount of fuel is left in place, resulting in carbon deposits.
  • the "cool down" mode that is, low Load operation state to achieve the reduction of the temperature in the combustion chamber of multiple dual-fuel power plants
  • the nozzle purge control module 73 is also configured to control any one of the dual-fuel power plants 40 when the exhaust temperature of the any one of the dual-fuel power plants 40 is lower than the set temperature.
  • the first valve 44 and the second valve 45 of 40 are closed to stop the purging of the first fuel nozzle 42 and the second fuel nozzle 43 .
  • the purge control of the first fuel nozzle and the second fuel nozzle can be completed to prevent the first fuel nozzle and the second fuel nozzle from Carbon deposits due to fuel residue.
  • the exhaust temperature of the dual-fuel power plant is positively correlated with the temperature in the combustion chamber of the dual-fuel power plant.
  • the exhaust temperature sensor of the dual-fuel power plant can monitor the exhaust temperature of the dual-fuel power plant. When the exhaust gas temperature of the dual-fuel power plant When the gas temperature drops to the set temperature, the temperature of the corresponding combustion chamber has dropped to a reasonable range. At this time, the fuel in the first fuel nozzle and the second fuel nozzle has been completely emptied, so that the first fuel nozzle and the second fuel nozzle can be stopped. 2. Purging of fuel nozzles.
  • each dual-fuel power plant 40 of multiple dual-fuel power plants 40 also includes an electrical power supply circuit 46, an oil supply pipeline 47 and an oil return pipeline 48;
  • the first air compressor 50 also include the first electrical power supply line 52, the first oil supply line 53 and the first oil return line 54, the first electric power supply line 52, the first oil supply line 53 and the first oil return line 54 are respectively connected with multiple double The electric power supply circuit 46, the oil supply pipeline 47 and the oil return pipeline 48 of any one of the dual-fuel power equipment 40 of the fuel power equipment 40 are connected.
  • the electrical power supply, oil supply and oil return of the first air compressor can be provided by the electrical power supply line, oil supply pipeline and oil return pipeline of any one of the multiple dual-fuel power units.
  • the power of the first air compressor 50 can be the power of any power device, so there is no need to prepare a separate power system for the first air compressor.
  • the power source eg, electric power and hydraulic oil
  • some auxiliary devices of the turbine engine eg, lubricating device, etc.
  • the second air compressor 60 further includes a second electrical power supply circuit 62 , a second oil supply pipeline 63 and a second oil return pipeline 64 , the second electrical power supply circuit 62 , the second The oil supply pipeline 63 and the second oil return pipeline 64 are respectively connected with the electrical power supply line 46 , the oil supply pipeline 47 and the oil return pipeline 48 of any one of the multiple dual fuel power plants 40 .
  • the electrical power supply, oil supply and oil return of the second air compressor can be provided by the electrical power supply line, oil supply pipeline and oil return pipeline of any one of the multiple dual-fuel power units.
  • the power of the second air compressor 60 can be the power of any power device, so there is no need to prepare a separate power system for the second air compressor.
  • the power source eg, electricity and hydraulic oil
  • some auxiliary devices of the turbine engine eg, lubrication device, etc.
  • the first air compressor 50 and the second air compressor 60 power supply lines and oil supply/oil return pipelines can be connected to corresponding power supply lines and oil supply/oil return pipelines of different power units, and can also be connected to the same power unit power supply lines and oil supply/return lines.
  • Fig. 4 is a schematic diagram of another dual-fuel power system provided by an embodiment of the present disclosure.
  • the dual-fuel power system 30 includes multiple dual-fuel power devices 40 (three turbine engines 401 are shown in the figure as an example), a first air compressor 50 , and a second air compressor 60 .
  • Each turbine engine 401 includes a compressed air supply pipeline 41 , a first fuel nozzle 42 , a second fuel nozzle 43 , a first valve 44 and a second valve 45 .
  • the compressed air supply pipes 41 of the three turbine engines 401 are connected in sequence.
  • the compressed air supply pipeline 41 is connected to the first fuel nozzle 41 and the second fuel nozzle 43, and a first valve 44 and a second valve are arranged between the compressed air supply pipeline 41 and the first fuel nozzle 42 and the second fuel nozzle 43 45.
  • the dual-fuel power system 30 also includes a nozzle purge control module 73 , which communicates with the three turbine engines 401 and is configured to control the opening and closing of the first valve 44 and the second valve 45 .
  • the first air compressor 50 is connected with the compressed air supply pipeline 41 of the first turbine engine 401A in the three turbine engines 401 connected in sequence, and the second air compressor 60 is connected with the last of the three turbine engines 401 connected in sequence.
  • the compressed air supply pipeline 41 of one turbine engine 401B is connected, thus, the compressed air supply pipeline 41 of three turbine engines 401 communicates with the first air compressor 50 and the second air compressor 60 .
  • Each turbine engine 401 also includes an electric power supply line 46, an oil supply line 47 and an oil return line 48
  • the first air compressor 50 includes a first electric power supply line 52, a first oil supply line 53 and a first oil return line 54.
  • the first electric power supply line 51, the first oil supply line 52 and the first oil return line 53 are respectively connected with the electric power supply line 46, the oil supply line 47 and the oil return line of any one turbine engine 401 of a plurality of turbine engines 401.
  • 48 connection thus can provide electrical power supply, oil supply and oil return to the first air compressor 50 through the electrical power supply circuit 46, oil supply pipeline 47 and oil return pipeline 48 of the turbine engine 401 of this arbitrary one, thereby There is no need to prepare a separate power system for the first air compressor.
  • the figure shows that the first electrical power supply line 51, the first oil supply pipeline 52 and the first oil return pipeline 53 are respectively connected with the electrical power supply line 46 of the first turbine engine 401A in the three turbine engines 401 connected in sequence.
  • the oil supply pipeline 47 and the oil return pipeline 48 are connected to provide electrical power, oil supply and oil return to the first air compressor 50 .
  • the second air compressor 60 includes a second electric power supply line 62 , a second oil supply line 63 and a second oil return line 64 .
  • the second electric power supply line 61, the second oil supply line 62 and the second oil return line 63 are respectively connected with the electric power supply line 46, the oil supply line 47 and the oil return line of any one turbine engine 401 of the three turbine engines 401. 48, so that the electrical power supply, oil supply and oil return can be provided to the second air compressor 60 through the electrical power supply line 46, oil supply pipeline 47 and oil return pipeline 48 of any one of the dual-fuel power plant 40. , so that there is no need to prepare a separate power system for the second air compressor.
  • the figure shows that the second electrical power supply line 61, the second oil supply pipeline 62 and the second oil return pipeline 63 are respectively connected with the electrical power supply line 46, the power supply line of the last turbine engine 401B among the three turbine engines 401 connected in sequence.
  • the oil pipeline 47 is connected with the oil return pipeline 48 to provide electrical power, oil supply and oil return to the second air compressor 60 .
  • the dual-fuel power system 30 further includes a first air compressor control module 71 and a second air compressor control module 72 , and the first air compressor control module 71 and the second air compressor control module 72 are connected in communication.
  • the first air compressor control module 71 is communicatively connected with the first air compressor 50, and is configured to control the starting and exhaust volume of the first air compressor 50;
  • the second air compressor control module 72 communicates with the second air compressor 60 is communicatively connected and configured to control the start-up and displacement of the second air compressor 60 .
  • the nozzle purge control module 73 is configured to control the opening and closing of the first valve 44 and the second valve 45 .
  • the nozzle purge control module 73 is configured to control the first valve 44 to close and the second valve 45 to open to purge the second fuel nozzle 43 when the first fuel nozzle 42 supplies gas.
  • the nozzle purge control module 73 is configured to control the first valve 44 to open and the second valve 45 to close to purge the first fuel nozzle 42 when the second fuel nozzle 43 supplies gas.
  • the first air compressor control module 71 is configured to control the start of the first air compressor 50 when any turbine engine 401 in the three turbine engines 401 is started, thus, the air enters after being compressed by the first air compressor 50
  • the arbitrary turbine engine 401 performs the purging work.
  • the first air compressor 50 also includes a first air cylinder 51 , a first hydraulic motor 55 , a first pressure sensor 56 and a first hydraulic motor speed control proportional valve 57 .
  • the first gas storage bottle 51 is provided with a first pressure sensor 56 to monitor the pressure value of the first gas storage bottle 51.
  • the first air compressor control module 71 is configured to control the first hydraulic motor speed control proportional valve 57 to increase the opening degree, increasing the first hydraulic motor speed.
  • the opening of the rotational speed control proportional valve 57 can increase the flow of hydraulic oil flowing to the first hydraulic motor 55 , thereby increasing the rotational speed of the first hydraulic motor 55 and further increasing the displacement of the first air compressor 50 .
  • the first air compressor control module 71 is configured to control the first hydraulic motor speed control proportional valve 57 to reduce the opening degree and reduce the first hydraulic pressure.
  • the motor speed controls the opening of the proportional valve 57 to reduce the flow of hydraulic oil flowing to the first hydraulic motor 55, thereby reducing the speed of the first hydraulic motor 55, thereby reducing the displacement of the first air compressor 50 .
  • the second set pressure value is greater than or equal to the first set pressure value.
  • the first hydraulic motor speed is controlled by the first air compressor control module 71 to control the constant adjustment of the opening of the proportional valve 57, so that the pressure value of the first gas cylinder 51 is always maintained at the first set pressure value and the second set pressure value. between pressure values.
  • the first air compressor control module 71 controls the constant adjustment of the opening degree of the first hydraulic motor speed control proportional valve 57, so that the first gas cylinder 51 The pressure value is always maintained at the first set pressure value.
  • the pressure value of the first gas cylinder 51 of the first air compressor 50 will increase. is lower than the first set pressure value, when the first air compressor control module 71 detects that the pressure value of the first gas cylinder 51 is less than the first set pressure value and the state of being less than the first set pressure value lasts for a predetermined time , at this time, the first air compressor control module 71 will send a starting signal to the second air compressor control module 72, and the second air compressor control module 72 controls the second air compressor 60 to start according to the starting signal. In this way, the supply air purging requirements of the three turbine engines 401 can be met.
  • the second air compressor 60 also includes a second gas cylinder 61 , a second hydraulic motor 65 , a second pressure sensor 66 and a second hydraulic motor speed control proportional valve 67 .
  • the second pressure sensor 66 that is arranged on the second gas storage bottle 61 can monitor the pressure value of the second gas storage bottle 61, when the pressure value of the second gas storage bottle 61 is lower than the first setting
  • the second air compressor control module 72 is configured to control the second hydraulic motor speed control proportional valve 67 to increase the opening degree, increasing the opening degree of the second hydraulic motor speed control proportional valve 67 can increase the flow to the second hydraulic pressure.
  • the flow rate of the hydraulic oil of the motor 65 can thus increase the rotational speed of the second hydraulic motor 65 , thereby increasing the displacement of the second air compressor 60 .
  • the second air compressor control module 72 is configured to control the second hydraulic motor speed control proportional valve 67 to reduce the opening degree and reduce the second hydraulic pressure.
  • the motor speed controls the opening of the proportional valve 67 to reduce the flow of hydraulic oil flowing to the second hydraulic motor 65, thereby reducing the speed of the second hydraulic motor 65, thereby reducing the displacement of the second air compressor 60 .
  • the second air compressor control module 72 controls the constant adjustment of the opening of the second hydraulic motor speed control proportional valve 67, so that the pressure value of the second gas cylinder 61 is always maintained at the first set pressure value and the second set pressure value between pressure values.
  • the second air compressor control module 72 controls the second hydraulic motor speed to control the constant adjustment of the opening of the proportional valve 67, so that the second air cylinder 61 The pressure value is always maintained at the first set pressure value.
  • modules may be implemented by software so as to be executed by various types of processors.
  • a module of executable code may, by way of example, comprise one or more physical or logical blocks of computer instructions which may, for example, be structured as an object, procedure, or function. Notwithstanding, the executable code of the various modules need not be physically located together, but may include distinct instructions stored on different physical locations which, when logically combined, constitute the module and carry out the stated purpose of the module .
  • a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs and across multiple memory devices.
  • operational data may be identified within modules, and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed in different locations (including on different storage devices), and may exist, at least in part, only as electronic signals on a system or network.
  • the hardware circuit includes conventional very large scale integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very large scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • FIG. 5 is a schematic diagram of a method for purging supply air of a dual-fuel power system according to an embodiment of the present disclosure.
  • the air supply purging method can be applied to the dual-fuel power system provided in any of the above-mentioned embodiments. As shown in Figure 5, the air supply purging method includes the following steps:
  • S1 Start the first air compressor to supply air to any one of the dual-fuel power plants when starting any one of the multiple dual-fuel power plants;
  • multiple dual-fuel power devices may be multiple turbine engines that provide power for oilfield fracturing equipment, the compressed air supply pipelines of multiple dual-fuel power devices are connected in sequence, and the first air compressor and the second air compressor It is connected with the compressed air supply pipeline of any dual-fuel power device of multiple dual-fuel power devices, so that the first air compressor and the second air compressor can supply air to multiple dual-fuel power devices.
  • the first air compressor may be a main air compressor
  • the second air compressor may be a secondary air compressor, serving as a backup air compressor for the main air compressor.
  • a turbine engine as a power unit may be used to drive a generator or a fracturing device, but embodiments according to the present disclosure are not limited thereto.
  • the turbine engine may also be integrated with the generator or frac rig to form an integrated turbogenerator or frac rig.
  • the air supply purging method for a dual-fuel power system when starting any one of the multiple dual-fuel power devices, start the first air compressor to The fuel power device supplies air, and when the pressure value of the first gas cylinder is less than the first set pressure value and the state of being less than the first set pressure value lasts for a predetermined time, the second air compressor is started Fuel power unit for air supply. Therefore, when the first air compressor breaks down, stops working, or the air supply is insufficient, etc. and does not meet the air supply pressure value and lasts for a predetermined time, the second air compressor can be started to control any dual-fuel power supply.
  • the device performs air supply purge work, so as to avoid affecting the normal operation of multiple dual-fuel power devices when the first air compressor cannot meet the requirements of the air supply pressure value.
  • the first set pressure value may be 200PSI, and the embodiment of the present disclosure does not limit the size of the first set pressure value.
  • the predetermined time may be 2 minutes to 5 minutes, and embodiments of the present disclosure do not limit the length of the predetermined time.
  • the displacement of the first air compressor is increased to increase the pressure of the first gas storage bottle value.
  • the first air compressor may also include a first hydraulic motor and a first hydraulic motor speed control proportional valve for controlling the speed of the first hydraulic motor, so that the first hydraulic motor speed control proportional valve can be used to adjust the first hydraulic motor speed.
  • the rotation speed of the first hydraulic motor increases the displacement of the first air compressor.
  • the air supply purging method may further include: when the pressure value of the second gas storage cylinder is lower than the first set pressure value, increasing the displacement of the second air compressor so that the second air storage tank The pressure value of the cylinder.
  • the second air compressor may also include a second hydraulic motor and a second hydraulic motor speed control proportional valve for controlling the speed of the second hydraulic motor, so that the speed of the second air compressor may be adjusted through the second hydraulic motor speed control proportional valve.
  • the rotation speed of the second hydraulic motor increases the displacement of the second air compressor.
  • the air supply purging method may further include: when the pressure value of the first gas storage cylinder is greater than the second set pressure value, reducing the discharge volume of the first air compressor to reduce the pressure of the first gas storage bottle. bottle pressure.
  • the rotational speed of the first hydraulic motor of the first air compressor may be adjusted through the first hydraulic motor rotational speed control proportional valve to reduce the displacement of the first air compressor.
  • the air supply purging method may further include: when the pressure value of the second gas storage cylinder is greater than the second set pressure value, reducing the discharge volume of the second air compressor to reduce the pressure of the second storage cylinder.
  • the pressure value of the cylinder may further include: when the pressure value of the second gas storage cylinder is greater than the second set pressure value, reducing the discharge volume of the second air compressor to reduce the pressure of the second storage cylinder. The pressure value of the cylinder.
  • the rotational speed of the second hydraulic motor of the second air compressor can be adjusted through the second hydraulic motor rotational speed control proportional valve to reduce the displacement of the second air compressor.
  • At least one of the first air compressor and the second air compressor may be a screw air compressor, and the displacement of the screw air compressor is relatively large, which can provide Multiple dual-fuel power devices provide compressed air to improve the air supply efficiency of the dual-fuel power system.
  • the air supply purging method may further include: when any one of the multiple dual-fuel power plants supplies fuel through the first fuel nozzle, the The second fuel nozzle is purged; when any one of the multiple dual-fuel power plants supplies fuel through the second fuel nozzle, the first fuel nozzle of any one of the dual-fuel power plants is purged .
  • the compressed air can be used to blow the first fuel nozzles or the second fuel nozzles of multiple dual-fuel power devices, so as to prevent the formation of carbon deposits at the first fuel nozzles or the second fuel nozzles.
  • the air supply purging method may further include: when any dual-fuel power device among multiple dual-fuel power devices receives a shutdown command and is in a low-load operating state, The first fuel nozzle and the second fuel nozzle of the powerplant are purged simultaneously. In the low-load running state, although the first fuel nozzle and the second fuel nozzle have stopped supplying fuel to the power plant, there is still residual fuel in the pipeline and combustion chamber of the power plant. By purging the first fuel nozzle and the second fuel nozzle, the fuel can be emptied, and carbon deposits at the first fuel nozzle and the second fuel nozzle can be prevented from being formed due to fuel residue.
  • multiple dual-fuel power devices When multiple dual-fuel power devices need to stop working, multiple dual-fuel power devices will receive a shutdown order and immediately prepare for shutdown. At this time, multiple dual-fuel power devices will enter the "cool down" mode, that is, low Load operation state to achieve the reduction of the temperature in the combustion chamber of multiple dual-fuel power plants, if the purging of the first fuel nozzle and the second fuel nozzle is stopped at this time, it will result in the first fuel nozzle and the second fuel nozzle A small amount of fuel is left in place, resulting in carbon deposits.
  • the "cool down" mode that is, low Load operation state to achieve the reduction of the temperature in the combustion chamber of multiple dual-fuel power plants
  • the air supply purging method may further include: when the exhaust temperature of any one of the multiple dual-fuel power plants is less than or equal to the set temperature, stop The first fuel nozzle and the second fuel nozzle of the fuel power plant are purged. In this way, when multiple dual-fuel power plants receive a shutdown order and are in a low-load operating state, the purge control of the first fuel nozzle and the second fuel nozzle can be realized to prevent the Carbon deposits due to fuel residue.
  • the exhaust temperature of the dual-fuel power plant is positively correlated with the temperature in the combustion chamber of the dual-fuel power plant.
  • the exhaust temperature sensor of the dual-fuel power plant can monitor the exhaust temperature of the dual-fuel power plant. When the exhaust gas temperature of the dual-fuel power plant When the gas temperature drops to the set temperature, the temperature of the corresponding combustion chamber has dropped to a reasonable range. At this time, the fuel in the first fuel nozzle and the second fuel nozzle has been completely emptied, so that the first fuel nozzle and the second fuel nozzle can be stopped. 2. Purging of fuel nozzles.
  • the electrical power supply line, the oil supply line and the oil return line of at least one of the first air compressor and the second air compressor are respectively connected with the electrical lines of multiple dual-fuel power devices.
  • Power supply line, oil supply line and oil return line connection can be realized that at least one of the first air compressor and the second air compressor can be provided by the electric power supply line, the oil supply pipeline and the oil return pipeline of any one of the multiple dual-fuel power plants.
  • Electric power supply, oil supply and oil return can use the power of any power plant, so that there is no need to prepare a separate air compressor for at least one of the first air compressor and the second air compressor power system.
  • the power source for example, electricity and hydraulic oil
  • some auxiliary devices of the turbine engine for example, lubrication device, etc.
  • the power supply lines and oil supply/return lines of the first air compressor and the second air compressor can be connected to the corresponding power supply lines and oil supply/return lines of different power units, or can be connected to the power supply lines of the same power unit lines and supply/return lines.
  • An embodiment of the present disclosure provides another air supply purging method for a dual-fuel power system.
  • the air supply purging method can be applied to the dual-fuel power system provided in any of the above-mentioned embodiments.
  • the supply air purging method includes the following steps:
  • S101 Connect the first air compressor to the first dual-fuel power device among the sequentially connected multiple dual-fuel power devices;
  • S102 Connect the oil supply pipeline and the oil return pipeline of the first air compressor to the oil supply pipeline and the oil return pipeline of any one of the multiple dual-fuel power plants respectively;
  • S103 Select a fuel supply type, and when fuel is supplied to the first fuel nozzle, the second fuel nozzle is purged; when fuel is supplied to the second fuel nozzle, the first fuel nozzle is purged;
  • S104 Start the first air compressor to supply air to multiple dual-fuel power devices when starting any one of the multiple dual-fuel power devices.
  • One fuel nozzle sprays combustion medium for work, and the second fuel nozzle sprays compressed air to eliminate carbon deposits in the nozzle;
  • S105 call the pressure value of the first gas storage bottle, and output a prompt message when the pressure value of the first gas storage bottle is lower than the first set pressure value;
  • S106 Responding to the prompt information, increase the displacement of the first air compressor, so as to increase the pressure value of the first gas cylinder;
  • S107 call the pressure value of the first gas storage cylinder, and when the pressure value of the first gas storage cylinder is less than the first set pressure value and the state of being less than the first set pressure value lasts for a predetermined time, set the pressure value of the second air compressor to
  • the oil supply pipeline and the oil return pipeline are respectively connected with the oil supply pipeline and the oil return pipeline of any one dual-fuel power unit of multiple dual-fuel power units;
  • S108 Responding to the prompt information, start the second air compressor to supply air to multiple dual-fuel power devices;
  • S109 call the pressure value of the second gas storage bottle, and output a prompt message when the pressure value of the second gas storage bottle is lower than the first set pressure value;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel Cell (AREA)

Abstract

一种双燃料动力系统及其供气吹扫方法。该双燃料动力系统包括多台双燃料动力装置、第一空气压缩机和第二空气压缩机。多台双燃料动力装置的每台包括压缩空气供气管路、第一燃料喷嘴和第二燃料喷嘴,多台双燃料动力装置的压缩空气供气管路依次连接;第一空气压缩机包括第一储气瓶,第一储气瓶被配置为与多台双燃料动力装置的任意一台的压缩空气供气管路连接,以对多台双燃料动力装置进行供气;第二空气压缩机包括第二储气瓶,第二储气瓶被配置为与多台双燃料动力装置的任意一台的压缩空气供气管路连接,以对多台双燃料动力装置进行供气。由此,在第一空气压缩机供气不足时,可通过第二空气压缩机对多台双燃料动力装置供气。

Description

双燃料动力系统及其供气吹扫方法 技术领域
本公开的实施例涉及一种双燃料动力系统及其供气吹扫方法。
背景技术
涡轮发动机具有体积小、重量轻、功率大、燃料经济性好等优点,广泛应用于油田压裂设备。涡轮发动机具有很好的燃料兼容性,柴油、井口气、LNG、CNG甚至是生物燃油都可以对其进行驱动,因此压裂设备搭载的涡轮发动机多配备柴油/燃气双燃料供给系统,压裂作业过程中可实现柴油/燃气的无缝切换。
涡轮发动机双燃料供给系统,其燃烧室内配备了两种燃料喷嘴,两种燃料喷嘴不同时工作。为防止燃料喷嘴的烧蚀积碳,在使用燃油作为燃料以通过燃油喷嘴为燃烧室供给燃油的同时,外部空气压缩机需给燃气喷嘴提供一定压力、流量的压缩空气进行吹扫;同理,在使用燃气作为燃料以通过燃气喷嘴为燃烧室供给燃气的同时,外部空气压缩机需给燃油喷嘴提供一定压力、流量的压缩空气进行吹扫。
发明内容
本公开实施例提供一种双燃料动力系统及其供气吹扫方法。该双燃料动力系统在多台双燃料动力装置的任意一台双燃料动力装置启动工作时,可以同时启动第一空气压缩机以对该任意一台双燃料动力装置进行供气吹扫工作。在第一空气压缩机不满足供气压力值要求的情况下,可启动第二空气压缩机以对该任意一台双燃料动力装置供气进行供气吹扫工作。
本公开至少一个实施例提供一种双燃料动力系统,其包括:多台双燃料动力装置,所述多台双燃料动力装置的每台双燃料动力装置包括压缩空气供气管路、第一燃料喷嘴和第二燃料喷嘴,所述压缩空气供气管路与所述第一燃料喷嘴和所述第二燃料喷嘴连接,所述多台双燃料动力装置的压缩空气供气管路依次连接;第一空气压缩机,包括第一储气瓶,被配置为与所述多台双燃料动力装置的任意一台双燃料动力装置的压缩空气供气管路连接,以对所述多 台双燃料动力装置进行供气并对所述第一喷嘴和所述第二喷嘴至少之一进行吹扫;以及第二空气压缩机,包括第二储气瓶,被配置为与所述多台双燃料动力装置的任意一台双燃料动力装置的压缩空气供气管路连接,以对所述多台双燃料动力装置进行供气并对所述第一喷嘴和所述第二喷嘴至少之一进行吹扫。
例如,本公开一实施例提供一种双燃料动力系统中,所述第一空气压缩机和所述第二空气压缩机分别与依次连接的所述多台双燃料动力装置中的第一台双燃料动力装置和最后一台双燃料动力装置的压缩空气管路连接。
例如,本公开一实施例提供一种双燃料动力系统还包括:控制装置,包括第一空气压缩机控制模块、第二空气压缩机控制模块,其中,所述第一空气压缩机控制模块和第二空气压缩机控制模块通信连接,所述第一空气压缩机控制模块与所述第一空气压缩机通信连接,并被配置为控制所述第一空气压缩机的启动和排气量;所述第二空气压缩机控制模块与所述第二空气压缩机通信连接,并被配置为控制所述第二空气压缩机的启动和排气量。
例如,本公开一实施例提供一种双燃料动力系统中,所述第一空气压缩机控制模块被配置为在所述多台双燃料动力装置中的任意一台双燃料动力装置启动时控制所述第一空气压缩机启动,在所述第一储气瓶的压力值小于第一设定压力值且小于所述第一设定压力值的状态持续预定时间时,向所述第二空气压缩机控制模块发送启动信号,所述第二空气压缩机控制模块根据所述启动信号控制所述第二空气压缩机启动。
例如,本公开一实施例提供一种双燃料动力系统中,所述第一空气压缩机控制模块还被配置为在所述第一储气瓶的压力值小于所述第一预定压力值时,增加所述第一空气压缩机的排气量以增加所述第一储气瓶的压力值。
例如,本公开一实施例提供一种双燃料动力系统中,所述第二控制压缩机控制模块还被配置为在所述第二空气压缩机已被启动且所述第二储气瓶的压力值小于所述第一设定压力值时,增加所述第二空气压缩机的排气量,以增加所述第二储气瓶的压力值。
例如,本公开一实施例提供一种双燃料动力系统中,所述第一空气压缩机控制模块还被配置为在所述第一储气瓶的压力值大于第二设定压力值时,减小所述第一空气压缩机的排气量,以减小所述第一储气瓶的压力值;和/或,所述第二空气压缩机控制模块被配置为在所述第二储气瓶的压力值大于所述 第二设定压力值时,减小所述第二空气压缩机的排气量,以减小所述第二储气瓶的压力值,所述第二设定压力值大于或等于所述第一设定压力值。
例如,本公开一实施例提供一种双燃料动力系统中,所述控制装置还包括喷嘴吹扫控制模块,所述多台双燃料动力装置的每台双燃料动力装置包括分别位于所述第一燃料喷嘴和所述第二燃料喷嘴与所述压缩空气供气管路之间的第一阀门和第二阀门,所述喷嘴吹扫控制模块与所述多台双燃料动力装置通信连接,并被配置为控制所述第一阀门和所述第二阀门的打开和关闭。
例如,本公开一实施例提供一种双燃料动力系统中,所述喷嘴吹扫控制模块被配置为在所述第一燃料喷嘴供燃气时,控制所述第一阀门关闭且所述第二阀门打开以对所述第二燃料喷嘴吹扫;所述喷嘴吹扫控制模块被配置为在所述第二燃料喷嘴供燃气时,控制所述第一阀门打开且所述第二阀门关闭以对所述第一燃料喷嘴吹扫。
例如,本公开一实施例提供一种双燃料动力系统中,所述喷嘴吹扫控制模块被配置为在所述多台双燃料动力装置中的任意一台双燃料动力装置收到关机命令且处于低负载运行状态时,控制该任意一台双燃料动力装置的所述第一阀门和所述第二阀门打开以同时对所述第一燃料喷嘴和所述第二燃料喷嘴吹扫。
例如,本公开一实施例提供一种双燃料动力系统中,所述喷嘴吹扫控制模块还被配置为在该任意一台双燃料动力装置的排气温度小于设定温度时,控制该任意一台双燃料动力装置的所述第一阀门和所述第二阀门关闭以停止对所述第一燃料喷嘴和所述第二燃料喷嘴的吹扫。
例如,本公开一实施例提供一种双燃料动力系统中,所述多台双燃料动力装置的每台双燃料动力装置还包括电气供电线路、供油管路和回油管路;所述第一空气压缩机还包括第一电气供电线路、第一供油管路和第一回油管路,所述第一电气供电线路、所述第一供油管路和所述第一回油管路分别与所述多台双燃料动力装置的任意一台双燃料动力装置的所述电气供电线路、所述供油管路和所述回油管路连接;和/或,所述第二空气压缩机还包括第二电气供电线路、第二供油管路和第二回油管路,所述第二电气供电线路、所述第二供油管路和所述第二回油管路分别与所述多台双燃料动力装置的任意一台双燃料动力装置的所述电气供电线路、所述供油管路和所述回油管路连接。
例如,本公开一实施例提供一种双燃料动力系统中,所述双燃料动力装置 为涡轮发动机。
本公开至少一个实施例提供一种双燃料动力系统的供气吹扫方法,所述双燃料动力系统包括上述任一项所述的双燃料动力系统,所述供气吹扫方法包括:在启动所述多台双燃料动力装置中的任意一台双燃料动力装置时启动所述第一空气压缩机对该任意一台双燃料动力装置进行供气;在所述第一储气瓶的压力值小于第一设定压力值且小于所述第一设定压力值的状态持续预定时间时,启动所述第二空气压缩机对该任意一台双燃料动力装置进行供气。
例如,本公开一实施例提供一种双燃料动力系统的供气吹扫方法中,在所述第一储气瓶的压力值小于所述第一设定压力值时,增加所述第一空气压缩机的排气量以增加所述第一储气瓶的压力值。
例如,本公开一实施例提供一种双燃料动力系统的供气吹扫方法还包括:在所述第二空气压缩机已被启动且所述第二储气瓶的压力值小于所述第一设定压力值时,增加所述第二空气压缩机的排气量,以使增加所述第二储气瓶的压力值。
例如,本公开一实施例提供一种双燃料动力系统的供气吹扫方法还包括:在所述第一储气瓶的压力值大于第二设定压力值时,减小所述第一空气压缩机的排气量以降低所述第一储气瓶的压力值;和/或,在所述第二储气瓶的压力值大于所述第二设定压力值时,减小所述第二空气压缩机的排气量,以降低所述第二储气瓶的压力值。
例如,本公开一实施例提供一种双燃料动力系统的供气吹扫方法还包括:在所述多台双燃料动力装置中的任意一台双燃料动力装置通过所述第一燃料喷嘴提供燃料时,对该任意一台双燃料动力装置的所述第二燃料喷嘴进行吹扫;在所述多台双燃料动力装置中的任意一台双燃料动力装置通过第二燃料喷嘴提供燃料时,对该任意一台双燃料动力装置的所述第一燃料喷嘴进行吹扫。
例如,本公开一实施例提供一种双燃料动力系统的供气吹扫方法还包括:在所述多台双燃料动力装置中的任意一台双燃料动力装置收到关机命令且处于低负载运行状态时,对该任意一台双燃料动力装置的所述第一燃料喷嘴和所述第二燃料喷嘴同时进行吹扫。
例如,本公开一实施例提供一种双燃料动力系统的供气吹扫方法还包括:在所述多台双燃料动力装置中的任意一台双燃料动力装置的排气温度小于或 等于设定温度时,停止对该任意一台双燃料动力装置的所述第一燃料喷嘴和所述第二燃料喷嘴进行吹扫。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种双燃料动力系统的示意图;
图2为另一种双燃料动力系统的示意图;
图3为本公开一实施例提供的一种双燃料动力系统的示意图;
图4为本公开一实施例提供的另一种双燃料动力系统的示意图;以及
图5为本公开一实施例提供的一种双燃料动力系统的供气吹扫方法的流程图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
附图中各个部件或结构并非严格按照比例绘制,为了清楚起见,可能夸大或缩小各个部件或结构的尺寸,但是这些不应用于限制本公开的范围。为了保 持本公开实施例的以下说明清楚且简明,可省略已知功能和已知部件的详细说明。
通常用于压裂设备的涡轮发动机是每台涡轮发动机都配备一台独立的空气压缩机,被压缩后的空气储存于储气瓶,以备涡轮发动机吹扫系统使用。空气压缩机由液压马达驱动,液压马达转速可调节,通过一个电磁阀控制液压马达供油油路的通断;当电磁阀通电时,空气压缩机开始工作,当电磁阀断电时,空气压缩机停止工作。每次启动涡轮发动机前,需先启动空气压缩机对储气瓶进行充气,以为燃料喷嘴吹扫做准备。通常,涡轮发动机对吹扫系统气源的要求是:压缩空气流量5立方英尺/分钟(CFM),供气压力200磅力/平方英寸(PSI)。压缩空气对燃料喷嘴的吹扫通过气路电磁阀进行控制。
图1为一种双燃料动力系统的示意图。如图1所示,该双燃料动力系统包括活塞式空气压缩机11、增压阀12、储气瓶13、液体燃料喷嘴电磁阀14、气体燃料喷嘴电磁阀15、液体燃料喷嘴16和气体燃料喷嘴17。活塞式空气压缩机11通过增压阀12增压后,将压缩空气储存于储气瓶13。存储的压缩空气通过液体燃料喷嘴电磁阀14和气体燃料喷嘴电磁阀15的控制,分别对液体燃料喷嘴16和气体燃料喷嘴17进行吹扫。
由于普通活塞式空气压缩机11最大排气压力值在100PSI左右,无法满足双燃料动力装置的吹扫系统对压力的需求,因此采用活塞式空气压缩机11为双燃料动力装置的吹扫系统提供气源时,需额外增配置一个增压阀12,增压阀12的作用是将一较低压力按比例进行增压,增压后并将压缩空气储存于储气瓶13,以用于双燃料动力装置例如涡轮发动机的吹扫系统。但在现场应用过程中,增压阀性能不稳定,故障率较高;而且一台空气压缩机对应一台双燃料动力装置例如涡轮发动机,当该空气压缩机出现故障时,会影响此台双燃料动力装置例如涡轮发动机正常作业。
图2为另一种双燃料动力系统的示意图。如图2所示,该双燃料动力系统包括螺杆式空气压缩机21、储气瓶23、液体燃料喷嘴电磁阀24、气体燃料喷嘴电磁阀25、液体燃料喷嘴26和气体燃料喷嘴27。螺杆式空气压缩机21压缩空气后将压缩的空气储存于储气瓶23。存储的压缩空气通过液体燃料喷嘴电磁阀24和气体燃料喷嘴电磁阀25的控制,分别对液体燃料喷嘴26和气体燃料喷嘴27进行吹扫。
螺杆式空气压缩机可输出的最高压力为200PSI,且排量较大,最大排气 量在200PSI压力值下可达90CFM。通过对螺杆式空气压缩机转速的限制,可满足双燃料动力装置的吹扫系统的较小压缩空气压力值的需求。然而采用螺杆式空气压缩机进行供气吹扫存在以下缺点:(1)螺杆式空气压缩机的体积和重量较大,安装到单台双燃料动力装置例如单台涡轮压裂装置上,增加单台装置的重量,影响单台装置的布局和维护保养空间,且需定期对每台空气压缩机的滤芯及油品进行维保,耗费大量工时;(2)螺杆式空气压缩机排出的高温高压空气,经螺杆式空气压缩机的管路、储气瓶冷却后,在储气瓶中会产生大量的冷凝水,作业过程中需频繁的对每个储气瓶进行放水,给现场作业人员带来了较大的工作量;(3)螺杆式空气压缩机大排量的能力没有充分发挥;(4)一台空气压缩机对应一台双燃料动力装置例如一台涡轮发动机,当空气压缩机出现故障时,会影响该双燃料动力装置例如该涡轮发动机正常作业。
在压裂设备作业完成,涡轮发动机要熄火时,如果涡轮发动机燃烧室内的温度不能降低到合理范围,发动机燃料喷嘴内的燃料不能被完全排空,此种工况下,发动机燃料喷嘴也会产生积碳。通常的控制方式是,发动机控制模块收到熄火指令后,会进入“cool down”模式运行两分钟,即低负载运行状态以实现燃烧室内的温度的降低,然后再熄火。因发动机熄火前工作状态的不同,燃烧室内对应的温度有差异,两分钟的“cool down”模式,有时并不能将燃烧室内温度降低到理想温度下,且发动机控制模块收到熄火指令后,就停止了对燃料喷嘴的吹扫,导致燃料喷嘴内存留了少量燃料,此时发动机燃料喷嘴也会产生积碳。
对此,本公开实施例提供一种双燃料动力系统及其供气吹扫方法。该双燃料动力系统包括多台双燃料动力装置、第一空气压缩机和第二空气压缩机。多台双燃料动力装置的每台双燃料动力装置包括压缩空气供气管路、第一燃料喷嘴和第二燃料喷嘴,压缩空气供气管路与第一燃料喷嘴和第二燃料喷嘴连接,多台双燃料动力装置的压缩空气供气管路依次连接。第一空气压缩机包括第一储气瓶,第一储气瓶被配置为与多台双燃料动力装置的任意一台双燃料动力装置的压缩空气供气管路连接,以对多台双燃料动力装置进行供气并对第一喷嘴和第二喷嘴至少之一进行吹扫。第二空气压缩机包括第二储气瓶,第二储气瓶被配置为与多台双燃料动力装置的任意一台双燃料动力装置的压缩空气供气管路连接,以对多台双燃料动力装置进行供气并对第一喷嘴和第二喷嘴至少之一进行吹扫。由此,在多台双燃料动力装置的任意一台双燃料动力 装置启动工作时,可以同时启动第一空气压缩机以对该任意一台双燃料动力装置进行供气吹扫工作。在第一空气压缩机出现故障、停止工作或供气不足等不满足供气压力值要求的情况下,可启动第二空气压缩机以对该任意一台双燃料动力装置供气进行供气吹扫工作。避免在第一空气压缩机不能满足供气压力值要求的情况下,影响多台双燃料动力装置的正常作业。
下面,结合附图对本公开实施例提供的双燃料动力系统及其供气吹扫方法进行详细的说明。
本公开一实施例提供一种双燃料动力系统。图3为本公开一实施例提供的一种双燃料动力系统的示意图。如图3所示,该双燃料动力系统30包括多台双燃料动力装置40(图中示出三个双燃料动力装置40作为示例,但根据本公开的实施例不限于此,双燃料动力装置的数量可以为两个或者四个以上)、第一空气压缩机50和第二空气压缩机60。多台双燃料动力装置40的每台双燃料动力装置40包括压缩空气供气管路41、第一燃料喷嘴42和第二燃料喷嘴43,压缩空气供气管路41与第一燃料喷嘴42和第二燃料喷嘴43连接,多台双燃料动力装置40的压缩空气供气管41路依次连接。第一空气压缩机50包括第一储气瓶51,第一储气瓶51被配置为与多台双燃料动力装置40的任意一台双燃料动力装置40的压缩空气供气管路41连接,以对多台双燃料动力装置40进行供气并对第一喷嘴和第二喷嘴至少之一进行吹扫。第二空气压缩机60包括第二储气瓶61,第二储气瓶61被配置为与多台双燃料动力40装置的任意一台双燃料动力装置40的压缩空气供气管路41连接,以对多台双燃料动力装置40进行供气并对第一喷嘴和第二喷嘴至少之一进行吹扫。
例如,多台双燃料动力装置可以是为油田压裂设备提供动力的多台涡轮发动机,第一燃料喷嘴可以是液体燃料喷嘴,第二燃料喷嘴可以是气体燃料喷嘴,第一空气压缩机可以是主空气压缩机,第二空气压缩机可以是副空气压缩机,作为主空气压缩机的备用空气压缩机。
例如,作为动力装置的涡轮发动机可以用于驱动发电机或者压裂设备,但根据本公开的实施例不限于此。在一些示例中,涡轮发动机也可以与发电机或者压裂设备集成,以形成整体的涡轮发电机或涡轮压裂设备。
在本公开实施例提供的双燃料动力系统中,多台双燃料动力装置的压缩空气供气管路依次连接,且第一空气压缩机和第二空气压缩机与多台双燃料动力装置的任意一台双燃料动力装置的压缩空气供气管路连接,从而可以实 现在多台双燃料动力装置的任意一台双燃料动力装置启动工作时,可以同时启动第一空气压缩机以对该任意一台双燃料动力装置进行供气吹扫工作。在第一空气压缩机出现故障、停止工作或供气不足等不满足供气压力值要求的情况下,可启动第二空气压缩机以对该任意一台双燃料动力装置进行供气吹扫工作。避免在第一空气压缩机不能满足供气压力值要求的情况下,影响多台双燃料动力装置的正常作业。
在一些示例中,如图3所示,第一空气压缩机50和第二空气压缩机60可以分别与依次连接的多台双燃料动力装置40中的第一台双燃料动力装置40A和最后一台双燃料动力装置40B的压缩空气管路41连接。这里“依次连接的多台双燃料动力装置40”是指多台双燃料动力装置40的压缩空气管路41的依次连接。
在一些示例中,如图3所示,该双燃料动力系统30还包括控制装置70,控制装置70包括第一空气压缩机控制模块71和第二空气压缩机控制模块72,第一空气压缩机控制模块71和第二空气压缩机控制模块72通信连接,第一空气压缩机控制模块71与第一空气压缩机50通信连接,并被配置为控制第一空气压缩机50的启动和排气量;第二空气压缩机控制模块72与第二空气压缩机60通信连接,并被配置为控制第二空气压缩机60的启动和排气量。
需要说明的是,上述的通信相连可通过有线通讯方式或无线通讯方式实现;有线通讯方式包括通过导线或者光纤实现两者之间的通信连接,无线通讯方式包括通过Wifi、移动通讯网络或者蓝牙等无线通讯方式。当通信相连采用无线通信方式时,可以理解的是,上述的各个模块或者控制装置可包括无线通讯模块。第一空气压缩机和第二空气压缩机的排气量与第一空气压缩机和第二空气压缩机压缩的空气的压力值正相关,也即,排气量越大,压缩空气的压力值越大;排气量越小,压缩空气的压力值越小。通过调整排气量的大小可以调整压缩空气的压力值的大小,进而获得满足供气吹扫需求的压力值的压缩空气。
在一些示例中,如图3所示,第一空气压缩机控制模块71被配置为在多台双燃料动力装置40中的任意一台双燃料动力装置40启动时控制第一空气压缩机50启动,在第一储气瓶51的压力值小于第一设定压力值且小于第一设定压力值的状态持续预定时间时,向第二空气压缩机控制模块72发送启动信号,第二空气压缩机控制模块72根据启动信号控制第二空气压缩机60启 动。由此可以在第一空气压缩机出现故障、停止工作或供气不足等不满足供气压力值要求且持续预定时间的情况下,可启动第二空气压缩机以对该任意一台双燃料动力装置进行供气吹扫工作,从而避免在第一空气压缩机不能满足供气压力值要求的情况下,影响多台双燃料动力装置的正常作业。
例如,第一设定压力值可以是200PSI,本公开的实施例对第一设定压力值的大小不做限定。
例如,预定时间可以是2分钟至5分钟,本公开的实施例对预定时间的长短不做限定。
在一些示例中,如图3所示,第一空气压缩机控制模块71还被配置为在第一储气瓶51的压力值小于第一预定压力值时,增加第一空气压缩机50的排气量以增加第一储气瓶51的压力值。
例如,第一空气压缩机还可以包括第一液压马达和控制第一液压马达转速的第一液压马达转速控制比例阀,由此可以通过第一液压马达转速控制比例阀调节第一空气压缩机的第一液压马达的转速,增加第一空气压缩机的排气量。
在一些示例中,如图3所示,第二控制压缩机控制模块72还被配置为在第二储气瓶61的压力值小于第一设定压力值时,增加第二空气压缩机60的排气量,以增加第二储气瓶61的压力值。
例如,第二空气压缩机还可以包括第二液压马达和控制第二液压马达转速的第二液压马达转速控制比例阀,由此可以通过第二液压马达转速控制比例阀调节第二空气压缩机的第二液压马达的转速,增加第二空气压缩机的排气量。
在一些示例中,如图3所示,第一空气压缩机控制模块71还被配置为在第一储气瓶51的压力值大于第二设定压力值时,减小第一空气压缩机的50排气量,以减小第一储气瓶51的压力值,第二设定压力值大于或等于第一设定压力值。例如,第二设定压力值比第一设定压力值大10%-30%,但根据本公开的实施例不限于此。
例如,可以通过第一液压马达转速控制比例阀调节第一空气压缩机的第一液压马达的转速,减小第一空气压缩机的排气量。
在一些示例中,如图3所示,第二空气压缩机控制模块72被配置为在第二储气瓶61的压力值大于第二设定压力值时,减小第二空气压缩机60的排 气量,以减小第二储气瓶61的压力值。第二设定压力值大于或等于第一设定压力值。
例如,可以通过第二液压马达转速控制比例阀调节第二空气压缩机的第二液压马达的转速,减小第二空气压缩机的排气量。
在一些示例中,第一空气压缩机和第二空气压缩机中的至少一个可以是螺杆式空气压缩机,螺杆式空气压缩机的排量较大,在满足供气压力值的同时,能为多台双燃料动力装置提供压缩空气,提高双燃料动力系统的供气效率。
在一些示例中,如图3所示,控制装置70还包括喷嘴吹扫控制模块73,多台双燃料动力装置40的每台双燃料动力装置包括分别位于第一燃料喷嘴42和第二燃料喷嘴43与压缩空气供气管路之间的第一阀门44和第二阀门45,喷嘴吹扫控制模块73与多台双燃料动力装置40通信连接,并被配置为控制第一阀门44和第二阀门45的打开和关闭。
例如,第一阀门44可以是电磁阀,第二阀门45也可以是电磁阀。本公开的实施例对第一阀门和第二阀门的形式不做限定。
在一些示例中,如图3所示,喷嘴吹扫控制模块73被配置为在第一燃料喷嘴42供燃气时,控制第一阀门44关闭且第二阀门45打开以对第二燃料喷嘴43吹扫;喷嘴吹扫控制模块73被配置为在第二燃料喷嘴43供燃气时,控制第一阀门44打开且第二阀门45关闭以对第一燃料喷嘴42吹扫。由此可以实现压缩空气对多台双燃料动力装置的第一燃料喷嘴或第二燃料喷嘴进行吹扫,防止在第一燃料喷嘴或第二燃料喷嘴处形成积碳。
在一些示例中,如图3所示,喷嘴吹扫控制模块73被配置为在多台双燃料动力装置40中的任意一台双燃料动力装置40收到关机命令且处于低负载运行状态时,控制该任意一台双燃料动力装置40的第一阀门44和第二阀门45打开以同时对第一燃料喷嘴42和第二燃料喷嘴43吹扫。在低负载运行状态下,虽然第一燃料喷嘴和第二燃料喷嘴已经停止了为动力装置提供燃料,但动力装置的管路和燃烧室中还有残留的燃料。通过对第一燃料喷嘴和第二燃料喷嘴进行吹扫,可以实现燃料的排空,防止在第一燃料喷嘴和第二燃料喷嘴处因燃料残留形成积碳。
当多台双燃料动力装置需要停止工作时,多台双燃料动力装置会收到关机命令并立即进行停机前的准备工作,此时多台双燃料动力装置会进入“cool  down”模式,即低负载运行状态以实现多台双燃料动力装置的燃烧室内的温度的降低,若此时停止对第一燃料喷嘴和第二燃料喷嘴的吹扫,将会导致在第一燃料喷嘴和第二燃料喷嘴处存留少量燃料,产生积碳。
在一些示例中,如图3所示,喷嘴吹扫控制模块73还被配置为在该任意一台双燃料动力装置40的排气温度小于设定温度时,控制该任意一台双燃料动力装置40的第一阀门44和第二阀门45关闭以停止对第一燃料喷嘴42和第二燃料喷嘴43的吹扫。由此可以在多台双燃料动力装置收到关机命令且处于低负载运行状态时,完成对第一燃料喷嘴和第二燃料喷嘴的吹扫控制,防止在第一燃料喷嘴和第二燃料喷嘴处因燃料残留形成积碳。
双燃料动力装置的排气温度与双燃料动力装置的燃烧室内的温度正相关,通过双燃料动力装置的排气温度传感器可以监测到双燃料动力装置的排气温度,当双燃料动力装置的排气温度降低到设定温度时,对应燃烧室的温度已经降低到合理范围,此时第一燃料喷嘴和第二燃料喷嘴的燃料已经完全被排空,由此可以停止对第一燃料喷嘴和第二燃料喷嘴的吹扫。
在一些示例中,如图3所示,多台双燃料动力装置40的每台双燃料动力装置40还包括电气供电线路46、供油管路47和回油管路48;第一空气压缩机50还包括第一电气供电线路52、第一供油管路53和第一回油管路54,第一电气供电线路52、第一供油管路53和第一回油管路54分别与多台双燃料动力装置40的任意一台双燃料动力装置40的电气供电线路46、供油管路47和回油管路48连接。由此,可以实现由多台双燃料动力装置的任意一台双燃料动力装置的电气供电线路、供油管路和回油管路,对第一空气压缩机提供电气供电、供油和回油。例如,第一空气压缩机50的动力可以采用任意一台动力装置的动力,从而不需要为第一空气压缩机准备单独的动力系统。在一些示例中,在动力装置为涡轮发动机时,涡轮发动机的一些辅助装置(例如,润滑装置等)的动力源(例如,电力和液压油)可以提供给第一空气压缩机50。
在一些示例中,如图3所示,第二空气压缩机60还包括第二电气供电线路62、第二供油管路63和第二回油管路64,第二电气供电线路62、第二供油管路63和第二回油管路64分别与多台双燃料动力装置40的任意一台双燃料动力装置40的电气供电线路46、供油管路47和回油管路48连接。由此,可以实现由多台双燃料动力装置的任意一台双燃料动力装置的电气供电线路、供油管路和回油管路,对第二空气压缩机提供电气供电、供油和回油。例如, 第二空气压缩机60的动力可以采用任意一台动力装置的动力,从而不需要为第二空气压缩机准备单独的动力系统。在一些示例中,在动力装置为涡轮发动机时,涡轮发动机的一些辅助装置(例如,润滑装置等)的动力源(例如,电力和液压油)可以提供给第二空气压缩机60。例如,第一空气压缩机50和第二空气压缩机60供电线路和供油/回油管路可以连接到不同的动力装置的相应供电线路和供油/回油管路,也可以连接到相同动力装置的供电线路和供油/回油管路。
图4为本公开一实施例提供的另一种双燃料动力系统的示意图。如图4所示,该双燃料动力系统30包括多台双燃料动力装置40(图中示出三台涡轮发动机401作为示例)、第一空气压缩机50、第二空气压缩机60。
每台涡轮发动机401包括压缩空气供气管路41、第一燃料喷嘴42、第二燃料喷嘴43、第一阀门44和第二阀门45。三台涡轮发动机401的压缩空气供气管41路依次连接。压缩空气供气管路41与第一燃料喷嘴41和第二燃料喷嘴连接43,压缩空气供气管路41与第一燃料喷嘴42和第二燃料喷嘴43之间设置有第一阀门44和第二阀门45。
该双燃料动力系统30还包括喷嘴吹扫控制模块73,喷嘴吹扫控制模块73与三台涡轮发动机401通信连接,并被配置为控制第一阀门44和第二阀门45的打开和关闭。
第一空气压缩机50与依次连接的三台涡轮发动机401中的第一台涡轮发动机401A的压缩空气供气管路41连接,第二空气压缩机60与依次连接的三台涡轮发动机401中的最后一台涡轮发动机401B的压缩空气供气管路41连接,由此,三台涡轮发动机401的压缩空气供气管路41与第一空气压缩机50和第二空气压缩机60联通。
每台涡轮发动机401还包括电气供电线路46、供油管路47和回油管路48,第一空气压缩机50包括第一电气供电线路52、第一供油管路53和第一回油管路54。第一电气供电线路51、第一供油管路52和第一回油管路53分别与多台涡轮发动机401的任意一台涡轮发动机401的电气供电线路46、供油管路47和回油管路48连接,由此可通过该任意一台的涡轮发动机401的电气供电线路46、供油管路47和回油管路48,对第一空气压缩机50提供电气供电、供油和回油,从而不需要为第一空气压缩机准备单独的动力系统。例如,图中示出第一电气供电线路51、第一供油管路52和第一回油管路53分 别与依次连接的三台涡轮发动机401中的第一台涡轮发动机401A的电气供电线路46、供油管路47和回油管路48连接,以对第一空气压缩机50电气供电、供油和回油。
第二空气压缩机60包括第二电气供电线路62、第二供油管路63和第二回油管路64。第二电气供电线路61、第二供油管路62和第二回油管路63分别与三台涡轮发动机401的任意一台涡轮发动机401的电气供电线路46、供油管路47和回油管路48连接,由此可通过该任意一台的双燃料动力装置40的电气供电线路46、供油管路47和回油管路48,对第二空气压缩机60提供电气供电、供油和回油,从而不需要为第二空气压缩机准备单独的动力系统。图中示出第二电气供电线路61、第二供油管路62和第二回油管路63分别与依次连接的三台涡轮发动机401中的最后一台涡轮发动机401B的电气供电线路46、供油管路47和回油管路48连接,以对第二空气压缩机60电气供电、供油和回油。
该双燃料动力系统30还包括第一空气压缩机控制模块71和第二空气压缩机控制模块72,第一空气压缩机控制模块71和第二空气压缩机控制模块72通信连接。第一空气压缩机控制模块71与第一空气压缩机50通信连接,并被配置为控制第一空气压缩机50的启动和排气量;第二空气压缩机控制模块72与第二空气压缩机60通信连接,并被配置为控制第二空气压缩机60的启动和排气量。
启动涡轮发动机401之前,需要选择所用燃料类型。此时,喷嘴吹扫控制模块73被配置为控制第一阀门44和第二阀门45的打开和关闭。例如,喷嘴吹扫控制模块73被配置为在第一燃料喷42嘴供燃气时,控制第一阀门44关闭且第二阀门45打开以对第二燃料喷嘴43吹扫。例如,喷嘴吹扫控制模块73被配置为在第二燃料喷嘴43供燃气时,控制第一阀门44打开且第二阀门45关闭以对第一燃料喷嘴42吹扫。由此,完成涡轮发动机401的吹扫准备工作。
第一空气压缩机控制模块71被配置为在三台涡轮发动机401中的任意一台涡轮发动机401启动时控制第一空气压缩机50启动,由此,空气经由第一空气压缩机50压缩后进入该任意一台涡轮发动机401进行吹扫工作。
第一空气压缩机50还包括第一储气瓶51、第一液压马达55、第一压力传感器56和第一液压马达转速控制比例阀57。第一储气瓶51上设置有第一 压力传感器56,以监测第一储气瓶51的压力值。在第一储气瓶51的压力值小于第一设定压力值时,第一空气压缩机控制模块71被配置为控制第一液压马达转速控制比例阀57增加开度,增大第一液压马达转速控制比例阀57的开度可以增加流向第一液压马达55的液压油的流量,由此可以增大第一液压马达55的转速,进而增加第一空气压缩机50的排气量。在第一储气瓶51的压力值大于第二设定压力值时,第一空气压缩机控制模块71被配置为控制第一液压马达转速控制比例阀57减小开度,减小第一液压马达转速控制比例阀57的开度可以减小流向第一液压马达55的液压油的流量,由此可以减小第一液压马达55的转速,进而减小第一空气压缩机50的排气量。第二设定压力值大于或等于第一设定压力值。通过第一空气压缩机控制模块71控制第一液压马达转速控制比例阀57的开度的不断调整,使第一储气瓶51的压力值始终保持在第一设定压力值和第二设定压力值之间。在第二设定压力值等于第一设定压力值时,通过第一空气压缩机控制模块71控制第一液压马达转速控制比例阀57的开度的不断调整,使第一储气瓶51的压力值始终保持在第一设定压力值。
当三台涡轮发动机401作业过程中,若第一空气压缩机50出现故障、停止工作或排气量减小等情况时,此时第一空气压缩机50的第一储气瓶51压力值会低于第一设定压力值,在第一空气压缩机控制模块71监测到第一储气瓶51的压力值小于第一设定压力值且小于第一设定压力值的状态持续预定时间时,此时,第一空气压缩机控制模块71会向第二空气压缩机控制模块72发送启动信号,第二空气压缩机控制模块72根据启动信号控制第二空气压缩机60启动。由此,可以满足三台涡轮发动机401的供气吹扫要求。
第二空气压缩机60还包括第二储气瓶61、第二液压马达65、第二压力传感器66和第二液压马达转速控制比例阀67。第二空气压缩机60启动后,设置在第二储气瓶61上的第二压力传感器66会监测第二储气瓶61的压力值,在第二储气瓶61的压力值小于第一设定压力值时,第二空气压缩机控制模块72被配置为控制第二液压马达转速控制比例阀67增加开度,增大第二液压马达转速控制比例阀67的开度可以增加流向第二液压马达65的液压油的流量,由此可以增大第二液压马达65的转速,进而增加第二空气压缩机60的排气量。在第二储气瓶61的压力值大于第二设定压力值时,第二空气压缩机控制模块72被配置为控制第二液压马达转速控制比例阀67减小开度,减 小第二液压马达转速控制比例阀67的开度可以减小流向第二液压马达65的液压油的流量,由此可以减小第二液压马达65的转速,进而减小第二空气压缩机60的排气量。通过第二空气压缩机控制模块72控制第二液压马达转速控制比例阀67的开度的不断调整,使第二储气瓶61的压力值始终保持在第一设定压力值和第二设定压力值之间。在第二设定压力值等于第一设定压力值时,通过第二空气压缩机控制模块72控制第二液压马达转速控制比例阀67的开度的不断调整,使第二储气瓶61的压力值始终保持在第一设定压力值。
本公开实施例中,上述各种模块可以用软件实现,以便由各种类型的处理器执行。举例来说,可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,各种模块的可执行代码无需物理地位于一起,而是可以包括存储在不同物理上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
本公开一实施例提供一种双燃料动力系统的供气吹扫方法。图5为本公开一实施例提供的一种双燃料动力系统的供气吹扫方法的示意图。该供气吹扫方法可应用于上述任一实施例提供的双燃料动力系统。如图5所示,该供气吹扫方法包括以下步骤:
S1:在启动多台双燃料动力装置中的任意一台双燃料动力装置时启动第一空气压缩机对该任意一台双燃料动力装置进行供气;
S2:在第一储气瓶的压力值小于第一设定压力值且小于第一设定压力值的状态持续预定时间时,启动第二空气压缩机对该任意一台双燃料动力装置进行供气。
例如,多台双燃料动力装置可以是为油田压裂设备提供动力的多台涡轮发动机,多台双燃料动力装置的压缩空气供气管路依次连接,且第一空气压缩机和第二空气压缩机与多台双燃料动力装置的任意一台双燃料动力装置的压缩空气供气管路连接,从而第一空气压缩机和第二空气压缩机可以为多台双燃料动力装置供气。第一空气压缩机可以是主空气压缩机,第二空气压缩机可以是副空气压缩机,作为主空气压缩机的备用空气压缩机。
例如,作为动力装置的涡轮发动机可以用于驱动发电机或者压裂设备,但根据本公开的实施例不限于此。在一些示例中,涡轮发动机也可以与发电机或者压裂设备集成,以形成整体的涡轮发电机或涡轮压裂设备。
在本公开实施例提供的双燃料动力系统的供气吹扫方法中,在启动多台双燃料动力装置中的任意一台双燃料动力装置时,启动第一空气压缩机对该任意一台双燃料动力装置进行供气,在第一储气瓶的压力值小于第一设定压力值且小于第一设定压力值的状态持续预定时间时,启动第二空气压缩机对该任意一台双燃料动力装置进行供气。由此可以在第一空气压缩机出现故障、停止工作或供气不足等不满足供气压力值要求且持续预定时间的情况下,可启动第二空气压缩机以对该任意一台双燃料动力装置进行供气吹扫工作,从而避免在第一空气压缩机不能满足供气压力值要求的情况下,影响多台双燃料动力装置的正常作业。
例如,第一设定压力值可以是200PSI,本公开的实施例对第一设定压力值的大小不做限定。
例如,预定时间可以是2分钟至5分钟,本公开的实施例对预定时间的长短不做限定。
在一些示例中,该供气吹扫方法中,在第一储气瓶的压力值小于第一设定压力值时,增加第一空气压缩机的排气量以增加第一储气瓶的压力值。
例如,第一空气压缩机还可以包括第一液压马达和控制第一液压马达转速的第一液压马达转速控制比例阀,由此可以通过第一液压马达转速控制比例阀调节第一空气压缩机的第一液压马达的转速,增加第一空气压缩机的排气量。
在一些示例中,该供气吹扫方法还可包括:在第二储气瓶的压力值小于第一设定压力值时,增加第二空气压缩机的排气量,以使增加第二储气瓶的压力值。
例如,第二空气压缩机还可以包括第二液压马达和控制第二液压马达转速的第二液压马达转速控制比例阀,由此可以通过第二液压马达转速控制比例阀调节第二空气压缩机的第二液压马达的转速,增加第二空气压缩机的排气量。
在一些示例中,该供气吹扫方法还可包括:在第一储气瓶的压力值大于第二设定压力值时,减小第一空气压缩机的排气量以降低第一储气瓶的压力值。
例如,可以通过第一液压马达转速控制比例阀调节第一空气压缩机的第一液压马达的转速,减小第一空气压缩机的排气量。
在一些示例中,该供气吹扫方法还可包括:在第二储气瓶的压力值大于第二设定压力值时,减小第二空气压缩机的排气量,以降低第二储气瓶的压力值。
例如,可以通过第二液压马达转速控制比例阀调节第二空气压缩机的第二液压马达的转速,减小第二空气压缩机的排气量。
在一些示例中,第一空气压缩机和第二空气压缩机中的至少一个可以是螺杆式空气压缩机,螺杆式空气压缩机的排量较大,在满足供气压力值的同时,能为多台双燃料动力装置提供压缩空气,提高双燃料动力系统的供气效率。
在一些示例中,该供气吹扫方法还可包括:在多台双燃料动力装置中的任意一台双燃料动力装置通过第一燃料喷嘴提供燃料时,对该任意一台双燃料动力装置的第二燃料喷嘴进行吹扫;在多台双燃料动力装置中的任意一台双燃料动力装置通过第二燃料喷嘴提供燃料时,对该任意一台双燃料动力装置的第一燃料喷嘴进行吹扫。由此可以实现压缩空气对多台双燃料动力装置的第一燃料喷嘴或第二燃料喷嘴进行吹扫,防止在第一燃料喷嘴或第二燃料喷嘴处形成积碳。
在一些示例中,该供气吹扫方法还可包括:在多台双燃料动力装置中的任意一台双燃料动力装置收到关机命令且处于低负载运行状态时,对该任意一台双燃料动力装置的第一燃料喷嘴和第二燃料喷嘴同时进行吹扫。在低负载运行状态下,虽然第一燃料喷嘴和第二燃料喷嘴已经停止了为动力装置提供 燃料,但动力装置的管路和燃烧室中还有残留的燃料。通过对第一燃料喷嘴和第二燃料喷嘴进行吹扫,可以实现燃料的排空,防止在第一燃料喷嘴和第二燃料喷嘴处因燃料残留形成积碳。
当多台双燃料动力装置需要停止工作时,多台双燃料动力装置会收到关机命令并立即进行停机前的准备工作,此时多台双燃料动力装置会进入“cool down”模式,即低负载运行状态以实现多台双燃料动力装置的燃烧室内的温度的降低,若此时停止对第一燃料喷嘴和第二燃料喷嘴的吹扫,将会导致在第一燃料喷嘴和第二燃料喷嘴处存留少量燃料,产生积碳。
在一些示例中,该供气吹扫方法还可包括:在多台双燃料动力装置中的任意一台双燃料动力装置的排气温度小于或等于设定温度时,停止对该任意一台双燃料动力装置的第一燃料喷嘴和第二燃料喷嘴进行吹扫。由此可以在多台双燃料动力装置收到关机命令且处于低负载运行状态时,实现对第一燃料喷嘴和第二燃料喷嘴的吹扫控制,防止在第一燃料喷嘴和第二燃料喷嘴处因燃料残留形成积碳。
双燃料动力装置的排气温度与双燃料动力装置的燃烧室内的温度正相关,通过双燃料动力装置的排气温度传感器可以监测到双燃料动力装置的排气温度,当双燃料动力装置的排气温度降低到设定温度时,对应燃烧室的温度已经降低到合理范围,此时第一燃料喷嘴和第二燃料喷嘴的燃料已经完全被排空,由此可以停止对第一燃料喷嘴和第二燃料喷嘴的吹扫。
在一些示例中,该供气吹扫方法中,第一空气压缩机和第二空气压缩机至少之一的电气供电线路、供油管路和回油管路分别与多台双燃料动力装置的电气供电线路、供油管路和回油管路连接。由此,可以实现由多台双燃料动力装置的任意一台双燃料动力装置的电气供电线路、供油管路和回油管路,对第一空气压缩机和第二空气压缩机至少之一提供电气供电、供油和回油。例如,第一空气压缩机和第二空气压缩机至少之一的的动力可以采用任意一台动力装置的动力,从而不需要为第一空气压缩机和第二空气压缩机至少之一准备单独的动力系统。在一些示例中,在动力装置为涡轮发动机时,涡轮发动机的一些辅助装置(例如,润滑装置等)的动力源(例如,电力和液压油)可以提供给第一空气压缩机和第二空气压缩机至少之一。例如,第一空气压缩机和第二空气压缩机供电线路和供油/回油管路可以连接到不同的动力装置的相应供电线路和供油/回油管路,也可以连接到相同动力装置的供电线路和供油/回油 管路。
本公开一实施例提供的另一种双燃料动力系统的供气吹扫方法。该供气吹扫方法可应用于上述任一实施例提供的双燃料动力系统。该供气吹扫方法包括以下步骤:
S100:将多台双燃料动力装置的每台双燃料动力装置的压缩空气供气管路依次连接;
S101:将第一空气压缩机与依次连接的多台双燃料动力装置中的第一台双燃料动力装置连接;
S102:将第一空气压缩机的供油管路和回油管路分别与多台双燃料动力装置的任意一台双燃料动力装置的供油管路和回油管路连接;
S103:选择燃料供给类型,对第一燃料喷嘴提供燃料时,则对第二燃料喷嘴进行吹扫;对第二燃料喷嘴提供燃料时,则对第一燃料喷嘴进行吹扫;
S104:在启动多台双燃料动力装置中的任意一台双燃料动力装置时启动第一空气压缩机对多台双燃料动力装置进行供气,此时,该任意一台双燃料动力装置的第一燃料喷嘴喷燃烧介质用于做功,第二燃料喷嘴喷压缩空气以消除喷嘴积碳;
S105:调用第一储气瓶的压力值,在第一储气瓶的压力值小于第一设定压力值时,输出提示信息;
S106:响应提示信息,增加第一空气压缩机的排气量,以增加第一储气瓶的压力值;
S107:调用第一储气瓶的压力值,在第一储气瓶的压力值小于第一设定压力值且小于第一设定压力值的状态持续预定时间时,将第二空气压缩机的供油管路和回油管路分别与多台双燃料动力装置的任意一台双燃料动力装置的供油管路和回油管路连接;
S108:响应提示信息,启动第二空气压缩机对多台双燃料动力装置进行供气;
S109:调用第二储气瓶的压力值,在第二储气瓶的压力值小于第一设定压力值时,输出提示信息;
S110:响应提示信息,增加第二空气压缩机的排气量,以增加第二储气瓶的压力值,直至提示信息消失;
S111:在多台双燃料动力装置中的任意一台收到停机命令且处于低负载 运行状态时,对该任意一台双燃料动力装置的第一燃料喷嘴和第二燃料喷嘴同时进行吹扫;
S112:在多台双燃料动力装置中的任意一台双燃料动力装置的排气温度小于或等于设定温度时,停止对该任意一台双燃料动力装置的第一燃料喷嘴和第二燃料喷嘴进行吹扫。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种双燃料动力系统,包括:
    多台双燃料动力装置,所述多台双燃料动力装置的每台双燃料动力装置包括压缩空气供气管路、第一燃料喷嘴和第二燃料喷嘴,所述压缩空气供气管路与所述第一燃料喷嘴和所述第二燃料喷嘴连接,所述多台双燃料动力装置的压缩空气供气管路依次连接;
    第一空气压缩机,包括第一储气瓶,被配置为与所述多台双燃料动力装置的任意一台双燃料动力装置的压缩空气供气管路连接,以对所述多台双燃料动力装置进行供气并对所述第一喷嘴和所述第二喷嘴至少之一进行吹扫;以及
    第二空气压缩机,包括第二储气瓶,被配置为与所述多台双燃料动力装置的任意一台双燃料动力装置的压缩空气供气管路连接,以对所述多台双燃料动力装置进行供气并对所述第一喷嘴和所述第二喷嘴至少之一进行吹扫。
  2. 根据权利要求1所述的双燃料动力系统,其中,所述第一空气压缩机和所述第二空气压缩机分别与依次连接的所述多台双燃料动力装置中的第一台双燃料动力装置和最后一台双燃料动力装置的压缩空气管路连接。
  3. 根据权利要求1所述的双燃料动力系统,还包括:
    控制装置,包括第一空气压缩机控制模块、第二空气压缩机控制模块,
    其中,所述第一空气压缩机控制模块和第二空气压缩机控制模块通信连接,
    所述第一空气压缩机控制模块与所述第一空气压缩机通信连接,并被配置为控制所述第一空气压缩机的启动和排气量;
    所述第二空气压缩机控制模块与所述第二空气压缩机通信连接,并被配置为控制所述第二空气压缩机的启动和排气量。
  4. 根据权利要求3所述的双燃料动力系统,其中,所述第一空气压缩机控制模块被配置为在所述多台双燃料动力装置中的任意一台双燃料动力装置启动时控制所述第一空气压缩机启动,在所述第一储气瓶的压力值小于第一设定压力值且小于所述第一设定压力值的状态持续预定时间时,向所述第二空气压缩机控制模块发送启动信号,所述第二空气压缩机控制模块根据所述启动信号控制所述第二空气压缩机启动。
  5. 根据权利要求4所述的双燃料动力系统,其中,所述第一空气压缩机控制模块还被配置为在所述第一储气瓶的压力值小于所述第一预定压力值时,增加所述第一空气压缩机的排气量以增加所述第一储气瓶的压力值。
  6. 根据权利要求4所述的双燃料动力系统,其中,所述第二控制压缩机控制模块还被配置为在所述第二空气压缩机已被启动且所述第二储气瓶的压力值小于所述第一设定压力值时,增加所述第二空气压缩机的排气量,以增加所述第二储气瓶的压力值。
  7. 根据权利要求4-6任一项所述的双燃料动力系统,其中,所述第一空气压缩机控制模块还被配置为在所述第一储气瓶的压力值大于第二设定压力值时,减小所述第一空气压缩机的排气量,以减小所述第一储气瓶的压力值;和/或,所述第二空气压缩机控制模块被配置为在所述第二储气瓶的压力值大于所述第二设定压力值时,减小所述第二空气压缩机的排气量,以减小所述第二储气瓶的压力值,
    所述第二设定压力值大于或等于所述第一设定压力值。
  8. 根据权利要求3-7任一项所述的双燃料动力系统,其中,所述控制装置还包括喷嘴吹扫控制模块,所述多台双燃料动力装置的每台双燃料动力装置包括分别位于所述第一燃料喷嘴和所述第二燃料喷嘴与所述压缩空气供气管路之间的第一阀门和第二阀门,
    所述喷嘴吹扫控制模块与所述多台双燃料动力装置通信连接,并被配置为控制所述第一阀门和所述第二阀门的打开和关闭。
  9. 根据权利要求8所述的双燃料动力系统,其中,
    所述喷嘴吹扫控制模块被配置为在所述第一燃料喷嘴供燃气时,控制所述第一阀门关闭且所述第二阀门打开以对所述第二燃料喷嘴吹扫;
    所述喷嘴吹扫控制模块被配置为在所述第二燃料喷嘴供燃气时,控制所述第一阀门打开且所述第二阀门关闭以对所述第一燃料喷嘴吹扫。
  10. 根据权利要求8所述的双燃料动力系统,其中,所述喷嘴吹扫控制模块被配置为在所述多台双燃料动力装置中的任意一台双燃料动力装置收到关机命令且处于低负载运行状态时,控制该任意一台双燃料动力装置的所述第一阀门和所述第二阀门打开以同时对所述第一燃料喷嘴和所述第二燃料喷嘴吹扫。
  11. 根据权利要求10所述的双燃料动力系统,其中,所述喷嘴吹扫控制 模块还被配置为在该任意一台双燃料动力装置的排气温度小于设定温度时,控制该任意一台双燃料动力装置的所述第一阀门和所述第二阀门关闭以停止对所述第一燃料喷嘴和所述第二燃料喷嘴的吹扫。
  12. 根据权利要求1-11任一项所述的双燃料动力系统,其中,所述多台双燃料动力装置的每台双燃料动力装置还包括电气供电线路、供油管路和回油管路;
    所述第一空气压缩机还包括第一电气供电线路、第一供油管路和第一回油管路,所述第一电气供电线路、所述第一供油管路和所述第一回油管路分别与所述多台双燃料动力装置的任意一台双燃料动力装置的所述电气供电线路、所述供油管路和所述回油管路连接;和/或,所述第二空气压缩机还包括第二电气供电线路、第二供油管路和第二回油管路,所述第二电气供电线路、所述第二供油管路和所述第二回油管路分别与所述多台双燃料动力装置的任意一台双燃料动力装置的所述电气供电线路、所述供油管路和所述回油管路连接。
  13. 根据权利要求1-12任一项所述的双燃料动力系统,其中,所述双燃料动力装置为涡轮发动机。
  14. 一种根据权利要求1或2所述的双燃料动力系统的供气吹扫方法,包括:
    在启动所述多台双燃料动力装置中的任意一台双燃料动力装置时启动所述第一空气压缩机对该任意一台双燃料动力装置进行供气;
    在所述第一储气瓶的压力值小于第一设定压力值且小于所述第一设定压力值的状态持续预定时间时,启动所述第二空气压缩机对该任意一台双燃料动力装置进行供气。
  15. 根据权利要求14所述的供气吹扫方法,其中,在所述第一储气瓶的压力值小于所述第一设定压力值时,增加所述第一空气压缩机的排气量以增加所述第一储气瓶的压力值。
  16. 根据权利要求14所述的供气吹扫方法,还包括:
    在所述第二空气压缩机已被启动且所述第二储气瓶的压力值小于所述第一设定压力值时,增加所述第二空气压缩机的排气量,以使增加所述第二储气瓶的压力值。
  17. 根据权利要求14-16任一项所述的供气吹扫方法,还包括:
    在所述第一储气瓶的压力值大于第二设定压力值时,减小所述第一空气 压缩机的排气量以降低所述第一储气瓶的压力值;和/或,
    在所述第二储气瓶的压力值大于所述第二设定压力值时,减小所述第二空气压缩机的排气量,以降低所述第二储气瓶的压力值。
  18. 根据权利要求14-17任一项所述的供气吹扫方法,还包括:
    在所述多台双燃料动力装置中的任意一台双燃料动力装置通过所述第一燃料喷嘴提供燃料时,对该任意一台双燃料动力装置的所述第二燃料喷嘴进行吹扫;
    在所述多台双燃料动力装置中的任意一台双燃料动力装置通过第二燃料喷嘴提供燃料时,对该任意一台双燃料动力装置的所述第一燃料喷嘴进行吹扫。
  19. 根据权利要求14-18任一项所述的供气吹扫方法,还包括:
    在所述多台双燃料动力装置中的任意一台双燃料动力装置收到关机命令且处于低负载运行状态时,对该任意一台双燃料动力装置的所述第一燃料喷嘴和所述第二燃料喷嘴同时进行吹扫。
  20. 根据权利要求19所述的供气吹扫方法,还包括:
    在所述多台双燃料动力装置中的任意一台双燃料动力装置的排气温度小于或等于设定温度时,停止对该任意一台双燃料动力装置的所述第一燃料喷嘴和所述第二燃料喷嘴进行吹扫。
PCT/CN2022/076322 2022-02-15 2022-02-15 双燃料动力系统及其供气吹扫方法 WO2023155039A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280000704.1A CN114729600B (zh) 2022-02-15 2022-02-15 双燃料动力系统及其供气吹扫方法
PCT/CN2022/076322 WO2023155039A1 (zh) 2022-02-15 2022-02-15 双燃料动力系统及其供气吹扫方法
US17/774,116 US20240175396A1 (en) 2022-02-15 2022-02-15 Dual-Fuel Power System and Air Supply and Purging Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076322 WO2023155039A1 (zh) 2022-02-15 2022-02-15 双燃料动力系统及其供气吹扫方法

Publications (1)

Publication Number Publication Date
WO2023155039A1 true WO2023155039A1 (zh) 2023-08-24

Family

ID=82232508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076322 WO2023155039A1 (zh) 2022-02-15 2022-02-15 双燃料动力系统及其供气吹扫方法

Country Status (3)

Country Link
US (1) US20240175396A1 (zh)
CN (1) CN114729600B (zh)
WO (1) WO2023155039A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159517A (en) * 1978-06-07 1979-12-17 Hitachi Ltd Method of and device for purging two-fuel burning pressure spray type fuel nozzle
CN106232962A (zh) * 2014-06-03 2016-12-14 三菱日立电力系统株式会社 燃料流路的吹扫方法、执行该方法的吹扫装置、具备该装置的燃气涡轮机设备
CN112879160A (zh) * 2021-03-23 2021-06-01 烟台杰瑞石油装备技术有限公司 用于涡轮压裂车组的吹扫系统、吹扫方法和涡轮压裂车组
CN214741684U (zh) * 2021-03-23 2021-11-16 烟台杰瑞石油装备技术有限公司 用于涡轮压裂车组的吹扫系统和涡轮压裂车组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586429A (en) * 1994-12-19 1996-12-24 Northern Research & Engineering Corporation Brayton cycle industrial air compressor
CN104033248B (zh) * 2014-06-04 2015-10-07 华能国际电力股份有限公司 一种利用脉冲爆震燃烧的地面燃气轮机
CN105317554B (zh) * 2015-01-04 2017-11-28 中国大唐集团新能源股份有限公司 压缩空气储能发电方法
CN205559070U (zh) * 2016-03-04 2016-09-07 王力丰 以压缩空气为施力源的系统及飞机
CN106988882B (zh) * 2017-04-13 2019-03-01 深圳福世达动力科技有限公司 双级对转燃气轮机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159517A (en) * 1978-06-07 1979-12-17 Hitachi Ltd Method of and device for purging two-fuel burning pressure spray type fuel nozzle
CN106232962A (zh) * 2014-06-03 2016-12-14 三菱日立电力系统株式会社 燃料流路的吹扫方法、执行该方法的吹扫装置、具备该装置的燃气涡轮机设备
CN112879160A (zh) * 2021-03-23 2021-06-01 烟台杰瑞石油装备技术有限公司 用于涡轮压裂车组的吹扫系统、吹扫方法和涡轮压裂车组
CN214741684U (zh) * 2021-03-23 2021-11-16 烟台杰瑞石油装备技术有限公司 用于涡轮压裂车组的吹扫系统和涡轮压裂车组

Also Published As

Publication number Publication date
CN114729600B (zh) 2023-09-19
US20240175396A1 (en) 2024-05-30
CN114729600A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2022198780A1 (zh) 用于涡轮压裂设备组的吹扫系统、吹扫方法和涡轮压裂设备组
US11851999B2 (en) Microgrid electrical load management
US6769259B2 (en) Gas turbine having a cooling air system and a spray air system
US20090051167A1 (en) Combustion turbine cooling media supply method
US9410486B2 (en) System and method for washing and purging the liquid fuel system of a turbine with water
US20140250901A1 (en) Method for starting-up and operating a combined-cycle power plant
WO2023155039A1 (zh) 双燃料动力系统及其供气吹扫方法
CN112653189A (zh) 基于小型燃机作为黑启动电源的燃机黑启动方法
CN113167134B (zh) 残余气体中能量的回收
CN107702431B (zh) 一种低温液体膨胀机热启动系统及方法
CN214741684U (zh) 用于涡轮压裂车组的吹扫系统和涡轮压裂车组
CN205371117U (zh) 带有双增压油箱的燃油供油装置
JP3623913B2 (ja) ガス専焼ガスタービン発電装置
CN108759302B (zh) 一种高压天然气液化系统及方法
JP2021124116A (ja) 発電プラントを運転するための方法、および発電プラント
CN210623054U (zh) 压缩机调速控制系统及压缩机
WO2024147177A1 (ja) 圧縮システム、圧縮システムの起動方法、及び圧縮システムの停止方法
CN214122774U (zh) 一种空压机集中控制节能系统
CN219433058U (zh) 一种用于35MPa氢气加注设备
US20240162738A1 (en) Electrically-driven pumping system and driving method thereof
JPH08312896A (ja) 液化ガスの蒸発ガス処理システムおよび処理方法
WO2024032933A1 (en) Fuel gas booster-gas turbine integration for energy saving & optimized operability
KR20220153302A (ko) 엔진용 시동 기체 공급 시스템
CN115263445A (zh) 一种汽机旁路调节阀动作控制方法
CN116906924A (zh) 一种燃油系统节能控制方法及燃油系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17774116

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926377

Country of ref document: EP

Kind code of ref document: A1