WO2023153040A1 - フレアスタックおよびフレアスタックを備えるシステム - Google Patents

フレアスタックおよびフレアスタックを備えるシステム Download PDF

Info

Publication number
WO2023153040A1
WO2023153040A1 PCT/JP2022/042710 JP2022042710W WO2023153040A1 WO 2023153040 A1 WO2023153040 A1 WO 2023153040A1 JP 2022042710 W JP2022042710 W JP 2022042710W WO 2023153040 A1 WO2023153040 A1 WO 2023153040A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
flare stack
catalyst
supplied
burner
Prior art date
Application number
PCT/JP2022/042710
Other languages
English (en)
French (fr)
Inventor
壮一郎 加藤
慎太朗 伊藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2023153040A1 publication Critical patent/WO2023153040A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/02Apparatus in which combustion takes place in the presence of catalytic material characterised by arrangements for starting the operation, e.g. for heating the catalytic material to operating temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/08Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to flare stacks and systems comprising flare stacks.
  • This application claims the benefit of priority based on Japanese Patent Application No. 2022-19568 filed on February 10, 2022, the content of which is incorporated herein by reference.
  • Patent Document 1 discloses a gas turbine that uses ammonia as fuel.
  • the ignitability of ammonia is known to be poor. Therefore, the gas turbine of Patent Document 1 includes a reformer that reforms ammonia into reformed fuel containing hydrogen in order to improve the stability of combustion of ammonia during start-up.
  • the reformer includes a heater that heats ammonia and a catalyst that decomposes ammonia into hydrogen and nitrogen.
  • Reformed fuel is supplied to the vicinity of the spark plug from a reformed fuel nozzle provided separately from the main fuel nozzle.
  • Ammonia may be stored in tanks in a liquid state. However, heat from outside causes the ammonia in the tank to vaporize. In order to prevent an excessive pressure increase in the tank due to vaporized ammonia, it is conceivable to return the ammonia to a liquid state using, for example, a BOG (Boil Off Gas) compressor. However, in emergency situations such as power outages, the BOG compressor may not be available. In this case, it is conceivable to burn the ammonia with a flare stack. If the ammonia can be burned quickly by the flare stack, the vaporized ammonia can be quickly removed from the tank, thereby improving the safety of systems using ammonia.
  • BOG Battery Off Gas
  • An object of the present disclosure is to provide a flare stack and a system comprising the flare stack that can burn ammonia quickly.
  • a flare stack includes a main burner to which ammonia is supplied, a pilot burner to which ammonia is supplied, and an ammonia stream provided upstream of the pilot burner in the flow of ammonia.
  • a first catalyst that decomposes into a reformed fuel containing hydrogen and a heater that heats the first catalyst are provided.
  • the pilot burner may be arranged so that the flame of the pilot burner heats the first catalyst.
  • the flare stack may be provided with a second catalyst upstream of the main burner in the flow of ammonia to decompose the ammonia supplied to the main burner into reformed fuel containing hydrogen.
  • the second catalyst may be placed at a position where it is heated by radiation from the flame of the main burner.
  • FIG. 1 is a schematic diagram showing a system according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the flare stack according to the first embodiment.
  • FIG. 3 is a flow chart showing the operation of the flare stack according to the first embodiment.
  • FIG. 4 is a flow chart showing another operation of the flare stack according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a flare stack according to the second embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a flare stack according to the third embodiment.
  • the system 100 can use the ammonia stored in tank 1 for various purposes.
  • system 100 may include a boiler that burns ammonia and a steam turbine operated by the steam generated by the boiler.
  • the system 100 may include a combustor for burning ammonia and a gas turbine operated by gases generated by the combustor.
  • the system 100 may be a plant that manufactures products using ammonia as a raw material.
  • System 100 can include, but is not limited to, various facilities that use ammonia.
  • Tank 1 stores ammonia. Specifically, the tank 1 stores liquid ammonia.
  • a tank 1 is connected to a pump 2 by a pipe P1. Liquid ammonia stored in the tank 1 is supplied to the pump 2 through the pipe P1. Liquid ammonia is pressurized by a pump 2 and supplied to equipment (not shown) that uses ammonia.
  • ammonia may be supplied in liquid form to a facility that uses ammonia.
  • the system 100 may also include a vaporizer and the ammonia may be supplied in gaseous form to a facility that uses ammonia.
  • the liquid ammonia in tank 1 can be vaporized by heat from the outside. Vaporized ammonia can increase the pressure in tank 1 . Therefore, the system 100 comprises a BOG compressor 3 and a flare stack 10 to suppress pressure build-up in the tank 1 . Note that the tank 1 may be provided with a sensor (not shown) for measuring the pressure inside the tank 1 .
  • the BOG compressor 3 is connected to the tank 1 by a pipe P2. Vaporized ammonia in the tank 1 is supplied to the BOG compressor 3 through the pipe P2. The BOG compressor 3 compresses the vaporized ammonia and converts it back to liquid. Liquid ammonia is returned to tank 1 from BOG compressor 3 via line P3. According to such a configuration, it is possible to prevent an excessive pressure increase in the tank 1 and reduce the amount of ammonia to be discarded.
  • the flare stack 10 is connected to the tank 1 by a pipe P4. Vaporized ammonia in the tank 1 is supplied to the flare stack 10 through the pipe P4.
  • the flare stack 10 burns the vaporized ammonia and emits exhaust gas from which the ammonia has been removed or reduced to below the regulation value.
  • the flare stack 10 may be used when the BOG compressor 3 cannot be used in emergency situations such as power outages. Further, the flare stack 10 may be used when the amount of vaporized ammonia is large and the BOG compressor 3 cannot sufficiently process the vaporized ammonia.
  • the situations in which the flare stack 10 is used are not limited to these, and the flare stack 10 may be used in other situations. Details of the flare stack 10 will be described later.
  • the control device 90 controls the flare stack 10. Controller 90 may control all or part of system 100 .
  • the control device 90 includes components such as a processor 90a, a storage device 90b and a connector 90c, and these components are connected to each other via a bus.
  • the processor 90a includes a CPU (Central Processing Unit) and the like.
  • the storage device 90b includes a hard disk, a ROM storing programs and the like, and a RAM as a work area.
  • the control device 90 is communicably connected to each component of the system 100 via a connector 90c by wire or wirelessly.
  • the control device 90 may further include other components such as a display device such as a liquid crystal display or touch panel, and an input device such as a keyboard, buttons or touch panel.
  • the operations of controller 90 described below may be implemented by having processor 90a execute a program stored in storage device 90b.
  • FIG. 2 is a schematic cross-sectional view showing the flare stack 10 according to the first embodiment.
  • the flare stack 10 includes multiple main burners 11 , pilot burners 12 , first catalysts 13 , heaters 14 , sensors 15 and radiation shields 16 .
  • Flare stack 10 may further include other components. Note that the radiation shield 16 is not essential depending on the shape of the flare stack 10 .
  • main burner 11 and pilot burner 12 burns vaporized ammonia supplied from tank 1 .
  • main burners 11 are shown in FIG. 2, the number of main burners 11 is not limited to this, and may be two or four or more. Also, in other embodiments, the flare stack 10 may include a single main burner 11 .
  • the plurality of main burners 11 are arranged in an arbitrary pattern such as circular or matrix.
  • the pilot burner 12 is associated with a specific main burner 11 so as to ignite the ammonia discharged from the specific main burner 11 , the central main burner 11 in FIG. 2 .
  • the main burner 11 is configured to operate when the BOG compressor 3 cannot be used in an emergency such as a power failure. Further, for example, the main burner 11 is configured to operate when the amount of vaporized ammonia is large and the BOG compressor 3 cannot sufficiently process the vaporized ammonia. That is, the main burner 11 does not operate during the first period when the main burner 11 is not required to burn ammonia, and operates only during the second period when the main burner 11 is required to burn ammonia. configured to
  • the pilot burner 12 is configured to operate constantly throughout the above first and second periods in order to always ensure pilot light for igniting the ammonia emitted from the main burner 11. be done.
  • the amount of ammonia supplied to the pilot burner 12 is less than the amount of ammonia supplied to the main burner 11 during the second period.
  • the pilot burner 12 may include a spark plug (not shown) or the like for initially igniting the ammonia supplied from the tank 1 to the pilot burner 12 .
  • the pipe P4 connecting the tank 1 and the flare stack 10 may be branched into a plurality of pipes P41 connected to the main burner 11 and a plurality of pipes P42 connected to the pilot burner 12.
  • Ammonia is supplied from the tank 1 to the main burner 11 through pipes P4 and P41.
  • Ammonia is supplied to the pilot burner 12 from the tank 1 through pipes P4 and P42.
  • the pipes P41 and 42 are connected to the tank 1 through the pipe P4 in FIG. 1, the pipes P41 and 42 are directly connected to the tank 1 without the pipe P4 in other embodiments. may be
  • the configurations of the pipes P41 and P42 are not limited to these, and other configurations may be used.
  • the flare stack 10 includes a valve V1 in the pipe P4 for controlling the flow rate of ammonia supplied from the tank 1 to the main burner 11 and the pilot burner 12.
  • the valve V1 may be communicably connected to the control device 90 by wire or wirelessly, and may be controlled by the control device 90 .
  • control device 90 sets the opening to the first opening necessary to ensure only the amount of ammonia supplied to the pilot burner 12 during the first period in which it is not necessary to burn ammonia with the main burner 11. , to adjust the valve V1. Further, the control device 90 adjusts the valve V1 to a second opening larger than the first opening during a second period in which the main burner 11 needs to burn ammonia.
  • each of the pipes P41 may be provided with a valve V2 for controlling the flow rate of ammonia supplied from the tank 1 to the main burner 11.
  • the valve V2 may be communicably connected to the control device 90 by wire or wirelessly and controlled by the control device 90 .
  • control device 90 may close the valve V2 during the first period described above. In this case, ammonia from tank 1 is supplied only to pilot burner 12 . Further, the control device 90 may open the valve V2 during the second period. In this case, ammonia from tank 1 is supplied to both main burner 11 and pilot burner 12 . For example, the control device 90 may selectively open only the necessary valves V2 out of the plurality of valves V2 according to the amount of ammonia supplied from the tank 1 .
  • valve V1 may be provided on the pipe P42 instead of the pipe P4. In this case, valve V1 adjusts only the flow rate of ammonia supplied to pilot burner 12 . In still other embodiments, valve V1 may not be provided.
  • the first catalyst 13 is provided upstream of the pilot burner 12 in the ammonia flow in the pipe P42.
  • the first catalyst 13 decomposes the ammonia supplied to the pilot burner 12 through the pipe P42 into reformed fuel containing hydrogen and nitrogen.
  • the first catalyst 13 can be, for example, a catalyst that decomposes gaseous ammonia into hydrogen and nitrogen, such as Ni/Al 2 O 3 and Ru/Pr 6 O 11 .
  • the first catalyst 13 may be carried on a carrier accommodated in the housing.
  • the pilot burner 12 is arranged in a position and posture in which the flame F of the pilot burner 12 can heat both the vicinity of the injection port of the associated main burner 11 and the first catalyst 13 .
  • the pipe P42 includes a curved section CS so that the injection port of the pilot burner 12 is directed toward both the vicinity of the injection port of the main burner 11 and the position where the first catalyst 13 is provided.
  • the section CS may have any shape as long as the injection port of the pilot burner 12 is directed toward both the vicinity of the injection port of the main burner 11 and the position where the first catalyst 13 is provided.
  • the heater 14 heats the first catalyst 13 to at least the temperature at which the first catalyst 13 starts reforming.
  • heater 14 may be powered by electricity.
  • the heater 14 may be attached to a housing containing the carrier of the first catalyst 13 .
  • the heater 14 may supply power to the carrier of the first catalyst 13 to heat the first catalyst 13 .
  • the heater 14 may be communicatively connected to the control device 90 by wire or wirelessly, and may be controlled by the control device 90 .
  • the sensor 15 measures the temperature of the first catalyst 13.
  • Sensor 15 can be various temperature sensors such as, for example, thermocouples.
  • sensor 15 may be fixed to the carrier of first catalyst 13 .
  • the sensor 15 may be attached to the housing containing the carrier of the first catalyst 13 .
  • the sensor 15 may be communicably connected to the control device 90 by wire or wirelessly, and may transmit measurement data to the control device 90 .
  • the radiation shield 16 is the wall of the flare stack 10 or part of the wall.
  • radiation shield 16 has a generally cylindrical shape.
  • Radiation shield 16 surrounds main burner 11 and pilot burner 12 so that flames from main burner 11 and pilot burner 12 are not exposed to the outside of flare stack 10 .
  • Radiation shield 16 includes thermal insulation to prevent heat from the flame from escaping outside flare stack 10 .
  • FIG. 3 is a flow chart showing the operation of the flare stack 10 according to the first embodiment.
  • ammonia is supplied to pilot burner 12 and flame F is formed by pilot burner 12 .
  • the operation shown in FIG. 3 may be always repeatedly performed in a predetermined cycle, or may be repeatedly performed in a predetermined cycle until the first catalyst 13 is heated to the temperature at which reforming starts. good too.
  • the processor 90a of the control device 90 determines whether the temperature of the first catalyst 13 is equal to or higher than a predetermined temperature (step S100). Specifically, the processor 90a determines whether the temperature received from the sensor 15 is equal to or higher than the temperature at which the first catalyst 13 starts reforming (for example, 300° C. to 600° C.).
  • step S100 if the temperature of the first catalyst 13 is equal to or higher than the predetermined temperature (YES), the processor 90a turns off the heater 14 (step S102) and ends the operation. If heater 14 is already off, processor 90a maintains that state.
  • step S100 if the temperature of the first catalyst 13 is not equal to or higher than the predetermined temperature (NO), the processor 90a turns on the heater 14 (step S104) and ends the operation. If heater 14 is already on, processor 90a maintains that state.
  • FIG. 4 is a flow chart showing another operation of the flare stack 10 according to the first embodiment.
  • ammonia is supplied to pilot burner 12 and flame F is formed by pilot burner 12 .
  • there is no emergency i.e., it is not necessary to burn ammonia in the main burner 11, and ammonia is not supplied to the main burner 11 (first period).
  • the operation shown in FIG. 4 may be repeatedly performed at a predetermined cycle. Also, during the operations shown in FIG. 4, the operations shown in FIG. 3 may be performed in parallel.
  • the processor 90a of the control device 90 determines whether it is necessary to burn ammonia with the main burner 11 (step S200). Specifically, for example, the processor 90a determines whether there is an emergency such as a power failure, failure of the BOG compressor 3, or the inability of the BOG compressor 3 to adequately process vaporized ammonia.
  • step S200 If it is determined in step S200 that there is no need to burn ammonia with the main burner 11 (NO), the processor 90a ends the operation.
  • step S200 If it is determined in step S200 that ammonia needs to be burned by the main burner 11 (YES, that is, the second period), the processor 90a starts supplying ammonia to the main burner 11 (step S202). Specifically, the processor 90a moves the valve V1 from the first opening required to ensure only the amount of ammonia supplied to the pilot burner 12 to the second opening larger than the first opening. switch from time to time. The processor 90a also opens the valve V2 of the main burner 11 with which the pilot burner 12 is associated. Ammonia is thereby supplied to the main burner 11 . Ammonia supplied to the main burner 11 is quickly ignited by the flame F of the pilot burner 12 and burned. The valve V2 of another main burner 11 may also be opened according to the amount of ammonia supplied from the tank 1. Ammonia supplied to the other main burners 11 is also ignited by the propagating flame.
  • the processor 90a again determines whether it is necessary to burn ammonia with the main burner 11 (step S204). Specifically, for example, the processor 90a determines whether the emergency continues.
  • step S204 If it is determined in step S204 that it is necessary to burn ammonia with the main burner 11 (YES), the processor 90a repeats step S204 until the emergency ends.
  • step S204 If it is determined in step S204 that the main burner 11 does not need to burn ammonia (NO), the processor 90a stops supplying ammonia to the main burner 11 (step S208) and ends the operation. As a result, the flame of the main burner 11 is extinguished. In contrast, the flame F of the pilot burner 12 continues to be maintained.
  • the flare stack 10 as described above and the system 100 including the flare stack 10 include a main burner 11 to which ammonia is supplied, a pilot burner 12 to which ammonia is supplied, and a burner provided upstream of the pilot burner 12 in the flow of ammonia. and a heater 14 for heating the first catalyst 13 .
  • the ammonia supplied to the pilot burner 12 is decomposed into reformed fuel by heating the first catalyst 13 to the temperature at which reforming is started by the heater 14 .
  • Reformulated fuels containing hydrogen ignite more quickly than ammonia. Therefore, the ammonia supplied to the pilot burner 12 can be burned quickly. Further, by using the flame F of the pilot burner 12 as seed flame, the ammonia supplied to the main burner 11 can also be quickly burned. Therefore, ammonia can be burned quickly.
  • the pilot burner 12 is arranged so that the flame F of the pilot burner 12 heats the first catalyst 13 .
  • the pilot burner 12 can heat the first catalyst 13 with its own flame F, so that the energy used by the heater 14 can be reduced.
  • the flare stack 10 also includes a sensor 15 that measures the temperature of the first catalyst 13, and a control device 90 that is communicatively connected to the heater 14 and the sensor 15.
  • the control device 90 receives from the sensor 15
  • the heater 14 is turned off. If the temperature of the first catalyst 13 is equal to or higher than the temperature at which reforming is started, the ammonia supplied to the pilot burner 12 continues to be reformed by the first catalyst 13 even if the heater 14 is turned off. 13 also continue to be heated by the flame F of the pilot burner 12 . Therefore, according to said structure, the energy which the heater 14 uses can be reduced more. Further, according to the above configuration, the pilot burner 12 continues to operate without being heated by the heater 14, so the flare stack 10 can be operated even in the event of a power failure, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

フレアスタック10は、アンモニアが供給されるメインバーナ11と、アンモニアが供給されるパイロットバーナ12と、アンモニアの流れにおいてパイロットバーナ12の上流に設けられ、パイロットバーナ12に供給されるアンモニアを、水素を含む改質燃料へと分解する第1触媒13と、第1触媒13を加熱するヒータ14と、を備える。

Description

フレアスタックおよびフレアスタックを備えるシステム
 本開示は、フレアスタックおよびフレアスタックを備えるシステムに関する。本出願は2022年2月10日に提出された日本特許出願第2022-19568号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。
 アンモニアは、様々なシステムで使用される。例えば、特許文献1は、アンモニアを燃料として使用するガスタービンを開示する。アンモニアの着火性は、悪いことが知られている。したがって、特許文献1のガスタービンは、起動時のアンモニアの燃焼の安定性を向上するために、アンモニアを、水素を含む改質燃料へと改質する改質器を備える。改質器は、アンモニアを加熱する加熱器と、アンモニアを水素と窒素とに分解する触媒と、を含む。改質燃料は、主燃料ノズルとは別に設けられる改質燃料ノズルから、点火プラグ近傍に供給される。
特開2021-127861号公報
 アンモニアは、液体状態でタンクに貯蔵される場合がある。しかしながら、外部からの熱によって、タンク内のアンモニアは気化する。気化したアンモニアによるタンク内の過剰な圧力上昇を防止するために、例えば、BOG(Boil Off Gas)コンプレッサによってアンモニアを液体に戻すことが考えられる。しかしながら、例えば停電等の非常事態には、BOGコンプレッサは使用できない可能性がある。この場合、アンモニアをフレアスタックによって燃焼することが考えられる。アンモニアをフレアスタックによって素早く燃焼することができれば、タンクから気化したアンモニアを素早く除去することができ、これによって、アンモニアを使用するシステムの安全性を向上することができる。
 本開示は、アンモニアを素早く燃焼することができる、フレアスタックおよびフレアスタックを備えるシステムを提供することを目的とする。
 本開示の一態様に係るフレアスタックは、アンモニアが供給されるメインバーナと、アンモニアが供給されるパイロットバーナと、アンモニアの流れにおいてパイロットバーナの上流に設けられ、パイロットバーナに供給されるアンモニアを、水素を含む改質燃料へと分解する第1触媒と、第1触媒を加熱するヒータと、を備える。
 パイロットバーナは、パイロットバーナの火炎が第1触媒を加熱するように配置されてもよい。
 フレアスタックは、第1触媒の温度を測定するセンサと、ヒータおよびセンサと通信可能に接続される制御装置と、を備えてもよく、制御装置は、センサから受信する第1触媒の温度が所定の温度以上である場合、ヒータをオフにするように構成されてもよい。
 フレアスタックは、アンモニアの流れにおいてメインバーナの上流に設けられ、メインバーナに供給されるアンモニアを、水素を含む改質燃料へと分解する第2触媒を備えてもよい。
 第2触媒は、メインバーナの火炎からの輻射によって加熱される位置に配置されてもよい。
 本開示の他の態様は、上記に記載のフレアスタックを備える、アンモニアを使用するシステムである。
 本開示によれば、アンモニアを素早く燃焼することができる。
図1は、実施形態に係るシステムを示す概略図である。 図2は、第1実施形態に係るフレアスタックを示す概略的な断面図である。 図3は、第1実施形態に係るフレアスタックの動作を示すフローチャートである。 図4は、第1実施形態に係るフレアスタックの他の動作を示すフローチャートである。 図5は、第2実施形態に係るフレアスタックを示す概略的な断面図である。 図6は、第3実施形態に係るフレアスタックを示す概略的な断面図である。
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。かかる実施形態に示す具体的な寸法、材料および数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。
 図1は、実施形態に係るシステム100を示す概略図である。例えば、システム100は、タンク1と、ポンプ2と、BOG(Boil Off Gas)コンプレッサ3と、フレアスタック10と、を備える。システム100は、例えば水除害槽等の他の構成要素をさらに備えてもよい。また、システム100は、上記の構成要素のうちの1つまたは複数を備えてなくてもよい。また、フレアスタック10は、制御装置90を含む。
 システム100は、タンク1に貯蔵されるアンモニアを様々な目的で使用し得る。例えば、システム100は、アンモニアを燃焼させるボイラと、ボイラで発生した蒸気によって運転される蒸気タービンと、を備えてもよい。また、例えば、システム100は、アンモニアを燃焼させる燃焼器と、燃焼器で発生したガスによって運転されるガスタービンと、を備えてもよい。また、例えば、システム100は、アンモニアを原料として製品を製造するプラントであってもよい。システム100は、これらに限定されず、アンモニアを使用する様々な設備を含むことができる。
 タンク1は、アンモニアを貯蔵する。具体的には、タンク1は、液体のアンモニアを貯蔵する。タンク1は、配管P1によってポンプ2に接続される。タンク1に貯蔵される液体アンモニアは、配管P1を介してポンプ2に供給される。液体アンモニアは、ポンプ2によって加圧されて、アンモニアを使用する不図示の設備へと供給される。例えば、アンモニアは、アンモニアを使用する設備に液体状態で供給されてもよい。また、システム100は、気化器を備えてもよく、アンモニアは、アンモニアを使用する設備に気体状態で供給されてもよい。
 タンク1内の液体アンモニアは、外部からの熱によって気化し得る。気化したアンモニアは、タンク1内の圧力を上昇させ得る。したがって、システム100は、タンク1内の圧力の上昇を抑制するために、BOGコンプレッサ3およびフレアスタック10を備える。なお、タンク1には、タンク1内の圧力を測定するための不図示のセンサが設けられてもよい。
 BOGコンプレッサ3は、配管P2によってタンク1に接続される。タンク1内の気化したアンモニアは、配管P2を介してBOGコンプレッサ3に供給される。BOGコンプレッサ3は、気化したアンモニアを圧縮し、アンモニアを液体に戻す。液体アンモニアは、配管P3を介してBOGコンプレッサ3からタンク1に戻される。このような構成によれば、タンク1内の過剰な圧力上昇を防止することができ、かつ、廃棄されるアンモニアの量を低減することができる。
 フレアスタック10は、配管P4によってタンク1に接続される。タンク1内の気化したアンモニアは、配管P4を介してフレアスタック10に供給される。フレアスタック10は、気化したアンモニアを燃焼し、アンモニアを除去または規制値未満まで低減された排ガスを放出する。例えば、フレアスタック10は、停電等の緊急事態にBOGコンプレッサ3が使用できない場合に使用されてもよい。また、フレアスタック10は、気化したアンモニアの量が多く、BOGコンプレッサ3が気化したアンモニアを十分に処理できない場合に使用されてもよい。フレアスタック10が使用される状況はこれらに限定されず、フレアスタック10は他の状況で使用されてもよい。フレアスタック10については、詳しくは後述する。
 制御装置90は、フレアスタック10を制御する。制御装置90は、システム100の全体または一部を制御してもよい。制御装置90は、例えば、プロセッサ90a、記憶装置90bおよびコネクタ90c等の構成要素を含み、これらの構成要素はバスを介して互いに接続される。例えば、プロセッサ90aは、CPU(Central Processing Unit)等を含む。例えば、記憶装置90bは、ハードディスク、プログラム等が格納されるROM、および、ワークエリアとしてのRAM等を含む。制御装置90は、コネクタ90cを介してシステム100の各構成要素と有線でまたは無線で通信可能に接続される。例えば、制御装置90は、液晶ディスプレイまたはタッチパネル等の表示装置、および、キーボード、ボタンまたはタッチパネル等の入力装置等、他の構成要素を更に含んでもよい。例えば、以下に示される制御装置90の動作は、記憶装置90bに記憶されるプログラムをプロセッサ90aに実行することによって、実現されてもよい。
 続いて、フレアスタック10について詳細に説明する。
 図2は、第1実施形態に係るフレアスタック10を示す概略的な断面図である。図2では、より良い理解のために、フレアスタック10の一部のみが示されている。例えば、フレアスタック10は、複数のメインバーナ11と、パイロットバーナ12と、第1触媒13と、ヒータ14と、センサ15と、輻射シールド16と、を含む。フレアスタック10は、他の構成要素をさらに含んでもよい。なお、輻射シールド16は、フレアスタック10の形状によっては、必須ではない。
 メインバーナ11およびパイロットバーナ12の各々は、タンク1から供給される気化されたアンモニアを燃焼する。図2には、3つのメインバーナ11が示されるが、メインバーナ11の数はこれに限定されず、2つまたは4つ以上であってもよい。また、他の実施形態では、フレアスタック10は、単一のメインバーナ11を含んでもよい。
 例えば、複数のメインバーナ11は、円形状またはマトリクス状等の任意のパターンに配置される。例えば、パイロットバーナ12は、特定のメインバーナ11、図2では、中央のメインバーナ11から放出されるアンモニアを着火するように、特定のメインバーナ11に対応付けられる。
 例えば、メインバーナ11は、停電等の緊急事態に、BOGコンプレッサ3が使用できない場合に動作するように構成される。また、例えば、メインバーナ11は、気化したアンモニアの量が多く、BOGコンプレッサ3が気化したアンモニアを十分に処理できない場合に動作するように構成される。つまり、メインバーナ11は、メインバーナ11でアンモニアを燃焼させることが必要でない第1の期間には動作せず、メインバーナ11でアンモニアを燃焼させることが必要な第2の期間にのみ動作するように構成される。
 対照的に、パイロットバーナ12は、メインバーナ11から放出されるアンモニアを着火するための種火を常に確保するために、上記の第1の期間および第2の期間を通じて、常に動作するように構成される。例えば、パイロットバーナ12に供給されるアンモニアの量は、第2の期間にメインバーナ11に供給されるアンモニアの量よりも少ない。なお、例えば、パイロットバーナ12は、タンク1からパイロットバーナ12に供給されるアンモニアを最初に着火するための不図示の点火プラグ等を含んでもよい。
 例えば、タンク1とフレアスタック10とを接続する上記の配管P4は、メインバーナ11に接続される複数の配管P41と、パイロットバーナ12に接続される配管P42と、に分岐されてもよい。メインバーナ11には、配管P4,P41を介して、タンク1からアンモニアが供給される。パイロットバーナ12には、配管P4,P42を介して、タンク1からアンモニアが供給される。なお、図1では、配管P41,42は、配管P4を介してタンク1に接続されるが、他の実施形態では、配管P41,42は、配管P4を介さずに直接的にタンク1に接続されてもよい。配管P41,P42の構成はこれらに限定されず、他の構成を用いてもよい。
 図1を参照して、フレアスタック10は、配管P4に、タンク1からメインバーナ11およびパイロットバーナ12に供給されるアンモニアの流量を制御するためにバルブV1を含む。バルブV1は、制御装置90と有線または無線で通信可能に接続されてもよく、制御装置90によって制御されてもよい。
 例えば、制御装置90は、メインバーナ11でアンモニアを燃焼させることが必要でない第1の期間には、パイロットバーナ12に供給されるアンモニアの量のみを確保するために必要な第1の開度に、バルブV1を調整する。また、制御装置90は、メインバーナ11でアンモニアを燃焼させることが必要な第2の期間には、第1の開度よりも大きい第2の開度に、バルブV1を調整する。
 図2を参照して、配管P41の各々には、タンク1からメインバーナ11に供給されるアンモニアの流量を制御するためにバルブV2が設けられてもよい。バルブV2は、制御装置90と有線または無線で通信可能に接続され、制御装置90によって制御されてもよい。
 例えば、制御装置90は、上記の第1の期間には、バルブV2を閉じてもよい。この場合、タンク1からのアンモニアは、パイロットバーナ12にのみ供給される。また、制御装置90は、上記の第2の期間には、バルブV2を開いてもよい。この場合、タンク1からのアンモニアは、メインバーナ11およびパイロットバーナ12の双方に供給される。例えば、制御装置90は、タンク1から供給されるアンモニアの量に応じて、複数のバルブV2のうち、必要なバルブV2のみを選択的に開いてもよい。
 例えば、他の実施形態では、配管P42に追加のバルブが設けられてもよい。さらに他の実施形態では、バルブV1は、配管P4に代えて、配管P42に設けられてもよい。この場合、バルブV1は、パイロットバーナ12に供給されるアンモニアの流量のみを調整する。さらに他の実施形態では、バルブV1は、設けられなくてもよい。
 第1触媒13は、配管P42において、アンモニアの流れにおいてパイロットバーナ12の上流に設けられる。第1触媒13は、配管P42を通過してパイロットバーナ12に供給されるアンモニアを、水素および窒素を含む改質燃料へと分解する。第1触媒13は、例えば、気体アンモニアを水素および窒素に分解する触媒であることができ、例えば、Ni/Al及びRu/Pr11であることができる。例えば、第1触媒13は、ハウジングに収容される担体に担持されていてもよい。
 パイロットバーナ12は、パイロットバーナ12の火炎Fが、対応付けられたメインバーナ11の噴射口付近、および、第1触媒13の双方を加熱可能な位置および姿勢に配置される。具体的には、配管P42は、パイロットバーナ12の噴射口が、メインバーナ11の噴射口付近および第1触媒13が設けられる位置の双方に向けられるように、湾曲された区間CSを含む。区間CSは、パイロットバーナ12の噴射口が、メインバーナ11の噴射口付近および第1触媒13が設けられる位置の双方に向けられる限りにおいて、任意の形状を有してもよい。
 ヒータ14は、少なくとも第1触媒13が改質を開始する温度まで、第1触媒13を加熱する。例えば、ヒータ14は、電力によって動作してもよい。例えば、ヒータ14は、第1触媒13の担体を収容するハウジングに貼り付けられてもよい。代替的にまたは追加的に、ヒータ14は、第1触媒13の担体に電力を供給して、第1触媒13を加熱してもよい。ヒータ14は、制御装置90と有線または無線で通信可能に接続されてもよく、制御装置90によって制御されてもよい。
 センサ15は、第1触媒13の温度を測定する。センサ15は、例えば熱電対等の様々な温度センサであることができる。例えば、センサ15は、第1触媒13の担体に固定されてもよい。代替的にまたは付加的に、センサ15は、第1触媒13の担体を収容するハウジングに貼り付けられてもよい。センサ15は、制御装置90と有線または無線で通信可能に接続されてもよく、測定データを制御装置90に送信してもよい。
 輻射シールド16は、フレアスタック10の壁である、または、壁の一部である。例えば、輻射シールド16は、概ね円筒形状を有する。輻射シールド16は、メインバーナ11およびパイロットバーナ12からの火炎がフレアスタック10の外部に晒されないように、メインバーナ11およびパイロットバーナ12を囲う。輻射シールド16は、火炎からの熱がフレアスタック10の外部に漏れることを防止するように、断熱材を含む。
 続いて、フレアスタック10の動作について説明する。
 図3は、第1実施形態に係るフレアスタック10の動作を示すフローチャートである。図3に示される動作に先立って、フレアスタック10では、パイロットバーナ12にアンモニアが供給され、パイロットバーナ12によって火炎Fが形成されている。また、例えば、図3に示される動作は、常に所定の周期で繰り返し実施されてもよく、または、改質を開始する温度に第1触媒13が加熱されるまで所定の周期で繰り返し実施されてもよい。
 制御装置90のプロセッサ90aは、第1触媒13が所定の温度以上であるか否かを判定する(ステップS100)。具体的には、プロセッサ90aは、センサ15から受信した温度が、第1触媒13が改質を開始する温度(例えば300℃から600℃)以上であるか否かを判定する。
 ステップS100において、第1触媒13が所定の温度以上である場合には(YES)、プロセッサ90aは、ヒータ14をオフにし(ステップS102)、動作を終了する。既にヒータ14がオフである場合には、プロセッサ90aは、その状態を維持する。
 ステップS100において、第1触媒13が所定の温度以上でない場合には(NO)、プロセッサ90aは、ヒータ14をオンにし(ステップS104)、動作を終了する。既にヒータ14がオンである場合には、プロセッサ90aは、その状態を維持する。
 図4は、第1実施形態に係るフレアスタック10の他の動作を示すフローチャートである。図4に示される動作に先立って、フレアスタック10では、パイロットバーナ12にアンモニアが供給され、パイロットバーナ12によって火炎Fが形成されている。また、図4に示される動作の前には、緊急事態は無い、すなわち、メインバーナ11でアンモニアを燃焼させることは必要では無く、メインバーナ11に対してアンモニアは供給されていない(第1の期間)。また、例えば、図4に示される動作は、常に所定の周期で繰り返し実施されてもよい。また、図4に示される動作の間、図3に示される動作が並行して実施されていてもよい。
 制御装置90のプロセッサ90aは、メインバーナ11でアンモニアを燃焼させる必要があるか否かを判定する(ステップS200)。具体的には、例えば、プロセッサ90aは、停電、BOGコンプレッサ3の故障、または、BOGコンプレッサ3が気化したアンモニアを十分に処理できない、等の緊急事態であるか否かを判定する。
 ステップS200において、メインバーナ11でアンモニアを燃焼させる必要が無いと判定される場合(NO)、プロセッサ90aは、動作を終了する。
 ステップS200において、メインバーナ11でアンモニアを燃焼させる必要があると判定される場合(YES、すなわち第2の期間)、プロセッサ90aは、メインバーナ11へアンモニアを供給開始する(ステップS202)。具体的には、プロセッサ90aは、バルブV1を、パイロットバーナ12に供給されるアンモニアの量のみを確保するために必要な第1の開度から、第1の開度よりも大きい第2の開度に切り替える。また、プロセッサ90aは、パイロットバーナ12が対応付けられたメインバーナ11のバルブV2を開く。これによって、メインバーナ11にアンモニアが供給される。メインバーナ11に供給されるアンモニアは、パイロットバーナ12の火炎Fによって素早く着火され、燃焼される。なお、タンク1から供給されるアンモニアの量に応じて、他のメインバーナ11のバルブV2も開かれてもよい。他のメインバーナ11に供給されるアンモニアも、伝播する火炎によって着火される。
 続いて、プロセッサ90aは、再び、メインバーナ11でアンモニアを燃焼させる必要があるか否かを判定する(ステップS204)。具体的には、例えば、プロセッサ90aは、緊急事態が継続しているか否かを判定する。
 ステップS204において、メインバーナ11でアンモニアを燃焼させる必要があると判定される場合(YES)、プロセッサ90aは、緊急事態が終わるまでステップS204を繰り返す。
 ステップS204において、メインバーナ11でアンモニアを燃焼させる必要が無いと判定される場合(NO)、プロセッサ90aは、メインバーナ11へのアンモニアの供給を停止し(ステップS208)、動作を終了する。これによって、メインバーナ11の火炎は消える。対照的に、パイロットバーナ12の火炎Fは引き続き維持される。
 以上のようなフレアスタック10、および、フレアスタック10を備えるシステム100は、アンモニアが供給されるメインバーナ11と、アンモニアが供給されるパイロットバーナ12と、アンモニアの流れにおいてパイロットバーナ12の上流に設けられ、パイロットバーナ12に供給されるアンモニアを、水素を含む改質燃料へと分解する第1触媒13と、第1触媒13を加熱するヒータ14と、を備える。このような構成によれば、第1触媒13をヒータ14によって改質を開始する温度まで加熱することによって、パイロットバーナ12に供給されるアンモニアが改質燃料へと分解される。水素を含む改質燃料は、アンモニアよりも素早く着火する。このため、パイロットバーナ12に供給されるアンモニアを素早く燃焼させることができる。また、パイロットバーナ12の火炎Fを種火として使用することによって、メインバーナ11に供給されるアンモニアも素早く燃焼させることができる。したがって、アンモニアを素早く燃焼することができる。
 また、フレアスタック10では、パイロットバーナ12は、パイロットバーナ12の火炎Fが第1触媒13を加熱するように配置される。このような構成によれば、パイロットバーナ12は、自身の火炎Fによって第1触媒13を加熱することができ、したがって、ヒータ14が使用するエネルギを低減することができる。
 また、フレアスタック10は、第1触媒13の温度を測定するセンサ15と、ヒータ14およびセンサ15と通信可能に接続される制御装置90と、を備え、制御装置90は、センサ15から受信する第1触媒13の温度が所定の温度以上である場合、ヒータ14をオフにするように構成される。第1触媒13の温度が改質を開始する温度以上であれば、ヒータ14をオフにしても、パイロットバーナ12に供給されるアンモニアは第1触媒13によって改質され続け、したがって、第1触媒13もパイロットバーナ12の火炎Fによって加熱され続ける。よって、上記の構成によれば、ヒータ14が使用するエネルギをより低減することができる。また、上記の構成によれば、ヒータ14からの加熱無しにパイロットバーナ12は動作し続けるため、例えば停電の場合にも、フレアスタック10を動作させることができる。
 続いて、他の実施形態に係るフレアスタックについて説明する。
 図5は、第2実施形態に係るフレアスタック10Aを示す概略的な断面図である。フレアスタック10Aは、第2触媒17をさらに備える点で、第1実施形態に係るフレアスタック10と異なる。フレアスタック10Aは、その他の点においては、フレアスタック10と同じであってもよい。
 第2触媒17は、各配管P41において、アンモニアの流れにおいてメインバーナ11の上流に設けられる。第2触媒17は、配管P41を通過してメインバーナ11に供給されるアンモニアを、水素および窒素を含む改質燃料へと分解する。第2触媒17は、例えば、気体アンモニアを水素および窒素に分解する触媒であることができ、例えば、Ni/Al及びRu/Pr11であることができる。例えば、第2触媒17は、ハウジングに収容される担体に担持されていてもよい。
 第2触媒17は、メインバーナ11の火炎からの輻射によって加熱される位置に配置される。具体的には、例えば、メインバーナ11が動作している場合には、輻射シールド16の内部は、第2触媒17が改質を開始する温度以上に保たれる。したがって、第2触媒17は、各配管P41において、輻射シールド16の内部の位置に設けられることができる。なお、第2触媒17に対しては、ヒータおよびセンサは設けられなくてもよい。
 以上のようなフレアスタック10Aは、第1実施形態に係るフレアスタック10と同様な効果を奏する。また、フレアスタック10Aは、アンモニアの流れにおいてメインバーナ11の上流に設けられ、メインバーナ11に供給されるアンモニアを、水素を含む改質燃料へと分解する第2触媒17を備える。このような構成によれば、メインバーナ11に供給されるアンモニアも、水素を含む改質燃料に分解することができる。よって、燃焼の安定性を向上させることができる。
 また、フレアスタック10Aでは、第2触媒17は、メインバーナ11の火炎からの輻射によって加熱される位置に配置される。このような構成によれば、メインバーナ11が動作を開始した後は、第2触媒17は、ヒータ無しにメインバーナ11の火炎からの輻射によって加熱される。したがって、改質を開始する温度まで第2触媒17を加熱するためのヒータを省略することができる。
 図6は、第3実施形態に係るフレアスタック10Bを示す概略的な断面図である。フレアスタック10Bは、パイロットバーナ12が2つのノズルを含む点で、第1実施形態に係るフレアスタック10と異なる。これに伴って、第1触媒13、ヒータ14およびセンサ15の位置が変更されている。フレアスタック10Bは、その他の点においては、フレアスタック10と同じであってもよい。
 パイロットバーナ12は、第1ノズル12aおよび第2ノズル12bを含む。したがって、パイロットバーナ12は、2つの火炎Fa,Fbを形成する。第1ノズル12aは、第1ノズル12aの火炎Faが、対応付けられたメインバーナ11の噴射口付近を加熱可能な位置および姿勢に配置される。第2ノズル12bは、第2ノズル12bの火炎Fbが、第1触媒13を加熱可能な位置および姿勢に配置される。
 以上のようなフレアスタック10Bは、第1実施形態に係るフレアスタック10と同様な効果を奏する。また、フレアスタック10Bでは、パイロットバーナ12が、第1ノズル12aの火炎Faがメインバーナ11の噴射口付近を加熱するように配置される第1ノズル12aと、第2ノズル12bの火炎Fbが第1触媒13を加熱するように配置される第2ノズル12bと、を含む、複数のノズルを含む。このような構成によれば、配管42の形状をシンプルにすることができる。
 以上、添付図面を参照しながら実施形態について説明したが、本開示は上記実施形態に限定されない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 本開示は、CO放出の削減につながるアンモニアの使用の安全性を向上することができるので、例えば、持続可能な開発目標(SDGs)の目標7「手ごろで信頼でき、持続可能かつ近代的なエネルギへのアクセスを確保する」に貢献することができる。
 10   フレアスタック
 10A  フレアスタック
 10B  フレアスタック
 11   メインバーナ
 12   パイロットバーナ
 13   第1触媒
 14   ヒータ
 15   センサ
 17   第2触媒
 90   制御装置
 100  システム
 F    火炎
 Fa   火炎
 Fb   火炎

Claims (8)

  1.  アンモニアが供給されるメインバーナと、
     アンモニアが供給されるパイロットバーナと、
     アンモニアの流れにおいて前記パイロットバーナの上流に設けられ、前記パイロットバーナに供給されるアンモニアを、水素を含む改質燃料へと分解する第1触媒と、
     前記第1触媒を加熱するヒータと、
     を備える、フレアスタック。
  2.  前記パイロットバーナは、前記パイロットバーナの火炎が前記第1触媒を加熱するように配置される、請求項1に記載のフレアスタック。
  3.  前記第1触媒の温度を測定するセンサと、
     前記ヒータおよび前記センサと通信可能に接続される制御装置と、
     を備え、
     前記制御装置は、前記センサから受信する前記第1触媒の温度が所定の温度以上である場合、前記ヒータをオフにするように構成される、請求項2に記載のフレアスタック。
  4.  アンモニアの流れにおいて前記メインバーナの上流に設けられ、前記メインバーナに供給されるアンモニアを、水素を含む改質燃料へと分解する第2触媒を備える、請求項1から3のいずれか一項に記載のフレアスタック。
  5.  前記第2触媒は、前記メインバーナの火炎からの輻射によって加熱される位置に配置される、請求項4に記載のフレアスタック。
  6.  請求項1から3のいずれか一項に記載のフレアスタックを備える、アンモニアを使用するシステム。
  7.  請求項4に記載のフレアスタックを備える、アンモニアを使用するシステム。
  8.  請求項5に記載のフレアスタックを備える、アンモニアを使用するシステム。
PCT/JP2022/042710 2022-02-10 2022-11-17 フレアスタックおよびフレアスタックを備えるシステム WO2023153040A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022019568 2022-02-10
JP2022-019568 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023153040A1 true WO2023153040A1 (ja) 2023-08-17

Family

ID=87564064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042710 WO2023153040A1 (ja) 2022-02-10 2022-11-17 フレアスタックおよびフレアスタックを備えるシステム

Country Status (1)

Country Link
WO (1) WO2023153040A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039520A (ja) * 2000-05-26 2002-02-06 Rohm & Haas Co 廃棄物質の燃焼方法
WO2004018080A1 (en) * 2002-08-23 2004-03-04 The Boc Group Plc Utilisation of waste gas streams
JP2012255420A (ja) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd ガスタービンシステム
JP2014126342A (ja) * 2012-12-27 2014-07-07 Edwards Kk 除害装置
WO2018116982A1 (ja) * 2016-12-22 2018-06-28 昭和電工株式会社 水素製造装置及び水素製造方法
JP2020183844A (ja) * 2019-05-09 2020-11-12 株式会社セイブ・ザ・プラネット 点火システム及び燃焼器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039520A (ja) * 2000-05-26 2002-02-06 Rohm & Haas Co 廃棄物質の燃焼方法
WO2004018080A1 (en) * 2002-08-23 2004-03-04 The Boc Group Plc Utilisation of waste gas streams
JP2012255420A (ja) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd ガスタービンシステム
JP2014126342A (ja) * 2012-12-27 2014-07-07 Edwards Kk 除害装置
WO2018116982A1 (ja) * 2016-12-22 2018-06-28 昭和電工株式会社 水素製造装置及び水素製造方法
JP2020183844A (ja) * 2019-05-09 2020-11-12 株式会社セイブ・ザ・プラネット 点火システム及び燃焼器

Similar Documents

Publication Publication Date Title
JP6257724B2 (ja) 多段燃焼器及び燃料電池システムを始動するための方法
EP1581334B1 (en) Fuel vaporizing device
JP7291090B2 (ja) ガスタービンの燃焼器
JP6477868B2 (ja) 燃料電池システム
US6012915A (en) Method of combusting a water/fossil fuel mixed emulsion and combustion apparatus
JP2010255999A (ja) 温風器およびボイラーの燃焼装置
WO2010119608A1 (ja) 水素生成装置及びこれを備える燃料電池システム
WO2023153040A1 (ja) フレアスタックおよびフレアスタックを備えるシステム
WO2022049870A1 (ja) 改質システム
WO2022209563A1 (ja) ガスタービンシステム
RU2667299C1 (ru) Устройство для генерирования тепла и водорода
US20130344409A1 (en) Multi-fuel combustor with swirl flame stabilization
JPH0648701A (ja) 水蒸気改質反応器
US20220388841A1 (en) Reforming device and reforming system
JPH10110630A (ja) ガスタービン燃焼器の燃料プラント
JP2021131169A (ja) 燃焼器、改質装置及び改質システム
WO2024090092A1 (ja) 燃焼システム
WO2022220002A1 (ja) 燃焼装置およびガスタービンシステム
JPH01247902A (ja) 触媒燃焼装置およびその燃焼制御方法
JP2022166952A (ja) 改質装置
JP2023176174A (ja) アンモニア改質燃焼システム、及びアンモニア改質燃焼方法
JP2023061517A (ja) エンジンシステム
JP5831380B2 (ja) 燃焼装置
JPH08111227A (ja) 燃料電池発電設備の起動方法
JP5387332B2 (ja) ボイラの暖気方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926056

Country of ref document: EP

Kind code of ref document: A1