WO2023153010A1 - ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置 - Google Patents

ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置 Download PDF

Info

Publication number
WO2023153010A1
WO2023153010A1 PCT/JP2022/035424 JP2022035424W WO2023153010A1 WO 2023153010 A1 WO2023153010 A1 WO 2023153010A1 JP 2022035424 W JP2022035424 W JP 2022035424W WO 2023153010 A1 WO2023153010 A1 WO 2023153010A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
film
barrier film
silicon oxycarbide
Prior art date
Application number
PCT/JP2022/035424
Other languages
English (en)
French (fr)
Inventor
一裕 中島
帆奈美 伊藤
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023153010A1 publication Critical patent/WO2023153010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a gas barrier film, a method for producing the same, a polarizing plate with a gas barrier layer, and an image display device.
  • resin film substrates are being used instead of glass substrates. Since resin films have higher permeability to gases such as water vapor and oxygen than glass, it has been proposed to use a gas barrier film having a gas barrier layer for the purpose of suppressing deterioration of display elements caused by these gases.
  • Organic EL elements may have defects called “dark spots” due to the infiltration of even a small amount of moisture, and high gas barrier properties (water vapor blocking properties) are required.
  • Silicon nitride (SiN) and silicon oxynitride (SiON) are known as materials having excellent gas barrier properties.
  • bendable display devices flexible displays, foldable displays, etc.
  • display elements such as organic EL elements are formed on flexible substrates
  • the gas barrier film is required to have no cracks in the gas barrier layer (flex resistance) when the film is folded.
  • Patent Document 1 proposes a gas barrier film including a silicon nitride layer and a silicon oxide layer as a gas barrier film having excellent transparency and bending resistance.
  • Patent Document 1 has room for improvement in terms of improving gas barrier properties while ensuring flexibility.
  • the present invention has been made in view of the above problems, and its object is to provide a gas barrier film that has excellent gas barrier properties while ensuring bending resistance, a method for producing the same, a polarizing plate with a gas barrier layer using the gas barrier film, and a method for producing the same. It is to provide an image display device.
  • the present invention includes the following aspects.
  • a gas barrier film comprising a transparent film substrate and a gas barrier layer disposed directly or indirectly on at least one main surface of the transparent film substrate,
  • the gas barrier layer has a silicon oxycarbide layer containing silicon, oxygen and carbon as constituent elements,
  • the silicon oxycarbide layer has a first layer, a second layer and a third layer in this order from the transparent film substrate side,
  • the carbon content in the first layer and the carbon content in the third layer are both less than 0.1 atomic % with respect to a total of 100 atomic % of silicon, oxygen and carbon
  • the carbon content in the second layer is 0.1 atomic % or more with respect to a total of 100 atomic % of silicon, oxygen and carbon
  • the thickness ratio of the first layer and the thickness ratio of the third layer are all 10% or more with respect to 100% of the total thickness of the first layer, the second layer and the third layer,
  • the carbon content at the point where the carbon content with respect to the total of 100 atomic % of silicon, oxygen and carbon shows the maximum value when
  • the thickness ratio of the first layer and the thickness ratio of the third layer are both 45% or less with respect to 100% of the total thickness of the first layer, the second layer and the third layer.
  • the gas barrier film according to any one.
  • a method for producing a gas barrier film according to any one of [1] to [8], A method for producing a gas barrier film, comprising introducing an organosilicon compound and oxygen into a chamber of a film-forming apparatus having a pair of film-forming rolls as a pair of counter electrodes, and forming the silicon oxycarbide layer by a chemical vapor deposition method. .
  • a polarizing plate with a gas barrier layer comprising the gas barrier film according to any one of [1] to [8] above and a polarizer.
  • An image display device comprising the gas barrier film according to any one of [1] to [8] and an image display cell.
  • An image display device comprising the polarizing plate with a gas barrier layer according to [10] and an image display cell.
  • the present invention it is possible to provide a gas barrier film having excellent gas barrier properties while ensuring flex resistance, a method for producing the same, and a polarizing plate with a gas barrier layer and an image display device using the gas barrier film.
  • FIG. 1 is a cross-sectional view showing an example of a gas barrier film according to the present invention
  • FIG. FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • 1 is a configuration diagram showing an example of a film forming apparatus used in a method for producing a gas barrier film according to the present invention
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of the polarizing plate with a gas barrier layer which concerns on this invention. It is a sectional view showing an example of an image display device concerning the present invention.
  • the number average primary particle diameter of the particles is the circle of 100 primary particles measured using a scanning electron microscope and image processing software (e.g., "ImageJ” manufactured by the National Institutes of Health), unless otherwise specified. It is the number average value of equivalent diameters (Heywood diameter: diameter of a circle having the same area as the projected area of primary particles).
  • Layered material (more specifically, transparent film substrate, gas barrier layer, silicon oxycarbide layer, first layer, second layer, third layer, hard coat layer, adhesive layer, polarizer, etc.) ” refers to a plane orthogonal to the thickness direction of the layered material.
  • the thickness of the gas barrier layer and each layer constituting the gas barrier layer can be determined using X-ray photoelectron spectroscopy. It is a value obtained by converting the etching time of the layer when analyzing the composition in the direction using the value of the sputtering rate for SiO 2 .
  • the numerical value of the “thickness” of the gas barrier layer and the layered material other than each layer constituting the gas barrier layer is the “average thickness”.
  • the average thickness of the layered material is obtained by observing a cross section of the layered material cut in the thickness direction with an electron microscope, randomly selecting 10 measurement points from the cross-sectional image, and measuring the thickness of the selected 10 measurement points. Arithmetic mean of 10 measurements obtained.
  • Refractive index refers to the refractive index for light with a wavelength of 550 nm in an atmosphere at a temperature of 23°C.
  • the flow rate unit “sccm (Standard Cubic Centimeter per Minute)” is the flow rate unit “mL/min” under standard conditions (temperature: 0° C., pressure: 101.3 kPa).
  • system may be added after the name of the compound to generically refer to the compound and its derivatives.
  • polymer name is expressed by adding "system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative.
  • acryl and methacryl may be collectively referred to as "(meth)acryl”.
  • a gas barrier film according to a first embodiment of the present invention has a transparent film substrate and a gas barrier layer directly or indirectly arranged on at least one main surface of the transparent film substrate.
  • the gas barrier layer has a silicon oxycarbide layer containing silicon, oxygen and carbon as constituent elements.
  • the silicon oxycarbide layer has a first layer, a second layer and a third layer in this order from the transparent film substrate side.
  • the carbon content in the first layer is less than 0.1 atomic % with respect to 100 atomic % in total of silicon, oxygen and carbon.
  • the carbon content in the third layer is less than 0.1 atomic % with respect to 100 atomic % in total of silicon, oxygen and carbon.
  • the carbon content in the second layer is 0.1 atomic % or more with respect to 100 atomic % in total of silicon, oxygen and carbon.
  • the thickness ratio of the first layer is 10% or more with respect to 100% of the total thickness of the first, second and third layers.
  • the thickness ratio of the third layer is 10% or more with respect to 100% of the total thickness of the first, second and third layers.
  • the carbon content at the point where the carbon content with respect to the total 100 atomic% of silicon, oxygen and carbon shows the maximum value
  • C max atomic % and C min atomic % is the carbon content at the point where the carbon content in the total 100 atomic % of silicon, oxygen and carbon shows the minimum value
  • the value obtained by subtracting C min from C max is 2.0 or more.
  • the thickness ratio of a 1st layer and the thickness ratio of a 3rd layer may be the same value, and a mutually different value may be sufficient as them.
  • the method of analyzing the composition in the thickness direction of the silicon oxycarbide layer using X-ray photoelectron spectroscopy is the same method as in Examples described later or a method based thereon.
  • X-ray photoelectron spectroscopy may be referred to as "XPS”.
  • carbon content when the total of silicon, oxygen and carbon is 100 atomic % is sometimes simply referred to as “carbon content”.
  • the ratio of the thickness of the first layer to the total thickness of 100% of the first layer, the second layer and the third layer may be simply referred to as the "first layer thickness ratio".
  • the ratio of the thickness of the third layer to 100% of the total thickness of the first, second and third layers may simply be referred to as the "thickness ratio of the third layer".
  • the carbon content at the point (measurement point) where the carbon content shows the maximum value is described as "C max atomic %”. I have something to do.
  • the carbon content at the location (measurement location) where the carbon content is the minimum value is described as "C min atomic %”. I have something to do.
  • the carbon content in the first layer is less than 0.1 atomic %
  • any measurement point in the first layer also means that the carbon content is less than 0.1 atomic %.
  • the measurement interval of the elemental composition is, for example, within the range of 30 seconds or more and 90 seconds or less (2.5 nm or more and 7.5 nm or less), preferably 60 seconds (5 nm).
  • the composition analysis in the thickness direction of the silicon oxycarbide layer is performed at intervals of 5 nm
  • the thickness direction (depth direction) of the silicon oxycarbide layer is sequentially 0 nm (etching start position), 5 nm, 10 nm, 15 nm
  • Composition analysis is performed at positions of 20 nm, 25 nm, and so on.
  • the measurement results of the carbon content when performing composition analysis in the thickness direction of the silicon oxycarbide layer at intervals of 5 nm are, for example, 0 nm: less than 0.1 atomic %, 5 nm: less than 0.1 atomic %, 10 nm: 0.1 atomic % or more, 15 nm: 0.1 atomic % or more, 25 nm: less than 0.1 atomic %, the second layer is formed in the thickness direction from the surface (etching start position) of the silicon oxycarbide layer. is in the range of 10 nm or more and 15 nm or less.
  • the first embodiment it is possible to provide a gas barrier film that is excellent in gas barrier properties while ensuring bending resistance. The reason is presumed as follows.
  • silicon oxycarbide layers tend to have higher bending resistance as the carbon content increases. In general, the silicon oxycarbide layer tends to have lower gas barrier properties as the carbon content increases. In addition, according to the studies of the present inventors, if the carbon content in the silicon oxycarbide layer is too low, the surface of the silicon oxycarbide layer tends to be too rough and the gas barrier properties of the silicon oxycarbide layer tend to decrease. be.
  • the value obtained by subtracting Cmin from Cmax is 2.0 or more.
  • the silicon oxycarbide layer of the gas barrier film according to the first embodiment has a structure in which the second layer having a relatively high carbon content is sandwiched between the first and third layers having a relatively low carbon content. and the first layer thickness ratio and the third layer thickness ratio are both 10% or more.
  • the value obtained by subtracting C min from C max is 2.0 or more, so the carbon content of the second layer is within a range that can suppress the decrease in flex resistance. . Therefore, according to the gas barrier film according to the first embodiment, it is possible to secure flexibility.
  • the first layer thickness ratio and the third layer thickness ratio are each preferably 15% or more, more preferably 18% or more. Preferably, it is more preferably 20% or more.
  • both the first layer thickness ratio and the third layer thickness ratio are preferably 45% or less, more preferably 40% or less, in order to more easily ensure flex resistance. is more preferred.
  • the total thickness of the first layer, the second layer and the third layer is 100%. is preferably 20% or more and 70% or less, more preferably 20% or more and 55% or less.
  • the value obtained by subtracting C min from C max is preferably 3.0 or more, more preferably 3.5 or more, in order to more easily ensure flex resistance.
  • the value obtained by subtracting Cmin from Cmax is preferably 6.0 or less.
  • condition 1 Both the first layer thickness ratio and the third layer thickness ratio are 10% or more and 45% or less, and the value obtained by subtracting Cmin from Cmax is 2.0 or more and 6.0 or less.
  • condition 2 Both the first layer thickness ratio and the third layer thickness ratio are 20% or more and 40% or less, and the value obtained by subtracting Cmin from Cmax is 5.0 or more and 6.0 or less.
  • Condition 3 Both the first layer thickness ratio and the third layer thickness ratio are 20% or more and 40% or less, and the value obtained by subtracting Cmin from Cmax is 3.5 or more and 4.5 or less.
  • FIG. 1 is a cross-sectional view showing an example of the gas barrier film according to the first embodiment.
  • a gas barrier film 10 shown in FIG. 1 is a laminate having a transparent film substrate 11 and a gas barrier layer 12 directly disposed on one main surface 11 a of the transparent film substrate 11 .
  • the gas barrier layer 12 is composed of a silicon oxycarbide layer 13 containing silicon, oxygen and carbon as constituent elements.
  • the silicon oxycarbide layer 13 has a first layer 14, a second layer 15 and a third layer 16 in this order from the transparent film substrate 11 side.
  • the carbon content in the first layer 14 is less than 0.1 atomic percent.
  • the carbon content in the third layer 16 is less than 0.1 atomic percent.
  • the carbon content in the second layer 15 is 0.1 atomic % or more.
  • the thickness ratio of the first layer 14 is 10% or more with respect to 100% of the total thickness of the first layer 14, the second layer 15 and the third layer 16.
  • the thickness ratio of the third layer 16 is 10% or more with respect to 100% of the total thickness of the first layer 14, the second layer 15 and the third layer 16.
  • the value obtained by subtracting Cmin from Cmax is 2.0 or more.
  • the measurement point showing the minimum carbon content exists in at least one of the first layer 14 and the third layer 16 .
  • the second layer 15 has the maximum carbon content.
  • the minimum carbon content of the first layer 14 and the minimum carbon content of the third layer 16 are not particularly limited, and both may be 0.0 atomic %.
  • the carbon content rate changes continuously in the thickness direction of the silicon oxycarbide layer 13 .
  • the configuration of the gas barrier film according to the first embodiment is not limited to the configuration of the gas barrier film 10 shown in FIG.
  • the gas barrier layer is a layer having gas barrier properties other than a silicon oxycarbide layer (hereinafter referred to as "gas barrier layer").
  • gas barrier layer may have When a cross section of a gas barrier layer having a silicon oxycarbide layer and a gas barrier layer is observed in a dark field image with a transmission electron microscope, an interface exists between the silicon oxycarbide layer and the gas barrier layer. is preferred.
  • the gas barrier layer 21 has the silicon oxycarbide layer 13 and the gas barrier layer 22 disposed on the main surface 16a of the silicon oxycarbide layer 13 opposite to the transparent film substrate 11 side.
  • the gas barrier layer 22 is preferably a silicon oxynitride layer containing silicon, oxygen and nitrogen as constituent elements.
  • the gas barrier film according to the first embodiment may have gas barrier layers on both main surfaces of the silicon oxycarbide layer. Moreover, the gas barrier film according to the first embodiment may have a gas barrier layer only on the main surface of the silicon oxycarbide layer on the transparent film substrate side. Further, in the gas barrier film according to the first embodiment, the gas barrier layer may include two or more silicon oxycarbide layers, for example, two silicon oxycarbide layers and three silicon oxynitride layers. Alternating laminates may also be used. The gas barrier layer may have a laminate structure of four layers or a laminate structure of six or more layers.
  • the gas barrier layer may be indirectly arranged on the main surface of the transparent film substrate.
  • the gas barrier film 30 shown in FIG. 3 has a hard coat layer 31 arranged between the transparent film substrate 11 and the gas barrier layer 12 (silicon oxycarbide layer 13).
  • the gas barrier layer 12 is indirectly arranged on the main surface of the transparent film substrate 11 .
  • the hard coat layer 31 is a layer that enhances mechanical properties such as hardness and elastic modulus of the gas barrier film 30 . If the main surface of the hard coat layer 31 on the side of the gas barrier layer 12 is smooth, the gas barrier property of the gas barrier layer 12 formed thereon is enhanced, and the water vapor transmission rate tends to decrease.
  • the arithmetic mean height Sa of the main surface of the hard coat layer 31 on the side of the gas barrier layer 12 may be 1.5 nm or less or 1.0 nm or less.
  • the arithmetic mean height Sa is calculated in accordance with ISO 25178 from the three-dimensional surface shape in the range of 1 ⁇ m ⁇ 1 ⁇ m measured with an atomic force microscope (AFM).
  • the hard coat layer 31 may contain particles with a number average primary particle diameter of less than 1.0 ⁇ m (hereinafter sometimes referred to as "nanoparticles"). For example, when the hard coat layer 31 contains nanoparticles, fine irregularities are formed on the surface of the hard coat layer 31, and adhesion between the hard coat layer 31 and the gas barrier layer 12 tends to be improved.
  • the gas barrier film according to the first embodiment may be provided with gas barrier layers on both main surfaces of the transparent film substrate in order to further improve gas barrier properties.
  • a gas barrier layer having a laminated structure may be provided on each of both main surfaces of the transparent film substrate.
  • the elemental composition of the gas barrier layer 41 may be the same as or different from the elemental composition of the gas barrier layer 12 .
  • the layer structure of the gas barrier layer 41 may be the same as or different from the layer structure of the gas barrier layer 12 .
  • the gas barrier layer 41 preferably has a silicon oxycarbide layer.
  • the silicon oxycarbide layer in the gas barrier layer 41 should have a carbon content of 0.05 from the transparent film substrate 11 side.
  • first layer with a carbon content of less than 1 atomic%
  • second layer with a carbon content of 0.1 atomic% or more
  • third layer with a carbon content of less than 0.1 atomic% in this order
  • the thickness ratio of the first layer and the thickness of the first layer is 10% or more with respect to 100% of the total thickness of the first layer, the second layer, and the third layer, and the value obtained by subtracting C min from C max is 2.0 or more.
  • the thickness ratio of the three layers is 10% or more with respect to 100% of the total thickness of the first layer, the second layer, and the third layer, and the value obtained by subtracting C min from C max is 2.0 or more.
  • the gas barrier film according to the first embodiment may further have an adhesive layer.
  • the gas barrier film 50 shown in FIG. 5 has an adhesive layer 51 in addition to the configuration of the gas barrier film 40 .
  • an adhesive layer 51 is arranged on the main surface 16a of the gas barrier layer 12 (silicon oxycarbide layer 13) opposite to the transparent film substrate 11 side.
  • a release liner may be temporarily attached to the main surface of the pressure-sensitive adhesive layer 51 opposite to the silicon oxycarbide layer 13 side.
  • the release liner protects the surface of the pressure-sensitive adhesive layer 51, for example, until the gas barrier film 50 is attached to the polarizing plate 101 (see FIG. 7), which will be described later.
  • Plastic films made of acrylic, polyolefin, cyclic polyolefin, polyester or the like are preferably used as the constituent material of the release liner.
  • the thickness of the release liner is, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the surface of the release liner is preferably subjected to release treatment. Examples of release agent materials used in release treatment include silicone-based materials, fluorine-based materials, long-chain alkyl-based materials, fatty acid amide-based materials, and the like.
  • the transparent film substrate 11 is, for example, a layer that serves as a base for forming a gas barrier layer.
  • the transparent film substrate 11 may have flexibility.
  • the gas barrier layer can be formed by a roll-to-roll method, so the productivity of the gas barrier layer can be improved.
  • a gas barrier film in which a gas barrier layer is provided on a flexible film also has the advantage of being applicable to flexible devices and foldable devices.
  • the visible light transmittance of the transparent film substrate 11 is preferably 80% or higher, more preferably 90% or higher.
  • the thickness of the transparent film substrate 11 is not particularly limited, but from the viewpoint of strength, handleability, etc., it is preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 150 ⁇ m or less, and 30 ⁇ m or more and 100 ⁇ m or less. is more preferred.
  • resin material that constitutes the transparent film substrate 11 a resin material that is excellent in transparency, mechanical strength and thermal stability is preferable.
  • resin materials include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) Examples include acrylic resins, cyclic polyolefin resins (more specifically, norbornene resins, etc.), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • Corona treatment, plasma treatment, flame treatment, ozone treatment, glow treatment, saponification treatment, and coupling agent are applied to the main surface of the transparent film substrate 11 on which the gas barrier layer is formed, for the purpose of improving adhesion with the gas barrier layer.
  • Surface modification treatment such as treatment with may be applied.
  • the surface layer of the transparent film substrate 11 on which the gas barrier layer is formed may be a primer layer (not shown).
  • the primer layer When the surface layer on which the gas barrier layer is formed is the primer layer, the adhesion between the transparent film substrate 11 and the gas barrier layer tends to be high.
  • Examples of materials constituting the primer layer include metals (or semi-metals) such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, indium, titanium, tungsten, aluminum, zirconium, and palladium; alloys (or metalloids); oxides, fluorides, sulfides or nitrides of these metals (or metalloids);
  • the thickness of the primer layer is, for example, 1 nm or more and 20 nm or less, preferably 1 nm or more and 15 nm or less, and more preferably 1 nm or more and 10 nm or less.
  • the silicon oxycarbide layer 13 is a layer mainly having a gas barrier function in the gas barrier layer, and is a layer made of a material containing silicon, oxygen and carbon as main constituent elements.
  • the silicon oxycarbide layer 13 employs, for example, a chemical vapor deposition method (CVD method) as a film forming method, and uses a film forming apparatus shown in FIG. It is obtained by successively forming three layers 16 under the same conditions.
  • CVD method chemical vapor deposition method
  • FIG. 6 uses a film forming apparatus shown in FIG. It is obtained by successively forming three layers 16 under the same conditions.
  • the first layer 14, the second layer 15 and the third layer 16 are continuously formed under the same conditions, for example, using a transmission electron microscope.
  • the silicon oxycarbide layer 13 may contain a small amount of elements such as hydrogen and nitrogen that are taken in from the raw materials during film formation, the transparent film substrate 11 and the external environment.
  • the content of elements other than silicon, oxygen, and carbon is preferably 3 atomic % or less, more preferably 1 atomic % or less, and 0.5 atomic % or less. It is even more preferable to have Among the elements constituting the silicon oxycarbide layer 13, the total content of silicon, oxygen and carbon is preferably 90 atomic % or more, more preferably 95 atomic % or more, and 97 atomic % or more. More preferably, it may be 99 atomic % or more, 99.5 atomic % or more, or 99.9 atomic % or more.
  • the composition of the silicon oxycarbide contained in the silicon oxycarbide layer 13 is represented by the general formula SiO x Cy .
  • x in the general formula SiO x Cy may be simply referred to as "x”.
  • y in the general formula SiO x Cy may be simply described as "y”.
  • x and y refer to the composition ratio x and y at the central portion in the thickness direction of the silicon oxycarbide layer 13 (when 1/2 of the total etching time has elapsed).
  • total etching time means the time from the start to the end of the etching of the silicon oxycarbide layer 13 when the composition analysis in the thickness direction of the silicon oxycarbide layer 13 is performed by the same method as in Examples described later or a method based thereon. means the time of
  • x is preferably 1.5 or more and 2.5 or less, and y is preferably 0.01 or more and 0.5 or less, and x is 1. .8 or more and 2.2 or less, and y is more preferably 0.05 or more and 0.2 or less.
  • the method for forming the silicon oxycarbide layer 13 is not particularly limited, and may be a dry coating method or a wet coating method.
  • the silicon oxycarbide layer 13 is preferably formed by a CVD method, more preferably by a plasma CVD method.
  • a film forming roll constitutes one or both electrodes of a pair of opposed electrodes, and a thin film is formed on the film when the film runs on the film forming rolls. be.
  • two film-forming rolls constitute a pair of opposing electrodes, a thin film is formed on each of the film-forming rolls, so the film-forming speed can be doubled.
  • the expression "above” when explaining the film forming method by the CVD method has no relation to the direction in the CVD film forming apparatus, and has the same meaning as "in contact with”.
  • an organosilicon compound is preferable because it has low toxicity and can suppress the incorporation of nitrogen into the film, and hexamethyldisilazane.
  • organosilicon compounds hexamethyldisiloxane is particularly preferred because it can suppress incorporation of impurities into the film and can form a film with high transparency and gas barrier properties.
  • organosilicon compound as the silicon source also serves as a carbon source
  • an organic compound containing no silicon may be used as the carbon source in addition to the organosilicon compound.
  • Oxygen sources include oxygen, carbon monoxide, carbon dioxide, and the like. Oxygen (oxygen gas) is preferable as the oxygen source from the viewpoint of handleability.
  • the introduction amount (flow rate) of oxygen is set to the introduction amount (flow rate) of hexamethyldisiloxane (gas).
  • the ratio is preferably 10 times or more, and may be 15 times or more or 20 times or more.
  • the amount of oxygen introduced is preferably 200 times or less, and preferably 100 times or less or 50 times or less, the volume ratio of the amount of hexamethyldisiloxane (gas) introduced. good too.
  • the composition of the silicon oxycarbide layer 13 can be appropriately adjusted by changing the introduction amount of the oxygen source (or the oxygen source and the carbon source) relative to the silicon source.
  • a gas other than the silicon source and the oxygen source may be used as the introduced gas when forming a film by the CVD method.
  • a carrier gas may be used to vaporize the liquid and introduce it into the chamber (vacuum chamber).
  • an oxygen source may be mixed with a carrier gas and introduced into the vacuum chamber, and a discharge gas may be used to stabilize the plasma discharge.
  • Carrier gas and discharge gas include rare gases such as helium, argon, neon, and xenon, and hydrogen. As the carrier gas and the discharge gas, rare gases are preferable from the viewpoint of reducing the amount of hydrogen taken into the film and increasing the transparency.
  • the substrate temperature (temperature of the surface of the film-forming roll) is set, for example, within the range of -20°C or higher and 500°C or lower.
  • the substrate temperature (film substrate temperature) when forming a gas barrier layer (for example, silicon oxycarbide layer 13) on a film substrate is preferably 150° C. or less from the viewpoint of the heat resistance of the film substrate.
  • the temperature is preferably 100° C. or lower, and more preferably 100° C. or lower.
  • the pressure in the film forming chamber (inside the vacuum chamber) is, for example, 0.001 Pa or more and 50 Pa or less.
  • An AC power supply for example, is used as the power supply for plasma generation.
  • the frequency of the power supply in roll-to-roll CVD film formation is generally in the range of 50 kHz to 500 kHz.
  • the applied power in roll-to-roll CVD film formation is generally 0.1 kW or more and 10 kW or less.
  • the silicon oxycarbide layer 13 preferably has a density of 1.80 g/cm 3 or more, more preferably 1.90 g/cm 3 or more. 00 g/cm 3 or more and 2.40 g/cm 3 or less, 2.05 g/cm 3 or more and 2.35 g/cm 3 or less, or 2.10 g/cm 3 or more and 2.30 g/cm 3 or less.
  • the thickness of the silicon oxycarbide layer 13 is preferably 10 nm or more and 500 nm or less, more preferably 50 nm or more and 400 nm or less, and 80 nm or more and 300 nm or less. is more preferred.
  • the total thickness of the gas barrier layer is 20 nm or more and 1000 nm or less from the viewpoint of achieving both high gas barrier properties and transparency. preferably 50 nm or more and 800 nm or less.
  • the hard coat layer 31 contains, for example, a binder resin and nanoparticles.
  • a binder resin curable resins such as thermosetting resins, photocurable resins and electron beam curable resins are preferably used.
  • curable resins include polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, and oxetane resins. mentioned.
  • One or more curable resins can be used.
  • acrylic resins acrylic urethane resins, and epoxy resins are preferable because they have high hardness and can be photocured, and acrylic resins and acrylic urethane resins. More preferably, one or more selected from the group consisting of
  • the number average primary particle diameter of the nanoparticles contained in the hard coat layer 31 is preferably 15 nm or more, more preferably 20 nm or more, from the viewpoint of enhancing dispersibility in the binder resin. From the viewpoint of forming fine irregularities that contribute to improved adhesion, the number average primary particle diameter of the nanoparticles contained in the hard coat layer 31 is preferably 90 nm or less, more preferably 70 nm or less. It is more preferably 50 nm or less.
  • Inorganic oxides are preferable as materials for nanoparticles.
  • examples of inorganic oxides include metal (or metalloid) oxides such as silica, titanium oxide, aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, cerium oxide, and magnesium oxide.
  • the inorganic oxide may be a composite oxide of multiple (semi)metals.
  • silica is preferable because it has a high adhesion improving effect. That is, silica particles (nanosilica particles) are preferable as the nanoparticles.
  • a functional group such as an acrylic group or an epoxy group may be introduced into the surface of the inorganic oxide particles as nanoparticles for the purpose of enhancing adhesion and affinity with the resin.
  • the amount of the nanoparticles in the hard coat layer 31 is preferably 5 parts by weight or more, 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. may be If the amount of the nanoparticles is 5 parts by weight or more, the adhesion to the gas barrier layer formed on the hard coat layer 31 can be improved.
  • the upper limit of the amount of nanoparticles in the hard coat layer 31 is, for example, 90 parts by weight, preferably 80 parts by weight, and preferably 70 parts by weight with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. good too.
  • the thickness of the hard coat layer 31 is not particularly limited, but is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, in order to improve the adhesion to the gas barrier layer while achieving high hardness. It is more preferably 2.0 ⁇ m or more, and even more preferably 3.0 ⁇ m or more. On the other hand, the thickness of the hard coat layer 31 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 12 ⁇ m or less, in order to suppress a decrease in strength due to cohesive failure.
  • the hard coat layer 31 is formed by applying the hard coat composition onto the transparent film substrate 11, and optionally removing the solvent and curing the resin.
  • the hard coat composition contains, for example, the above binder resin and nanoparticles, and optionally contains a solvent capable of dissolving or dispersing these components.
  • the resin component in the hard coat composition is a curable resin
  • the hard coat composition preferably contains an appropriate polymerization initiator.
  • the resin component in the hard coat composition is a photocurable resin
  • the hard coat composition preferably contains a photopolymerization initiator.
  • the hard coat composition includes particles (microparticles) having a number average primary particle diameter of 1.0 ⁇ m or more, leveling agents, viscosity modifiers (thixotropic agents, thickeners, etc.), antistatic agents, blocking agents, Additives such as inhibitors, dispersants, dispersion stabilizers, antioxidants, UV absorbers, antifoaming agents, surfactants and lubricants may be included.
  • any suitable method such as bar coating, roll coating, gravure coating, rod coating, slot orifice coating, curtain coating, fountain coating, comma coating, etc. can be used. can be adopted.
  • Adhesive layer 51 As a constituent material of the adhesive layer 51, an adhesive having a high visible light transmittance is preferably used.
  • adhesives constituting the adhesive layer 51 include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate-vinyl chloride copolymers, modified polyolefins, epoxy resins, and fluorine resins. , natural rubber, synthetic rubber or the like as a base polymer can be appropriately selected and used.
  • the thickness of the adhesive layer 51 is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the refractive index of the adhesive layer 51 is, for example, 1.4 or more and 1.5 or less.
  • the water vapor transmission rate of the gas barrier film is preferably 0.20 g/m 2 ⁇ day or less, more preferably 0.10 g/m 2 ⁇ day or less, as a standardized value based on a gas barrier film having a gas barrier layer with a thickness of 100 nm. is more preferable. From the viewpoint of suppressing deterioration of the protection object such as the organic EL element, the lower the water vapor transmission rate, the better.
  • the lower limit of the water vapor transmission rate of the gas barrier film is not particularly limited, it is generally 1.0 ⁇ 10 ⁇ 5 g/m 2 ⁇ day as the normalized value.
  • the water vapor transmission rate (WVTR) is measured under conditions of a temperature of 40° C. and a relative humidity difference of 90%, according to the description in JIS K 7129:2008 Annex B (Mocon method).
  • the light transmittance of the gas barrier film is preferably 80% or higher, more preferably 90% or higher.
  • Light transmittance is the Y value of the CIE tristimulus values specified in JlS Z8781-3:2016.
  • the flex resistance of the gas barrier film can be evaluated by the flex test described in Examples below.
  • the main surface 16a (see FIG. 2) of the silicon oxycarbide layer 13 opposite to the transparent film substrate 11 side should have an arithmetic mean roughness Ra of 1.00 nm or less.
  • the method for measuring the arithmetic mean roughness Ra is the same method as in Examples described later or a method based thereon.
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited, it is, for example, 0.50 nm.
  • the arithmetic average roughness Ra can be adjusted, for example, by changing at least one of the power applied in the CVD film formation and the introduction amount of the organosilicon compound in the CVD film formation.
  • the main surface 16a (see FIG. 2) of the silicon oxycarbide layer 13 opposite to the transparent film substrate 11 side should have a hardness of 2.00 GPa or more. It is preferably 2.10 GPa or more, more preferably 2.20 GPa or more.
  • the method for measuring the hardness is the same method as in Examples described later or a method based thereon.
  • the upper limit of the hardness is not particularly limited, it is, for example, 2.50 GPa.
  • the hardness can be adjusted, for example, by changing the thickness ratio of the third layer. The hardness tends to increase as the third layer thickness ratio increases.
  • the method for manufacturing the gas barrier film according to the second embodiment is a suitable method for manufacturing the gas barrier film according to the first embodiment described above. Therefore, descriptions of components that overlap with those of the above-described first embodiment may be omitted.
  • an organosilicon compound eg, hexamethyldisiloxane
  • a step of introducing oxygen and forming a silicon oxycarbide layer by a CVD method is provided.
  • FIG. 6 is a configuration diagram showing an example of a film forming apparatus used in the method for producing a gas barrier film according to the second embodiment.
  • the film forming apparatus shown in FIG. 6 includes a delivery roll 71, transport rolls 72, 73, 74 and 75, film forming rolls 76 and 77 as a pair of opposing electrodes, a winding roll 78, and a film forming gas. and a gas supply port 79 for A plurality of gas supply ports 79 may be provided.
  • a magnetic field generator (not shown) is installed inside each of the film forming rolls 76 and 77 .
  • at least the film forming rolls 76 and 77, the gas supply port 79, and the power source for plasma generation are arranged in a vacuum chamber (not shown).
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • the film forming rolls 76 and 77 are each provided with a power source for plasma generation so that the pair of film forming rolls (film forming rolls 76 and 77) can function as a pair of opposing electrodes. (not shown). Therefore, in the film forming apparatus shown in FIG. 6, by supplying power from the plasma generation power supply, it is possible to discharge the space between the film forming rolls 76 and 77, thereby forming a film. Plasma can be generated in the space between the roll 76 and the film forming roll 77 .
  • the central axes of the pair of film forming rolls (film forming rolls 76 and 77) should be substantially parallel on the same plane. are preferably arranged in the same direction.
  • the gas barrier film according to the first embodiment can be easily formed by adopting various conditions in the plasma CVD method exemplified in the explanation of the gas barrier film according to the first embodiment. can be manufactured.
  • the above-described gas barrier film 10 see FIG.
  • a film forming gas (more specifically, an organic silicon compound, oxygen, etc.) is supplied into the vacuum chamber while a pair of film forming rolls ( By generating a plasma discharge between the film-forming rolls 76 and 77), the film-forming gas is decomposed by the plasma, and in both the film-forming region near the film-forming roll 76 and the film-forming region near the film-forming roll 77, A silicon oxycarbide layer 13 (see FIG. 1) is formed on a transparent film substrate 11 (see FIG. 1).
  • a film forming gas more specifically, an organic silicon compound, oxygen, etc.
  • the decomposition amount of the vaporized organosilicon compound is relatively large at a location relatively far from the gas supply port 79 .
  • the amount of decomposition of the vaporized organosilicon compound is relatively small at locations relatively close to the gas supply port 79 . Therefore, the silicon oxycarbide layer 13 obtained using the film forming apparatus shown in FIG. 6 has a relatively high carbon content in the central portion in the thickness direction of the layer.
  • the transparent film substrate 11 is conveyed by the delivery roll 71, the conveying roll 72, and the like, and the transparent film substrate 11 is formed by a roll-to-roll continuous film formation process. A silicon oxycarbide layer 13 is formed thereon.
  • film deposition apparatus conditions At least one of the embracing angles (hereinafter collectively referred to as “film deposition apparatus conditions”) is changed, the film formation region near the film formation roll 76 and the film formation roll 77 near the film formation roll 77 change.
  • the distribution of the introduced film forming gas changes along the circumferential direction of the film forming roll. Therefore, by changing at least one of the film forming apparatus conditions, the carbon content of the silicon oxycarbide layer 13 (see FIG. 1) can be changed in the thickness direction.
  • the "holding angle” indicates the range of angles in which the film contacts the outer peripheral surface of the film forming roll in the circumferential direction, expressed by the central angle of the film forming roll.
  • the height H of the gas supply port 79 has a high correlation with the first layer thickness ratio and the third layer thickness ratio.
  • the height H of the gas supply port 79 is preferably 100 mm or more and 200 mm or less. , 150 mm or more and 180 mm or less.
  • the height H of each of the plurality of gas supply ports 79 may be the same or different. It should be noted that the first layer thickness ratio and the third layer thickness ratio are determined when the silicon oxycarbide layer 13 is formed using the film forming apparatus shown in FIG. , and the applied power.
  • a polarizing plate with a gas barrier layer according to the third embodiment includes the gas barrier film according to the first embodiment and a polarizer.
  • FIG. 7 is a cross-sectional view showing an example of a polarizing plate with a gas barrier layer according to the third embodiment.
  • a polarizing plate 100 with a gas barrier layer shown in FIG. 7 has the above-described gas barrier film 50 and a polarizing plate 101 .
  • the polarizing plate 101 is arranged on the main surface 51a of the adhesive layer 51 opposite to the silicon oxycarbide layer 13 side. That is, the polarizing plate 101 and the silicon oxycarbide layer 13 are bonded together with the adhesive layer 51 interposed therebetween.
  • the polarizing plate 100 with a gas barrier layer shown in FIG. 7 has a gas barrier film 50 (gas barrier film 40)
  • the gas barrier film of the polarizing plate with a gas barrier layer according to the third embodiment is not limited to the gas barrier film 50.
  • it may be the gas barrier film 10, the gas barrier film 20, or the gas barrier film 30.
  • the polarizing plate 101 includes a polarizer (not shown), and generally transparent protective films (not shown) as polarizer protective films are laminated on both main surfaces of the polarizer.
  • a transparent protective film may not be provided on one principal surface or both principal surfaces of the polarizer.
  • a polarizer for example, a hydrophilic polymer film such as a polyvinyl alcohol film is uniaxially stretched after adsorbing a dichroic substance such as iodine or a dichroic dye.
  • a transparent resin film composed of a cellulose resin, a cyclic polyolefin resin, an acrylic resin, a phenylmaleimide resin, a polycarbonate resin, or the like is preferably used.
  • a gas barrier film may be used as the transparent protective film.
  • the polarizing plate 101 may include an optical functional film laminated on one or both main surfaces of a polarizer via an appropriate adhesive layer or pressure-sensitive adhesive layer as necessary.
  • the optical functional film include retardation plates, viewing angle widening films, viewing angle limiting (peep prevention) films, brightness improving films, and the like.
  • the polarizing plate 101 and the silicon oxycarbide layer 13 are bonded together with the adhesive layer 51 interposed therebetween.
  • the configuration is not limited to that shown in FIG. 7, and for example, the gas barrier layer may be directly provided on the polarizer.
  • the gas barrier layer may be directly provided on the transparent protective film arranged adjacent to the polarizer.
  • the polarizing plate with a gas barrier layer according to the third embodiment includes the gas barrier film according to the first embodiment, it has excellent gas barrier properties while ensuring flexibility.
  • An image display device includes the gas barrier film according to the first embodiment or the polarizing plate with a gas barrier layer according to the third embodiment, and an image display cell.
  • FIG. 8 is a cross-sectional view showing an example of an image display device according to the fourth embodiment.
  • An image display device 200 shown in FIG. 8 includes a gas barrier layer-attached polarizing plate 100 having a gas barrier film 50 and an image display cell 202 .
  • the image display cell 202 includes a substrate 203 and display elements 204 provided on the substrate 203 .
  • the gas barrier layer 41 and the display element 204 are bonded together with the adhesive layer 201 interposed therebetween.
  • the image display device 200 shown in FIG. 8 has the gas barrier film 50 (gas barrier film 40)
  • the gas barrier film of the image display device according to the fourth embodiment is not limited to the gas barrier film 50.
  • the gas barrier film 10 it may be the gas barrier film 20 or the gas barrier film 30;
  • the same adhesives as those exemplified as the adhesive constituting the adhesive layer 51 described above can be used.
  • the adhesive that forms the adhesive layer 201 and the adhesive that forms the adhesive layer 51 may be of the same type or of different types.
  • the preferable range of the thickness of the adhesive layer 201 is, for example, the same as the preferable range of the thickness of the adhesive layer 51 described above.
  • the thickness of the adhesive layer 201 and the thickness of the adhesive layer 51 may be the same or different.
  • a glass substrate or a plastic substrate is used as the substrate 203 .
  • the substrate 203 does not have to be transparent, and a highly heat-resistant film such as a polyimide film may be used as the substrate 203 .
  • Examples of the display element 204 include an organic EL element, a liquid crystal element, an electrophoretic display element (electronic paper), and the like.
  • a touch panel sensor (not shown) may be arranged on the viewing side of the image display cell 202 .
  • the image display cell 202 is, for example, top emission type.
  • the organic EL element includes, for example, a metal electrode (not shown), an organic light emitting layer (not shown), and a transparent electrode (not shown) in this order from the substrate 203 side.
  • the organic light-emitting layer may include an electron-transporting layer, a hole-transporting layer, etc. in addition to the organic layer that itself functions as a light-emitting layer.
  • the transparent electrode is a metal oxide layer or a metal thin film and transmits light from the organic light emitting layer.
  • a back sheet (not shown) may be provided on the back side of the substrate 203 for the purpose of protecting and reinforcing the substrate 203 .
  • the metal electrode of the organic EL element is light reflective. Therefore, when external light enters the inside of the image display cell 202, the light is reflected by the metal electrodes, and the reflected light is visually recognized as a mirror surface from the outside.
  • a circularly polarizing plate as the polarizing plate 101 on the viewing side of the image display cell 202, the re-emission of light reflected by the metal electrode to the outside is prevented, and the visibility and design of the screen of the image display device 200 are improved. can improve sexuality.
  • the circularly polarizing plate has, for example, a retardation film on the main surface of the polarizer on the image display cell 202 side.
  • the transparent protective film arranged adjacent to the polarizer may be a retardation film.
  • the transparent film substrate 11 of the gas barrier film 50 may be a retardation film. Lamination of the polarizer and the retardation film when the retardation film has a retardation of ⁇ / 4 and the angle formed by the slow axis direction of the retardation film and the absorption axis direction of the polarizer is 45 °
  • the body functions as a circular polarizer for suppressing re-emission of reflected light from the metal electrode.
  • the retardation film that constitutes the circularly polarizing plate may be a laminate of two or more layers of films.
  • a broadband circularly polarizing plate that functions as a circularly polarizing plate over a wide band of visible light is obtained. can get.
  • the image display cell 202 may be of a bottom emission type in which a transparent electrode, an organic light emitting layer and a metal electrode are laminated in this order on a substrate.
  • a transparent substrate is used, and the transparent substrate is arranged on the viewing side.
  • a gas barrier film may be used as the transparent substrate.
  • the image display device includes the gas barrier film according to the first embodiment, it is possible to suppress deterioration of the display element caused by gas (for example, water vapor).
  • gas for example, water vapor
  • Example 1 A 40 ⁇ m-thick cyclic polyolefin film (“Zeonor (registered trademark) film ZF-14” manufactured by Nippon Zeon Co., Ltd.) as a transparent film substrate was set in a film forming apparatus, and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 3 Pa. . Next, while the film was running, a silicon oxycarbide layer (gas barrier layer) having a thickness of 177 nm was formed by CVD at a substrate temperature of 12° C. to obtain a gas barrier film of Example 1.
  • the frequency of the power source for plasma generation was set to 80 kHz, and plasma was generated by discharging under the conditions of applied power of 0.6 kW, and hexamethyldisiloxane (HMDSO): 15 sccm. , and oxygen: under flow conditions of 420 sccm, a gas was introduced between the film-forming rolls (between the electrodes) in the vacuum chamber, and the film was formed at a pressure of 1.0 Pa. Note that HMDSO was vaporized by heating and introduced into the vacuum chamber.
  • HMDSO hexamethyldisiloxane
  • Example 2 Same as Example 1 except that the applied power was changed to 1.0 kW, the HMDSO flow condition was changed to 25 sccm, the oxygen flow condition was changed to 700 sccm, and the thickness of the silicon oxycarbide layer was changed to 176 nm.
  • a gas barrier film of Example 2 was produced by the method.
  • Example 3 A gas barrier film of Example 3 was produced in the same manner as in Example 1, except that the applied power was changed to 0.8 kW and the thickness of the silicon oxycarbide layer was changed to 168 nm.
  • Example 4 A gas barrier film of Example 4 was produced in the same manner as in Example 1, except that the HMDSO flow rate condition was changed to 20 sccm and the thickness of the silicon oxycarbide layer was changed to 174 nm.
  • Comparative Example 1 The applied power was changed to 2.0 kW, the HMDSO flow rate condition was changed to 100 sccm, the oxygen flow rate condition was changed to 1400 sccm, the thickness of the silicon oxycarbide layer was changed to 218 nm, and the pressure during film formation was changed to 4.0 sccm.
  • a gas barrier film of Comparative Example 1 was produced in the same manner as in Example 1, except that the pressure was changed to 0 Pa.
  • Comparative Example 2 The applied power was changed to 2.0 kW, the HMDSO flow rate condition was changed to 50 sccm, the oxygen flow rate condition was changed to 700 sccm, the thickness of the silicon oxycarbide layer was changed to 203 nm, and the pressure during film formation was changed to 1.0 sccm.
  • a gas barrier film of Comparative Example 2 was produced in the same manner as in Example 1, except that the pressure was changed to 6 Pa.
  • Comparative Example 3 A gas barrier film of Comparative Example 3 was produced in the same manner as in Example 1, except that the applied power was changed to 1.0 kW, the flow rate condition of oxygen was changed to 700 sccm, and the thickness of the gas barrier layer was changed to 109 nm.
  • composition analysis of gas barrier layer Using an X-ray photoelectron spectrometer equipped with an Ar ion gun (“Quantera SXM” manufactured by ULVAC-Phi, Inc.), the gas barrier layer was etched from the main surface of the gas barrier layer opposite to the transparent film substrate side under the following conditions. , the composition analysis in the thickness direction of the gas barrier layer was performed by XPS, and the content of each element (Si, O, N and C) was calculated at each measurement point in the thickness direction. Peaks corresponding to the binding energies of 2p of Si, 1s of O, 1s of N, and 1s of C obtained from the wide scan spectrum were used to calculate the content of each element.
  • the first layer thickness ratio and the third layer thickness ratio were calculated from the content ratio of each element calculated at each measurement point in the thickness direction. Detailed measurement conditions are shown below. Since the surface layer of the gas barrier layer tends to have a large carbon content due to contamination, the content of each element was calculated assuming that the carbon content was 0 atomic % at the measurement points at the start of etching.
  • the water vapor transmission rate (WVTR) of each gas barrier film was measured under the conditions of a temperature of 40° C. and a relative humidity difference of 90% according to the description in JIS K 7129:2008 Annex B (Mocon method). Then, the obtained WVTR was converted into a value (hereinafter sometimes referred to as "normalized WVTR") normalized based on the gas barrier layer having a thickness of 100 nm.
  • the normalized WVTR in Example 1 is a value calculated by multiplying the measured value (WVTR) obtained by the above measuring method by 177/100.
  • the light transmittance (Y value) of each gas barrier film was measured with a spectrophotometer ("U4100" manufactured by Hitachi High-Tech Science).
  • Arithmetic mean roughness Ra Using an atomic force microscope (AFM) (“MultiMode8” manufactured by Bruker), the gas barrier layer surface of each gas barrier film (specifically, the gas barrier layer opposite to the transparent film substrate side) was measured based on JIS R 1683:2014. The shape of the main surface of the side) was measured. Then, from the results of the shape measurement, the arithmetic mean roughness Ra defined in JIS B 0601:2013 was determined for each gas barrier layer surface.
  • AFM atomic force microscope
  • Indentation speed 4 nm/sec Indentation depth: 20 nm Withdrawal speed: 4 nm/sec Indenter used: Berkovich indenter (tip shape: triangular pyramid, edge-to-edge angle: 115°)
  • Each gas barrier film was cut into a strip having a width of 25 mm and a length of 150 mm to obtain a test piece for evaluation of bending resistance.
  • the test piece was set in a bending tester ("DLDMLH-FS" manufactured by Yuasa System Co., Ltd.), and bending test was performed 1000 times under the conditions of bending diameter: 6 mm or 5 mm, bending speed: 1 time/second.
  • bending diameter refers to the diameter of the inner circumference of the arc-shaped bent portion when the test piece is bent in an arc-shaped manner in the bending test.
  • the content of each element Si, O, N and C
  • the thickness of the first layer the thickness of the second layer
  • the thickness of the third layer the thickness ratio of the first layer
  • the third The layer thickness ratio, C max , C min , C max ⁇ C min , normalized WVTR, light transmittance, arithmetic mean roughness Ra of the gas barrier layer surface, hardness of the gas barrier layer surface, and the evaluation results of bending resistance are shown in the table. 2.
  • the gas barrier layer was formed under the conditions of an acceleration voltage of 200 kV and a magnification of 200,000 times using a transmission electron microscope ("JEM-2800" manufactured by JEOL Ltd.).
  • the first layer thickness ratio and the third layer thickness ratio were both 10% or more.
  • C max -C min was 2.0 or more.
  • Examples 1 to 4 As shown in Table 1, in Examples 1 to 4, the normalized WVTR was 0.20 g/m 2 ⁇ day or less. Therefore, Examples 1 to 4 were excellent in gas barrier properties. In Examples 1 to 4, the evaluation of flex resistance was A or B. Therefore, in Examples 1 to 4, bending resistance could be secured.
  • the first layer thickness ratio was less than 10%.
  • both the first layer thickness ratio and the third layer thickness ratio were less than 10%.
  • the gas barrier layer did not contain carbon.
  • Comparative Examples 1 to 3 As shown in Table 2, in Comparative Examples 1 to 3, the normalized WVTR exceeded 0.20 g/m 2 ⁇ day. Therefore, Comparative Examples 1 to 3 were not excellent in gas barrier properties. In Comparative Example 3, the evaluation of bending resistance was C. Therefore, in Comparative Example 3, bending resistance could not be ensured.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

ガスバリアフィルム(10)は、透明フィルム基材(11)とガスバリア層(12)とを有する。ガスバリア層(12)は、酸炭化ケイ素層(13)を有する。酸炭化ケイ素層(13)は、第1層(14)、第2層(15)及び第3層(16)を有する。第1層(14)中の炭素含有率及び第3層(16)中の炭素含有率は、0.1原子%未満である。第2層(15)中の炭素含有率は、0.1原子%以上である。第1層(14)の厚み比率及び第3層(16)の厚み比率は、10%以上である。酸炭化ケイ素層(13)において、炭素含有率が最大値を示す箇所の当該炭素含有率をCmax原子%とし、炭素含有率が最小値を示す箇所の当該炭素含有率をCmin原子%としたとき、CmaxからCminを引いた値が2.0以上である。

Description

ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置
 本発明は、ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置に関する。
 画像表示装置の軽量化・薄型化・フレキシブル化に伴って、ガラス基板の代わりに樹脂フィルム基板が用いられるようになっている。樹脂フィルムは、ガラスに比べて水蒸気や酸素等のガス透過性が高いため、これらのガスに起因する表示素子の劣化を抑制する目的で、ガスバリア層を備えたガスバリアフィルムを用いることが提案されている。
 有機EL素子は、わずかな水分の浸入に起因して「ダークスポット」と呼ばれる欠点が生じる場合があり、高いガスバリア性(水蒸気遮断性)が要求される。ガスバリア性に優れる材料として、窒化ケイ素(SiN)及び酸窒化ケイ素(SiON)が知られている。
 また、可撓性基板上に有機EL素子等の表示素子を形成した折り曲げ可能な表示装置(フレキシブルディスプレイ、フォルダブルディスプレイ等)が実用化されている。このため、ガスバリアフィルムは、折り曲げた際、ガスバリア層にクラックが生じないこと(耐屈曲性)が要求されている。
 例えば、特許文献1では、透明性及び耐屈曲性に優れるガスバリアフィルムとして、窒化ケイ素層と酸化ケイ素層とを備えるガスバリアフィルムが提案されている。
国際公開第2019/187978号
 しかしながら、特許文献1に開示されるガスバリアフィルムには、耐屈曲性を確保しつつガスバリア性を向上させる点で、改善の余地がある。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、耐屈曲性を確保しつつガスバリア性に優れるガスバリアフィルム及びその製造方法、並びに当該ガスバリアフィルムを用いたガスバリア層付き偏光板及び画像表示装置を提供することである。
<本発明の態様>
 本発明には、以下の態様が含まれる。
[1]透明フィルム基材と、前記透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有するガスバリアフィルムであって、
 前記ガスバリア層は、構成元素としてケイ素、酸素及び炭素を含む酸炭化ケイ素層を有し、
 前記酸炭化ケイ素層は、前記透明フィルム基材側から第1層、第2層及び第3層をこの順に有し、
 前記第1層中の炭素含有率、及び前記第3層中の炭素含有率が、ケイ素、酸素及び炭素の合計100原子%に対して、いずれも0.1原子%未満であり、
 前記第2層中の炭素含有率が、ケイ素、酸素及び炭素の合計100原子%に対して、0.1原子%以上であり、
 前記第1層の厚み比率、及び前記第3層の厚み比率が、前記第1層、前記第2層及び前記第3層の合計厚み100%に対して、いずれも10%以上であり、
 X線光電子分光法を用いて前記酸炭化ケイ素層の厚み方向における組成分析を行った際に、ケイ素、酸素及び炭素の合計100原子%に対する炭素含有率が最大値を示す箇所の当該炭素含有率をCmax原子%とし、ケイ素、酸素及び炭素の合計100原子%に対する炭素含有率が最小値を示す箇所の当該炭素含有率をCmin原子%としたとき、CmaxからCminを引いた値が2.0以上である、ガスバリアフィルム。
[2]前記第1層の厚み比率、及び前記第3層の厚み比率が、前記第1層、前記第2層及び前記第3層の合計厚み100%に対して、いずれも45%以下である、前記[1]に記載のガスバリアフィルム。
[3]前記Cmaxから前記Cminを引いた値が6.0以下である、前記[1]又は[2]に記載のガスバリアフィルム。
[4]前記酸炭化ケイ素層の前記透明フィルム基材側とは反対側の主面の算術平均粗さRaが、1.00nm以下である、前記[1]~[3]のいずれか一つに記載のガスバリアフィルム。
[5]前記酸炭化ケイ素層の前記透明フィルム基材側とは反対側の主面の硬度が、2.00GPa以上である、前記[1]~[4]のいずれか一つに記載のガスバリアフィルム。
[6]前記酸炭化ケイ素層の厚みが、10nm以上500nm以下である、前記[1]~[5]のいずれか一つに記載のガスバリアフィルム。
[7]前記透明フィルム基材と前記ガスバリア層との間に配置された、個数平均一次粒子径1.0μm未満のシリカ粒子を含むハードコート層を更に有する、前記[1]~[6]のいずれか一つに記載のガスバリアフィルム。
[8]前記ガスバリア層の前記透明フィルム基材側とは反対側に配置された粘着剤層を更に有する、前記[1]~[7]のいずれか一つに記載のガスバリアフィルム。
[9]前記[1]~[8]のいずれか一つに記載のガスバリアフィルムの製造方法であって、
 一対の対向電極として一対の成膜ロールを有する成膜装置のチャンバー内に、有機ケイ素化合物及び酸素を導入して、化学気相成長法により前記酸炭化ケイ素層を形成する、ガスバリアフィルムの製造方法。
[10]前記[1]~[8]のいずれか一つに記載のガスバリアフィルムと、偏光子とを備える、ガスバリア層付き偏光板。
[11]前記[1]~[8]のいずれか一つに記載のガスバリアフィルムと、画像表示セルとを備える、画像表示装置。
[12]前記[10]に記載のガスバリア層付き偏光板と、画像表示セルとを備える、画像表示装置。
[13]前記画像表示セルは、有機EL素子を含む、前記[11]又は[12]に記載の画像表示装置。
 本発明によれば、耐屈曲性を確保しつつガスバリア性に優れるガスバリアフィルム及びその製造方法、並びに当該ガスバリアフィルムを用いたガスバリア層付き偏光板及び画像表示装置を提供できる。
本発明に係るガスバリアフィルムの一例を示す断面図である。 本発明に係るガスバリアフィルムの他の例を示す断面図である。 本発明に係るガスバリアフィルムの他の例を示す断面図である。 本発明に係るガスバリアフィルムの他の例を示す断面図である。 本発明に係るガスバリアフィルムの他の例を示す断面図である。 本発明に係るガスバリアフィルムの製造方法に使用される成膜装置の一例を示す構成図である。 本発明に係るガスバリア層付き偏光板の一例を示す断面図である。 本発明に係る画像表示装置の一例を示す断面図である。
 以下、本発明の好適な実施形態について説明する。まず、本明細書中で使用される用語について説明する。粒子の個数平均一次粒子径は、何ら規定していなければ、走査型電子顕微鏡及び画像処理ソフトウェア(例えば、アメリカ国立衛生研究所製「ImageJ」)を用いて測定した、100個の一次粒子の円相当径(ヘイウッド径:一次粒子の投影面積と同じ面積を有する円の直径)の個数平均値である。
 層状物(より具体的には、透明フィルム基材、ガスバリア層、酸炭化ケイ素層、第1層、第2層、第3層、ハードコート層、粘着剤層、偏光子等)の「主面」とは、層状物の厚み方向に直交する面をさす。ガスバリア層、及びガスバリア層を構成する各層(より具体的には、酸炭化ケイ素層、第1層、第2層、第3層等)の厚みは、X線光電子分光法を用いて層の厚み方向における組成を分析した際の層のエッチング時間を、SiOに対するスパッタ速度の値を用いて換算した値である。ガスバリア層及びガスバリア層を構成する各層以外の層状物の「厚み」の数値は、「平均厚み」である。層状物の平均厚みは、層状物を厚み方向に切断した断面を電子顕微鏡で観察し、断面画像から無作為に測定箇所を10箇所選択し、選択した10箇所の測定箇所の厚みを測定して得られた10個の測定値の算術平均値である。
 「屈折率」とは、温度23℃の雰囲気下における波長550nmの光に対する屈折率をいう。流量の単位「sccm(Standard Cubic Centimeter per Minute)」は、標準状態(温度:0℃、圧力:101.3kPa)における流量の単位「mL/分」である。
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰り返し単位が化合物又はその誘導体に由来することを意味する。また、アクリル及びメタクリルを包括的に「(メタ)アクリル」と総称する場合がある。
 以下の説明において参照する図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の大きさ、個数、形状等は、図面作成の都合上から実際とは異なる場合がある。また、説明の都合上、後に説明する図面において、先に説明した図面と同一構成部分については、同一符号を付して、その説明を省略する場合がある。
<第1実施形態:ガスバリアフィルム>
 本発明の第1実施形態に係るガスバリアフィルムは、透明フィルム基材と、透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有する。ガスバリア層は、構成元素としてケイ素、酸素及び炭素を含む酸炭化ケイ素層を有する。酸炭化ケイ素層は、透明フィルム基材側から第1層、第2層及び第3層をこの順に有する。第1層中の炭素含有率は、ケイ素、酸素及び炭素の合計100原子%に対して、0.1原子%未満である。第3層中の炭素含有率は、ケイ素、酸素及び炭素の合計100原子%に対して、0.1原子%未満である。第2層中の炭素含有率は、ケイ素、酸素及び炭素の合計100原子%に対して、0.1原子%以上である。第1層の厚み比率は、第1層、第2層及び第3層の合計厚み100%に対して、10%以上である。第3層の厚み比率は、第1層、第2層及び第3層の合計厚み100%に対して、10%以上である。X線光電子分光法を用いて酸炭化ケイ素層の厚み方向における組成分析を行った際に、ケイ素、酸素及び炭素の合計100原子%に対する炭素含有率が最大値を示す箇所の当該炭素含有率をCmax原子%とし、ケイ素、酸素及び炭素の合計100原子%に対する炭素含有率が最小値を示す箇所の当該炭素含有率をCmin原子%としたとき、CmaxからCminを引いた値が2.0以上である。なお、第1実施形態では、第1層の厚み比率及び第3層の厚み比率が、同じ値であってもよく、互いに異なる値であってもよい。
 X線光電子分光法を用いて酸炭化ケイ素層の厚み方向における組成分析を行う方法は、後述する実施例と同じ方法又はそれに準ずる方法である。以下、X線光電子分光法を「XPS」と記載することがある。また、ケイ素、酸素及び炭素の合計を100原子%としたときの炭素含有率を、単に「炭素含有率」と記載することがある。また、第1層、第2層及び第3層の合計厚み100%に対する、第1層の厚み比率を、単に「第1層厚み比率」と記載することがある。また、第1層、第2層及び第3層の合計厚み100%に対する、第3層の厚み比率を、単に「第3層厚み比率」と記載することがある。また、XPSを用いて酸炭化ケイ素層の厚み方向における組成分析を行った際に、炭素含有率が最大値を示す箇所(測定箇所)の当該炭素含有率を、「Cmax原子%」と記載することがある。また、XPSを用いて酸炭化ケイ素層の厚み方向における組成分析を行った際に、炭素含有率が最小値を示す箇所(測定箇所)の当該炭素含有率を、「Cmin原子%」と記載することがある。「第1層中の炭素含有率が0.1原子%未満である」とは、XPSを用いて酸炭化ケイ素層の厚み方向における組成分析を行った際、第1層中のいずれの測定箇所においても炭素含有率が0.1原子%未満であることを意味する。「第3層中の炭素含有率が0.1原子%未満である」とは、XPSを用いて酸炭化ケイ素層の厚み方向における組成分析を行った際、第3層中のいずれの測定箇所においても炭素含有率が0.1原子%未満であることを意味する。「第2層中の炭素含有率が0.1原子%以上である」とは、XPSを用いて酸炭化ケイ素層の厚み方向における組成分析を行った際、第2層中のいずれの測定箇所においても炭素含有率が0.1原子%以上であることを意味する。
 なお、XPSにより酸炭化ケイ素層の厚み方向における組成分析を行う際、元素組成の測定間隔は、例えば30秒以上90秒以下(2.5nm以上7.5nm以下)の範囲内であり、好ましくは60秒(5nm)である。例えば5nm間隔で酸炭化ケイ素層の厚み方向における組成分析が行われる場合、酸炭化ケイ素層の表面から厚み方向(深さ方向)に順に、0nm(エッチングの開始位置)、5nm、10nm、15nm、20nm、25nm・・・の位置で組成分析が行われる。また、5nm間隔で酸炭化ケイ素層の厚み方向における組成分析を行った際の炭素含有率の測定結果が、例えば、0nm:0.1原子%未満、5nm:0.1原子%未満、10nm:0.1原子%以上、15nm:0.1原子%以上、25nm:0.1原子%未満となった場合は、第2層は、酸炭化ケイ素層の表面(エッチングの開始位置)から厚み方向に10nm以上15nm以下の範囲である。
 第1実施形態によれば、耐屈曲性を確保しつつガスバリア性に優れるガスバリアフィルムを提供できる。その理由は、以下のように推測される。
 一般に、酸炭化ケイ素層は、炭素含有率が高くなるほど、耐屈曲性が高くなる傾向がある。また、一般に、酸炭化ケイ素層は、炭素含有率が高くなるほど、ガスバリア性が低くなる傾向がある。また、本発明者らの検討によれば、酸炭化ケイ素層中の炭素含有率が低すぎると、酸炭化ケイ素層の表面が粗くなりすぎて、酸炭化ケイ素層のガスバリア性が低下する傾向がある。
 第1実施形態に係るガスバリアフィルムでは、CmaxからCminを引いた値が2.0以上である。また、第1実施形態に係るガスバリアフィルムの酸炭化ケイ素層は、比較的炭素含有率の高い第2層が比較的炭素含有率の低い第1層及び第3層で挟持された構造を有しており、かつ第1層厚み比率及び第3層厚み比率がいずれも10%以上である。これらのことから、第1実施形態に係るガスバリアフィルムでは、酸炭化ケイ素層中の炭素含有率の過度な低下に起因する酸炭化ケイ素層の表面粗さの増大が抑制されるとともに、比較的炭素含有率の低い(即ち、ガスバリア性の高い)第1層及び第3層によりガスの透過が抑制される。よって、第1実施形態によれば、ガスバリア性に優れるガスバリアフィルムを提供できる。
 また、第1実施形態に係るガスバリアフィルムでは、CmaxからCminを引いた値が2.0以上であるため、第2層の炭素含有率が耐屈曲性の低下を抑制できる範囲内となる。よって、第1実施形態に係るガスバリアフィルムによれば、耐屈曲性を確保できる。
 第1実施形態において、ガスバリア性により優れるガスバリアフィルムを得るためには、第1層厚み比率及び第3層厚み比率が、それぞれ、15%以上であることが好ましく、18%以上であることがより好ましく、20%以上であることが更に好ましい。
 第1実施形態において、耐屈曲性をより容易に確保するためには、第1層厚み比率及び第3層厚み比率が、いずれも、45%以下であることが好ましく、40%以下であることがより好ましい。
 第1実施形態において、耐屈曲性をより容易に確保しつつ、ガスバリア性により優れるガスバリアフィルムを得るためには、第1層、第2層及び第3層の合計厚み100%に対する、第2層の厚み比率が、20%以上70%以下であることが好ましく、20%以上55%以下であることがより好ましい。
 第1実施形態において、耐屈曲性をより容易に確保するためには、CmaxからCminを引いた値が、3.0以上であることが好ましく、3.5以上であることがより好ましい。また、第1実施形態において、ガスバリア性により優れるガスバリアフィルムを得るためには、CmaxからCminを引いた値が、6.0以下であることが好ましい。
 第1実施形態において、耐屈曲性を更に容易に確保しつつ、ガスバリア性に更に優れるガスバリアフィルムを得るためには、下記条件1を満たすことが好ましく、耐屈曲性に特に優れるガスバリアフィルムを得るためには、下記条件2を満たすことが好ましく、ガスバリア性に特に優れるガスバリアフィルムを得るためには、下記条件3を満たすことが好ましい。
 条件1:第1層厚み比率及び第3層厚み比率が、いずれも10%以上45%以下であり、かつCmaxからCminを引いた値が2.0以上6.0以下である。
 条件2:第1層厚み比率及び第3層厚み比率が、いずれも20%以上40%以下であり、かつCmaxからCminを引いた値が5.0以上6.0以下である。
 条件3:第1層厚み比率及び第3層厚み比率が、いずれも20%以上40%以下であり、かつCmaxからCminを引いた値が3.5以上4.5以下である。
 以下、第1実施形態について、図面を参照しながら詳述する。図1は、第1実施形態に係るガスバリアフィルムの一例を示す断面図である。図1に示すガスバリアフィルム10は、透明フィルム基材11と、透明フィルム基材11の一方の主面11aに直接的に配置されたガスバリア層12とを有する積層体である。ガスバリア層12は、構成元素としてケイ素、酸素及び炭素を含む酸炭化ケイ素層13からなる。
 酸炭化ケイ素層13は、透明フィルム基材11側から第1層14、第2層15及び第3層16をこの順に有する。第1層14中の炭素含有率は0.1原子%未満である。第3層16中の炭素含有率は0.1原子%未満である。第2層15中の炭素含有率は0.1原子%以上である。第1層14の厚み比率は、第1層14、第2層15及び第3層16の合計厚み100%に対して、10%以上である。第3層16の厚み比率は、第1層14、第2層15及び第3層16の合計厚み100%に対して、10%以上である。また、酸炭化ケイ素層13では、CmaxからCminを引いた値が2.0以上である。
 XPSを用いて酸炭化ケイ素層13の厚み方向における組成分析を行った際、炭素含有率が最小値を示す測定箇所は、第1層14及び第3層16の少なくとも一方に存在する。また、XPSを用いて酸炭化ケイ素層13の厚み方向における組成分析を行った際、炭素含有率が最大値を示す測定箇所は、第2層15に存在する。なお、第1層14の炭素含有率の最小値、及び第3層16の炭素含有率の最小値は、特に限定されず、いずれも0.0原子%であってもよい。
 耐屈曲性をより容易に確保しつつ、ガスバリア性により優れるガスバリアフィルムを得るためには、酸炭化ケイ素層13の厚み方向において、炭素含有率が連続的に変化することが好ましい。
 また、耐屈曲性をより容易に確保しつつ、ガスバリア性により優れるガスバリアフィルムを得るためには、透過型電子顕微鏡により酸炭化ケイ素層13の断面を暗視野像で観察した際、第1層14と第2層15との間、及び第2層15と第3層16との間のいずれについても界面が存在しないことが好ましい。
 第1実施形態に係るガスバリアフィルムの構成は、図1に示すガスバリアフィルム10の構成に限定されない。例えば、第1実施形態に係るガスバリアフィルムは、図2に示すガスバリアフィルム20のように、ガスバリア層が、酸炭化ケイ素層以外のガスバリア性を有する層(以下、「ガスバリア性層」と記載する)を有していてもよい。なお、酸炭化ケイ素層とガスバリア性層とを有するガスバリア層の断面を、透過型電子顕微鏡により暗視野像で観察した際、酸炭化ケイ素層とガスバリア性層との間には界面が存在することが好ましい。ガスバリアフィルム20では、ガスバリア層21が、酸炭化ケイ素層13と、酸炭化ケイ素層13の透明フィルム基材11側とは反対側の主面16aに配置されたガスバリア性層22とを有する。ガスバリア性により優れるガスバリアフィルムを得るためには、ガスバリア性層22は、構成元素としてケイ素、酸素及び窒素を含む酸窒化ケイ素層であることが好ましい。
 第1実施形態に係るガスバリアフィルムは、酸炭化ケイ素層の両主面にガスバリア性層を備えていてもよい。また、第1実施形態に係るガスバリアフィルムは、酸炭化ケイ素層の透明フィルム基材側の主面のみにガスバリア性層を備えていてもよい。また、第1実施形態に係るガスバリアフィルムでは、ガスバリア層が、2層以上の酸炭化ケイ素層を含んでいてもよく、例えば、2層の酸炭化ケイ素層と3層の酸窒化ケイ素層との交互積層体であってもよい。ガスバリア層は、4層の積層構造又は6層以上の積層構造であってもよい。
 また、第1実施形態に係るガスバリアフィルムは、ガスバリア層が透明フィルム基材の主面に間接的に配置されていてもよい。例えば、図3に示すガスバリアフィルム30は、透明フィルム基材11とガスバリア層12(酸炭化ケイ素層13)との間に配置されたハードコート層31を有する。ガスバリアフィルム30では、ガスバリア層12が透明フィルム基材11の主面に間接的に配置されている。ハードコート層31は、ガスバリアフィルム30の硬度や弾性率等の機械的特性を高める層である。ハードコート層31のガスバリア層12側の主面が平滑であれば、その上に形成されるガスバリア層12のガスバリア性が高められ、水蒸気透過率が小さくなる傾向がある。ハードコート層31のガスバリア層12側の主面の算術平均高さSaは、1.5nm以下又は1.0nm以下であってもよい。算術平均高さSaは、原子間力顕微鏡(AFM)により測定した1μm×1μmの範囲の三次元表面形状から、ISO 25178に準じて算出される。
 ハードコート層31は、個数平均一次粒子径が1.0μm未満の粒子(以下、「ナノ粒子」と記載することがある)を含んでいてもよい。例えば、ハードコート層31がナノ粒子を含むことにより、ハードコート層31の表面に微細な凹凸が形成され、ハードコート層31とガスバリア層12との密着性が向上する傾向がある。
 また、第1実施形態に係るガスバリアフィルムは、ガスバリア性をより向上させるため、透明フィルム基材の両主面にガスバリア層が設けられていてもよい。例えば、図4に示すガスバリアフィルム40は、透明フィルム基材11の一方の主面11aに配置されたガスバリア層12(酸炭化ケイ素層13)と、透明フィルム基材11のもう一方の主面11bに配置されたガスバリア層41とを有する。第1実施形態に係るガスバリアフィルムでは、透明フィルム基材の両主面のそれぞれに、積層構造のガスバリア層が設けられていてもよい。
 ガスバリア層41の元素組成は、ガスバリア層12の元素組成と同一でも異なっていてもよい。また、ガスバリア層41の層構成は、ガスバリア層12の層構成と同一でも異なっていてもよい。ただし、耐屈曲性をより容易に確保しつつ、ガスバリア性により優れるガスバリアフィルムを得るためには、ガスバリア層41が酸炭化ケイ素層を有することが好ましい。また、耐屈曲性を更に容易に確保しつつ、ガスバリア性に更に優れるガスバリアフィルムを得るためには、ガスバリア層41中の酸炭化ケイ素層が、透明フィルム基材11側から、炭素含有率0.1原子%未満の第1層、炭素含有率0.1原子%以上の第2層及び炭素含有率0.1原子%未満の第3層をこの順に有し、第1層の厚み比率及び第3層の厚み比率が、第1層、第2層及び第3層の合計厚み100%に対して、いずれも10%以上であり、CmaxからCminを引いた値が2.0以上であることが好ましい。
 また、第1実施形態に係るガスバリアフィルムは、粘着剤層を更に有していてもよい。例えば、図5に示すガスバリアフィルム50は、ガスバリアフィルム40の構成に加え、粘着剤層51を有する。ガスバリアフィルム50では、ガスバリア層12(酸炭化ケイ素層13)の透明フィルム基材11側とは反対側の主面16aに粘着剤層51が配置されている。
 粘着剤層51の酸炭化ケイ素層13側とは反対側の主面には、はく離ライナー(不図示)が仮着されていてもよい。はく離ライナーは、例えば、ガスバリアフィルム50を後述する偏光板101(図7参照)と貼り合わせるまでの間、粘着剤層51の表面を保護する。はく離ライナーの構成材料としては、アクリル、ポリオレフィン、環状ポリオレフィン、ポリエステル等から形成されたプラスチックフィルムが好適に用いられる。はく離ライナーの厚みは、例えば、5μm以上200μm以下である。はく離ライナーの表面には、離型処理が施されていることが好ましい。離型処理に使用される離型剤の材料としては、シリコーン系材料、フッ素系材料、長鎖アルキル系材料、脂肪酸アミド系材料等が挙げられる。
 以上、図面を参照しながら第1実施形態に係るガスバリアフィルムの構成について説明した。次に、第1実施形態に係るガスバリアフィルムの要素について説明する。
[透明フィルム基材11]
 透明フィルム基材11は、例えば、ガスバリア層形成の土台となる層である。透明フィルム基材11は、可撓性を有していてもよい。基材として可撓性のフィルムを用いることにより、ロールトゥロール方式でガスバリア層を形成可能であるため、ガスバリア層の生産性が高められる。また、可撓性フィルム上にガスバリア層が設けられたガスバリアフィルムは、フレキシブルデバイスやフォルダブルデバイスにも適用できるとの利点を有する。
 透明フィルム基材11の可視光透過率は、好ましくは80%以上、より好ましくは90%以上である。透明フィルム基材11の厚みは、特に限定されないが、強度や取扱性等の観点から、5μm以上200μm以下であることが好ましく、10μm以上150μm以下であることがより好ましく、30μm以上100μm以下であることが更に好ましい。
 透明フィルム基材11を構成する樹脂材料としては、透明性、機械強度及び熱安定性に優れる樹脂材料が好ましい。樹脂材料の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(より具体的には、ノルボルネン系樹脂等)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、及びこれらの混合物が挙げられる。
 透明フィルム基材11のガスバリア層が形成される主面に、ガスバリア層との密着性向上等の目的で、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、グロー処理、ケン化処理、カップリング剤による処理等の表面改質処理を施してもよい。
 透明フィルム基材11は、ガスバリア層が形成される側の表層がプライマー層(不図示)であってもよい。ガスバリア層が形成される側の表層がプライマー層である場合、透明フィルム基材11とガスバリア層との密着性が高くなる傾向がある。プライマー層を構成する材料としては、例えば、ケイ素、ニッケル、クロム、スズ、金、銀、白金、亜鉛、インジウム、チタン、タングステン、アルミニウム、ジルコニウム、パラジウム等の金属(又は半金属);これらの金属(又は半金属)の合金;これらの金属(又は半金属)の酸化物、フッ化物、硫化物又は窒化物等が挙げられる。プライマー層の厚みは、例えば、1nm以上20nm以下であり、好ましくは1nm以上15nm以下であり、より好ましくは1nm以上10nm以下である。
[酸炭化ケイ素層13]
 酸炭化ケイ素層13は、ガスバリア層におけるガスバリア機能を主に担う層であり、ケイ素、酸素及び炭素を主たる構成元素とする材料からなる層である。酸炭化ケイ素層13は、例えば、成膜方法として化学気相成長法(CVD法)を採用し、後述する図6に示す成膜装置を用いて、第1層14、第2層15及び第3層16を同じ条件で連続的に成膜することにより得られる。後述する図6に示す成膜装置を用いて、第1層14、第2層15及び第3層16を同じ条件で連続的に成膜することにより、例えば、透過型電子顕微鏡を用いて得られる断面の暗視野像において、第1層14と第2層15との間、及び第2層15と第3層16との間のいずれについても界面が存在しない酸炭化ケイ素層13が得られる。
 酸炭化ケイ素層13は、成膜時の原料、透明フィルム基材11及び外部環境から取り込まれる少量の水素・窒素等の元素を含んでいてもよい。酸炭化ケイ素層13において、ケイ素、酸素及び炭素以外の元素の含有率は、それぞれ、3原子%以下であることが好ましく、1原子%以下であることがより好ましく、0.5原子%以下であることが更に好ましい。酸炭化ケイ素層13を構成する元素のうち、ケイ素、酸素及び炭素の合計含有率は、90原子%以上であることが好ましく、95原子%以上であることがより好ましく、97原子%以上であることが更に好ましく、99原子%以上、99.5原子%以上又は99.9原子%以上であってもよい。
 酸炭化ケイ素層13に含まれる酸炭化ケイ素の組成は、一般式SiOで表される。以下、一般式SiOのxを、単に「x」と記載することがある。また、一般式SiOのyを、単に「y」と記載することがある。なお、特に断りがない限り、x及びyは、酸炭化ケイ素層13の厚み方向の中央部(総エッチング時間の1/2が経過したとき)における組成比のx及びyをさす。上記「総エッチング時間」とは、後述する実施例と同じ方法又はそれに準ずる方法で酸炭化ケイ素層13の厚み方向における組成分析を行った際における、酸炭化ケイ素層13のエッチングの開始から終了までの時間を意味する。
 透明性を高めつつガスバリア性により優れるガスバリアフィルムを得るためには、xが1.5以上2.5以下であり、かつyが0.01以上0.5以下であることが好ましく、xが1.8以上2.2以下であり、かつyが0.05以上0.2以下であることがより好ましい。
 酸炭化ケイ素層13の成膜方法は、特に限定されず、ドライコーティング法でもウェットコーティング法でもよいが、酸炭化ケイ素層13の厚み方向における炭素含有率を上記範囲内に容易に調整するためには、酸炭化ケイ素層13を、CVD法により成膜することが好ましく、プラズマCVD法により成膜することがより好ましい。
 透明フィルム基材11として可撓性フィルムを用い、可撓性フィルム上にガスバリア層(例えば、酸炭化ケイ素層13)を形成(成膜)する場合は、ロールトゥロール方式でCVD成膜を実施することにより、生産性を向上できる。ロールトゥロール方式のCVD成膜装置は、成膜ロールが一対の対向電極の一方又は両方の電極を構成しており、成膜ロール上をフィルムが走行する際に、フィルム上に薄膜が形成される。2つの成膜ロールが一対の対向電極を構成している場合は、それぞれの成膜ロール上で薄膜が形成されるため、成膜速度を2倍に向上できる。なお、CVD法による成膜方法を説明する際の「上に」との表現は、CVD成膜装置内の方向とは無関係であり、「に接して」と同義である。
 CVD法により酸炭化ケイ素層13を成膜する際のケイ素の供給源(ケイ素源)としては、毒性が低く、膜中への窒素の取り込みを抑制できることから有機ケイ素化合物が好ましく、ヘキサメチルジシラザン、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、テトラメチルシラン、ビニルトリメトキシシラン、ビニルトリメチルシラン、ジメチルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、テトラエトキシシラン、ジエチルジエトキシシラン、メチルジメトキシシラン、及びメチルジエトキシシロキサンからなる群より選択される一種以上がより好ましい。これらの有機ケイ素化合物の中でも、膜中への不純物の取り込みを抑制可能であり、透明性及びガスバリア性の高い膜を形成可能であることからヘキサメチルジシロキサンが特に好ましい。ケイ素源としての有機ケイ素化合物は炭素源も兼ねているが、有機ケイ素化合物に加えて、炭素源として、ケイ素を含まない有機化合物を用いてもよい。
 酸炭化ケイ素層13を成膜するためには、通常、ケイ素源に加えて、酸素源となるガスを導入する。酸素源としては、酸素、一酸化炭素、二酸化炭素等が挙げられる。取り扱い性の観点から、酸素源としては酸素(酸素ガス)が好ましい。
 ヘキサメチルジシロキサンと酸素を用いてCVD法により酸炭化ケイ素層13を成膜する場合、酸素の導入量(流量)は、ヘキサメチルジシロキサン(気体)の導入量(流量)に対して、体積比で10倍以上が好ましく、15倍以上又は20倍以上であってもよい。成膜速度を適切に維持する観点から、酸素の導入量は、ヘキサメチルジシロキサン(気体)の導入量に対して、体積比で200倍以下が好ましく、100倍以下又は50倍以下であってもよい。
 ケイ素源に対する酸素源(又は酸素源及び炭素源)の導入量を変更することにより、酸炭化ケイ素層13の組成を適宜に調整できる。
 CVD法により成膜する際の導入ガスとして、ケイ素源及び酸素源以外のガスを用いてもよい。例えば、液体のケイ素源を用いる場合は、液体を気化させてチャンバー(真空チャンバー)内に導入するためにキャリアガスを用いてもよい。また、酸素源を、キャリアガスと混合して真空チャンバー内に導入してもよく、プラズマ放電を安定させるために放電用ガスを用いてもよい。キャリアガス及び放電用ガスとしては、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素が挙げられる。キャリアガス及び放電用ガスとしては、膜中に取り込まれる水素量を低減して透明性を高める観点から、希ガスが好ましい。
 プラズマCVD法における諸条件は、適宜設定すればよい。基材温度(成膜ロール表面の温度)は、例えば-20℃以上500℃以下の範囲内に設定される。フィルム基材上にガスバリア層(例えば、酸炭化ケイ素層13)を成膜する場合の基材温度(フィルム基材温度)は、フィルム基材の耐熱性の観点から、150℃以下であることが好ましく、100℃以下であることがより好ましい。成膜室(真空チャンバー内)の圧力は、例えば、0.001Pa以上50Pa以下である。プラズマ発生用電源としては、例えば、交流電源が用いられる。ロールトゥロール方式のCVD成膜における電源の周波数は、一般に50kHz以上500kHz以下の範囲内である。ロールトゥロール方式のCVD成膜における印加電力は、一般に0.1kW以上10kW以下である。
 ガスバリア性により優れるガスバリアフィルムを得るためには、酸炭化ケイ素層13の密度は、1.80g/cm以上であることが好ましく、1.90g/cm以上であることがより好ましく、2.00g/cm以上2.40g/cm以下、2.05g/cm以上2.35g/cm以下、又は2.10g/cm以上2.30g/cm以下であってもよい。
 高いガスバリア性と透明性とを両立させる観点から、酸炭化ケイ素層13の厚みは、10nm以上500nm以下であることが好ましく、50nm以上400nm以下であることがより好ましく、80nm以上300nm以下であることが更に好ましい。また、ガスバリア層が酸炭化ケイ素層13以外の層(上述したガスバリア性層等)を有する場合、高いガスバリア性と透明性とを両立させる観点から、ガスバリア層の合計厚みは、20nm以上1000nm以下であることが好ましく、50nm以上800nm以下であることがより好ましい。
[ハードコート層31]
 ハードコート層31は、例えば、バインダー樹脂とナノ粒子とを含む。バインダー樹脂としては、熱硬化性樹脂、光硬化性樹脂、電子線硬化性樹脂等の硬化性樹脂が好ましく用いられる。硬化性樹脂の種類としては、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、アクリルウレタン系樹脂、アミド系樹脂、シリコーン系樹脂、シリケート系樹脂、エポキシ系樹脂、メラミン系樹脂、オキセタン系樹脂等が挙げられる。硬化性樹脂は、一種又は二種以上を使用できる。これらの中でも、硬度が高く、光硬化が可能であることから、アクリル系樹脂、アクリルウレタン系樹脂及びエポキシ系樹脂からなる群より選択される一種以上が好ましく、アクリル系樹脂及びアクリルウレタン系樹脂からなる群より選択される一種以上がより好ましい。
 ハードコート層31に含まれるナノ粒子の個数平均一次粒子径は、バインダー樹脂中での分散性を高める観点から、15nm以上であることが好ましく、20nm以上であることがより好ましい。密着性向上に寄与する微細な凹凸形状を形成する観点から、ハードコート層31に含まれるナノ粒子の個数平均一次粒子径は、90nm以下であることが好ましく、70nm以下であることがより好ましく、50nm以下であることが更に好ましい。
 ナノ粒子の材料としては、無機酸化物が好ましい。無機酸化物としては、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ニオブ、酸化亜鉛、酸化スズ、酸化セリウム、酸化マグネシウム等の金属(又は半金属)の酸化物が挙げられる。無機酸化物は、複数種の(半)金属の複合酸化物でもよい。例示の無機酸化物の中でも、密着性向上効果が高いことから、シリカが好ましい。つまり、ナノ粒子としては、シリカ粒子(ナノシリカ粒子)が好ましい。ナノ粒子としての無機酸化物粒子の表面には、樹脂との密着性や親和性を高める目的で、アクリル基、エポキシ基等の官能基が導入されていてもよい。
 ハードコート層31におけるナノ粒子の量は、バインダー樹脂とナノ粒子の合計量100重量部に対して、5重量部以上であることが好ましく、10重量部以上、20重量部以上又は30重量部以上であってもよい。ナノ粒子の量が5重量部以上であれば、ハードコート層31上に形成されるガスバリア層との密着性を向上させることができる。ハードコート層31におけるナノ粒子の量の上限は、バインダー樹脂とナノ粒子の合計量100重量部に対して、例えば90重量部であり、80重量部であることが好ましく、70重量部であってもよい。
 ハードコート層31の厚みは、特に限定されないが、高い硬度を実現しつつガスバリア層との密着性を向上させるためには、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましく、2.0μm以上であることが更に好ましく、3.0μm以上であることが更により好ましい。一方、凝集破壊による強度の低下を抑制するためには、ハードコート層31の厚みは、20μm以下であることが好ましく、15μm以下であることがより好ましく、12μm以下であることが更に好ましい。
(ハードコート層31の形成方法)
 透明フィルム基材11上にハードコート組成物を塗布し、必要に応じて溶媒の除去及び樹脂の硬化を行うことにより、ハードコート層31が形成される。ハードコート組成物は、例えば、上記のバインダー樹脂及びナノ粒子を含み、必要に応じてこれらの成分を溶解又は分散可能な溶媒を含む。ハードコート組成物中の樹脂成分が硬化性樹脂である場合は、ハードコート組成物中に、適宜の重合開始剤が含まれていることが好ましい。例えば、ハードコート組成物中の樹脂成分が光硬化型樹脂である場合には、ハードコート組成物中に光重合開始剤が含まれていることが好ましい。
 ハードコート組成物は、上記成分の他に、個数平均一次粒子径が1.0μm以上の粒子(マイクロ粒子)、レベリング剤、粘度調整剤(チクソトロピー剤、増粘剤等)、帯電防止剤、ブロッキング防止剤、分散剤、分散安定剤、酸化防止剤、紫外線吸収剤、消泡剤、界面活性剤、滑剤等の添加剤を含んでいてもよい。
 ハードコート組成物の塗布方法としては、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法等の任意の適切な方法を採用し得る。
[粘着剤層51]
 粘着剤層51の構成材料としては、可視光透過率が高い粘着剤が好適に用いられる。粘着剤層51を構成する粘着剤としては、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル-塩化ビニル共重合体、変性ポリオレフィン、エポキシ系樹脂、フッ素系樹脂、天然ゴム、合成ゴム等のポリマーをベースポリマーとする透明な粘着剤を、適宜に選択して用いることができる。粘着剤層51の厚みは、好ましくは5μm以上100μm以下である。粘着剤層51の屈折率は、例えば1.4以上1.5以下である。
[ガスバリアフィルムの特性]
 ガスバリアフィルムの水蒸気透過率は、厚み100nmのガスバリア層を有するガスバリアフィルムを基準に規格化した値として、0.20g/m・day以下であることが好ましく、0.10g/m・day以下であることがより好ましい。有機EL素子等の保護対象の劣化を抑制する観点からは、水蒸気透過率は小さいほど好ましい。ガスバリアフィルムの水蒸気透過率の下限は、特に限定されないが、上記規格化した値として、一般には1.0×10-5g/m・dayである。水蒸気透過率(WVTR)は、温度40℃、相対湿度差90%の条件下で、JIS K 7129:2008の附属書B(モコン法)の記載に従って測定される。
 ガスバリアフィルムの光透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。光透過率は、JlS Z8781-3:2016で規定されるCIE三刺激値のY値である。
 ガスバリアフィルムの耐屈曲性は、後述する実施例に記載の屈曲試験により評価できる。例えば、後述する実施例に記載の屈曲試験と同じ方法又はそれに準ずる方法でガスバリアフィルムを評価した際に、屈曲直径6mmの条件でクラックが発生しないことが好ましく、屈曲直径5mmの条件でクラックが発生しないことがより好ましい。
 ガスバリア性により優れるガスバリアフィルムを得るためには、酸炭化ケイ素層13の透明フィルム基材11側とは反対側の主面16a(図2参照)の算術平均粗さRaが、1.00nm以下であることが好ましい。上記算術平均粗さRaの測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。上記算術平均粗さRaの下限は、特に限定されないが、例えば0.50nmである。上記算術平均粗さRaは、例えば、CVD成膜における印加電力、及びCVD成膜における有機ケイ素化合物の導入量の少なくとも一方を変更することにより調整できる。
 機械的強度に優れるガスバリアフィルムを得るためには、酸炭化ケイ素層13の透明フィルム基材11側とは反対側の主面16a(図2参照)の硬度が、2.00GPa以上であることが好ましく、2.10GPa以上であることがより好ましく、2.20GPa以上であることが更に好ましい。上記硬度の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。上記硬度の上限は、特に限定されないが、例えば2.50GPaである。上記硬度は、例えば第3層厚み比率を変更することにより調整できる。第3層厚み比率が大きいほど、上記硬度は高くなる傾向がある。
<第2実施形態:ガスバリアフィルムの製造方法>
 次に、本発明の第2実施形態に係るガスバリアフィルムの製造方法について説明する。第2実施形態に係るガスバリアフィルムの製造方法は、上述した第1実施形態に係るガスバリアフィルムの好適な製造方法である。よって、上述した第1実施形態と重複する構成要素については、その説明を省略する場合がある。第2実施形態に係るガスバリアフィルムの製造方法は、一対の対向電極として一対の成膜ロールを有する成膜装置のチャンバー(真空チャンバー)内に、有機ケイ素化合物(例えば、ヘキサメチルジシロキサン等)及び酸素を導入して、CVD法により酸炭化ケイ素層を形成する工程を備える。
 以下、第2実施形態に係るガスバリアフィルムの製造方法について、図6を参照しながら説明する。図6は、第2実施形態に係るガスバリアフィルムの製造方法に使用される成膜装置の一例を示す構成図である。
 図6に示す成膜装置は、送り出しロール71と、搬送ロール72、73、74及び75と、一対の対向電極としての成膜ロール76及び77と、巻取りロール78と、成膜ガスを導入するためのガス供給口79とを備えている。ガス供給口79は、複数個設けられていてもよい。成膜ロール76及び77の各々の内部には、図示を省略した磁場発生装置が設置されている。また、図6に示す成膜装置では、少なくとも成膜ロール76及び77と、ガス供給口79と、プラズマ発生用電源(不図示)とが図示を省略した真空チャンバー内に配置されている。更に、図6に示す成膜装置では、上記真空チャンバーが図示を省略した真空ポンプに接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。
 図6に示す成膜装置では、一対の成膜ロール(成膜ロール76及び77)を一対の対向電極として機能させることが可能となるように、成膜ロール76及び77がそれぞれプラズマ発生用電源(不図示)に接続されている。そのため、図6に示す成膜装置では、プラズマ発生用電源により電力を供給することにより、成膜ロール76と成膜ロール77との間の空間に放電することが可能であり、これにより成膜ロール76と成膜ロール77との間の空間にプラズマを発生させることができる。図6に示す成膜装置において、高い成膜レートで成膜するためには、一対の成膜ロール(成膜ロール76及び77)は、その中心軸が同一平面上において略平行となるようにして配置されていることが好ましい。
 このような図6に示す成膜装置を用いて、例えば、第1実施形態に係るガスバリアフィルムの説明において例示したプラズマCVD法における諸条件を採用し、第1実施形態に係るガスバリアフィルムを容易に製造することができる。例えば、上述したガスバリアフィルム10(図1参照)を製造する場合は、成膜ガス(より具体的には、有機ケイ素化合物、酸素等)を真空チャンバー内に供給しつつ、一対の成膜ロール(成膜ロール76及び77)間にプラズマ放電を発生させることにより、上記成膜ガスがプラズマによって分解され、成膜ロール76近傍の成膜領域及び成膜ロール77近傍の成膜領域の双方において、透明フィルム基材11(図1参照)上に酸炭化ケイ素層13(図1参照)が形成される。例えば、成膜ロール76近傍の成膜領域及び成膜ロール77近傍の成膜領域の各々において、ガス供給口79から比較的遠い箇所では、気化した有機ケイ素化合物の分解量が比較的多い。一方、成膜ロール76近傍の成膜領域及び成膜ロール77近傍の成膜領域の各々において、ガス供給口79から比較的近い箇所では、気化した有機ケイ素化合物の分解量が比較的少ない。そのため、図6に示す成膜装置を用いて得られた酸炭化ケイ素層13は、層の厚み方向の中央部分の炭素含有率が比較的高くなる。なお、酸炭化ケイ素層13の成膜に際しては、透明フィルム基材11が、送り出しロール71、搬送ロール72等により搬送され、ロールトゥロール方式の連続的な成膜プロセスにより、透明フィルム基材11上に酸炭化ケイ素層13が形成される。
 図6に示す成膜装置において、成膜ロール76の中心軸と成膜ロール77の中心軸とを含む仮想平面Pからのガス供給口79の高さH、成膜ロール76とガス供給口79との最短距離D1、成膜ロール77とガス供給口79との最短距離D2、成膜ロール76のロール径、成膜ロール77のロール径、成膜ロール76の抱き角度、及び成膜ロール77の抱き角度(以下、これらをまとめて「成膜装置条件」と記載することがある)のうちの少なくとも1つを変更すると、成膜ロール76近傍の成膜領域及び成膜ロール77近傍の成膜領域の各々において、導入した成膜ガスの分布が成膜ロールの周方向に沿って変化する。よって、成膜装置条件のうちの少なくとも1つを変更することにより、酸炭化ケイ素層13(図1参照)の炭素含有率を厚み方向で変化させることができる。なお、「抱き角度」とは、フィルムが成膜ロールの外周面に周方向において接触する角度範囲を成膜ロールの中心角で表したものをさす。
 上記成膜装置条件のうち、ガス供給口79の高さHは、第1層厚み比率及び第3層厚み比率との相関性が高い。第1層厚み比率及び第3層厚み比率を第1実施形態で説明した特定範囲内に容易に調整するためには、ガス供給口79の高さHは、100mm以上200mm以下であることが好ましく、150mm以上180mm以下であることがより好ましい。なお、ガス供給口79が複数個設けられている場合、複数個のガス供給口79のそれぞれの高さHは、同一でも異なっていてもよい。なお、第1層厚み比率及び第3層厚み比率は、図6に示す成膜装置を用いて酸炭化ケイ素層13を成膜する際において、例えば、有機ケイ素化合物の導入量、酸素の導入量、及び印加電力のうちの少なくとも1つを変更することによっても調整できる。
 Cmax及びCminは、図6に示す成膜装置を用いて酸炭化ケイ素層13を成膜する際において、例えば、有機ケイ素化合物の導入量、酸素の導入量、及び印加電力のうちの少なくとも1つを変更することにより調整できる。
<第3実施形態:ガスバリア層付き偏光板>
 次に、本発明の第3実施形態に係るガスバリア層付き偏光板について説明する。第3実施形態に係るガスバリア層付き偏光板は、第1実施形態に係るガスバリアフィルムと、偏光子とを備える。図7は、第3実施形態に係るガスバリア層付き偏光板の一例を示す断面図である。図7に示すガスバリア層付き偏光板100は、上述したガスバリアフィルム50と、偏光板101とを有する。ガスバリア層付き偏光板100では、粘着剤層51の酸炭化ケイ素層13側とは反対側の主面51aに偏光板101が配置されている。つまり、偏光板101と酸炭化ケイ素層13とが、粘着剤層51を介して貼り合わせられている。なお、図7に示すガスバリア層付き偏光板100はガスバリアフィルム50(ガスバリアフィルム40)を有するが、第3実施形態に係るガスバリア層付き偏光板が有するガスバリアフィルムは、ガスバリアフィルム50に限定されず、例えば、ガスバリアフィルム10、ガスバリアフィルム20又はガスバリアフィルム30であってもよい。
 偏光板101は、偏光子(不図示)を含み、一般には、偏光子の両主面に偏光子保護フィルムとしての透明保護フィルム(不図示)が積層されている。偏光子の一方の主面又は両主面の透明保護フィルムは、設けられていなくてもよい。偏光子としては、例えば、ポリビニルアルコール系フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したものが挙げられる。
 透明保護フィルムとしては、セルロース系樹脂、環状ポリオレフィン系樹脂、アクリル系樹脂、フェニルマレイミド系樹脂、ポリカーボネート系樹脂等から構成された透明樹脂フィルムが好ましく用いられる。透明保護フィルムとしてガスバリアフィルムを用いてもよい。
 偏光板101は、偏光子の一方又は両方の主面に、必要に応じて適宜の接着剤層や粘着剤層を介して積層された光学機能フィルムを備えていてもよい。光学機能フィルムとしては、位相差板、視野角拡大フィルム、視野角制限(覗き見防止)フィルム、輝度向上フィルム等が挙げられる。
 なお、図7に示すガスバリア層付き偏光板100では、偏光板101と酸炭化ケイ素層13とが粘着剤層51を介して貼り合わせられているが、本発明に係るガスバリア層付き偏光板は、図7に示す構成に限定されず、例えば、偏光子にガスバリア層が直接設けられていてもよい。また、本発明に係るガスバリア層付き偏光板は、偏光子に隣接して配置された透明保護フィルムにガスバリア層が直接設けられていてもよい。
 第3実施形態に係るガスバリア層付き偏光板は、第1実施形態に係るガスバリアフィルムを備えるため、耐屈曲性を確保しつつガスバリア性に優れる。
<第4実施形態:画像表示装置>
 次に、本発明の第4実施形態に係る画像表示装置について説明する。第4実施形態に係る画像表示装置は、第1実施形態に係るガスバリアフィルム又は第3実施形態に係るガスバリア層付き偏光板と、画像表示セルとを備える。
 図8は、第4実施形態に係る画像表示装置の一例を示す断面図である。図8に示す画像表示装置200は、ガスバリアフィルム50を有するガスバリア層付き偏光板100と、画像表示セル202とを備える。画像表示セル202は、基板203と、基板203上に設けられた表示素子204とを備える。画像表示装置200では、ガスバリア層41と表示素子204とが、粘着剤層201を介して貼り合わせられている。なお、図8に示す画像表示装置200はガスバリアフィルム50(ガスバリアフィルム40)を有するが、第4実施形態に係る画像表示装置が有するガスバリアフィルムは、ガスバリアフィルム50に限定されず、例えば、ガスバリアフィルム10、ガスバリアフィルム20又はガスバリアフィルム30であってもよい。
 粘着剤層201を構成する粘着剤としては、例えば上述した粘着剤層51を構成する粘着剤として例示したものと同じ粘着剤が挙げられる。粘着剤層201を構成する粘着剤と粘着剤層51を構成する粘着剤とは、同種であってもよく、互いに異なる種類であってもよい。
 粘着剤層201の厚みの好ましい範囲は、例えば、上述した粘着剤層51の厚みの好ましい範囲と同じである。粘着剤層201の厚み及び粘着剤層51の厚みは、同一であっても異なっていてもよい。
 基板203としては、ガラス基板又はプラスチック基板が用いられる。画像表示セル202がトップエミッション型である場合、基板203は透明である必要はなく、基板203としてポリイミドフィルム等の高耐熱性フィルムを用いてもよい。
 表示素子204としては、有機EL素子、液晶素子、電気泳動方式の表示素子(電子ペーパー)等が挙げられる。画像表示セル202の視認側には、タッチパネルセンサー(不図示)が配置されていてもよい。
 表示素子204が有機EL素子である場合、画像表示セル202は、例えばトップエミッション型である。有機EL素子は、例えば、基板203側から、金属電極(不図示)、有機発光層(不図示)及び透明電極(不図示)をこの順に備える。
 有機発光層は、それ自身が発光層として機能する有機層の他に、電子輸送層、正孔輸送層等を備えていてもよい。透明電極は、金属酸化物層又は金属薄膜であり、有機発光層からの光を透過する。基板203の裏面側には基板203の保護や補強を目的としてバックシート(不図示)が設けられていてもよい。
 有機EL素子の金属電極は光反射性である。そのため、外光が画像表示セル202の内部に入射すると、金属電極で光が反射し、外部からは反射光が鏡面のように視認される。画像表示セル202の視認側に、偏光板101として円偏光板を配置することにより、金属電極での反射光の外部への再出射を防止して、画像表示装置200の画面の視認性及び意匠性を向上させることができる。
 円偏光板は、例えば偏光子の画像表示セル202側の主面に位相差フィルムを備える。偏光子に隣接して配置された透明保護フィルムが位相差フィルムであってもよい。また、ガスバリアフィルム50の透明フィルム基材11が位相差フィルムであってもよい。位相差フィルムがλ/4のレターデーションを有し、位相差フィルムの遅相軸方向と偏光子の吸収軸方向とのなす角度が45°である場合に、偏光子と位相差フィルムとの積層体が、金属電極での反射光の再出射を抑制するための円偏光板として機能する。円偏光板を構成する位相差フィルムは、2層以上のフィルムが積層されたものであってもよい。例えば、偏光子とλ/2板とλ/4板とを、それぞれの光学軸が所定の角度をなすように積層することにより、可視光の広帯域にわたって円偏光板として機能する広帯域円偏光板が得られる。
 画像表示セル202は、基板上に透明電極と有機発光層と金属電極とをこの順に積層したボトムエミッション型であってもよい。ボトムエミッション型の画像表示セル202では、透明基板が用いられ、透明基板が視認側に配置される。透明基板としてガスバリアフィルムを用いてもよい。
 第4実施形態に係る画像表示装置は、第1実施形態に係るガスバリアフィルムを備えるため、ガス(例えば水蒸気)に起因する表示素子の劣化を抑制できる。
 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではない。
<ガスバリアフィルムの作製>
 以下、実施例1~4及び比較例1~3のガスバリアフィルムの作製方法について、それぞれ説明する。実施例1~4及び比較例1~3のガスバリアフィルムの作製において、ガスバリア層の成膜には、いずれも、上述した図6に示す成膜装置と同じ構成を備えた成膜装置(詳しくは、ロールトゥロール方式のCVD成膜装置)を使用した。ガスバリア層の成膜に使用した上記成膜装置は、酸素を導入するためのガス供給口と、ヘキサメチルジシロキサンを導入するためのガス供給口とを備えていた。また、実施例1~4及び比較例1~3のガスバリアフィルムの作製では、酸素を導入するためのガス供給口の高さ(図6の高さH)を174mmとし、かつヘキサメチルジシロキサンを導入するためのガス供給口の高さ(図6の高さH)を156mmとした。
[実施例1]
 透明フィルム基材としての厚み40μmの環状ポリオレフィンフィルム(日本ゼオン社製「ゼオノア(登録商標)フィルムZF-14」)を成膜装置にセットし、真空チャンバー内を1×10-3Paまで減圧した。次いで、フィルムを走行させながら、基材温度12℃で、厚み177nmの酸炭化ケイ素層(ガスバリア層)をCVD成膜し、実施例1のガスバリアフィルムを得た。実施例1のガスバリアフィルムを得る際のCVD成膜では、プラズマ発生用電源の周波数を80kHzとし、印加電力0.6kWの条件で放電してプラズマを発生させ、ヘキサメチルジシロキサン(HMDSO):15sccm、酸素:420sccmの流量条件で、真空チャンバー内の成膜ロール間(電極間)にガスを導入し、圧力1.0Paで成膜した。なお、HMDSOは加熱気化させて、真空チャンバー内に導入した。
[実施例2]
 印加電力を1.0kWに変更し、HMDSOの流量条件を25sccmに変更し、酸素の流量条件を700sccmに変更し、酸炭化ケイ素層の厚みを176nmに変更したこと以外は、実施例1と同じ方法により実施例2のガスバリアフィルムを作製した。
[実施例3]
 印加電力を0.8kWに変更し、酸炭化ケイ素層の厚みを168nmに変更したこと以外は、実施例1と同じ方法により実施例3のガスバリアフィルムを作製した。
[実施例4]
 HMDSOの流量条件を20sccmに変更し、酸炭化ケイ素層の厚みを174nmに変更したこと以外は、実施例1と同じ方法により実施例4のガスバリアフィルムを作製した。
[比較例1]
 印加電力を2.0kWに変更し、HMDSOの流量条件を100sccmに変更し、酸素の流量条件を1400sccmに変更し、酸炭化ケイ素層の厚みを218nmに変更し、成膜時の圧力を4.0Paに変更したこと以外は、実施例1と同じ方法により比較例1のガスバリアフィルムを作製した。
[比較例2]
 印加電力を2.0kWに変更し、HMDSOの流量条件を50sccmに変更し、酸素の流量条件を700sccmに変更し、酸炭化ケイ素層の厚みを203nmに変更し、成膜時の圧力を1.6Paに変更したこと以外は、実施例1と同じ方法により比較例2のガスバリアフィルムを作製した。
[比較例3]
 印加電力を1.0kWに変更し、酸素の流量条件を700sccmに変更し、ガスバリア層の厚みを109nmに変更したこと以外は、実施例1と同じ方法により比較例3のガスバリアフィルムを作製した。
<ガスバリア層の組成分析>
 Arイオン銃を備えるX線光電子分光装置(アルバック・ファイ社製「Quantera SXM」)を用いて、ガスバリア層の透明フィルム基材側とは反対側の主面からガスバリア層を下記条件でエッチングしながら、XPSによりガスバリア層の厚み方向における組成分析を行い、厚み方向の各測定個所において各元素(Si、O、N及びC)の含有率を算出した。各元素の含有率の算出には、ワイドスキャンスペクトルから得られるSiの2p、Oの1s、Nの1s、及びCの1sのそれぞれの結合エネルギーに相当するピークを用いた。また、厚み方向の各測定個所において算出された各元素の含有率から、第1層厚み比率及び第3層厚み比率を算出した。詳細な測定条件を以下に示す。なお、ガスバリア層の表層は、汚染の影響で炭素含有率が大きくなる傾向があるため、エッチング開始時点における測定箇所については、炭素含有率を0原子%として各元素の含有率を算出した。
[測定条件]
 X線源:モノクロAlKα
 X線の焦点サイズ:100μmφ(15kV、25W)
 光電子取り出し角:試料表面に対して45°
 結合エネルギーの補正:C-C結合由来のピークを285.0eVに補正(最表面のみ)
 帯電中和条件:電子中和銃とArイオン銃(中和モード)の併用
 Arイオン銃の加速電圧:1kV
 Arイオン銃のラスターサイズ:1mm×1mm
 Arイオン銃のエッチング速度:5nm/分(SiO換算)
 元素組成の測定間隔:60秒(5nm)
<ガスバリアフィルムの評価方法>
[水蒸気透過率]
 JIS K 7129:2008の附属書B(モコン法)の記載に従って、温度40℃、相対湿度差90%の条件で、各ガスバリアフィルムの水蒸気透過率(WVTR)を測定した。そして、得られたWVTRを、厚み100nmのガスバリア層を基準に規格化した値(以下、「規格化WVTR」と記載することがある)に変換した。例えば、実施例1の規格化WVTRは、上記測定方法で得られた測定値(WVTR)×177/100で算出される値である。規格化WVTRが0.20g/m・day以下である場合、「ガスバリア性に優れている」と評価した。一方、規格化WVTRが0.20g/m・dayを超えている場合、「ガスバリア性に優れていない」と評価した。
[光透過率]
 分光光度計(日立ハイテクサイエンス社製「U4100」)により、各ガスバリアフィルムの光透過率(Y値)を測定した。
[算術平均粗さRa]
 原子間力顕微鏡(AFM)(ブルカー社製「MultiMode8」)を用いて、JIS R 1683:2014に基づいて、各ガスバリアフィルムのガスバリア層表面(詳しくは、ガスバリア層の透明フィルム基材側とは反対側の主面)の形状を測定した。そして、上記形状測定の結果から、各ガスバリア層表面について、JIS B 0601:2013に定められた算術平均粗さRaを決定した。
[硬度]
 ナノインデンター(ブルカー社製「Triboindenter(登録商標)TI-950」)を用いて、所定温度(25℃)における単一押し込み法により、以下の条件で、各ガスバリアフィルムのガスバリア層表面(詳しくは、ガスバリア層の透明フィルム基材側とは反対側の主面)の硬度を測定した。
(硬度の測定条件)
 押し込み速度:4nm/秒
 押し込み深さ:20nm
 引き抜き速度:4nm/秒
 使用圧子:バーコビッチ圧子(先端形状:三角錐、稜間角:115°)
[耐屈曲性]
 各ガスバリアフィルムを、幅25mm、長さ150mmの短冊状に切り出して、耐屈曲性評価用の試験片を得た。次いで、屈曲試験機(ユアサシステム機器社製「DLDMLH-FS」)に試験片を設置し、屈曲直径:6mm又は5mm、屈曲速度:1回/秒の条件で屈曲試験を1000回実施した。試験片を屈曲させる際は、ガスバリア層形成面が内側になるように屈曲させた。なお、上記「屈曲直径」とは、屈曲試験において、試験片が円弧状に屈曲された際の当該円弧状の屈曲部における内周の直径をさす。屈曲試験後、試験片の屈曲部分のクラックの有無を目視にて観察し、下記の基準で判定した。判定がA又はBの場合、「耐屈曲性を確保できている」と評価した。一方、判定がCの場合、「耐屈曲性を確保できていない」と評価した。
 A:屈曲直径6mm及び屈曲直径5mmのいずれの場合もクラックが発生しなかった。
 B:屈曲直径6mmではクラックが発生しなかったが、屈曲直径5mmではクラックが発生した。
 C:屈曲直径6mm及び屈曲直径5mmのいずれの場合もクラックが発生した。
<評価結果>
 実施例1~4について、各元素(Si、O、N及びC)の含有率、第1層の厚み、第2層の厚み、第3層の厚み、第1層厚み比率、第3層厚み比率、Cmax、Cmin、Cmax-Cmin、規格化WVTR、光透過率、ガスバリア層表面の算術平均粗さRa、ガスバリア層表面の硬度、及び耐屈曲性の判定結果を、表1に示す。また、比較例1~3について、各元素(Si、O、N及びC)の含有率、第1層の厚み、第2層の厚み、第3層の厚み、第1層厚み比率、第3層厚み比率、Cmax、Cmin、Cmax-Cmin、規格化WVTR、光透過率、ガスバリア層表面の算術平均粗さRa、ガスバリア層表面の硬度、及び耐屈曲性の判定結果を、表2に示す。なお、実施例1~4、比較例1及び比較例2のいずれについても、透過型電子顕微鏡(日本電子社製「JEM-2800」)により加速電圧200kVかつ倍率20万倍の条件でガスバリア層の断面を暗視野像で観察した際、ガスバリア層を構成する各層間に界面が存在していなかった。また、表1及び表2の各元素(Si、O、N及びC)の含有率は、ガスバリア層の厚み方向の中央部(総エッチング時間の1/2が経過したとき)における含有率であり、Si、O、N及びCの合計を100原子%として算出した。また、表2の「-」は、ガスバリア層が炭素を含んでいなかったため、測定(算出)しなかったことを意味する。なお、実施例3及び4並びに比較例1及び3のガスバリア層表面の硬度については、測定しなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~4では、第1層厚み比率及び第3層厚み比率が、いずれも10%以上であった。実施例1~4では、Cmax-Cminが2.0以上であった。
 表1に示すように、実施例1~4では、規格化WVTRが0.20g/m・day以下であった。よって、実施例1~4は、ガスバリア性に優れていた。実施例1~4では、耐屈曲性の判定がA又はBであった。よって、実施例1~4は、耐屈曲性を確保できていた。
 表2に示すように、比較例1では、第1層厚み比率が10%未満であった。比較例2では、第1層厚み比率及び第3層厚み比率が、いずれも10%未満であった。比較例3では、ガスバリア層が炭素を含んでいなかった。
 表2に示すように、比較例1~3では、規格化WVTRが0.20g/m・dayを超えていた。よって、比較例1~3は、ガスバリア性に優れていなかった。比較例3では、耐屈曲性の判定がCであった。よって、比較例3は、耐屈曲性を確保できていなかった。
 以上の結果から、本発明によれば、耐屈曲性を確保しつつガスバリア性に優れるガスバリアフィルムを提供できることが示された。
10、20、30、40、50 ガスバリアフィルム
11 透明フィルム基材
12、21 ガスバリア層
13 酸炭化ケイ素層
14 第1層
15 第2層
16 第3層
31 ハードコート層
51 粘着剤層
100 ガスバリア層付き偏光板
200 画像表示装置
202 画像表示セル

Claims (13)

  1.  透明フィルム基材と、前記透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有するガスバリアフィルムであって、
     前記ガスバリア層は、構成元素としてケイ素、酸素及び炭素を含む酸炭化ケイ素層を有し、
     前記酸炭化ケイ素層は、前記透明フィルム基材側から第1層、第2層及び第3層をこの順に有し、
     前記第1層中の炭素含有率、及び前記第3層中の炭素含有率が、ケイ素、酸素及び炭素の合計100原子%に対して、いずれも0.1原子%未満であり、
     前記第2層中の炭素含有率が、ケイ素、酸素及び炭素の合計100原子%に対して、0.1原子%以上であり、
     前記第1層の厚み比率、及び前記第3層の厚み比率が、前記第1層、前記第2層及び前記第3層の合計厚み100%に対して、いずれも10%以上であり、
     X線光電子分光法を用いて前記酸炭化ケイ素層の厚み方向における組成分析を行った際に、ケイ素、酸素及び炭素の合計100原子%に対する炭素含有率が最大値を示す箇所の当該炭素含有率をCmax原子%とし、ケイ素、酸素及び炭素の合計100原子%に対する炭素含有率が最小値を示す箇所の当該炭素含有率をCmin原子%としたとき、CmaxからCminを引いた値が2.0以上である、ガスバリアフィルム。
  2.  前記第1層の厚み比率、及び前記第3層の厚み比率が、前記第1層、前記第2層及び前記第3層の合計厚み100%に対して、いずれも45%以下である、請求項1に記載のガスバリアフィルム。
  3.  前記Cmaxから前記Cminを引いた値が6.0以下である、請求項1又は2に記載のガスバリアフィルム。
  4.  前記酸炭化ケイ素層の前記透明フィルム基材側とは反対側の主面の算術平均粗さRaが、1.00nm以下である、請求項1又は2に記載のガスバリアフィルム。
  5.  前記酸炭化ケイ素層の前記透明フィルム基材側とは反対側の主面の硬度が、2.00GPa以上である、請求項1又は2に記載のガスバリアフィルム。
  6.  前記酸炭化ケイ素層の厚みが、10nm以上500nm以下である、請求項1又は2に記載のガスバリアフィルム。
  7.  前記透明フィルム基材と前記ガスバリア層との間に配置された、個数平均一次粒子径1.0μm未満のシリカ粒子を含むハードコート層を更に有する、請求項1又は2に記載のガスバリアフィルム。
  8.  前記ガスバリア層の前記透明フィルム基材側とは反対側に配置された粘着剤層を更に有する、請求項1又は2に記載のガスバリアフィルム。
  9.  請求項1又は2に記載のガスバリアフィルムの製造方法であって、
     一対の対向電極として一対の成膜ロールを有する成膜装置のチャンバー内に、有機ケイ素化合物及び酸素を導入して、化学気相成長法により前記酸炭化ケイ素層を形成する、ガスバリアフィルムの製造方法。
  10.  請求項1に記載のガスバリアフィルムと、偏光子とを備える、ガスバリア層付き偏光板。
  11.  請求項1に記載のガスバリアフィルムと、画像表示セルとを備える、画像表示装置。
  12.  請求項10に記載のガスバリア層付き偏光板と、画像表示セルとを備える、画像表示装置。
  13.  前記画像表示セルは、有機EL素子を含む、請求項11又は12に記載の画像表示装置。
PCT/JP2022/035424 2022-02-10 2022-09-22 ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置 WO2023153010A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019145 2022-02-10
JP2022019145 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023153010A1 true WO2023153010A1 (ja) 2023-08-17

Family

ID=87563977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035424 WO2023153010A1 (ja) 2022-02-10 2022-09-22 ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置

Country Status (2)

Country Link
TW (1) TW202344382A (ja)
WO (1) WO2023153010A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081630A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd ガスバリア性積層フィルム
WO2013146964A1 (ja) * 2012-03-27 2013-10-03 住友化学株式会社 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ
WO2018168671A1 (ja) * 2017-03-17 2018-09-20 コニカミノルタ株式会社 ガスバリア膜、ガスバリア性フィルム、ガスバリア膜の製造方法、及び、ガスバリア性フィルムの製造方法
WO2019054318A1 (ja) * 2017-09-13 2019-03-21 住友化学株式会社 ガスバリア性フィルムおよびフレキシブル電子デバイス
WO2019188771A1 (ja) * 2018-03-27 2019-10-03 住友化学株式会社 積層フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081630A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd ガスバリア性積層フィルム
WO2013146964A1 (ja) * 2012-03-27 2013-10-03 住友化学株式会社 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ
WO2018168671A1 (ja) * 2017-03-17 2018-09-20 コニカミノルタ株式会社 ガスバリア膜、ガスバリア性フィルム、ガスバリア膜の製造方法、及び、ガスバリア性フィルムの製造方法
WO2019054318A1 (ja) * 2017-09-13 2019-03-21 住友化学株式会社 ガスバリア性フィルムおよびフレキシブル電子デバイス
WO2019188771A1 (ja) * 2018-03-27 2019-10-03 住友化学株式会社 積層フィルム

Also Published As

Publication number Publication date
TW202344382A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
TWI790632B (zh) 蓋板透鏡膜
JP6363526B2 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
JP6333749B2 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
CN111183373B (zh) 防反射薄膜及其制造方法、以及带防反射层的偏光板
EP2982505B1 (en) Functional film with optical properties
WO2022172957A1 (ja) ガスバリアフィルムおよびその製造方法、ならびにガスバリア層付き偏光板および画像表示装置
WO2022014569A1 (ja) 防汚層付き光学フィルム
WO2023153010A1 (ja) ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置
WO2023153307A1 (ja) ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置
WO2023054178A1 (ja) ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板、画像表示装置及び太陽電池
WO2023054176A1 (ja) ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置
WO2023054177A1 (ja) ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置
WO2023054175A1 (ja) ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置
WO2022209829A1 (ja) 光学積層体および画像表示装置
WO2022014568A1 (ja) 防汚層付き光学フィルム
WO2018110272A1 (ja) ガスバリア性フィルムおよび有機elデバイス
JP6983040B2 (ja) ガスバリア性フィルム及びそれを含むデバイス
TW202135359A (zh) 光學膜的製造方法
WO2022172956A1 (ja) ガスバリアフィルム、ガスバリア層付き偏光板および画像表示装置
WO2022014574A1 (ja) 積層体
JP6007829B2 (ja) ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
WO2022080137A1 (ja) 反射防止層付き偏光板および画像表示装置
JP2005224948A (ja) 透明反射基材、カラーフィルタ及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926027

Country of ref document: EP

Kind code of ref document: A1