WO2023153438A1 - 投光器、受光器、及び測定装置 - Google Patents

投光器、受光器、及び測定装置 Download PDF

Info

Publication number
WO2023153438A1
WO2023153438A1 PCT/JP2023/004172 JP2023004172W WO2023153438A1 WO 2023153438 A1 WO2023153438 A1 WO 2023153438A1 JP 2023004172 W JP2023004172 W JP 2023004172W WO 2023153438 A1 WO2023153438 A1 WO 2023153438A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
area
optical system
receiving
receiver
Prior art date
Application number
PCT/JP2023/004172
Other languages
English (en)
French (fr)
Inventor
和也 本橋
幸雄 林
義朗 伊藤
秀倫 曽根
祐太 春瀬
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023153438A1 publication Critical patent/WO2023153438A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present disclosure relates to projectors, receivers, and measuring devices.
  • LiDAR Light Detection and Ranging
  • the distance to the object is measured based on the difference between the timing when the projector emits the projected light and the timing when the receiver receives the reflected light. Provide information about objects.
  • Flash LiDAR is one type of LiDAR that performs multi-point observation for the purpose of grasping the shape of an object. Flash LiDAR does not include mechanical components such as motors and MEMS (Micro Electro Mechanical Systems), and is a leading LiDAR in fields where durability is required, such as when used for in-vehicle purposes to realize AD and ADAS. considered as a candidate.
  • mechanical components such as motors and MEMS (Micro Electro Mechanical Systems)
  • MEMS Micro Electro Mechanical Systems
  • Patent Document 1 describes a LIDAR system mounted on a vehicle.
  • a LIDAR system consists of an illuminator (laser projector) that projects a light beam generated by a light source toward a target scene, a receiver that receives the light reflected from an object, and a controller that calculates distance information about the object from the reflected light ( processor), elements that scan a particular pattern of light across a desired range and field of view (FOV). Convert measurements to represent a point-by-point 3D map of an environment.
  • illuminator laser projector
  • receiver that receives the light reflected from an object
  • a controller that calculates distance information about the object from the reflected light ( processor), elements that scan a particular pattern of light across a desired range and field of view (FOV). Convert measurements to represent a point-by-point 3D map of an environment.
  • FOV field of view
  • the size of the light distribution (FOV (Field Of View): viewing angle, beam profile) of the floodlight of a flash LiDAR depends on the size of the light-emitting part of the floodlight and the optical system that adjusts the projected light (hereafter referred to as the "projection optical system”). ) is determined by the focal length.
  • the size of the light distribution of the light receiver of the flash LiDAR (hereinafter referred to as "light distribution size”) depends on the size of the light receiving section of the light receiver and the optical system for condensing the reflected light to the light receiving section (hereinafter referred to as "light optical system”). Therefore, when applying flash LiDAR for a particular purpose, it is necessary to ensure that the light distribution size achieved meets the specifications required by the system in which it is applied.
  • the present disclosure has been made in view of such a background, and aims to provide a projector, a receiver, and a measuring device that can flexibly respond to the required light distribution size and measurement accuracy. do.
  • a light projector includes a light emitting unit having a first light emitting unit and a second light emitting unit whose positional relationship is fixed; 1 light projecting optical system; and a focal length of the first light projecting optical system for projecting light emitted from the second light emitting unit onto a second light projecting area including an area different from the first light projecting area. and a second projection optical system having a focal length different from that.
  • a measurement apparatus configured using the light projector includes the light projector and a light receiver that receives reflected light from a measurement target of the light projected from the light projector, Measure the distance to the measurement target based on the light reception result of the instrument.
  • a light receiver includes a light receiving unit having a first light receiving portion and a second light receiving portion whose positional relationship is fixed, and condenses light incident from a first light receiving area on the first light receiving portion.
  • a focal length different from the focal length of the first light receiving optical system, in which light incident from a first light receiving optical system and a second light receiving area including an area different from the first light receiving area is collected on the second light receiving unit. and a second light receiving optical system having
  • a measurement apparatus configured using the light receiver includes a light projector, and the light receiver that receives reflected light from a measurement target of the light projected from the light projector, The distance to the measurement object is measured based on the light reception result of the light receiver.
  • FIG. 1 is a diagram showing a schematic configuration of a measuring device.
  • FIG. 2A is a diagram illustrating the relationship between the light emitting unit, the light projecting optical system, and the light projecting area.
  • FIG. 2B is a diagram for explaining the relationship between the light-receiving unit, the light-receiving optical system, and the light-receiving area.
  • FIG. 3A is a diagram illustrating the relationship between the light emitting unit, the light projecting optical system, and the light projecting area.
  • FIG. 3B is a diagram for explaining the relationship between the light emitting unit, the light projecting optical system, and the light projecting area.
  • FIG. 3C is a diagram illustrating the relationship between the light emitting unit, the light projecting optical system, and the light projecting area.
  • FIG. 3D is a diagram for explaining the relationship between the light emitting unit, the light projecting optical system, and the light projecting area.
  • FIG. 3E is a diagram illustrating the relationship between the light emitting unit, the light projecting optical system, and the light projecting area.
  • FIG. 4A is a diagram illustrating the relationship between a light receiving unit, a light receiving optical system, and a light receiving area.
  • FIG. 4B is a diagram for explaining the relationship between the light receiving unit, the light receiving optical system, and the light receiving area.
  • FIG. 4C is a diagram for explaining the relationship between the light receiving unit, the light receiving optical system, and the light receiving area.
  • FIG. 4D is a diagram for explaining the relationship between the light receiving unit, the light receiving optical system, and the light receiving area.
  • FIG. 4E is a diagram illustrating the relationship between the light receiving unit, the light receiving optical system, and the light receiving area.
  • FIG. 1 shows a schematic configuration (block diagram) of a measuring device 100 shown as one embodiment.
  • the exemplified measuring apparatus 100 includes a function as a flash LiDAR (Flash Light Detection and Ranging), and includes a projector that irradiates an object with projected light (irradiation light, light beam (laser light)), and a projector that emits projected light for measurement. and a light receiver for receiving reflected light (return light) that is reflected back from the object.
  • flash LiDAR Flash Light Detection and Ranging
  • the measuring device 100 measures the difference between the timing at which the projector emits the projected light and the timing at which the receiver receives the reflected light (time of flight of the laser beam, hereinafter referred to as "TOF" (Time Of Flight)). to provide information about the object. In this manner, the measuring device 100 measures the distance to the measurement object based on the light reception result of the light receiver.
  • TOF Time of Flight
  • the measuring device 100 is installed, for example, in a vehicle equipped with AD (Autonomous Driving) or ADAS (Advanced Driver Assistance System).
  • the measuring device 100 assists in the detection of people, vehicles, and objects, ensures the safety of the driver of the vehicle and those around the vehicle, and reduces damage to objects around the vehicle while driving. provide a variety of useful information for
  • the exemplified measuring apparatus 100 includes a light emitting unit 11, a light projection control device 112, a current source 113, a light projecting optical system 14, a light receiving optical system 15, a light receiving unit 16, a TOF measuring device 117, and an arithmetic device. 150, and a communication I/F 160.
  • the light emitting unit 11, the light projection control device 112, the current source 113, and the light projection optical system 14 constitute the light projector described above.
  • the light receiving optical system 15 and the light receiving unit 16 constitute the light receiver described above.
  • the light-emitting unit 11 that constitutes the light projector has a plurality of light-emitting sections 111 that are arranged in a fixed positional relationship.
  • "having a fixed positional relationship” means, for example, that the plurality of light emitting units 111 are fixed to the same member (semiconductor substrate or the like).
  • the light emitting unit 111 is, for example, a surface emitting type laser emitting element (for example, VCSEL (Vertical Cavity Surface Emitting Laser). Hereinafter referred to as a “surface emitting element”)), or a plurality of surface emitting elements that are one-dimensional or It is a surface emitting element array (for example, a VCSEL array) two-dimensionally arranged on a substrate (semiconductor substrate, ceramic substrate, etc.).
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the light projection control device 112 generates a control signal for controlling the current source 113 that supplies the drive current of the surface light emitting element of the light emitting unit 111 and inputs it to the current source 113, thereby causing the current source 113 to drive the surface light emitting element. controls the current (drive current) supplied to the
  • the light projection control device 112 outputs a signal indicating the timing at which the surface light emitting element of the light emitting unit 11 emits light (the timing at which the projected light is emitted from the surface light emitting element; hereinafter referred to as “projection timing”). to enter.
  • the light projection control device 112 for example, periodically and repeatedly causes the surface light emitting elements to emit light by controlling the on/off of the current flowing through each of the surface light emitting elements of the light emitting unit 11 periodically. In this manner, the light projection control device 112 individually controls lighting of the plurality of light emitting units 111 .
  • the current source 113 supplies a current corresponding to the control signal input from the light projection control device 112 to the surface emitting element of the light emitting section 111 .
  • the current source 113 supplies, for example, a periodic square-wave current to the surface emitting elements for turning on and off the current flowing through each of the surface emitting elements.
  • the projection optical system 14 adjusts the light distribution of the projected light, for example, by applying an optical action (refraction, scattering, diffraction, etc.) to the projected light emitted from the light emitting unit 11 .
  • the projection optical system 14 is configured using optical components such as various lenses such as a collimator lens, a diffraction grating, and a reflector (mirror).
  • the light-receiving optical system 15 collects the reflected light returning from the object 50 onto the light-receiving section 161 of the light-receiving unit 16 .
  • the light receiving optical system 15 is configured using, for example, various lenses such as a condenser lens, various filters such as a wavelength filter, and optical components such as a reflector (mirror).
  • the light-receiving unit 16 has a plurality of light-receiving parts 161 arranged with a fixed positional relationship. It should be noted that “the positional relationship between them is fixed” means, for example, that the plurality of light receiving sections 161 are fixedly arranged on the same member (semiconductor substrate or the like).
  • the light receiving unit 161 is configured using a photodetector such as a SPAD (Single Photon Avalanche Diode), a photodiode, or a balanced photodetector, for example.
  • the light receiving section 161 photoelectrically converts the reflected light incident from the light receiving optical system 15 to generate a current (hereinafter referred to as “light receiving current”) corresponding to the intensity of the reflected light.
  • the light receiving unit 161 inputs to the TOF measuring device 117 a signal indicating the timing at which the reflected light is received (hereinafter referred to as “light receiving timing”) and the generated light receiving current.
  • the TOF measurement device 117 obtains the TOF based on the signal indicating the light projection timing input from the light emission control device 112 and the signal indicating the light reception timing input from the light receiving unit 161 .
  • the TOF measurement device 117 is configured using, for example, a time measurement IC (Integrated Circuit) equipped with a TDC (Time to Digital Converter) circuit.
  • the TOF measurement device 117 inputs the obtained TOF and the received light current input from the light receiving unit 161 to the arithmetic device 150 .
  • the arithmetic unit 150 is configured using a processor (CPU (Central Processing Unit), MPU (Micro Processing Unit), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), etc.). be.
  • the calculation device 150 generates information used for various measurements such as detection of the target object 50 and distance measurement based on the received light current and the TOF input from the TOF measurement device 117 .
  • the above information is, for example, a histogram used in Time Correlated Single Photon Counting, a distance to each point (point) of the object 50, a point cloud (point cloud information) etc.
  • the computing device 150 also controls the light projection control device 112 and the light receiving unit 16 .
  • the computing device 150 controls the light projection control device 112 and the light reception unit 16, thereby controlling the light projection timing and the light reception timing so as to speed up or optimize the processing related to histogram generation.
  • the information generated by the computing device 150 is provided (transmitted) to devices that use the information (hereinafter referred to as “various devices 40”) via a communication I/F 160 (I/F: Interface). .
  • Various utilization devices 40 create an environment map by point cloud, self-location estimation (SLAM (Simultaneous Localization and Mapping)) using a scan matching algorithm (NDT (Normal Distribution Transform), ICP (Iterative Closest Point), etc.) etc.
  • SLAM Simultaneous Localization and Mapping
  • NDT Normal Distribution Transform
  • ICP Iterative Closest Point
  • FIG. 2A is a schematic diagram illustrating the relationship between the light emitting unit 111, the light projecting optical system 14, and a light projecting area formed by them (hereinafter referred to as "light projecting area 51").
  • the light projection area 51 is determined by the size (shape, size) of the light emitting section 111 and the focal length of the light projection optical system 14 .
  • the measurement accuracy (resolution, for example, the measurement accuracy of the distance to the object 50) of the measuring apparatus 100 is determined according to the focal length of the projection optical system 14, and the longer the focal length, the higher the measurement accuracy. However, the longer the focal length of the projection optical system 14, the narrower the projection area 51 becomes.
  • FIG. 2B is a schematic diagram illustrating the relationship between the light receiving section 161 and the light receiving optical system 15, and a light receiving area formed by them (hereinafter referred to as "light receiving area 52").
  • the light receiving area 52 is determined by the size (shape, size) of the light receiving section 161 and the focal length of the light receiving optical system 15 .
  • the measurement accuracy (resolution, for example, the measurement accuracy of the distance to the object 50) of the measuring apparatus 100 is determined according to the focal length of the light receiving optical system 15, and the longer the focal length, the higher the measurement accuracy. However, the longer the focal length of the light receiving optical system 15, the narrower the light receiving area.
  • the sizes of the light projecting area 51 and the light receiving area 52 are restricted by the size of the light emitting section 111 and the size of the light receiving section 161 .
  • the light emitting unit 111 and the light receiving unit 161 for example, the light projecting area 51 and the light receiving area 52 do not necessarily match the purpose and application of the measuring apparatus 100.
  • the measurement apparatus 100 it is desired to improve the measurement accuracy of a specific visual field range (projection area, light receiving area) more than other visual field ranges (for example, when flash LiDAR is applied to AD or ADAS) For example, when you want to improve the measurement accuracy in a specific field of view such as the distance of the oncoming lane), it is necessary to respond flexibly to such needs.
  • a specific visual field range projection area, light receiving area
  • other visual field ranges for example, when flash LiDAR is applied to AD or ADAS
  • FIG. 3A is a schematic diagram illustrating the relationship between the elements of the light projector (the light emitting unit 11 and the light projecting optical system 14) in the measurement apparatus 100 of this embodiment and the light projection area 51 formed by the light projector.
  • the elements of the light projector (the light emitting unit 11 and the light projecting optical system 14) are viewed from a direction perpendicular to the optical axis of the light emitting section 111 (viewed from the +y side).
  • the projection area is a diagram viewed from the direction of the optical axis (a diagram viewed from the -z side).
  • the arrows shown in the figure indicate the correspondence between the light emitting section 111 and the light projection area 51 (the same applies to FIGS. 3B to 3E). Note that the size of the light emitting unit 11 is exaggerated in FIG.
  • the exemplified light projector includes a light-emitting unit 11 having three light-emitting portions (a first light-emitting portion 111a, a second light-emitting portion 111b, and a third light-emitting portion 111c) whose mutual positional relationship is fixed; It includes three projection optical systems 14 (first projection optical system 14a, second projection optical system 14b, and third projection optical system 14c).
  • the first light projection optical system 14a distributes the light beam emitted from the first light emitting section 111a to the first light projection area 51a.
  • the dashed-dotted line represents the optical axis of the light emitting unit 111 or the projection optical system 14 .
  • the optical axis of the first light projecting optical system 14a is offset from the optical axis of the first light emitting section 111a.
  • the optical axis of the first light projecting optical system 14a is offset further away from the second light emitting section 111b (-x direction) than the optical axis of the first light emitting section 111a.
  • the second light projection optical system 14b distributes the light beam emitted from the second light emitting section 111b to the second light projection area 51b including an area different from the first light projection area 51a.
  • the first light projection area 51a and the second light projection area 51a may differ from each other due to manufacturing errors of the light emitting unit 11 and errors occurring when the light emitting unit 11 is mounted on a vehicle or the like. It is possible to prevent a dead area (unmeasurable area) from being generated between the optical area 51b.
  • the third light projecting optical system 14c distributes the light beam emitted from the third light emitting unit 111c to a third light projecting area 51c including an area different from the first light projecting area 51a and the second light projecting area 51b. .
  • the vicinity of the end of the second light projection area 51b and the vicinity of the end of the third light projection area 51c overlap each other.
  • the second light projection area 51b and the third light projection area 51b may be different from each other due to errors that occur when manufacturing the light emitting unit 11 or mounting the light emitting unit 11 on a vehicle or the like. It is possible to prevent the occurrence of a dead area (unmeasurable area) between the area 51c and the area 51c.
  • the light projection control device 112 For the overlapping light projection areas 51, the light projection control device 112, for example, performs control to turn on only one of the light emitting units 111 so that the non-overlapping light projection areas and the intensity of the projected light are uniform. It is possible to reduce the power consumption as well as to achieve the reduction in efficiency.
  • the light projection control device 112 controls the light projection area 51 in which the first light projection area 51a and the second light projection area 51b overlap so that the first light emitting section 111a and the second light emitting section 111b are not turned on at the same time. do.
  • the light projection control device 112 controls the light projection area 51 in which the second light projection area 51b and the third light projection area 51c overlap so that the second light emitting section 111b and the third light emitting section 111c are not turned on at the same time. do.
  • the optical axis of the third light projecting optical system 14c is offset with respect to the optical axis of the third light emitting section 111c.
  • the optical axis of the third light projecting optical system 14c is offset further away from the second light emitting section 111b (+x direction) than the optical axis of the third light emitting section 111c.
  • the second light projection area 51b exists between the first light projection area 51a and the third light projection area 51c.
  • the focal length of the second light projecting optical system 14b is different from the focal length of the first light projecting optical system 14a and the focal length of the third light projecting optical system 14c.
  • the focal length of the second light projecting optical system 14b is set longer than the focal length of the first light projecting optical system 14a and the focal length of the third light projecting optical system 14c. Therefore, the measurement accuracy of the second light projection area 51b is higher than that of the first light projection area 51a and the third light projection area 51c.
  • the effective measurement distance of the measuring device 100 can be increased (precision can be ensured over longer distances).
  • the focal length of the second light projecting optical system 14b is set longer than the focal length of the first light projecting optical system 14a and the focal length of the third light projecting optical system 14c.
  • the focal length of each projection optical system may be arbitrarily set according to required specifications.
  • the light projection area 51 can be expanded using one light emitting unit 11 having a plurality of light emitting parts 111 whose mutual positional relationship is fixed. For this reason, for example, a commercially available light emitting unit 11 in which a plurality of light emitting parts 111 are arranged one-dimensionally or two-dimensionally is used, and the number of parts is reduced so as to satisfy the specifications required by the application of the measuring device 100, and the cost is reduced. It is possible to adjust the light distribution while suppressing the In addition, since a wide light projection area can be realized by using the light emitting unit 11 with a high degree of integration of the light emitting section 111, the size of the measurement device 100 can be reduced.
  • the projection optical systems 14a to 14c are provided for the respective light emitting units 111a to 111c, the projection optical systems 14a to 14c can be arranged in a positional relationship that does not interfere with each other.
  • a part of the first light projection area 51a and a part of the third light projection area 51c overlap with the second light projection area 51b.
  • the entirety of the second light projection area 51b may overlap at least one of the first light projection area 51a and the third light projection area 51c.
  • the light projection area can be made wider (maximum).
  • the light emitting units 111 and the light projecting optical systems 14 are provided in one-to-one correspondence, but the light distribution of the plurality of light emitting units 111 may be performed by the same light projecting optical system 14 .
  • FIG. 3D shows the same light distribution as in FIG. This is a case of realizing by the light projecting optical system 14a and the second light projecting optical system 14b).
  • the first light projecting optical system 14a projects the light emitted from the first light emitting unit 111a to a third light projecting area including an area different from the first light projecting area 51a and the second light projecting area 51b.
  • FIG. 3E shows a case where the light distribution similar to that of FIG. 3C is realized by the three light emitting units 111 and the two light projection optical systems 14 (the first light projection optical system 14a and the second light projection optical system 14b). is.
  • light distribution of the light beams emitted from the first light emitting unit 111a and the second light emitting unit 111b is performed using one first light projecting optical system 14a.
  • a first light projection area 51a and a third light projection area 51c are formed.
  • the light distribution of the light beam emitted from the third light emitting unit 111c is performed by the second light projecting optical system 14b having a focal length different from the focal length of the first light projecting optical system 14a.
  • a second light projection area 51b is formed by the optical system 14b.
  • FIG. 4A is a schematic diagram illustrating the relationship between the elements of the light receiver (the light receiving unit 16 and the light receiving optical system 15) in the measurement apparatus 100 of this embodiment and the light receiving area formed by the light receiver.
  • the elements of the light receiver (the light receiving unit 16 and the light receiving optical system 15) are viewed from a direction perpendicular to the optical axis of the light receiving section 161 (viewed from the +y side).
  • the light receiving area is a view viewed from the direction of the optical axis (viewed from the -z side).
  • the arrows shown in the figure indicate the correspondence between the light receiving section 161 and the light receiving area 52 (the same applies to FIGS. 4B to 4E). Note that the size of the light receiving unit 16 is exaggerated in FIG.
  • the light receiver includes a light receiving unit 16 having three light receiving portions (a first light receiving portion 161a, a second light receiving portion 161b, and a third light receiving portion 161c) whose positional relationship is fixed; It includes three light receiving optical systems 15 (first light receiving optical system 15a, second light receiving optical system 15b, and third light receiving optical system 15c).
  • the first light receiving optical system 15a collects the reflected light from the first light receiving area 52a onto the first light receiving section 161a.
  • the dashed-dotted line represents the optical axis of the light receiving section 161 or the light receiving optical system 15 .
  • the optical axis of the first light receiving optical system 15a is offset with respect to the optical axis of the first light receiving section 161a.
  • the optical axis of the first light receiving optical system 15a is offset to the side (-x direction) farther from the second light receiving section 161b than the optical axis of the first light receiving section 161a.
  • the second light receiving optical system 15b collects the reflected light from the second light receiving area 52b including an area different from the first light receiving area 52a onto the second light receiving section 161b.
  • the first light receiving area 52a and the second light receiving area may differ from each other due to manufacturing errors of the light receiving unit 16 and errors occurring when the light receiving unit 16 is mounted on a vehicle or the like. 52b can be prevented from forming a dead area (unmeasurable area).
  • the third light receiving optical system 15c collects the reflected light from the third light receiving area 52c including an area different from the first light receiving area 52a and the second light receiving area 52b onto the third light receiving section 161c.
  • the vicinity of the end portion of the second light receiving area 52b and the vicinity of the end portion of the third light receiving area 52c are arranged to overlap.
  • the second light receiving area 52b and the third light receiving area 52c may be separated from each other due to an error in manufacturing the light receiving unit 16 or an error occurring when the light receiving unit 16 is mounted on a vehicle or the like. It is possible to prevent the occurrence of a dead area (unmeasurable area) between
  • the optical axis of the third light receiving optical system 15c is offset from the optical axis of the third light receiving section 161c.
  • the optical axis of the third light receiving optical system 15c is offset further away from the second light receiving section 161b (+x direction) than the optical axis of the third light receiving section 161c.
  • the second light receiving area 52b exists between the first light receiving area 52a and the third light receiving area 52c.
  • the focal length of the second light receiving optical system 15b is different from the focal length of the first light receiving optical system 15a and the focal length of the third light receiving optical system 15c.
  • the focal length of the second light receiving optical system 15b is set longer than the focal length of the first light receiving optical system 15a and the focal length of the third light receiving optical system 15c. Therefore, the measurement accuracy of the second light receiving area 52b is higher than that of the first light receiving area 52a and the third light receiving area 52c.
  • the effective measurement distance of the measuring device 100 can be increased (precision can be ensured over longer distances).
  • the focal length of the second light receiving optical system 15b is set longer than the focal length of the first light receiving optical system 15a and the focal length of the third light receiving optical system 15c. The distance may be arbitrarily set according to the specifications required by the application.
  • the light receiving area 52 can be expanded by using one light receiving unit 16 having a plurality of light receiving sections 161 whose positional relationship is fixed. For this reason, for example, a commercially available light receiving unit 16 in which a plurality of light receiving units 161 are arranged one-dimensionally or two-dimensionally is used, and the number of parts is reduced so as to satisfy the specifications required by the application of the measuring apparatus 100, and the cost is reduced. It is possible to adjust the light distribution while suppressing the In addition, since a wide light receiving area can be realized by using the light receiving unit 16 with a high degree of integration of the light receiving section 161, the size of the measuring apparatus 100 can be reduced.
  • the light receiving optical systems 15a to 15c are provided for the respective light receiving portions 161a to 161c, the light receiving optical systems 15a to 15c can be arranged in a positional relationship that does not interfere with each other.
  • a part of the first light receiving area 52a and a part of the third light receiving area 52c overlap with the second light receiving area 52b.
  • the entire light receiving area 52b may overlap at least one of the first light receiving area 52a and the third light receiving area 52c.
  • the light receiving area can be made wider (maximum).
  • the light receiving unit 161 and the light receiving optical system 15 are provided in a one-to-one correspondence, but the light from the plurality of light receiving units 161 may be collected by the same light receiving optical system 15 .
  • FIG. 4D shows the same collection of light as in FIG. This is the case realized by the light receiving optical system 15a and the second light receiving optical system 15b).
  • the first light-receiving optical system 15a converges the light incident from the first light-receiving area 52a on the second light-receiving section 161b, and collects an area different from the first light-receiving area 52a and the second light-receiving area 52b.
  • FIG. 4E shows a case where the same light collection as in FIG. 4C is realized by the three light receiving units 161 and the two light receiving optical systems 15 (the first light receiving optical system 15a and the second light receiving optical system 15b). .
  • the single first light receiving optical system 15a collects reflected light from the first light receiving area 52a and the third light receiving area 52c to the first light receiving section 161a and the third light receiving section 161c. Also, the reflected light from the second light receiving area 52b is focused on the second light receiving portion 161b by the second light receiving optical system 15b having a focal length different from that of the first light receiving optical system 15a. .
  • the number of light receiving optical systems can be reduced, and the size and cost of the measuring apparatus 100 can be reduced.
  • the present disclosure is not limited to the above embodiments, and includes various modifications.
  • the above-described embodiment describes the configuration in detail in order to explain the present disclosure in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • both mechanisms may be adopted in the measurement device 100, or only one of them may be adopted.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

投光器は、位置関係が固定された第1発光部(111a)及び第2発光部(111b)を有する発光ユニット(11)と、第1発光部(111a)から出射する光を第1投光エリア(51a)に投光する第1投光光学系(14a)と、第2発光部(111b)から出射する光を、第1投光エリア(51a)とは異なるエリアを含む第2投光エリア(51b)に投光する、第1投光光学系(14a)の焦点距離とは異なる焦点距離を有する第2投光光学系(14b)と、を含む。

Description

投光器、受光器、及び測定装置
 本開示は、投光器、受光器、及び測定装置に関する。
 AD(Autonomous Driving:自動運転)やADAS(Advanced Driver Assistance System:先進運転支援システム)の進展に伴い、周囲環境の把握や自己位置推定に用いる測定装置が知られている。測定装置の一つとしてLiDAR(Light Detection and Ranging)は、投光光(照射光、光ビーム(レーザ光))を対象物に照射する投光器と、投光光が測定対象物に反射して戻ってくる反射光(戻り光)を受光する受光器とを備え、投光器が投光光を出射したタイミングと受光器が反射光を受光したタイミングの差に基づき対象物までの距離を測定して対象物に関する情報を提供する。
 対象物の形状把握等を目的として多点観測を行うLiDARの種別の一つとして、フラッシュLiDAR(Flash LiDAR)がある。フラッシュLiDARは、モータやMEMS(Micro Electro Mechanical Systems)といった機械的な構成を含まず、ADやADASの実現のために車載目的で利用される場合等、耐久性が要求される分野におけるLiDARの有力候補として注目されている。
 特許文献1には、車両に実装されるLIDARシステムについて記載されている。LIDARシステムは、標的場面に向かって光源によって生成された光ビームを投影する照明器(レーザプロジェクタ)、物体から反射する光を受信する受信機、物体についての距離情報を反射光から算出するコントローラ(プロセッサ)、所望の範囲及び視野(FOV(Field Of View)を横断して光の特定のパターンを走査する要素を含む。受信機及びコントローラは、受信された信号光をLIDARシステム範囲及びFOV内にある周囲環境の点毎3Dマップを表す測定値に変換する。
日本国特表2020-527724号公報
 フラッシュLiDARの投光器の配光のサイズ(FOV(Field Of View):視野角、ビームプロファイル)は、投光器の発光部のサイズと、投光光を調節する光学系(以下、「投光光学系」と称する。)の焦点距離によって決まる。また、フラッシュLiDARの受光器の配光のサイズ(以下、「配光サイズ」と称する。)は、受光器の受光部のサイズと反射光を受光部に集光する光学系(以下、「受光光学系」と称する。)の焦点距離によって決まる。そのため、特定の目的にフラッシュLiDARを適用する際は、実現される配光サイズが適用先のシステムで要求される仕様を満たすようにする必要がある。
 ここで配光サイズを調節する方法として、例えば、複数のフラッシュLiDARを並設することが考えられる。しかしその場合、部品点数やコストの増大が課題となる。また、例えば、特定の視野範囲(投光エリア、受光エリア)についての測定精度を高めたい(遠方視認性を向上させたい)といったニーズにも柔軟に対応する必要がある。
 本開示はこのような背景に鑑みてなされたものであり、要求される配光サイズや測定精度に柔軟に対応することが可能な、投光器、受光器、及び測定装置を提供することを目的とする。
 本開示の一つとして投光器は、位置関係が固定された第1発光部及び第2発光部を有する発光ユニットと、前記第1発光部から出射する光を第1投光エリアに投光する第1投光光学系と、前記第2発光部から出射する光を、前記第1投光エリアとは異なるエリアを含む第2投光エリアに投光する、前記第1投光光学系の焦点距離とは異なる焦点距離を有する第2投光光学系と、を有する。
 本開示の一つとして、前記投光器を用いて構成される測定装置は、前記投光器と、前記投光器から投光された光の測定対象からの反射光を受光する受光器と、を備え、前記受光器の受光結果に基づき測定対象までの距離を測定する。
 本開示の一つとして、受光器は、位置関係が固定された第1受光部及び第2受光部を有する受光ユニットと、第1受光エリアから入射する光を前記第1受光部に集光させる第1受光光学系と、第1受光エリアとは異なるエリアを含む第2受光エリアから入射する光を前記第2受光部に集光させる、前記第1受光光学系の焦点距離とは異なる焦点距離を有する第2受光光学系と、を有する。
 本開示の一つとして、前記受光器を用いて構成される測定装置は、投光器と、前記投光器から投光された光の測定対象からの反射光を受光する前記受光器と、を備え、前記受光器の受光結果に基づき測定対象までの距離を測定する。
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
 本開示によれば、要求される配光サイズや測定精度に柔軟に対応することが可能な、投光器、受光器、及び測定装置を提供することができる。
図1は、測定装置の概略的な構成を示す図である。 図2Aは、発光部及び投光光学系と投光エリアとの関係を説明する図である。 図2Bは、受光部及び受光光学系と受光エリアとの関係を説明する図である。 図3Aは、発光ユニット及び投光光学系と投光エリアとの関係を説明する図である。 図3Bは、発光ユニット及び投光光学系と投光エリアとの関係を説明する図である。 図3Cは、発光ユニット及び投光光学系と投光エリアとの関係を説明する図である。 図3Dは、発光ユニット及び投光光学系と投光エリアとの関係を説明する図である。 図3Eは、発光ユニット及び投光光学系と投光エリアとの関係を説明する図である。 図4Aは、受光ユニット及び受光光学系と受光エリアとの関係を説明する図である。 図4Bは、受光ユニット及び受光光学系と受光エリアとの関係を説明する図である。 図4Cは、受光ユニット及び受光光学系と受光エリアとの関係を説明する図である。 図4Dは、受光ユニット及び受光光学系と受光エリアとの関係を説明する図である。 図4Eは、受光ユニット及び受光光学系と受光エリアとの関係を説明する図である。
 以下、本開示を実施するための形態について図面を参照しつつ説明する。尚、以下の説明において、同一の又は類似する構成について共通の符号を付して重複した説明を省略することがある。
[第1実施形態]
<測定装置>
 図1に、一実施形態として示す測定装置100の概略的な構成(ブロック図)を示している。例示する測定装置100は、フラッシュLiDAR(Flash Light Detection and Ranging)としての機能を含み、投光光(照射光、光ビーム(レーザ光))を対象物に照射する投光器と、投光光が測定対象物に反射して戻ってくる反射光(戻り光)を受光する受光器とを備える。測定装置100は、投光器が投光光を出射したタイミングと受光器が反射光を受光したタイミングとの差(レーザ光の飛行時間。以下、「TOF」(Time Of Flight)と称する。)を測定して対象物に関する情報を提供する。このように測定装置100は、受光器の受光結果に基づき、測定対象までの距離を測定する。
 測定装置100は、例えば、AD(Autonomous Driving:自動運転システム)やADAS(Advanced Driver Assistance System:先進運転支援システム)が実装される車両に搭載される。測定装置100は、例えば、人、車両、物体の検出を補助するとともに、車両の運転者や車両の周囲に存在する者の安全確保、車両の運転中に周囲に存在する物体に与える損傷を低減するために有用な各種の情報を提供する。
 同図に示すように、例示する測定装置100は、発光ユニット11、投光制御装置112、電流源113、投光光学系14、受光光学系15、受光ユニット16、TOF測定装置117、演算装置150、及び通信I/F160を含む。発光ユニット11、投光制御装置112、電流源113、及び投光光学系14は、前述した投光器を構成する。受光光学系15及び受光ユニット16は、前述した受光器を構成する。
 投光器を構成する発光ユニット11は、互いの位置関係が固定されて配置された複数の発光部111を有する。ここで「互いの位置関係が固定されている」とは、例えば、複数の発光部111が同じ部材(半導体基板等)に固定されていることをいう。
 発光部111は、例えば、面発光タイプのレーザ発光素子(例えば、VCSEL(Vertical Cavity Surface Emitting Laser)。以下、「面発光素子」と称する。))や、複数の面発光素子が一次元的又は二次元的に基板(半導体基板、セラミック基板等)に配置された面発光素子アレイ(例えば、VCSELアレイ)である。
 投光制御装置112は、発光部111の面発光素子の駆動電流を供給する電流源113を制御するための制御信号を生成して電流源113に入力することにより、電流源113から面発光素子に供給される電流(駆動電流)を制御する。投光制御装置112は、発光ユニット11の面発光素子が発光したタイミング(投光光が面発光素子から出射したタイミング。以下、「投光タイミング」と称する。)を示す信号をTOF測定装置117に入力する。投光制御装置112は、例えば、発光ユニット11の面発光素子の夫々に流す電流のオンオフを周期的に繰り返す制御を行うことにより、面発光素子を周期的に繰り返し発光させる。このように投光制御装置112は、複数の発光部111を個別に点灯制御する。
 電流源113は、投光制御装置112から入力される制御信号に応じた電流を発光部111の面発光素子に供給する。電流源113は、例えば、面発光素子の夫々に流す電流をオンオフするための周期的な方形波の電流を面発光素子に供給する。
 投光光学系14は、例えば、発光ユニット11から出射する投光光に光学的な作用(屈折、散乱、回折等)を与えることにより投光光の配光を調節する。投光光学系14は、例えば、コリメートレンズ等の各種レンズ、回折格子、反射鏡(ミラー)等の光学部品を用いて構成される。
 受光光学系15は、対象物50から戻ってくる反射光を受光ユニット16の受光部161に集光する。受光光学系15は、例えば、集光レンズ等の各種レンズ、波長フィルタ等の各種フィルタ、反射鏡(ミラー)等の光学部品を用いて構成される。
 受光ユニット16は、互いの位置関係が固定されて配置された複数の受光部161を有する。尚、「互いの位置関係が固定されている」とは、例えば、複数の受光部161が同じ部材(半導体基板等)に固定配置されていることをいう。
 受光部161は、例えば、SPAD(Single Photon Avalanche Diode)、フォトダイオード、バランス型光検出器等の光検出器を用いて構成される。受光部161は、受光光学系15から入射する反射光を光電変換することにより、反射光の強度に応じた電流(以下、「受光電流」と称する。)を生成する。受光部161は、反射光を受光したタイミング(以下、「受光タイミング」と称する。)を示す信号、及び生成した受光電流を、TOF測定装置117に入力する。
 TOF測定装置117は、投光制御装置112から入力される投光タイミングを示す信号と受光部161から入力される受光タイミングを示す信号とに基づきTOFを求める。TOF測定装置117は、例えば、TDC(Time to Digital Converter)回路を搭載した時間測定IC(集積回路:Integrated Circuit)を用いて構成される。TOF測定装置117は、求めたTOFと受光部161から入力された受光電流を、演算装置150に入力する。
 演算装置150は、プロセッサ(CPU(Central Processing Unit)、MPU(Micro Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)等)を用いて構成される。演算装置150は、TOF測定装置117から入力される受光電流やTOFに基づき、対象物50の検出や測距等の各種測定に用いる情報を生成する。上記情報は、例えば、時間相関単一光子計数法(Time Correlated Single Photon Counting)で用いるヒストグラム(histogram)、対象物50の各点(ポイント)までの距離、ポイントクラウド(点群情報:point cloud)等である。また、演算装置150は、投光制御装置112や受光ユニット16を制御する。演算装置150は、例えば、投光制御装置112や受光ユニット16を制御することにより、ヒストグラムの生成にかかる処理が高速化もしくは最適化されるように、前述した投光タイミングや受光タイミングを制御する。演算装置150によって生成された情報は、通信I/F160(I/F:Interface)を介して当該情報を利用する装置(以下、「各種利用装置40」と称する。)に提供(送信)される。
 各種利用装置40は、例えば、ポイントクラウドによる環境地図の作成、スキャンマッチングアルゴリズム(NDT(Normal Distributions Transform)、ICP(Iterative Closest Point)等)を用いた自己位置推定(SLAM(Simultaneous Localization and Mapping))等を行う。
 図2Aは、発光部111及び投光光学系14と、これらによって形成される投光エリア(以下、「投光エリア51」と称する。)との関係を説明する模式図である。投光エリア51は、発光部111のサイズ(形状、大きさ)と、投光光学系14の焦点距離とによって決まる。また、測定装置100の測定精度(分解能。例えば、対象物50までの距離の測定精度)は、投光光学系14の焦点距離に応じて決まり、焦点距離が長い程、測定精度は向上する。但し、投光光学系14の焦点距離が長くなる程、投光エリア51は狭くなる。
 図2Bは、受光部161及び受光光学系15と、これらによって形成される受光エリア(以下、「受光エリア52」と称する。)との関係を説明する模式図である。同図に示すように、受光エリア52は、受光部161のサイズ(形状、大きさ)と、受光光学系15の焦点距離とによって決まる。また、測定装置100の測定精度(分解能。例えば、対象物50までの距離の測定精度)は、受光光学系15の焦点距離に応じて決まり、焦点距離が長い程、測定精度は向上する。但し、受光光学系15の焦点距離が長くなる程、受光エリアは狭くなる。
 このように、投光エリア51や受光エリア52のサイズは、発光部111のサイズや受光部161のサイズによって制約される。このため、発光部111や受光部161として、例えば、既製品を利用しようとした場合、投光エリア51乃至受光エリア52は必ずしも測定装置100の目的や用途に一致しない。また、測定装置100の目的や用途によっては、特定の視野範囲(投光エリア、受光エリア)の測定精度を他の視野範囲よりも高めたい(例えば、フラッシュLiDARをADやADASに適用した場合に対向車線の遠方等の特定の視野範囲における測定精度を高めたい場合等)といったニーズがあるが、こうしたニーズにも柔軟に対応する必要がある。
 そこで、本実施形態の測定装置100においては、投光器及び受光器を以下に説明する構成とすることにより上記の課題やニーズへの対応を図っている。
<投光器>
 図3Aは、本実施形態の測定装置100における投光器の要素(発光ユニット11及び投光光学系14)と、当該投光器によって形成される投光エリア51との関係を説明する模式図である。同図では、説明の便宜上、投光器の要素(発光ユニット11及び投光光学系14)についてはこれらを発光部111の光軸に垂直な方向から眺めた図(+y側から眺めた図)とし、また、投光エリアについては上記光軸の方向から眺めた図(-z側から眺めた図)としている。同図に示す矢線は、発光部111と投光エリア51の対応を示している(図3B~図3Eについても同様)。尚、同図では発光ユニット11のサイズを誇張して描いており、通常は投光エリア51のサイズに比べて発光ユニット11のサイズは十分に小さい。
 同図に示すように、例示する投光器は、互いの位置関係が固定された3つの発光部(第1発光部111a、第2発光部111b、第3発光部111c)を有する発光ユニット11と、3つの投光光学系14(第1投光光学系14a、第2投光光学系14b、第3投光光学系14c)とを含む。
 第1投光光学系14aは、第1発光部111aから出射する光ビームを第1投光エリア51aに配光する。図中、一点鎖線は、発光部111又は投光光学系14の光軸を表す。
 同図に示すように、第1投光光学系14aの光軸は、第1発光部111aの光軸に対してオフセットさせて配置されている。本例では、第1投光光学系14aの光軸を、第1発光部111aの光軸よりも第2発光部111bから離間する側(-x方向)にオフセットさせている。このように第1投光光学系14aの光軸を第1発光部111aの光軸に対してオフセットさせることで、オフセットさせない場合に比べて第1投光エリア51aをx軸に沿って拡げることができる。
 第2投光光学系14bは、第2発光部111bから出射する光ビームを、第1投光エリア51aとは異なるエリアを含む第2投光エリア51bに配光する。尚、本例では、第1投光エリア51aの端部付近と第2投光エリア51bの端部付近とが重なるようにしている。このように隣接するエリアが一部重なるようにすることで、発光ユニット11の製造時の誤差や発光ユニット11を車両等に搭載した際に生じる誤差等により第1投光エリア51aと第2投光エリア51bとの間に不感エリア(測定不能エリア)が生じてしまうのを防ぐことができる。
 第3投光光学系14cは、第3発光部111cから出射する光ビームを、第1投光エリア51a及び第2投光エリア51bとは異なるエリアを含む第3投光エリア51cに配光する。尚、本例では、第2投光エリア51bの端部付近と第3投光エリア51cの端部付近とが重なるようにしている。このように隣接するエリアが一部重なるようにすることで、発光ユニット11の製造時の誤差や発光ユニット11を車両等に搭載する際に生じる誤差により第2投光エリア51bと第3投光エリア51cとの間に不感エリア(測定不能エリア)が生じるのを防ぐことができる。
 尚、重複する投光エリア51については、投光制御装置112が、例えば、いずれか一方の発光部111のみを点灯させる制御を行うことで、重複しない投光エリアと投光光の強度の均一化を図ることができるとともに、電力消費を抑えることもできる。例えば、投光制御装置112は、第1投光エリア51aと第2投光エリア51bが重複する投光エリア51については、第1発光部111aと第2発光部111bが同時に点灯しないように制御する。例えば、投光制御装置112は、第2投光エリア51bと第3投光エリア51cが重複する投光エリア51については、第2発光部111bと第3発光部111cが同時に点灯しないように制御する。
 同図に示すように、第3投光光学系14cの光軸は、第3発光部111cの光軸に対してオフセットさせて配置されている。本例では、第3投光光学系14cの光軸を、第3発光部111cの光軸よりも第2発光部111bから離間する側(+x方向)にオフセットさせている。このように第3投光光学系14cの光軸を第3発光部111cの光軸に対してオフセットさせることで、オフセットさせない場合に比べて第3投光エリア51cをx軸に沿って拡げることができる。
 同図に示すように、本例では、第2投光エリア51bは、第1投光エリア51aと第3投光エリア51cの間に存在する。また、第2投光光学系14bの焦点距離は、第1投光光学系14aの焦点距離及び第3投光光学系14cの焦点距離とは異なる。本例では、第2投光光学系14bの焦点距離は、第1投光光学系14aの焦点距離及び第3投光光学系14cの焦点距離よりも長く設定されている。このため、第2投光エリア51bについては、第1投光エリア51a及び第3投光エリア51cよりも測定精度が高くなる。これにより、例えば、測定装置100の有効測定距離を長く(より遠方まで精度を確保可能にする)ことができる。尚、本例では、第2投光光学系14bの焦点距離を第1投光光学系14aの焦点距離及び第3投光光学系14cの焦点距離よりも長く設定しているが、適用先で要求される仕様に応じて各投光光学系の焦点距離は任意に設定してよい。
 以上のように、例示する投光器によれば、互いの位置関係が固定された複数の発光部111を有する一つの発光ユニット11を用いて投光エリア51を拡げることができる。このため、例えば、複数の発光部111が一次元的もしくは二次元的に配置された市販の発光ユニット11を用い、測定装置100の適用先で要求される仕様を満たすように少ない部品点数でコストを抑えつつ配光を調節することができる。また、発光部111の集積度の高い発光ユニット11を用いて広い投光エリアを実現することができるため、測定装置100の小型化を図ることができる。また、投光光学系14の焦点距離を個別に設定することで、特定の投光エリア51の測定精度を他の投光エリア51よりも高めたいといったニーズにも柔軟かつ容易に対応することができる。また、発光部111a~111c毎に投光光学系14a~14cを設けているので、投光光学系14a~14cを相互に干渉しない位置関係で配置することができる。
 ところで、図3Aの例では、第1投光エリア51aの一部及び第3投光エリア51cの一部が第2投光エリア51bと重なるようにしているが、例えば、図3Bに示すように、第2投光エリア51bの全体が、第1投光エリア51a及び第3投光エリア51cの少なくともいずれかに重なるようにしてもよい。
 また、測定装置100の製造時の誤差や車両等への適用先への搭載時の誤差が問題にならない場合には、例えば、図3Cに示すように、各投光エリア51が重ならないようにしてもよい。この場合は投光エリアをより広く(最大限に)することができる。
 また、以上の例では、発光部111と投光光学系14とを一対一で設けているが、複数の発光部111の配光を同じ投光光学系14で行うようにしてもよい。例えば、図3Dは、図3Aと同様の配光を、3つの発光部111(第1発光部111a、第2発光部111b、第3発光部111c)と2つの投光光学系14(第1投光光学系14a、第2投光光学系14b)とによって実現した場合である。具体的には、第1投光光学系14aは、第1発光部111aから出射する光を、第1投光エリア51a及び第2投光エリア51bとは異なるエリアを含む、第3投光エリア51cに投光するとともに、第2発光部111bから出射する光を第1投光エリア51aに投光するように設けられている。第2投光光学系14bは、第3発光部111cから出射する光を第2投光エリア51bに投光するように設けられている。第2投光エリア51bは、第1投光エリア51aと第3投光エリア51cの間に配置されている。また、図3Eは、図3C同様の配光を、上記3つの発光部111と上記2つの投光光学系14(第1投光光学系14a、第2投光光学系14b)で実現した場合である。
 これらの例では、第1発光部111aと第2発光部111bから出射する光ビームの配光を、1つの第1投光光学系14aを用いて行っており、第1投光光学系14aにより第1投光エリア51aと第3投光エリア51cが形成されている。また、第3発光部111cから出射する光ビームの配光については、第1投光光学系14aの焦点距離とは異なる焦点距離を有する第2投光光学系14bにより行っており、第2投光光学系14bにより第2投光エリア51bが形成されている。このような構成とすることで、投光光学系の点数を減らすことができ、測定装置100の小型化やコストダウンを図ることができる。
<受光器>
 図4Aは、本実施形態の測定装置100における受光器の要素(受光ユニット16及び受光光学系15)と、当該受光器によって形成される受光エリアとの関係を説明する模式図である。同図では、説明の便宜上、受光器の要素(受光ユニット16及び受光光学系15)についてはこれらを受光部161の光軸に垂直な方向から眺めた図(+y側から眺めた図)とし、また、受光エリアについては上記光軸の方向から眺めた図(-z側から眺めた図)としている。同図に示す矢線は、受光部161と受光エリア52の対応を示している(図4B~図4Eについても同様)。尚、同図では受光ユニット16のサイズを誇張して描いており、通常は受光エリア52のサイズに比べて受光ユニット16のサイズは十分に小さい。
 同図に示すように、受光器は、互いの位置関係が固定された3つの受光部(第1受光部161a、第2受光部161b、第3受光部161c)を有する受光ユニット16と、3つの受光光学系15(第1受光光学系15a、第2受光光学系15b、第3受光光学系15c)とを含む。
 本例において、第1受光光学系15aは、第1受光エリア52aからの反射光を第1受光部161aに集光する。図中、一点鎖線は、受光部161又は受光光学系15の光軸を表す。
 同図に示すように、第1受光光学系15aの光軸は、第1受光部161aの光軸に対してオフセットさせて配置されている。本例では、第1受光光学系15aの光軸を、第1受光部161aの光軸よりも第2受光部161bから離間する側(-x方向)にオフセットさせている。このように第1受光光学系15aの光軸を第1受光部161aの光軸に対してオフセットさせることで、オフセットさせない場合に比べて第1受光エリア52aをx軸に沿って拡げることができる。
 第2受光光学系15bは、第1受光エリア52aとは異なるエリアを含む第2受光エリア52bからの反射光を第2受光部161bに集光する。尚、本例では、第1受光エリア52aの端部付近と第2受光エリア52bの端部付近とが重なるようにしている。このように隣接するエリアが一部重なるようにすることで、受光ユニット16の製造時の誤差や受光ユニット16を車両等に搭載した際に生じる誤差等により第1受光エリア52aと第2受光エリア52bとの間に不感エリア(測定不能エリア)が生じてしまうのを防ぐことができる。
 第3受光光学系15cは、第1受光エリア52a及び第2受光エリア52bとは異なるエリアを含む第3受光エリア52cからの反射光を第3受光部161cに集光する。尚、本例では、第2受光エリア52bの端部付近と第3受光エリア52cの端部付近とが重なるようにしている。このように隣接するエリアが一部重なるようにすることで、受光ユニット16の製造時の誤差や受光ユニット16を車両等に搭載する際に生じる誤差により第2受光エリア52bと第3受光エリア52cとの間に不感エリア(測定不能エリア)が生じるのを防ぐことができる。
 同図に示すように、第3受光光学系15cの光軸は、第3受光部161cの光軸に対してオフセットさせて配置されている。本例では、第3受光光学系15cの光軸を、第3受光部161cの光軸よりも第2受光部161bから離間する側(+x方向)にオフセットさせている。このように第3受光光学系15cの光軸を第3受光部161cの光軸に対してオフセットさせることで、オフセットさせない場合に比べて第3受光エリア52cをx軸に沿って拡げることができる。
 同図に示すように、本例では、第2受光エリア52bは、第1受光エリア52aと第3受光エリア52cの間に存在する。また、第2受光光学系15bの焦点距離は、第1受光光学系15aの焦点距離及び第3受光光学系15cの焦点距離とは異なる。本例では、第2受光光学系15bの焦点距離は、第1受光光学系15aの焦点距離及び第3受光光学系15cの焦点距離よりも長く設定されている。このため、第2受光エリア52bについては、第1受光エリア52a及び第3受光エリア52cよりも測定精度が高くなる。これにより、例えば、測定装置100の有効測定距離を長く(より遠方まで精度を確保可能にする)ことができる。尚、本例では、第2受光光学系15bの焦点距離を第1受光光学系15aの焦点距離及び第3受光光学系15cの焦点距離よりも長く設定しているが、各受光光学系の焦点距離は、適用先で要求される仕様に応じて任意に設定してよい。
 以上のように、例示する受光器によれば、位置関係が固定された複数の受光部161を有する一つの受光ユニット16を用いて受光エリア52を拡げることができる。このため、例えば、複数の受光部161が一次元的もしくは二次元的に配置された市販の受光ユニット16を用い、測定装置100の適用先で要求される仕様を満たすように少ない部品点数でコストを抑えつつ配光を調節することができる。また、受光部161の集積度の高い受光ユニット16を用いて広い受光エリアを実現することができるため、測定装置100の小型化を図ることができる。また、受光光学系の焦点距離を個別に設定することで、特定の受光エリアの測定精度を他の受光エリアよりも高めたいといったニーズにも柔軟かつ容易に対応することができる。また、受光部161a~161c毎に受光光学系15a~15cを設けているので、受光光学系15a~15cを相互に干渉しない位置関係で配置することができる。
 ところで、図4Aの例では、第1受光エリア52aの一部及び第3受光エリア52cの一部が第2受光エリア52bと重なるようにしているが、例えば、図4Bに示すように、第2受光エリア52bの全体が、第1受光エリア52a及び第3受光エリア52cの少なくともいずれかに重なるようにしてもよい。
 また、測定装置100の製造時の誤差や車両等への適用先への搭載時の誤差が問題にならない場合には、例えば、図4Cに示すように、各受光エリア52が重ならないようにしてもよい。この場合は受光エリアをより広く(最大限に)することができる。
 また、以上の例では、受光部161と受光光学系15とを一対一で設けているが、複数の受光部161の集光を同じ受光光学系15で行うようにしてもよい。例えば、図4Dは、図4Aと同様の集光を、3つの受光部161(第1受光部161a、第2受光部161b、第3受光部161c)と2つの投光光学系14(第1受光光学系15a、第2受光光学系15b)とによって実現した場合である。具体的には、第1受光光学系15aは、第1受光エリア52aから入射する光を第2受光部161bに集光させるとともに、第1受光エリア52a及び第2受光エリア52bとは異なるエリアを含む、第3受光エリア52cから入射する光を第1受光部161aに集光させるように設けられている。第2受光光学系15bは、第2受光エリア52bから入射する光を第3受光部161cに入射するように設けられている。第2受光エリア52bは、第1受光エリア52aと第3受光エリア52cの間に配置されている。また、図4Eは、図4Cと同様の集光を、上記3つの受光部161と上記2つの受光光学系15(第1受光光学系15a、第2受光光学系15b)で実現した場合である。
 これらの例では、第1受光エリア52a及び第3受光エリア52cからの反射光の第1受光部161a及び第3受光部161cへの集光を1つの第1受光光学系15aにより行っている。また、第2受光エリア52bからの反射光の第2受光部161bへの集光については、第1受光光学系15aの焦点距離とは異なる焦点距離を有する第2受光光学系15bにより行っている。これにより受光光学系の点数を減らすことができ、測定装置100の小型化やコストダウンを図ることができる。
 以上、本開示の実施形態につき詳述したが、本開示は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。また、上記の実施形態は本開示を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施形態の構成の一部について、他の構成に追加、削除、置換することが可能である。
 例えば、以上では、3つの投光エリア(もしくは3つの受光エリア)を構成する場合を説明したが、本開示は、2つの投光エリア(もしくは2つの受光エリア)を構成する場合や、4つ以上の投光エリア(もしくは4つ以上の受光エリア)を構成する場合にも適用することができる。
 また、例えば、以上に説明した投光器及び受光器の新たな仕組みは、双方の仕組みを測定装置100に採用してもよいし、いずれか一方の仕組みのみを採用してもよい。
 本出願は、2022年2月9日出願の日本出願第2022-018999号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。

Claims (18)

  1.  位置関係が固定された第1発光部及び第2発光部を有する発光ユニットと、
     前記第1発光部から出射する光を第1投光エリアに投光する第1投光光学系と、
     前記第2発光部から出射する光を、前記第1投光エリアとは異なるエリアを含む第2投光エリアに投光する、前記第1投光光学系の焦点距離とは異なる焦点距離を有する第2投光光学系と、
     を有する投光器。
  2.  請求項1に記載の投光器であって、
     前記第1投光光学系の光軸は、前記第1発光部の光軸にオフセットさせて設けられる、
     投光器。
  3.  請求項1に記載の投光器であって、
     前記第1発光部及び前記第2発光部を個別に点灯制御する制御装置を有し、
     前記制御装置は、前記第1投光エリアと前記第2投光エリアが重複するエリアについては前記第1発光部と前記第2発光部が同時に点灯しないように制御する、
     投光器。
  4.  請求項1に記載の投光器であって、
     前記発光ユニットは、第3発光部と、前記第2投光光学系の焦点距離とは異なる焦点距離を有する第3投光光学系と、を更に有し、
     前記第3投光光学系は、前記第3発光部から出射する光を、前記第1投光エリア及び前記第2投光エリアとは異なるエリアを含む、第3投光エリアに投光するように設けられ、
     前記第2投光エリアは、前記第1投光エリアと前記第3投光エリアの間に配置される、
     投光器。
  5.  請求項4に記載の投光器であって、
     前記第3投光光学系の光軸は、前記第3発光部の光軸にオフセットさせて設けられる、
     投光器。
  6.  請求項4に記載の投光器であって、
     前記第1投光エリア乃至前記第3投光エリアは重複するエリアを有しない、
     投光器。
  7.  請求項4に記載の投光器であって、
     前記第2投光光学系の焦点距離は、前記第1投光光学系の焦点距離及び前記第3投光光学系の焦点距離よりも長い、
     投光器。
  8.  請求項4に記載の投光器であって、
     前記第1発光部乃至前記第3発光部を個別に点灯制御する制御装置を有し、
     前記制御装置は、
     前記第1投光エリアと前記第2投光エリアが重複するエリアについては、前記第1発光部と前記第2発光部が同時に点灯しないように制御し、
     前記第2投光エリアと前記第3投光エリアが重複するエリアについては、前記第2発光部と前記第3発光部が同時に点灯しないように制御する、
     投光器。
  9.  請求項1に記載の投光器であって、
     前記発光ユニットは、第3発光部を更に有し、
     前記第1投光光学系は、前記第1発光部から出射する光を、前記第1投光エリア及び前記第2投光エリアとは異なるエリアを含む、第3投光エリアに投光するとともに、前記第2発光部から出射する光を、前記第1投光エリアに投光するように設けられ、
     前記第2投光光学系は、前記第3発光部から出射する光を前記第2投光エリアに投光するように設けられ、
     前記第2投光エリアは、前記第1投光エリアと前記第3投光エリアの間に配置される、
     投光器。
  10.  請求項1~9のいずれか一項に記載の投光器を用いて構成される測定装置であって、
     前記投光器と、
     前記投光器から投光された光の測定対象からの反射光を受光する受光器と、
     を備え、
     前記受光器の受光結果に基づき測定対象までの距離を測定する、
     測定装置。
  11.  位置関係が固定された第1受光部及び第2受光部を有する受光ユニットと、
     第1受光エリアから入射する光を前記第1受光部に集光させる第1受光光学系と、
     第1受光エリアとは異なるエリアを含む第2受光エリアから入射する光を前記第2受光部に集光させる、前記第1受光光学系の焦点距離とは異なる焦点距離を有する第2受光光学系と、
     を有する受光器。
  12.  請求項11に記載の受光器であって、
     前記第1受光光学系の光軸は、前記第1受光部の光軸にオフセットさせて設けられる、
     受光器。
  13.  請求項11に記載の受光器であって、
     前記受光ユニットは、第3受光部と、前記第2受光光学系とは焦点距離が異なる第3受光光学系と、を更に有し、
     前記第3受光光学系は、前記第1受光エリア及び前記第2受光エリアとは異なるエリアを含む、第3受光エリアからの光を前記第3受光部に集光するように設けられ、
     前記第2受光エリアは、前記第1受光エリアと前記第3受光エリアの間に配置される、
     受光器。
  14.  請求項13に記載の受光器であって、
     前記第3受光光学系の光軸は、前記第3受光部の光軸にオフセットさせて設けられる、
     受光器。
  15.  請求項13に記載の受光器であって、
     前記第1受光エリア乃至前記第3受光エリアは重複するエリアを有しない、
     受光器。
  16.  請求項13に記載の受光器であって、
     前記第2受光光学系の焦点距離は、前記第1受光光学系の焦点距離及び前記第3受光光学系の焦点距離よりも長い、
     受光器。
  17.  請求項11に記載の受光器であって、
     前記受光ユニットは、第3受光部を更に有し、
     前記第1受光光学系は、前記第1受光エリアから入射する光を前記第2受光部に集光させるとともに、前記第1受光エリア及び前記第2受光エリアとは異なるエリアを含む、第3受光エリアから入射する光を前記第1受光部に集光させるように設けられ、
     前記第2受光光学系は、前記第2受光エリアから入射する光を前記第3受光部に入射するように設けられ、
     前記第2受光エリアは、前記第1受光エリアと前記第3受光エリアの間に配置される、
     受光器。
  18.  請求項11~17のいずれか一項に記載の受光器を用いて構成される測定装置であって、
     投光器と、
     前記投光器から投光された光の測定対象からの反射光を受光する前記受光器と、
     を備え、
     前記受光器の受光結果に基づき測定対象までの距離を測定する、
     測定装置。 
PCT/JP2023/004172 2022-02-09 2023-02-08 投光器、受光器、及び測定装置 WO2023153438A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022018999A JP2023116279A (ja) 2022-02-09 2022-02-09 投光器、受光器、及び測定装置
JP2022-018999 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153438A1 true WO2023153438A1 (ja) 2023-08-17

Family

ID=87564369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004172 WO2023153438A1 (ja) 2022-02-09 2023-02-08 投光器、受光器、及び測定装置

Country Status (2)

Country Link
JP (1) JP2023116279A (ja)
WO (1) WO2023153438A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149876A (ja) * 1984-12-24 1986-07-08 Meisei Electric Co Ltd 測距用信号の送信装置
JPS61283887A (ja) * 1985-06-11 1986-12-13 Nissan Motor Co Ltd 車両用レ−ザレ−ダ装置
JPH06242224A (ja) * 1993-02-23 1994-09-02 Sumitomo Electric Ind Ltd 車載用障害物検知装置
WO2017110415A1 (ja) * 2015-12-21 2017-06-29 株式会社小糸製作所 車両用センサおよびそれを備えた車両
JP2017134052A (ja) * 2016-01-22 2017-08-03 株式会社デンソー 光測距装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149876A (ja) * 1984-12-24 1986-07-08 Meisei Electric Co Ltd 測距用信号の送信装置
JPS61283887A (ja) * 1985-06-11 1986-12-13 Nissan Motor Co Ltd 車両用レ−ザレ−ダ装置
JPH06242224A (ja) * 1993-02-23 1994-09-02 Sumitomo Electric Ind Ltd 車載用障害物検知装置
WO2017110415A1 (ja) * 2015-12-21 2017-06-29 株式会社小糸製作所 車両用センサおよびそれを備えた車両
JP2017134052A (ja) * 2016-01-22 2017-08-03 株式会社デンソー 光測距装置

Also Published As

Publication number Publication date
JP2023116279A (ja) 2023-08-22

Similar Documents

Publication Publication Date Title
US11933894B2 (en) Optical scanner and LIDAR system including the same
US20190353787A1 (en) Coded Laser Light Pulse Sequences for LIDAR
JP6111617B2 (ja) レーザレーダ装置
US11579289B2 (en) Distance measuring apparatus and mobile body including the same
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
US11808855B2 (en) Optical device, range sensor using optical device, and mobile object
US11815628B2 (en) Apparatus providing a plurality of light beams
TWI742448B (zh) 雷射偵測裝置
US20200309514A1 (en) Distance measuring module
US20200150418A1 (en) Distance measurement device and mobile body
JP7423485B2 (ja) 距離計測装置
JP2019521355A (ja) ライダシステム用光学装置、ライダシステムおよび作業装置
US20200150238A1 (en) Non-interfering long- and short-range lidar systems
JP6186863B2 (ja) 測距装置及びプログラム
US20060092004A1 (en) Optical sensor
KR102481310B1 (ko) 자동차 헤드램프용 조명 장치
WO2023153438A1 (ja) 投光器、受光器、及び測定装置
US11879996B2 (en) LIDAR sensors and methods for LIDAR sensors
US11940564B2 (en) Laser radar device
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
US20220349998A1 (en) Optoelectronic device and lidar system
CN114829968A (zh) 具有多范围通道的lidar
JP2024017519A (ja) 測定装置、受光器、及び投光器
WO2023153212A1 (ja) 投光器、及び測定装置
WO2024048242A1 (ja) 測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752902

Country of ref document: EP

Kind code of ref document: A1